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NOTE ON COAREA FORMULAE IN THE HEISENBERG

GROUP

Valentino Magnani

Abstract

We show a first nontrivial example of coarea formula for vector-
valued Lipschitz maps defined on the three dimensional Heisen-
berg group. In this coarea formula, integration on level sets is
performed with respect to the 2-dimensional spherical Hausdorff
measure, built by the Carnot-Carathéodory distance. The stan-
dard jacobian is replaced by the so called “horizontal jacobian”,
corresponding to the jacobian of the Pansu differential of the Lips-
chitz map. Joining previous results, we achieve all possible coarea
formulae for Lipschitz maps defined on the Heisenberg group.

1. Introduction

The study of sub-Riemannian Geometry is recently carried out in sev-
eral areas of Mathematics, such as Differential Geometry, PDEs, Geo-
metric Measure Theory, Sobolev spaces and Geometric Control Theory.
An account on these developments can be found for instance in [1], [10],
[11] and [17].

Aim of this note is to show the first nontrivial example of coarea for-
mula for vector-valued maps, whose domain is a noncommutative strat-
ified group endowed with its natural sub-Riemannian structure. Coarea
formulae for real-valued maps on stratified groups and the more gen-
eral Carnot-Carathéodory spaces have been largely studied by several
authors in different contexts, [8], [9], [15], [16], [18], [20], [21]. Most
of these results hold for functions of bounded variation, where the no-
tion of perimeter measure plays a central role. In our case this notion
cannot be employed since level sets have codimension higher than one.
Moreover, the choice of target may affect even the existence of nontrivial
coarea formulae, [13]. As main result of this note we obtain the following
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coarea formula

(1)

∫

A

u(x) JHf(x) dx =

∫

R2

(

∫

f−1(t)∩A

u(y) dS2
H3(y)

)

dt,

where u : A −→ [0, +∞] is a measurable function, A is a measurable sub-
set of the Heisenberg group H

3, and f : A −→ R
2 is a Lipschitz function

with respect to the Euclidean distance. Heisenberg group certainly is
the simplest model of stratified group, [24]. The “sub-Riemannian” fea-
tures of (1) are the horizontal jacobian JHf and the spherical Hausdorff
measure S2

H3 with respect to the Carnot-Carathéodory distance. The
horizontal jacobian corresponds to the jacobian of the matrix represent-
ing the Pansu differential (Definition 2.1) and the Carnot-Carathéodory
distance is the control distance associated to the horizontal distribution
of H

3 (Section 2). These two objects are strictly related, as formulae (13)
and (14) show. The measure S2

H3 only detects the non-horizontal part
of level sets and the choice of JHf surprisingly fits this property. Lips-
chitz functions with respect to the Euclidean distance are also Lipschitz
with respect to the Carnot-Carathéodory distance, but the converse is
not true. This naturally raises the question of extending (1) to Lipschitz
maps with respect to the Carnot-Carathéodory distance of H

3. The diffi-
culty of this problem clearly appears in examples of Lipschitz maps with
respect to the Carnot-Carathéodory distance which are nowhere differ-
entiable on a set of full measure, [15]. Coarea formula (1) fits into the
general coarea formula stated in [13], whose validity for arbitrary strat-
ified groups is still an open problem. Nonetheless, formula (1) allows
us to complete the picture of all possible coarea formulae for Lipschitz
maps defined on H

3, as we show in Theorem 5.2.
In ending, although our proof of coarea formula suggests a clear pat-

tern for its extension to higher dimensional Heisenberg groups, a number
of new difficulties appears in this case, as we explain in Remark 4.4. In
this perspective, the present note becomes the first step to understand
more general coarea formulae in higher dimensional stratified groups,
where the intriguing geometry of higher codimensional sets is a new ter-
rain for further investigations.

