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WEIGHTED HARDY’S INEQUALITIES FOR NEGATIVE

INDICES

Dmitry V. Prokhorov

Abstract

In the paper we obtain a precise characterization of Hardy type
inequalities with weights for the negative indices and the indices
between 0 and 1 and establish a duality between these cases.

1. Introduction

The Hardy inequality with weights u, v ≥ 0
(∫ +∞

0

u(x)

(∫ x

0

f(y)v(y) dy

)q

dx

)

1
q

≤ C

(∫ +∞

0

f(x)p dx

)

1
p

, f ≥ 0

has been completely characterized for p, q > 0 by G. Talenti [11], B. Mu-
ckenhoupt [7], J. S. Bradley [3], V. G. Maz’ja and A. Rozin [6, § 1.3],
G. Sinnamon [9], G. Sinnamon and V. D. Stepanov [10] and some other
authors (see the monographs [8] and [5] for details). An analogous prob-
lem for p, q < 1 was studied by P. R. Beesack and H. P. Heinig [1], where
sufficient conditions and necessary conditions under some restrictions on
the weight functions were given for the inequality

(1)

(∫ +∞

0

f(x)p dx

)

1
p

≤ C

(∫ +∞

0

u(x)

(∫ x

0

f(y)v(y) dy

)q

dx

)

1
q

, f ≥ 0.

In the present paper we obtain a precise characterization of (1) for p, q<0
and p, q ∈ (0, 1). Moreover, we establish a duality between these cases.

The paper is organized as follows: Section 2 contains an explicit cri-
terion of (1) for the cases −∞ < q ≤ p < 0 (Theorem 1) and −∞ < p <

q < 0 (Theorem 2) and similar results with the dual operator. Theorem 3
of Section 3 proves that the Hardy type inequality with negative indices
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of integration is equivalent to the same inequality with the dual operator
for conjugate indices. As a consequence we are able to characterize (1)
for p, q ∈ (0, 1) in the corollary of Section 4. Other propositions of Sec-
tion 4 supplement the main results by a number of characterizations for
similar inequalities.

Throughout this paper A . B and B & A means that A ≤ cB, where
the constant c depends only on p, q and may be different in different
places. If both A . B and A & B, then we write A ≈ B. N stands for
the set of positive integers, Z is the set of all integers and (a, b) is a non-
empty interval of the real line (−∞, +∞). The symbol p′ := p

p−1 denotes

the conjugate number of p, q′ := q
q−1 and the symbol � marks the end

of proof of any statement. As usual we abbreviate “almost everywhere”
by a.e. and “if and only if” by iff. Sometimes for simplicity we also use

the notation
∫ b

a
f :=

∫ b

a
f(x) dx.

Let us mention one more thing before we start. A peculiarity of the
inequality (1) caused by the negativity of the indices force us to work
with measurable functions having their values in the extended semi-
axis [0, +∞] equipped by arithmetic:

(2)

0 + (+∞) = a + (+∞) = a · (+∞) = +∞, a ∈ (0, +∞];

0 · (+∞) = 0;

(+∞)α = 0−α = +∞, (+∞)−α = 0α = 0, α ∈ (0, +∞).

Note also simple corollaries of the axioms (2) which we often use:

Let α, β ∈ (−∞, +∞)\{0} and a, b ∈ [0, +∞]. Then

1. (aα)β = aαβ.

2. aαaβ ≤ aα+β; if (a < +∞ and α+β > 0) or (a > 0 and α+β < 0),
then aαaβ = aα+β.

3. aαbα ≤ (ab)α with equality unless α < 0 and {a, b} = {0, +∞}.

2. The main results

Denote by M+(a, b) the class of all measurable functions f : (a, b) →
[0, +∞] and put

(I×f)(x) :=

∫ x

a

f(y) dy,

(I×f)(x) :=

∫ b

x

f(y) dy,

x ∈ (a, b).
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Theorem 1. Let −∞ < q ≤ p < 0, u, v ∈ M+(a, b) and I = I× or
I = I×. Then the following statement

(a) There exists a constant C > 0 such that

(3)

(

∫ b

a

f(x)p dx

)
1
p

≤ C

(

∫ b

a

u(x) [(I(fv))(x)]
q

dx

)
1
q

for all f ∈ M
+(a, b)

holds

is equivalent to A < +∞, where

A := sup
a<t<b

A(t) := sup
a<t<b

[(Iu)(t)]
− 1

q

[

(Ivp′

)(t)
]− 1

p′

.

Moreover, A ≈ C for the least possible constant C in (3).

