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LOCAL MONOTONICITY OF MEASURES SUPPORTED
BY GRAPHS OF CONVEX FUNCTIONS

RoOBERT CERNY

Abstract

Let f € C?(R) satisfy f(0) = f/(0) = 0 and f”(0) > 0. Then
the 1-dimensional Hausdorff measure restricted to the graph of f
is locally monotone near the origin in the sense that there exists

B(z,r) . .
MT() 18 nondecreasmg

o > 0 such that the function r —
on (0,0) for every centre z € B(o).

The result is reformulated for Hausdorff measures restricted to
uniformly C2-curves in R? with the curvature bounded away from

zero and infinity.

1. Introduction

In this paper, we are interested in local monotonicity of measures
in R2. Study of monotone measures is motivated by open problems
on existence and regularity of minimal surfaces. For the way, how the
Monotonicity Formula is used in current proofs, see for example [5].

Definition 1.1. Let ¢ be a Radon measure on R™ and k£ € N. We

say that p is k-monotone if the function r — % is nondecreasing
on (0,00) for every z € R™. Instead of 1-monotone, we simply write

monotone.

It is natural to ask whether there exists a monotone measure with non
unique tangential behaviour. Such a measure was first given by Kolaf.
He observed that non monotonicity of a measure can be sometimes com-
pensated by adding a measure that is abundant in monotonicity. There-
fore, he carefully constructed a measure with bad tangential behaviour
supported by a curve in R2, which was not too much non monotone,
and then adding a measure absolutely continuous with respect to the
Lebesgue measure he obtained the demanded measure.
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Nevertheless, it would be useful to have a monotone measure with
bad tangential behaviour satisfying some additional density assumptions
(the density should be bounded from bellow by one on the support and
it should be also bounded from above by 1 + ¢, for any given ¢ > 0,
which would show that Allard’s regularity theorem, see [1], cannot be
generalized).

As a candidate for such a measure, there was considered the 1-dimen-
sional Hausdorff measure restricted to a symmetrical pair of logarithmic
spirals (I'(t) = (tcos(aln|t|),tsin(alnft])), t € R\ {0}, T'(0) = (0,0)).
Such measures have the density 0lu, = 1 for 2 € sptpu, \ {0} and
O3 pha = @ =1+ a?, for every r € (0,00).

However, Huovinen showed that for every a # 0, pq is not monotone.
On the other hand, using the Taylor series and the self similarity of the
support Kirchheim proved that p, is locally monotone. More precisely,
there is a constant ¢, > 0 depending only on a # 0 such that the
function r +— @ is nondecreasing on (0, ¢,4|z|), 2 € R?\ {0}. Hence,
the Kolaf compensation method gives that for every a # 0, there is
a finite number of lines Ly, ..., L,, going through the origin such that
the measure uq +H' L Ui, L; is monotone.

Kirchheim’s results were improved in [2], where the lower estimates
for ¢, were found. This enabled to prove that for sufficiently small |a| #
0, only two lines are enough as a compensation for u,. Because of the
self similarity of logarithmic spirals it is easy to see that a single line is
not sufficient.

In paper [3], there is even given an example of a family of mea-
sures fq  in R with bad tangential behaviour that can be compensated
by a single line. Thus, the density of the obtained monotone measure
fa.c + H' L L is between 1 and 2 + ¢ on the support.

We see that the local monotonicity is not only a poor weak version of
the monotonicity, but it also plays an important role when used together
with the Kolaf compensation method.

In this paper, we are interested in two notions of local monotonicity
in R2.  Although, for applications, is it useful to have uniform local
monotonicity, i.e. r — @ nondecreasing on (0,0) for some o > 0
independent of a centre z € R?, or at least on large sets of centres, the
example of the logarithmic spirals also shows that it is sometimes useful
to study pointwise local monotonicity too.

The following section is devoted to the main result concerning the
uniform local monotonicity of measures supported by graphs of convex
C?-functions with the second derivative bounded away from zero.
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In the third section, we reformulate the main result for uniformly
C?-curves in R? with the curvature bounded away from zero and infinity.