2. A digest of basic notions

We begin this section introducing the 3-dimensional Heisenberg group.
This is a simply connected Lie group H

3 whose Lie algebra h3 is
endowed with a basis (X1, X2) satisfying the nontrivial bracket rela-
tions [X1, X2] = 2 X3. We will identify the Lie algebra h3 with the
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isomorphic Lie algebra of left invariant vector fields of H
3. The expo-

nential map exp: h3 −→ H
3 is a diffeomorphism, then it is possible to

introduce global coordinates on H
3. We consider F : R

3 −→ H
3 defined

by

(2) F (x) = exp
(

x1X1 + x2X2 + x3X3

)

.

We will assume throughout that a system of coordinates defined by (2) is
fixed. This allows us to identify H

3 with R
3. The vector fields (X1,X2,X3)

with respect to our coordinates read as X1 = ∂x1
− x2∂x3

, X2 = ∂x2
+

x1∂x3
and X3 = ∂x3

. The group operation is represented by the formula

(3) x · y =
(

x1 + y1, x2 + y2, x3 + y3 + x1y2 − x2y1

)

.

A natural family of dilations which respects the group operation (3) can
be defined by setting δr(x) = (rx1, rx2, r

2x3) for every r > 0. In fact,
the map δr : H

3 −→ H
3 defined above is a group homomorphism with

respect to the operation (3). Our frame (X1, X2, X3) admits a dual
basis (dx1, dx2, ϑ) of one-forms on H

3, where the contact form ϑ can be
explicitly written as

(4) ϑ = dx3 + x2 dx1 − x1 dx2.

The vector fields X1, X2 span a smooth distribution of 2-dimensional
planes, which define all horizontal directions of H

3. A point γ(t) of a
differentiable curve γ : [a, b] −→ H

3 is characteristic if γ ′(t) is a horizon-
tal direction and it is called transverse otherwise. Absolutely continuous
curves which are a.e. characteristic are called horizontal curves, [1]. The
sub-Riemannian metric structure of H

3 is obtained fixing a left invariant
Riemannian metric on H

3 and defining the Carnot-Carathéodory distance
between two points as the infimum over Riemannian lengths of horizon-
tal curves joining these points. Vector fields X1 and X2 satisfy the Lie
bracket generating condition, therefore the Chow theorem implies that
every couple of points is joined by at least one horizontal curve, see for
instance [1, p. 15]. As a result, the Carnot-Carathéodory distance is well
defined.

Through coordinates (2) we can introduce the one dimensional Haus-
dorff measure H1 on H

3 with respect to the Euclidean distance in R
3.

This measure clearly depends on our coordinates, however our final re-
sults will be formulated in intrinsic terms. We will assume throughout
that Lipschitz functions on subsets of H

3 are considered with respect
to the Euclidean distance of H

3. The symbol | · | will denote the Eu-
clidean norm. By contrast with Analysis in Euclidean spaces, where the
Euclidean distance is the most natural choice, in the Heisenberg group
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several distances have been introduced for different purposes. However,
all of these distances are “homogeneous”, namely, they are left invari-
ant and satisfy the relation ρ(δry, δrz) = r ρ(y, z) for every y, z ∈ H

3

and r > 0. To simplify notations we write ρ(x, 0) = ρ(x), where 0 de-
notes either the origin of R

3 or the unit element of H
3. The open ball

of center x and radius r > 0 with respect to a homogeneous distance
is denoted by Bx,r. The Carnot-Carathéodory distance is an important
example of homogeneous distance. However, all of our computations
hold for a general homogeneous distance, therefore in the sequel ρ will
denote a homogeneous distance, if not stated otherwise. Note that the
Hausdorff dimension of H

3 with respect to any homogeneous distance is
four.

Before introducing the next definition we recall that any L : H
3 −→ R

k

is a G-linear map if it is a group homomorphism satisfying the homo-
geneity property L(δrx) = rL(x) for every x ∈ H

3 and r > 0. Note
that G-linear maps are also linear in the usual sense, as we identifiy H

3

with R
3.

G-linear maps constitute the family of intrinsic differentials, as we
clarify in the following definition.