Proof: Let I = I× (the case I = I× can be proved analogously). At first
we note that finiteness of the constant A is equivalent to the condition

(a1)
∫ a∗

a
u = 0,

∫ t

a∗
u < +∞ for all t ∈ (a∗, b∗), A < +∞ and

∫ b∗

a∗
u =

+∞ implies
∫ b∗

a∗
vp′

= +∞, where a∗ := sup{t ∈ [a, b) |
∫ t

a
vp′

= 0},

b∗ := sup{t ∈ [a, b) |
∫ t

a
vp′

< +∞} and

A := sup
a∗<t<b∗

A(t) := sup
a∗<t<b∗

(∫ t

a∗

u

)− 1
q
(∫ t

a∗

vp′

)− 1
p′

.

Moreover, A = A. If (a1) holds then for t ∈ (a, a∗] we have
(

∫ t

a
u
)− 1

q

= 0 and for t ∈ (b∗, b) we have
(

∫ t

a
vp′

)− 1
p′

= 0. For

t ∈ (a∗, b∗] we have A(t) = A(t) ≤ A. Putting these together shows
that A ≤ A < +∞. Conversely, if A < +∞ then A(a∗) < +∞

and
∫ a∗

a
vp′

= 0 so
∫ a∗

a
u = 0. The condition that

∫ t

a∗
u < +∞

for t ∈ (a∗, b∗) is evident because
∫ t

a
vp′

∈ (0, +∞) there. If
∫ b∗

a∗
u = +∞ then we must have

(

∫ b∗

a∗
vp′

)− 1
p′

= 0 so
∫ b∗

a∗
vp′

= +∞.

Finally, because
∫ a∗

a
vp′

= 0 we obtain A ≤ A < +∞ and we have
completed (a1).

.
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Let (a) hold. Assume that a∗ < b∗. Fix an arbitrary t ∈ (a∗, b∗).

Substituting ft(x) = +∞χ(t,b)(x) + v(x)p′−1χ(a,t)(x) into (3), we obtain

0 <

(∫ t

a

vp′

)

1
p

≤ C

(∫ t

a

u(x)

(∫ x

a

vp′

)q

dx

)

1
q

= C

(

∫ a∗

a

u(x)

(∫ x

a

vp′

)q

dx+

∫ t

a∗

u(x)

(∫ x

a

vp′

)q

dx

)
1
q

,

since v < +∞ a.e. on (a, b∗). It implies
∫ a∗

a

u(x)

(∫ x

a

vp′

)q

dx < +∞ and

∫ t

a∗

u(x)

(∫ x

a

vp′

)q

dx < +∞,

otherwise we have a contradiction 0 < 0. Since for x ∈ (a, a∗) it holds

that
∫ x

a
vp′

= 0, we have
∫ a∗

a
u = 0 and

(4)

(
∫ t

a∗

vp′

)

1
p

≤ C

(
∫ t

a∗

u

)

1
q
(
∫ t

a∗

vp′

)

,

because
∫ t

a∗
vp′

∈ (0, +∞). If
∫ t

a∗
u = +∞, then (4) implies that

∫ t

a∗
vp′

=

+∞ which contradicts with the definition of b∗. If
∫ t

a∗
u=0, then A(t)=0.

If
∫ t

a∗
u ∈ (0, +∞), then it follows from (4) that A(t) ≤ C.

Analogously, using the function ft with t = b∗ we obtain (4) with t =

b∗ and this inequality implies that
∫ b∗

a∗
vp′

= +∞ in the case
∫ b∗

a∗
u = +∞.

Now if a∗ = b∗ = b, then
∫ b

a
v = 0 and by putting f = +∞ into (3)

we get

+∞ ≤ C

(

∫ b

a

u(x) · (+∞) dx

)
1
q

.

Thus,
∫ b

a
u = 0 and all the conditions of (a1) hold, as well as, in the

case a∗ = b∗ = a.
Let (a1) hold. Since

∫ a∗

a
u =

∫ a∗

a
vp′

= 0, it yields that (3) is equiva-
lent to the inequality

(5)

∫ b

a∗

u(x)

(∫ x

a∗

v(y)g(y)
1
q dy

)q

dx ≤ C−q

(

∫ b

a

g
p

q

)
q

p

for all g ∈ M
+(a, b).

If a∗ = b∗ = b, then (5) holds. Let a∗ < b∗ or a∗ = b∗ = a. Fix an

arbitrary non negative measurable function g on (a, b). If
∫ b

a
g

p

q = +∞,
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then we have (5). Now let
∫ b

a
g

p

q < +∞. If b∗ < b, then, by Hölder’s
inequality with exponents p and p′, we find that for any x ∈ (b∗, b)

∫ x

a∗

v(y)g(y)
1
q dy ≥

(∫ x

a∗

vp′

)
1
p′

(∫ x

a∗

g
p

q

)
1
p

= +∞.