Finally, in the fourth section, we give an example showing that even
if the function f is strictly convex and C'*°, then we generally lose even
the pointwise local monotonicity.

We refer to [4] and [5] for other information about the geometry of
measures and the Monotonicity Formula.

Notation. The scalar product of x,y € R™ is denoted by « - y and the
Euclidean norm of x is denoted by |z|. The 1-dimensional Hausdorff
measure is denoted by H'. And H' L A denotes its restriction to a Borel
set A. Further

B(z,r)={zeR":|z—z|<r} and S(z,r)={xeR":|lz—z|=r};

when z = 0, we simply write B(r) and S(r). For h € R, z > 0
and an even function f: R — R, we define z;, = (0,h) and rp(z) =
|(, f(2)) = 2| = Va2 + (f(2) = h)2, n(w) = arctan(f'(x)) and @n(x) =
arctan (W) .

We say that a Radon measure p is monotone at (z,r) if

DYMZQ
T

where D, f(r) = li%n iélf w_

Finally, for a Borel function f: (a,b) > R, —co < a < b < 00, let

np =H' A, f(@) : 2 €R)

and for an absolutely continuous curve v: [a,b] — R"™, —oco < a < b < o0,
we define
)= [ D (0)] dt.
{te(a,b):vy(t)eA}

2. Sufficient conditions for local monotonicity

In this section, our main result is

Theorem 2.1. Let f € C*(R), f(0) = f'(0) =0 and f"(0) > 0. Then
there exists o > 0 such that r — MBT(ﬂ is nondecreasing on (0,0) for

every centre z € B(o).

The proof of Theorem 2.1 is based on
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’ 20
satisfying f(0) = f'(0) = 0, f"(x) € [§.55] on (=6,8). Then r —
by B(zn,r)

Proposition 2.2. Let § € ( x| and f € C?((—6,0),R) be a function
(

is nondecreasing on (0,9) for every h € R.

The following lemma enables us to use Proposition 2.2 even when the
centre z is not restricted to the y-axis.

Lemma 2.3. Let f € C*(R), f(0) = f/(0) =0, f”(0) = 1. Then there
exists 0 > 0 such that for every xg € (—0,0), the function

Flo) = [ [0t e | )~ L

L+ f*(xo) 1+ f%(xo) 1+ f%(xo)
islgdeé)?ned on (—6,8) and satisfies f(0) = f(0) = 0, f"((—6,0)) C
(%5 %0

Proof: Since f" is continuous, there is 6 > 0 such that f”(t) € [%, g—é]

n (—4,8). Let us set § = min (16, 20) Then the assertion follows from
the definition of f and

Njw

F@=1\w+t == (1+ @) " O
L+ [ (o)

We prove Proposition 2.2 showing that pf is monotone at (z,r) for
every centre zj, h € R and for every radius r € (0, 9).

In the following, let f and § € (0, %} satisfy the assumptions of
Proposition 2.2. Since for h € R and r > 0, we have

1
pi(yBlan,r) =3 (e BGnsm) + i Blansm))
and

(1) p’fB(Zer):p’f‘ B(Zhar)a

{teR:(¢t,f(t))EB(zp )}
we suppose, without loss of generality, that f is an even function satis-
fying 0 < f”(z) < 35 on R.
The idea of the proof of Proposition 2.2 uses the Taylor expansion.
The following Lemma 2.4 gives us a suitable parameterization.