Definition 2.1 (P-differentiability). Let f : Ω −→ R
k, where Ω is an

open subset of H
3. We say that f is P-differentiable at x ∈ Ω if

there exists a G-linear map L : H
3 −→ R

k such that |f(x · h) − f(x) −
L(h)|ρ(h)−1 −→ 0 as ρ(h) → 0. The G-linear map L with the previous
property is uniquely defined and it is called the P-differential of f at x.
We use the notation Df(x) to indicate the P-differential L.

The notion of P-differentiability has been introduced by Pansu in the
more general framework of stratified groups, [22]. One can check by
direct computation that f : Ω −→ R

k is P-differentiable at x ∈ Ω if it is
differentiable at x in the usual sense. Note that the converse is not true.
The k × 3 matrix representing Df(x) can be written as follows

(5) Df(x) =













X1f
1(x) X2f

1(x) 0

X1f
2(x) X2f

2(x) 0
...

...
...

X1f
k(x) X2f

k(x) 0













.

We denote by ∇f(x) the k×3 matrix (f i
xj

)i=1,...,k
j=1,2,3 representing the stan-

dard differential df(x) of f at x. The horizontal jacobian JHf(x) of f
at x is defined by taking the standard jacobian of the matrix (5). The
standard jacobian of f at x is denoted by Jf(x). The Lebesuge measure
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of a measurable subset A in H
3 is denoted by |A| and the d-dimensional

spherical Hausdorff measure Sd is always considered with respect to
the fixed homogeneous distance ρ. Note that our definition of spherical
Hausdorff measure differs from the standard one of [6], in that the vol-
ume of the d-dimensional ball ωd is replaced by one. The reason for this
choice clearly appears in Corollary 3.2, where the “natural” dimensional

constant 2/ρ
(

(0, 0, 1)
)2

in the definition of S2
H3 replaces ω1 = 2.

3. Intrinsic measure of transverse curves

The present section is devoted to the blow-up of C1 curves with re-
spect to a homogeneous distance. As a consequence, we achieve for-
mula (13), corresponding to the integral representation of the 2-dimen-
sional spherical Hausdorff measure of a transverse curve. This formula
has been first obtained by Pansu, [20]. To make this note more self-
contained, here we recall its proof. In the sequel, Ω will denote an open
subset of H

3 and coordinates (2) will be understood, then we will iden-
tify Ω with an open subset of R

3.

Theorem 3.1. Let γ ⊂ H
3 be a one-dimensional immersed submanifold

of class C1 and let x ∈ γ. If γ is transverse at x, then ‖ϑ(x)‖ > 0 and
the limit

(6) lim
r→0+

H1(γ ∩ Bx,r)

r2
=

c

‖ϑ(x)‖

holds, where c = 2/ρ
(

(0, 0, 1)
)2

.

Proof: Let us denote by the same symbol γ: J−→H
3 a local parametriza-

tion of the immersed submanifold γ near the point x, such that γ(0) = x
and J is an open neighbourhood of zero. Defining the subset Ix,r =
{t ∈ J | ρ(γ(t), x) < r}, we have

H1(γ ∩ Bx,r) =

∫

Ix,r

|γ′(t)| dt,

then the change of variable t = r2τ yields

(7)
H1(γ ∩ Bx,r)

r2
=

∫

r−2Ix,r

|γ′(r2τ)| dτ,

where we have defined r−2Ix,r = {τ ∈ r−2J | ρ(γ(r2τ), x) < r}. The left
invariance of ρ and the homogeneity of dilations yield

r−2Ix,r = {τ ∈ r−2J | ρ
(

δ1/r

(

x−1γ(r2τ)
))

< 1}.
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The group law (3) allows us to compute the components of δ1/r

(

x−1γ(r2τ)
)

in R
3, obtaining

(8) [δ1/r

(

x−1γ(r2τ)
)

]j =
γj(r

2τ) − γj(0)

r
−→ 0 as r → 0+,

for every j = 1, 2. Computing the third component we get

[δ1/r

(

x−1γ(r2τ)
)

]3 =
γ3(r

2τ) − γ3(0) − γ1(0)γ2(r
2τ) + γ2(0)γ1(r

2τ)

r2

=
γ3(r

2τ) − γ3(0) − γ1(0)(γ2(r
2τ) − γ2(0))+γ2(0)(γ1(r

2τ) − γ1(0))

r2

and from the expression of the contact form (4) we conclude that

(9) [δ1/r

(

x−1γ(r2τ)
)

]3 −→ τ (γ′
3(0) − γ1(0)γ′

2(0) + γ2(0)γ′
1(0))

= τ ϑ(γ(0), γ′(0)).