Thus,

(6) J1 :=

∫ b

a∗

u(x)

[∫ x

a∗

v(y)g(y)
1
q dy

]q

dx=

∫ b∗

a∗

u(x)

[∫ x

a∗

v(y)g(y)
1
q dy

]q

dx.

In particular, if a∗ = b∗ = a, then (5) holds.
Now let a∗ < b∗. Put

N :=











inf

{

k ∈ Z | k ≥ log2

(

∫ b∗

a∗

vp′

)}

, if

∫ b∗

a∗

vp′

< +∞,

+∞, otherwise,

and construct the sequence {ak}k≤N by the relations:
∫ ak

a∗
vp′

= 2k,
k < N ; aN = b∗. Then it follows from (6) that

(7) J1 =
∑

k<N

∫ ak+1

ak

u(x)

(∫ x

a∗

v(y)g(y)
1
q dy

)q

dx.

Note that
∫ ak+1

ak
u < +∞ for all k < N since

∫ t

a∗
u < +∞ for all t ∈

(a∗, b∗) and
∫ b∗

a∗
u = +∞ implies that

∫ b∗

a∗
vp′

= +∞.
By applying the Hölder inequality with exponents p′ and p, we have

for all x ∈ (a∗, b∗)

∫ x

a∗

v(y)g(y)
1
q dy =

∫ x

a∗

v(y)g(y)
1
q

[∫ y

a∗

vp′

]
1

pp′
− 1

pp′

dy

≥

(

∫ x

a∗

v(y)p′

[∫ y

a∗

vp′

]− 1
p

dy

)
1
p′
(

∫ x

a∗

g(y)
p

q

[∫ y

a∗

vp′

]
1
p′

dy

)
1
p

= (p′)
1
p′

[∫ x

a∗

vp′

]
1

p′2

(

∫ x

a∗

g(y)
p

q

[∫ y

a∗

vp′

]
1
p′

dy

)
1
p

.
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Using this relation and (7) we estimate the left part of (5) as follows:

J1 .
∑

k<N

(∫ ak+1

ak

u

)[∫ ak

a∗

vp′

]

q

p′2

(

∫ ak+1

a∗

g(y)
p

q

[∫ y

a∗

vp′

]
1
p′

dy

)

q

p

≤
∑

k<N

(∫ ak+1

ak

u

)

(2k)
q

p′2





∑

j≤k

[

∫ aj+1

aj

g
p

q

]

(2j+1)
1
p′





q

p

.

Moreover, by applying Minkowski’s inequality we finally obtain that

J1 .







∑

j<N

[

∫ aj+1

aj

g
p

q

]

(2j+1)
1
p′





∑

j≤k<N

[∫ ak+1

ak

u

]

(2k)
q

p′2





p

q







q

p

. A−q







∑

j<N

[

∫ aj+1

aj

g
p

q

]

(2j)
1
p′





∑

j≤k<N

(2k)
− q

p′p





p

q







q

p

. A−q

[

∫ b

a

g
p

q

]
q

p

.

The proof is complete.

Theorem 2. Let −∞ < p < q < 0, 1
r

:= 1
q
− 1

p
, u, v ∈ M+(a, b)

and I = I× or I = I×. Then (a) is equivalent to B < +∞, where

B :=

(

∫ b

a

[(Iu)(x)]
r
p

[

(Ivp′

)(x)
]

r

p′

u(x) dx

)− 1
r

.

Moreover, B ≈ C for the least possible constant C in (3).

Proof: As in Theorem 1 we only consider the case I = I× and note that
finiteness of B is equivalent to the condition

(a2)
∫ a∗

a
u = 0,

∫ t

a∗
u < +∞ for all t ∈ (a∗, b∗), B<+∞ and

∫ b∗

a∗
u=+∞

implies
∫ b∗

a∗
vp′

= +∞, where a∗, b∗ be the same as in Theorem 1
and

B :=

(

∫ b∗

a∗

[∫ x

a∗

u

]
r
p
[∫ x

a∗

vp′

]
r

p′

u(x) dx

)− 1
r

.
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Moreover, B = B. If (a2) holds, then B = B, that is B < +∞.

Conversely, let B < +∞. Since B ≥
(

q
r

)− 1
r A, all conditions

of (a2), except B < +∞, follow from finiteness of A in the same
way as in the proof of Theorem 1. It implies the equality B = B
and (a2) follows.