LocAL MONOTONICITY ON GRAPHS OF CONVEX FUNCTIONS 373

Lemma 2.4. Assume x € [0,0) and h < 2. Then

S(zn,rn(x)) Nspt g = {(2, f(2)), (=2, f(2))}-

Moreover, if x € (0,9), then BTBL(O € (0,00) and

t

OpsB(zn,T)
or

_ 2
(@) o8 (n(@) —n(2))’
Proof: S(zn,rn(z)) Nspt ur O {(z, f(x)), (—z, f(x))} holds trivially. On

. 20 1
the other hand, since h < 57 < SUD;¢(0,00) 77y < SUPte(0,00) f%(t), we

have
Orn(t) _ t4+(f() =h)f'(#) _ t=hf(t)
o rh(t) T (t)
on (0,00). Hence, the continuous function ¢ +— 7,(t) is increasing
on [0, c0).
Finally, let F(z,r) = 2? + (f(z) — h)?> — r2. The Implicit Function
Theorem gives

>0

OpsB(zn,r) _ OpgB(zn, rh(z)) Ox
or r=rp () Ox or r=rp(z)
oF
=2y/1+ f?(@)(-1) $
9z |r=ry,(x)
@
~ et (fl2) = h)f(2)
_ ol @), f(z) = h)]
(1, f"(x)) - (=, f(x) = h)

Proof of Proposition 2.2: Suppose h € R and r € (0,6). If > 2V, then
for every = € (0,9), we have

20 21,
>h— >h— > _ :
rp(z) > h— f(x) > h— f(5) > 51 206 >0>r

Hence B(zp,r) Nspt uy = 0 and the proof is trivial.
If h < 2 and S(zp,7) Nspt s C {(0,0)}, then again pyB(zp,7) =0
by Lemma 2.4.
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In the remaining case, there is unique x € (0,6) such that r = rp,(z).
Further, Lemma 2.4 gives

0 wrB(zn, 1)
or r

r=rp(z)

1 éme(zh,r)
=3 (7(% r— purB(zp,r)

r=rp(z)

€T

1
2

Gy B

2
<03 (1(2) — pn(@)) cos(pn(@

(&1
:r(mw
(

1
2

r r=rp(z)

()

4z

(%) = 2pn(x)) + cos(n(z
4

|~

) _,UfB(ZhaT))

no

r=rp(z)

| V

—wﬂ%ﬂ)

1+co

r=rp(z)

+
B day /1 + f2(z) o

Finally, using the Taylor expansion we obtain

A /14 f2(x) > 224/1 + f(x) +2:z:+% <%)2z3< 14 f2(z) + 1)
_ (m—i—é (;—(1))2953> (V14 2@ +1)
22]\/1+f’2(t)dt<\/1+f’2(x)+l).

0

Therefore, p s is monotone at (zp, 74 (x)). O

Proof of Theorem 2.1: Since (%f)” (ax) = af”(z), after a suitable resca-
ling, we can suppose f(0) = 1.

Taking 6 € ( , 20] from Lemma 2.3 we set 0 = —. Suppose z € B(o).
There is xg € [—g, g] such that

|z = (o, f(x0))| = dist(z, {(z, f(z)) : z € R}).
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Indeed, the graph of f is a continuous curve, and, moreover

frol < 2] + disi(z, {2, £(2)) s 0 € B)) < |2 +]2 — (0,0)] = 2]z < 3.
Further
a 2 2
0= g((iﬂ—zl) + (f(x) — 22)%)

T=xo

= 2(zo — 21) + 2(f (z0) — 22) [’ (20)

= 220 — 21, f(w0) — 22) - (1, f'(@0)).

Thus, z—(x0, f (o)) is perpendicular to (1, f'(x¢)). Now, Proposition 2.2
and Lemma 2.3 conclude the proof. o

3. Local monotonicity of smooth curves

In this section, we reformulate the main result about functions for
C?-curves, using the fact that they are locally graphs of C2-functions.

Some notes on curves in R2. Let I C R be an open interval and
v: I — R? be a regular C?-curve. We denote (t) = (M, M) and

ot ot
() = (%, %) for t € I. The curvature is defined by
My ") A(t —
)= SO0 gy 3y (0 1),
()] 10
Further, we can suppose |y| = 1, which is obtained, for a regular
curve, after a change of parameterization. In this case, |k (t)| = |¥(¢)]

and the geometrical meaning of the curvature is the following: for a fixed
vector v € R?, with |v| = 1, and ¢t € I, let §(¢) be an angle such that
cos(t) = 4(t) -v, sinO(t) = —(MA(t)")T -v and 4(t) is continuous with
respect to t, then 6(t) = k. (t).