By definition of contact form a vector V ∈ TxH
3 is horizontal if and

only if ϑ(x, V ) = 0, then ϑ(x, γ ′(0)) 6= 0 and ‖ϑ(x)‖ > 0, because γ is
transverse at x. Limits (8) and (9) imply that for every t ∈ R\{τ0,−τ0}
we have

(10) 1r−2Ix,r
(t) −→ 1I′

x,0
(t) as r → 0+,

where τ0 = |ϑ(x, γ′(0))|−1ρ
(

(0, 0, 1)
)−2

and

(11) I ′x,0 = {τ ∈ R | |τϑ(x, γ′(0))|ρ
(

(0, 0, 1)
)2

< 1} = (−τ0, τ0).

Finally, formulae (7), (11) and limit (10) along with Lebesgue conver-
gence theorem yield

(12)
H1(γ ∩ Bx,r)

r2
−→ 2τ0|γ

′(0)| as r → 0+.

This completes the proof.

Corollary 3.2 (Integral representation). Let γ ⊂ H
3 be a one-dimen-

sional immersed submanifold of class C1 which is S2-a.e. transverse.
Then we have the formula

(13) S2
H3(γ) =

∫

γ

‖ϑ(x)‖ dH1(x),

where c = 2/ρ
(

(0, 0, 1)
)2

and S2
H3 = cS2.
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Proof: It suffices to define the new measure µ = ‖ϑ(x)‖H1, then Theo-
rem 3.1 along with standard differentiability theorems applied to µ, see
for instance Theorem 2.10.17(2) and Theorem 2.10.18(1) of [6], lead us
to our claim.

Remark 3.3. Note that formula (13) can be also expressed with respect to
any left invariant metric g, replacing the role of the Euclidean distance.
In fact, we have the equalities

∫

γ

‖ϑ(x)‖g dH1
g =

∫

J

|ϑ(γ(t), γ′(t))|

|γ′(t)|g
|γ′(t)|g dt

=

∫

J

|ϑ(γ(t), γ′(t))|

|γ′(t)|
|γ′(t)| dt

=

∫

γ

‖ϑ(x)‖ dH1 = S2
H3(γ),

where H1
g is the one dimensional Hausdorff measure with respect to

the Riemannian distance and | · |g denotes the Riemannian norm. This
remark emphasizes the auxiliary role of the Euclidean distance.

4. Coarea formula for vector valued maps

The purpose of this section is to prove our main result stated in The-
orem 4.3. To do this, the next theorem constitutes the key tool.

Theorem 4.1. Let f : Ω −→ R
2 be a C1 function, x ∈ Ω and assume

that df(x) : H
3 −→ R

2 is surjective. Then there exists a neighbourhood U
of x such that for every y belonging to the one-dimensional submanifold
f−1(f(x)) ∩ U we have

(14) JHf(y) = ‖ϑ(y)‖Jf(y).

Proof: We denote by (∇f)i1i2 the 2×2 submatrix of ∇f with columns i1
and i2, and by Mi1i2(∇f) the minor det

(

(∇f)i1i2

)

. By hypothesis
the matrix ∇f(x) has rank two, therefore we assume for instance that
M13(∇f(x)) 6= 0. The implicit function theorem yields a C1 immersion
γ : J −→ H

3 such that γ(0) = x and f(γ(t)) = f(x) for every t be-
longing to the open interval J containing the origin. In addition, the
curve γ can be represented as γ(t) = (γ1(t), t, γ3(t)), where γj : J −→ R

is a C1 function for j = 1, 2. By a simple and elementary calculation,
the differentation of equality f ((γ1(t), t, γ2(t))) = f(x) leads us to the
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formula

(15)

[

γ′
1

γ′
3

]

= −
1

M13 (∇f)

[

f2
x3

−f1
x3

−f2
x1

f1
x1

][

f1
x2

f2
x2

]

,

where we have explicitly written the inverse matrix ((∇f)13)
−1

. Expres-
sion (15) yields

(16) γ′
1 = −

M23(∇f)

M13(∇f)
and γ′

3 = −
M12(∇f)

M13(∇f)
.