The case a∗ = b∗ can be proved analogously with the proof of Theo-
rem 1. Therefore, we assume that a∗ < b∗.

Let (a) hold. All conditions, except B < +∞, follow in the same way
as in the proof of Theorem 1. We only need to show that B is finite.

If
∫ b∗

a∗
u = 0, then B = 0 < +∞. Let

∫ b∗

a∗
u > 0. Then there exist

numbers t1 and t2 such that a∗ < t1 < t2 < b∗ and
∫ t2

t1
u > 0. Denote

ũ := uχ(t1,t2) and let B̃ be similar to B with ũ instead of u. Then

B̃ =

[

∫ t2

t1

[∫ x

t1

u

]
r
p
[∫ x

a∗

vp′

]
r

p′

ũ(x) dx

]− 1
r

≤

[∫ t1

a∗

vp′

]− 1
p′
[∫ t2

t1

u

]− 1
q

< +∞,

B̃ > 0 and the inequality (3) holds with ũ instead of u:

(

∫ b

a

f(x)p dx

)
1
p

≤ C

(

∫ b

a

ũ(x)

(∫ x

a

fv

)q

dx

)
1
q

for all f ∈ M
+(a, b).

The last inequality is equivalent to

(8)

∫ b∗

a∗

ũ(x)

(
∫ x

a∗

v(y)g(y)
1
q dy

)q

dx ≤ C−q

(

∫ b

a

g
p

q

)

q

p

for all g ∈ M
+(a, b).

Put

g(y)
p

q := v(y)p′

(

∫ b∗

y

ũ(z)

(∫ z

a∗

vp′

)q−1

dz

)
r
q

χ(a∗,b∗)(y).
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Then

∫ b

a

g
p

q =

∫ b∗

a∗

v(y)p′

(

∫ b∗

y

ũ(z)

(∫ z

a∗

vp′

)q−1

dz

)
r
q

dy =: J2

and since v < +∞ a.e. on (a∗, b∗) and
∫ b∗

y
ũ(z)

(

∫ z

a∗
vp′

)q−1

dz < +∞

for all y ∈ (a∗, b∗) we have

∫ b∗

a∗

ũ(x)

(∫ x

a∗

v(y)g(y)
1
q dy

)q

dx

≥

∫ b∗

a∗

ũ(x)

[

∫ b∗

x

ũ(z)

[∫ z

a∗

vp′

]q−1

dz

]
r
p [∫ x

a∗

vp′

]q−1{∫ x

a∗

v(y)p′

dy

}

dx

=

∫ b∗

a∗

v(y)p′

∫ b∗

y

ũ(x)

[∫ x

a∗

vp′

]q−1
[

∫ b∗

x

ũ(z)

[∫ z

a∗

vp′

]q−1

dz

]
r
p

dx dy=
q

r
J2,

so that, by (8), q
r
J2 ≤ C−qJ

q

p

2 .
Let {ak}k≤N be the same sequence as in the proof of Theorem 1.

Recall that
∫ ak+1

ak
ũ < +∞ for all k < N and we have

J2 ≤
∑

k<N

[∫ ak+1

ak

vp′

]

(

∫ b∗

ak

ũ(z)

[∫ z

a∗

vp′

]q−1

dz

)
r
q

.
∑

k<N

2k





∑

k≤j<N

[

∫ aj+1

aj

ũ

]

(2j)q−1





r
q

.

Putting β
r
q

j := (2j)
r

p′

(

∫ aj+1

aj
ũ
)

r
q

, we find that

J2 .
∑

k<N

2k





∑

k≤j<N

βj(2
j)−

q

r





r
q

.
∑

k<N

β
r
q

k

by the discrete Hardy inequality (see e.g. [2]) and since for any fixed n∈Z





∑

k≤n

2k





q

r




∑

j≥n

[

(2j)−
q

r

]
p

q





q

p

. 1
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holds. Conversely,

J2 ≥
∑

k<N

[

∫ ak

ak−1

vp′

](

∫ b∗

ak

ũ(z)

[
∫ z

a∗

vp′

]q−1

dz

)
r
q

&
∑

k<N

2k

[∫ ak+1

ak

ũ

]
r
q

(2k)(q−1) r
q =

∑

k<N

β
r
q

k .