Local monotonicity. Our aim is to prove

Theorem 3.1. Let 0 < e < K < 0o and w: [0,00) — [0,00) be a func-
tion satisfying lim,_o, w(t) = 0. Then there exists 0 > 0 such that r —
%(Z’T) is nondecreasing on the interval (0, min(o, |z —y(a)|, |z —v(b)]))
for every centre z € R? and every C?-curve v: [a,b] — R?, where —co <
a<b<oo, ¥ =1, with the curvature k~ satisfying k(s) € [e, K] and
ky(5) = by (D) S w(ls —t]), s, € (a,b).

In the following, standard calculations are checked to find the best
radii.
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Lemma 3.2. Assume 6 > 0, § = mln(g,Qlo) K € (0,00). Let
IC ( 55 QK) be an open interval such that 0 € I and v: I — R? be

a C%-curve satisfying v(0) = (0,0), ¥(0) = (1,0), |¥| =1, k(1) C [0, K]

. L
and [k (t) — ky (0)] < 222 on ( £, K) nI.

Then f(z) = va(yy H(x)) is a C?-function defined on v1(I), f(0) =0,
71(0) =0 and |§" (@) = f"O)] < 55 on (=5, ) N (D)
Proof: Let 6(t) be a continuously defined angle on I such that cos6(t) =
3(2) - 7(0) and sin6(t > — —(M5(t)T)T 1(0). Since

ol =| [ \/ ) ds

the function f(z) = 72(71 (7)) is a C2-function on 71(1) satisfying
£(0) =0, £/(0) = 0 and
3

F(@) = ky (v (@) (1 + 7 (2))
Finally, similarly as above, we obtain |f/(z)| = [tanf(v; ' (z))| < 5
provided |z| < £. Thus

() = £7(0)] = |ky (77 1 (2)) (A + f2(2)) — ks (0)]
< ey (97 (@) — RO+ (1 + f2(@)) 2 = 1)k (37 (@)

1 1\? 41
< — N — R
< 40k7(0)+ <<1+ 192) 1) 401@(0)

S5k (0) = 557(0). O

s)ds

<K|t|<

<

Proof of Theorem 3.1: Since lim;_o, w(t) = 0, there is § > 0 such that
w(t) < 45 on (0, 5). We define § = min (%, 2—10) and o = £. Let v be
a curve Satlsfylng the assumptions of Theorem 3.1 and z € R?. We set
7 = min(o, |2 = y(a)l, |z = YB)]). I {(t) : ¢ € [a,b]} N B(z,7) = 0, then
there is nothing to prove. Otherwise, there is a finite set J C N and
closed intervals I;, j € J, such that

UL ={telabl:y() € Bz}
jedJ

Now, for fixed j € J, let us find ¢; € I; satisfying
(ty) — 2| = dist(z, {2(1) : 1 € I,}).



LocAL MONOTONICITY ON GRAPHS OF CONVEX FUNCTIONS 377

Without loss of generality, suppose ~(t;) = (0,0) and 4(t;) = (1,0).
Then z = zp,, where |h| < 7. Finally, after rescaling, observation (1),
Lemma 3.2, and Proposition 2.2 give that %Mv B(z,r) is nondecreas-

int Ij
ing on (0, 7). Therefore, 2y, B(z,r) = dies %“7| B(z,r) is also non-
int Ij

decreasing on (0, 7). O

4. Example

Theorem 4.1. There is a strictly convex function f € C*®(R) and

a sequence of nonempty intervals I, C R, k € N, dist(I,0) — 0, such

pyB((0,£(0)),7)

that r — is decreasing on every Ij.

Before constructing such a function, we prove the following two lem-
mas

Lemma 4.2. There are ag > 0 and €9 > 0 such that r — w

is decreasing on (ro(2%0),70(2°0)) for every o > 0, a € (0,a0], € €
[0, 0] and every even continuous function f satisfying f(0) =0, f(20) €
0,1+ 2¢)ag) and f'(z) € [a, (1 + €)a] on'[20,2%].