Using the definition of JHf and the explicit expressions of operators Xj

one can achieve the following equality

(17) JHf(x) = |M12(∇f(x)) + x1M13(∇f(x)) − x2M32(∇f(x))|.

As a consequence of this formula, dividing both terms of the quotient
JHf/Jf by |M13(∇f)| and using (16), we obtain

(18)
JHf (γ(t))

Jf (γ(t))
=

|γ′
3(t) − γ1(t) + tγ′

1(t)|

|γ′(t)|
=

|ϑ(γ(t), γ′(t))|

|γ′(t)|
=‖ϑ (γ(t)) ‖.

Clearly, either possible cases M12(∇f(x)) 6= 0 or M23(∇f(x)) 6= 0 would
lead us to the same formula, due to its intrinsic form.

Remark 4.2. Note that in the statement of the next theorem the hori-
zontal jacobian JHf is considered when f is defined on a measurale set
instead of an open set. This refers to a slightly more general notion of
P-differentiability, where interior points of the domain A are replaced
with density points. Even in this case the P-differential is uniquely de-
fined, see Definition 7 and Proposition 2.2 of [12] for more details.

Theorem 4.3 (Coarea formula). Let f : A −→ R
2 be a Lipschitz map,

where A ⊂ H
3 is a measurable subset. Then for every measurable func-

tion u : A −→ [0, +∞] the formula

(19)

∫

A

u(x)JHf(x) dx =

∫

R2

(

∫

f−1(t)∩A

u(y) dS2
H3(y)

)

dt

holds, where c = 2/ρ
(

(0, 0, 1)
)2

and S2
H3 = cS2.

Proof: We first prove (19) in the case f is defined on all of H
3 and is

of class C1. Let Ω be an open subset of H
3. In view of the Euclidean

coarea formula we have

(20)

∫

Ω

u(x)Jf(x) dx =

∫

R2

(

∫

f−1(t)∩Ω

u(y) dH1(y)

)

dt,
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where u : Ω −→ [0, +∞] is a measurable function, see for instance [6].
Now we define u(x) = JHf(x)1{Jf 6=0}∩Ω(x)/Jf(x) and use (20), obtain-
ing

(21)

∫

Ω

JHf(x) dx =

∫

R2

(

∫

f−1(t)∩Ω

JHf(x)1{Jf 6=0}(x)

Jf(x)
dH1(y)

)

dt.

The validity of (20) also implies that for a.e. t ∈ R
2 the set of points

of f−1(t) where Jf vanishes is H1-negligible, then the previous formula
becomes

(22)

∫

Ω

JHf(x) dx =

∫

R2

(

∫

f−1(t)∩Ω

JHf(x)

Jf(x)
dH1(y)

)

dt.

By Theorem 2.7 of [13], for a.e. t ∈ R
2 we have that S2(Ct ∩ Ω) = 0,

where we have defined

Ct = {y ∈ f−1(t) ∩ Ω | JHf(y) = 0}.

As a result, from formulae (13) and (14) we have proved that for
a.e. t ∈ R

2 the equalities
∫

f−1(t)∩Ω

JHf(x)

Jf(x)
dH1(y) = S2

H3(f−1(t) ∩ Ω \ Ct) = S2
H3(f−1(t) ∩ Ω)

hold, therefore we have achieved

(23)

∫

Ω

JHf(x) dx =

∫

R2

S2
H3(f−1(t) ∩ Ω) dt.