Analogously,

B̃−r .
∑

k<N

[∫ ak+1

ak

ũ

] [∫ ak+1

a∗

ũ

]
r
p

(2k)
r

p′

≤
∑

k<N

(2k)
r

p′





∑

j≤k

∫ aj+1

aj

ũ





r
q

=
∑

k<N

(2k)
r

p′





∑

j≤k

βj(2
j)

− q

p′





r
q

.
∑

k<N

β
r
q

k

and

B̃−r &
∑

k<N

∫ ak+1

ak

ũ(x)

(∫ x

a∗

ũ

)
r
p

dx(2k)
r

p′

≥
∑

k<N

(2k)
r

p′

∫ ak+1

ak

ũ(x)

(∫ x

ak

ũ

)
r
p

dx =
q

r

∑

k<N

β
r
q

k .

Thus,

B̃−r . J2 ≤ C−qJ
q

p

2 . C−q
(

B̃−r
)

q

p

,

that is B̃ . C, since B̃ ∈ (0, +∞). By now letting t1 → a∗ and t2 → b∗,
we conclude that B < +∞ and the proof of the implication (a) ⇒ (a2)
is complete.

Conversely, assume that (a2) holds. Fix any non-negative measur-
able function g on (a, b). By arguing similar as in the proof that (a1)
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implies (a) in Theorem 1, we find that
∫ b

a

u(x)

(∫ x

a

v(y)g(y)
1
q dy

)q

dx

.
∑

k<N

(2k)
q

p′2

[
∫ ak+1

ak

u

]





∑

j≤k

(2j)
1
p′

∫ aj+1

aj

g
p

q





q

p

=
∑

k<N

{

(2k)
q

p′

∫ ak+1

ak

u

}











(2k)
q(1−p′)

p′2





∑

j≤k

(2j)
1
p′

∫ aj+1

aj

g
p

q





q

p











and, by applying Hölder’s inequality for sums with exponents r
q

and p
q
,

we have

≤

(

∑

k<N

(2k)
r

p′

[∫ ak+1

ak

u

]
r
q

)
q

r





∑

k<N

(2k)
− 1

p′

∑

j≤k

(2j)
1
p′

∫ aj+1

aj

g
p

q





q

p

. B−q





∑

j<N

[

∫ aj+1

aj

g
p

q

]

(2j)
1
p′

∑

j≤k<N

(2k)
− 1

p′





q

p

. B−q

(

∫ b

a

g
p

q

)
q

p

.

This end the proof.

3. Principle of duality

The following statement supplements a well-known result in [4] (see
Theorem 234).

Lemma. Let p ∈ (−∞, 0) ∪ (0, 1) and f ∈ M+(a, b). Then

(9)

∫ b

a

f(x)g(x) dx ≥ C

(

∫ b

a

g(x)p′

dx

)
1
p′

for all g ∈ M
+(a, b)

holds iff

(10)

(

∫ b

a

f(x)p dx

)
1
p

≥ C.
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Proof: Sufficiency. Follows from the Hölder inequality.
Necessity. The result for the case p ∈ (0, 1) is well known (see e.g. [4,

Theorem 234]). Let p ∈ (−∞, 0) and C > 0. Denote E := {x ∈ (a, b) |
f(x) = 0} and insert g = χE into (9). Then we obtain that mesE = 0.
Fix a function f0 ∈ M+(a, b) such that f0(x) ∈ (0,∞), x ∈ (a, b) and
∫ b

a
f0(x)p < +∞ and put

fn = max{n−1f0, f},
gn = fp−1

n ,
n ∈ N.

Then
∫ b

a
fn(x)p < +∞ and by (9)

∫ b

a

fn(x)p dx =

∫ b

a

fn(x)gn(x) dx ≥

∫ b

a

f(x)gn(x) dx

≥ C

(

∫ b

a

gn(x)p′

dx

)
1
p′

= C

(

∫ b

a

fn(x)p dx

)
1
p′

for all n ∈ N. Hence,
(

∫ b

a

fn(x)p dx

)
1
p

≥ C for all n ∈ N.

Since fn(x)p ↑ f(x)p, n → ∞, for every x ∈ (a, b) the last inequality
implies (10) by the Monotone Convergence Theorem.

Our principle of duality reads:

Theorem 3. Let −∞ < p, q < 0, 0 < C < +∞, k be a non-negative
measurable function on (a, b) × (a, b) and

(Tf)(x) :=

∫ b

a

k(x, y)f(y) dy,

(T ∗g)(x) :=

∫ b

a

k(y, x)g(y) dy,

x ∈ (a, b).