Proof: Rescaling we suppose ¢ = 1. For a > 0, { € [0,3] and ¢ € [24,27]
we define

U, e(t) = V1+a2(#+a*(E+t—2)%)
—(t+a?E+t-2) (VT 2@ + (¢ -2V + @)

2¢2 2¢2
= a’&®V/1+ a2 —2a%¢ 1+a2—2a2§\/1+%+4a2\/1+af

2¢2 2¢2
— (—aQ«E\/l—i—aQ—Q\/l+a2+2\/1+%+2a2\/1+%> t
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Now, if a >0 and € € (0, i) are sufficiently small, then we have
Voee(t) = 1+ (1+e)2a® (P +a*(E+ (1 +e)(t - 2))?)
—(ttaP(E+t— 2))( 1+ a2 + (t—2)V/1 +a2)

< W, e(t) + <\/1 +(1+¢e)2a®—V1+ a2) 21>

+2a%e(t — 2)(26 + (2 + &) (t — 2))

< 0.
Finally, if we set & = i 51299) , then the parameterization used in Lemma 2.4
gives
0 usB(r 1 (OusB(r
2 450 _2< g”rme)
r r r=ro(t) r r r=ro(t)
1 Y1+ () r0(t)
= 2 — prB(ro(t
70 7 irrrmPr®)
< 2 \I/a75,§(t)
gt f) ()
< 0. O

Lemma 4.3. Let k € N, 0 > 0,0 > 1 and 6 > 0. Then there exists
an even C'™°-function ¢ such that p(x) =0 on [0, o], f is strictly convex
on (0,00), affine on [0o,00) and |Df(z)| < § for every 1 < i < k and
every x € R.

Proof: We define

0, z € (—o0, 1],
(@) = exp (—e ), @ e [-1,0]
et z € [0, 00).

Now, we set ¥(z) = ffoo ¥ (t)dt. Hence, if a, 5,0 € R are suitably
chosen, then ¢(z) = a¥(F|z| + o) is the required function. O

Proof of Theorem 4.1: We find two sequences of even C°°-functions.
The function fy satisfies fo(z) = 0 on [0,1] and fy is strictly convex
n (1,00). We set go = 0.
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Having @ > 0 and 0 < ¢ < 1 from Lemma 4.2, we use Lemma 4.3
to obtain the functions f; and g7 satisfying fi(z) = 0 on [0,27°], f; is
strictly convex on (27°,27%), fi(z) = a1 on [27%, 00), where 0 < a; <
min(a,279), g1(x) = 0 on [0,27%], g; is strictly convex on (27%,1), g; is
affine on [1,00) and g} (z) < =¢* for all z > 0.

Having found fi_; and gx_1, let fi and g satisfy fx(z)=0 on [0,27°%],
fx is strictly convex on (27°% 275k+1) | £1(7) = a; on [27°%+1 00), where
ar > 0, [D' fi(2)| < min ($ak—1,27%) for all z > 0 and every 1 < i < k,
gr(z) = 0 on [0,27%%*1], gy is strictly convex on (27%%+1 2-5(k=1))
g is affine on [27°*=1 o0) and [Digy(z)| < Zay, for all z > 0 and every
1<i<k.

Now, we show that f =7 fr + gk is the required function. Let us
prove that f € C*°(R). For any = > 0, there is at most one function in
the sum to have generally non-zero derivatives of a higher order than one.
Moreover, the estimates of |D!fx(x)| and [Digx(z)| imply D! £(0) =0
for all 4 € N. Further, the sum of the first derivatives is always finite.

Finally, if z € [27%%+1 2-5(k=1)] L € N, then we have

w< @)=Y fera@<a (5) TG T <o
n==k n==k

Hence, the non monotonicity on the ro(-)-image of each interval
(275k+4 2=5k+5) 'k ¢ N, follows from Lemma 4.2. O
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