The arbitrary choice of Ω yields the validity of (23) also for arbitrary
closed sets. Then, approximation of measurable sets by closed ones,
Borel regularity of S2

H3 and the coarea estimate 2.10.25 of [6] extend the
validity of (23) to the following one

(24)

∫

A

JHf(x) dx =

∫

R2

S2
H3(f−1(t) ∩ A) dt,

where A is a measurable subset of H
3. Now we consider the general

case, where f : A −→ R
2 is a Lipschitz map defined on a measurable

bounded subset A of H
3. Let f1 : H

3 −→ R
2 be a Lipschitz extension

of f , namely, f1|A = f holds. Due to the Whitney extension theorem

(see for instance 3.1.15 of [6]) for every arbitrarily fixed ε > 0 there
exists a C1 function f2 : H

3 −→ R
2 such that the open subset O =

{z ∈ H
3 | f1(z) 6= f2(z)} has Lebesgue measure less than or equal to ε.

The map f is a.e. differentiable in the Euclidean sense, then it is also
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a.e. P-differentiable. As we have mentioned in Remark 4.2 the horizontal
jacobian JHf is well defined and we can consider the estimate

(25)

∣

∣

∣

∣

∫

A

JHf(x) dx −

∫

R2

S2
H3(f−1(t) ∩ A) dt

∣

∣

∣

∣

≤

∫

A∩O

JHf(x) dx +

∫

R2

S2
H3(f−1(t) ∩ A ∩ O) dt.

In fact, due to the first part of this proof, the following coarea formula
for C1 smooth maps holds

∫

A\O

JHf2(x) dx =

∫

R2

S2
H3(f−1

2 (t) ∩ A \O) dt.

Moreover, the equality f2|A\O = f|A\O implies that JHf2 = JHf a.e.

on A \ O, therefore
∫

A\O

JHf(x) dx =

∫

R2

S2
H3(f−1(t) ∩ A \ O) dt

holds and inequality (25) is proved. Now we recall that the Euclidean
distance can be estimated from above by any fixed homogeneous dis-
tance. Let ρg denote the Riemannian distance defined by the left invari-
ant metric g fixed on H

3. Then we have ρg ≤ ρCC , where ρCC is the
Carnot-Carathéodory distance associated to g. The fact that the Rie-
mannian distance is locally equivalent to the Euclidean distance and that
the Carnot-Carathéodory distance is equivalent to any homogeneous dis-
tance prove our claim. As a consequence, due to the boundedness of A,
the map f is Lipschitz even with respect to the homogeneous distance ρ.
Let us denote by Lip(f) the Lipschitz constant of f with respect to the
homogeneous distance ρ. Then there exists a constant c0 depending on ρ
such that

(26) ‖Df(x)‖ ≤ c0 Lip(f)

for a.e. x ∈ A. Then the algebraic inequality

JHf(x) ≤
√

(X1f1(x))2 + (X2f1(x))2
√

(X1f2(x))2 + (X2f2(x))2

and (26) imply

(27) JHf(x) ≤ c2
0 Lip(f)2

for a.e. x ∈ A. By virtue of the general coarea inequality 2.10.25 of [6]
there exists a dimensional constant c1 > 0 such that

(28)

∫

R2

S2
H3(f−1(t) ∩ A ∩ O) dt ≤ c1 Lip(f)2H4(O).



Coarea Formulae in the Heisenberg Group 419

The fact that the 4-dimensional Hausdorff meaure H4 with respect to
the homogeneous distance ρ is proportional to the Lebesgue measure,
gives us a constant c2 > 0 such that

(29)

∫

R2

S2
H3(f−1(t) ∩ A ∩ O) dt ≤ c2 Lip(f)2|O| ≤ c2 Lip(f)2ε.

Thus, estimates (27) and (29) joined with inequality (25) yield
∣

∣

∣

∣

∫

A

JHf(x) dx −

∫

R2

S2
H3(f−1(t) ∩ A) dt

∣

∣

∣

∣

≤ (c2
0 + c2) Lip(f)2ε.

Letting ε → 0+, we have proved that

(30)

∫

A

JHf(x) dx =

∫

R2

S2
H3(f−1(t) ∩ A) dt.