Then the inequality

(11)

(

∫ b

a

f(x)p dx

)
1
p

≤C

(

∫ b

a

[(Tf)(x)]q dx

)
1
q

for all f ∈ M
+(a, b)

holds iff the inequality

(12)

(

∫ b

a

g(x)q′

dx

)
1
q′

≤C

(

∫ b

a

[(T ∗g)(x)]
p′

dx

)
1
p′

for all g∈M
+(a, b)

holds. In particular, it follows that the least possible constants in (11)
and (12) are equal.
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Proof: Both (11) and (12) holds iff the inequality

(

∫ b

a

f(x)p dx

)
1
p
(

∫ b

a

g(x)q′

dx

)
1
q′

≤ C

∫ b

a

g(Tf) = C

∫ b

a

f(T ∗g)

holds for all f, g ∈ M+(a, b) by the lemma and the proof follows.

4. Further results

In this section we show that in general the Hardy type inequalities
with negative indices essentially depend on the location of the weight
functions and the order of operations. By combining the propositions
of this section and the theorems of the previous sections, it is easy to
get suitable characterization of a number of closely related inequalities
considered in this section.

Throughout this section C ∈ (0, +∞) and u, v ∈ M
+(a, b).

Example 1. Let u = χ(0,1) and v = +∞χ(1,+∞) + χ(0,1). Then the
inequality

(∫ +∞

0

[

f(y)v(y)−1
]−1

dy

)−1

≤C

(

∫ +∞

0

u(x)

(∫ x

0

f(y) dy

)−1

dx

)−1

holds for all f ∈ M+(0, +∞) since its left part is equal 0. However, the
inequality

(∫ +∞

0

f(y)−1 dy

)−1

≤ C

(

∫ +∞

0

u(x)

(∫ x

0

f(y)v(y) dy

)−1

dx

)−1

does not hold, for instance, for f = v.

Example 2. By Proposition 6 and the corollary if v(y) = y3χ(0,+∞)(y),
then the inequality

(∫ +∞

−1

[

g(y)v(y)−1
]

1
2 dy

)2

≤ C

(

∫ +∞

−1

1

x2

(∫ x

−1

g(y) dy

)
1
2

dx

)2

holds for all g ∈ M+(−1, +∞) for some constant C, but the inequality

(∫ +∞

−1

g(y)
1
2 dy

)2

≤ C

(

∫ +∞

−1

1

x2

(∫ x

−1

g(y)v(y) dy

)
1
2

dx

)2

does not hold, for instance, for g = χ(−1,0).
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Proposition 1. Let p, q ∈ (−∞, 0) and I = I× or I = I×. Then the
inequality

(13)

(

∫ b

a

f(x)p dx

)
1
p

≤ C

(

∫ b

a

[

u(x)
1
q (I(fv))(x)

]q

dx

)
1
q

for all f ∈ M
+(a, b)

holds, iff u < +∞ a.e. on (a, b), (Ivp′

)(t) > 0 for all t ∈ (a, b) and
(3) holds.

Proof: Let E := {x ∈ (a, b) | u(x) = +∞}.

Necessity. If mesE > 0, then, for all measurable f ≥ 0, we have

(

∫ b

a

[

u(x)
1
q (I(fv))(x)

]q

dx

)
1
q

≤

(∫

E

[

u(x)
1
q (I(fv))(x)

]q

dx

)
1
q

= 0.

However, for f = +∞χ(a,b) the left part of (13) is greater than 0. This

contradiction implies the first condition. If (Ivp′

)(t) = 0 for some t ∈
(a, b), then, for all measurable f ≥ 0,

(

∫ b

a

[

u(x)
1
q (I(fv))(x)

]q

dx

)
1
q

≤
[

(I [u(x)
1
q (I(fv))(x)]q)(t)

]
1
q

= 0,

that is we have the second condition. The condition (3) follows directly

from (13), since [u(x)
1
q (I(fv))(x)]q ≥ u(x)[(I(fv))(x)]q , x ∈ (a, b).

Sufficiency. Fix any measurable f ≥ 0. If mes{x ∈ (a, b) | f(x) =

0} > 0, then
∫ b

a
f(x)p dx = +∞ and (13) holds. Now let f(x) > 0 for

almost every x ∈ (a, b). Then (I(fv))(x) > 0 for all x ∈ (a, b) (otherwise
we have a contradiction with the second condition) and

[

u(x)
1
q (I(fv))(x)

]q

= u(x)[(I(fv))(x)]q for all x 6∈ E.

Thus, (3) implies (13).