Finally, utilizing increasing sequences of step functions pointwise con-
verging to u and applying Beppo Levi convergence theorem, the proof
of (19) is achieved in the case A is bounded. If A is not bounded, then
one can take the limit of (19) where A is replaced by Ak and {Ak} is an
increasing sequence of measurable bounded sets whose union yields A.
Then the Beppo Levi convergence theorem concludes the proof.

Remark 4.4. The proof of Theorem 4.3 suggests a method for its ex-
tension to higher dimensional Heisenberg groups. Applying this method
two main problems appear. The first one is to reach an intrinsic charac-
terization of the quotient JHf/Jf in terms of the contact form and of
possible new left invariant forms. The second one is the characterization
of the blow-up limit in terms of these forms.

5. All coarea formulae in the Heisenberg group

This section collects all known coarea formulae for maps defined on
the three dimensional Heisenberg group. We first recall the notion of
coarea factor, see [13] for more information.

Definition 5.1 (Coarea factor). Let L : H
3 −→ R

k be a G-linear map,
with k ≤ 4. The coarea factor of L with respect to the spherical Haus-
dorff measure S4−k

c is the unique number Ck(L) satisfying the relation

(31) Ck(L)|A| =

∫

Rk

S4−k
c (L−1(y) ∩ A) dy

for every measurable subset A ⊂ H
3, where c > 0 and S4−k

c = cS4−k.
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One can verify that the number Ck(L) ≥ 0 is positive if and only
if L is surjective, see Proposition 1.12 of [13]. The general notion of
coarea factor allows us to state in a unified way the validity of a family
of coarea formulae, as we show in the following theorem.

Theorem 5.2. Let A ⊂ H
3 be a measurable set and let f : A −→ R

k be
a Lipschitz map with 1 ≤ k ≤ 4. Let ρ be the Carnot-Carathéodory dis-
tance. Then for any measurable function u : A −→ [0, +∞] the following
equality

(32)

∫

A

u(x) Ck

(

Df(x)
)

dx =

∫

Rk

∫

f−1(t)∩A

u(z) dS4−k
H3 (z) dt

holds and it becomes the trivial identity 0 = 0 if k = 3, 4. The formu-

lae S3
H3 = αS3

ρ and S2
H3 = 2ρ

(

(0, 0, 1)
)−2

S2
ρ hold, where α is the metric

factor of the Carnot-Carathéodory distance and Sd
ρ is the d-dimensional

spherical Hausdorff measure built by the distance ρ. The coarea fac-
tor Ck

(

Df(x)
)

is considered with respect to S4−k
H3 .

In the case k = 1, Theorem 5.2 was first proved by Pansu, [20], [21],
where

C1(Df(x)) =
√

X1f(x)2 + X2f(x)2.

The coarea factor α in the definition of S3
H3 has been introduced in [14],

where (32) has been extended to real-valued Lipschitz maps on stratified
groups. Here the metric factor is constant due to the invariant property
of the Carnot-Carathéodory distance with respect to horizontal isome-
tries, see [14] for more information. In the case k = 2, the validity
of (19) for any G-linear map and the definition of coarea factor easily
imply the equality

C2(Df(x)) = JHf(x),

then Theorem 5.2 is a consequence of Theorem 4.3. If k = 3, 4, then the
general coarea inequality of [13] can be applied. In fact, any G-linear
map L : H

3 −→ R
k cannot be surjective in this case, as it easily fol-

lows from its matrix representation (5). Then the number Ck(Df(x))
is always vanishing and the general coarea inequality of [13] yields the
trivial identity 0 = 0. The same argument applies to stratified groups M

in the target, having topological dimension greater than or equal to 4,
see also Subsection 2.1 of [13]. The only possible noncommutative strat-
ified group in the target giving a nontrivial coarea formula is the three
dimensional Heisenberg group itself. In this case the coarea formula co-
incides with the area formula, [12], and the map f is assumed to be
Lipschitz with respect to the homogeneous distance of H

3.
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cycle, Université Paris 7 (1982).
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