By applying Theorem 3, Proposition 1 and Theorems 1, 2 we find
a precise characterization of (3) for the range p, q ∈ (0, 1). Denote
(I×)∗ := I× and (I×)∗ := I×.
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Corollary. Let p, q ∈ (0, 1), 1
r

:= 1
q
− 1

p
and I = I× or I = I×. Then (a)

of Theorem 1 is equivalent to

(a3) v > 0 a.e. on (a, b), (I∗u)(t) > 0 for all t ∈ (a, b) and D < +∞,
where

D :=























sup
t∈(a,b)

[

(I∗vp′

)(t)
]− 1

p′

[(I∗u)(t)]−
1
q , p ≥ q,

(

∫ b

a

[

(I∗vp′

)(t)
]− r

q′

[(I∗u)(t)]
− r

q v(t)p′

dt

)− 1
r

, p < q.

Moreover, D ≈ C for the least possible constant C in (3).

Proposition 2. Let p, q ∈ (−∞, 0) and I = I× or I = I×. Then the
inequality (3) is equivalent to

(14)

(

∫ b

a

g(y)pv(y)−p dy

)
1
p

≤ C

(

∫ b

a

u(x) [(Ig)(x)]
q

dx

)
1
q

for all g ∈ M
+(a, b).

Proof: Let I = I× and b∗ be defined as in Theorem 1.
Let (3) hold. Fix any measurable function g ≥ 0. If there exists

x ∈ (b∗, b) such that
∫ x

a
g < +∞, then

∫ x

a

g(y)pv(y)−p dy ≥

(∫ x

a

g

)p(∫ x

a

vp′

)1−p

= +∞

by Hölder’s inequality with exponents 1
p

and 1
1−p

. Hence,
∫ b

a
g(y)pv(y)−p dy = +∞ and (14) holds.

Now let
∫ x

a
g = +∞ for all x ∈ (b∗, b). Put

f(x) := +∞χ(b∗,b)(x) + (g(x)pv(x)−p)
1
p χ(a,b∗)(x).

Then f(x)v(x)≤g(x) for any x∈(a,b∗) such that v(x)<+∞. This follows

directly if v(x)=0 and this follows from the equality (g(x)pv(x)−p)
1
p =

g(x)v(x)−1 in the case v(x) > 0. Thus, fv ≤ g a.e. on (a, b∗) by the
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definition of b∗. Therefore, we have

(

∫ b

a

g(y)pv(y)−p dy

)
1
p

≤

(

∫ b∗

a

g(y)pv(y)−p dy

)
1
p

=

(

∫ b

a

f(y)p dy

)
1
p

≤ C

(

∫ b

a

u(x) [(I(fv))(x)]
q

dx

)
1
q

≤ C

(

∫ b∗

a

u(x) [(I(fv))(x)]
q

dx

)
1
q

≤ C

(

∫ b∗

a

u(x) [(Ig)(x)]q dx

)
1
q

= C

(

∫ b

a

u(x) [(Ig)(x)]
q

dx

)
1
q

.

Conversely, now let (14) hold. Fix any measurable function f ≥ 0.

If
∫ b

a
f(x)p dx = +∞, then (3) holds. Let

∫ b

a
f(x)p dx < +∞. Then

∫ x

a

f(y)v(y) dy ≥

(∫ x

a

f(y)p dy

)
1
p
(∫ x

a

v(y)p′

dy

)
1
p′

= +∞

for any x ∈ (b∗, b). Put

g(x) := +∞χ(b∗,b)(x) + f(x)v(x)χ(a,b∗)(x).

Then g(x)pv(x)−p ≤ f(x)p for any x ∈ (a, b∗) such that v(x) < +∞.
This follows directly if v(x) = 0 and this follows from the equality g(x)p =
f(x)pv(x)p in the case v(x) > 0. Hence, g(x)pv(x)−p ≤ f(x)p for almost
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every x ∈ (a, b∗) by the definition of b∗. Therefore, we have

(

∫ b

a

f(x)p dx

)
1
p

≤

(

∫ b∗

a

f(x)p dx

)
1
p

≤

(

∫ b∗

a

g(x)pv(x)−p dx

)
1
p

=

(

∫ b

a

g(x)pv(x)−p dx

)
1
p

≤ C

(

∫ b∗

a

u(x) [(Ig)(x)]q dx

)
1
q

= C

(

∫ b∗

a

u(x) [(I(fv))(x)]
q

dx

)
1
q

= C

(

∫ b

a

u(x) [(I(fv))(x)]
q

dx

)
1
q

.

The proof of the case I = I× is complete and the case I = I× can be
proved analogously.

Proposition 3. Let p, q ∈ (−∞, 0) and I = I× or I = I×. Then the
inequality (13) is equivalent to

(15)

(

∫ b

a

g(y)pv(y)−p dy

)
1
p

≤ C

(

∫ b

a

[

u(x)
1
q (Ig)(x)

]q

dx

)
1
q

for all g ∈ M
+(a, b).

Proof: This proposition can be proved in the same way as the proof of
Proposition 2. We only note that both (15) and (13) implies u < +∞
a.e. on (a, b) (see the proof of Proposition 1) and, consequently, for almost

all x∈(a, b) the equality (Ih)(x) = +∞ implies u(x)
1
q (Ih)(x) = +∞.
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Proposition 4. Let p, q ∈ (−∞, 0) and I = I× or I = I×. Then the
inequality

(16)

(

∫ b

a

[g(y)v(y)−1]
p
dy

)
1
p

≤ C

(

∫ b

a

u(x) [(Ig)(x)]
q

dx

)
1
q

for all g ∈ M
+(a, b)

holds, iff mes{x ∈ (a, b) | v(x) = +∞} > 0 or (3) holds.

Proof: Sufficiency. Let (3) hold. Fix an arbitrary measurable func-
tion g ≥ 0. Put f(x) := g(x)v(x)−1 into (3). Then we have (16) since
f(x)v(x) ≤ g(x). Let mes{x ∈ (a, b) | v(x) = +∞} > 0. Then

∫ b

a

[g(y)v(y)−1]
p
dy ≥

∫

{x∈(a,b)|v(x)=+∞}

[g(y)v(y)−1]
p
dy = +∞

for any measurable function g ≥ 0. Hence, the left part of (16) is zero.

Necessity. Let mes{x ∈ (a, b) | v(x) = +∞} = 0 and (16) holds.
Fix an arbitrary measurable function f ≥ 0 and let the function f0 be
integrable on (a, b) and f0(x) ∈ (0, +∞), x ∈ (a, b). Denote E := {x ∈
(a, b) | v(x) = 0} and Ec := (a, b)\E. Put gn = fvχEc + 1

n
f0χE , n ∈ N

into (16). Then we obtain

(

∫ b

a

f(x)p dx

)
1
p

≤

(∫

Ec

f(x)p dx

)
1
p

=

(

∫ b

a

[gn(x)v(x)−1]
p
dx

)
1
p

≤ C

(

∫ b

a

u(x) [(Ign)(x)]q dx

)
1
q

for all n ∈ N. Since u(x)[(Ign)(x)]q ↑ u(x)[(I(fv))(x)]q as n → ∞ for
every x ∈ (a, b) the Monotone Convergence Theorem implies (3).
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Proposition 5. Let p, q ∈ (−∞, 0) and I = I× or I = I×. Then the
inequality

(17)

(

∫ b

a

[g(y)v(y)−1]
p
dy

)
1
p

≤ C

(

∫ b

a

[

u(x)
1
q (Ig)(x)

]q

dx

)
1
q

for all g ∈ M
+(a, b)

holds, iff mes{x ∈ (a, b) | v(x) = +∞} > 0 or (13) holds.

Proof: Proposition 5 can be proved in a completely similar way as Propo-
sition 4, so we leave out the details.

Remark. It is clear that if p, q ∈ (0, 1), then (14), (15), (16) and (17) are
equivalent, and (3) is equivalent to (13).

Proposition 6. Let p, q ∈ (0, 1) and I = I×. Then (16) holds, iff
∫

b
∗

t
u = +∞ for all t ∈ (a, a∗),

∫ b

b∗
v(x)−p dx = 0 and

(18)

(

∫

b
∗

a∗

f(x)p dx

)
1
p

≤ C

(

∫

b
∗

a∗

u(x)

[∫ x

a∗

fv

]q

dx

)
1
q

for all f ∈ M
+(a∗, b∗)

holds, where a∗ := inf{t ∈ (a, b] | mes{x ∈ (t, b) | v(x) = 0} = 0} and

b
∗ := inf{t ∈ [a∗, b] |

∫ b

t
u = 0}.

Proof: Necessity. Fix any t ∈ (a, a∗). There exists γ ∈ (t, a∗) such that
mes{x ∈ (t, γ) | v(x) = 0} > 0. Put g := χ(t,γ) into (16). Then we
obtain

+∞ =

(∫ γ

t

v(x)−p dx

)
1
p

≤ C

(

∫ b

a

u(x)

[∫ x

a

g

]q

dx

)
1
q

= C

(

∫

b
∗

t

u(x)

[∫ x

t

g

]q

dx

)
1
q

≤ C(γ − t)

(

∫

b
∗

t

u

)
1
q

,

that is,
∫

b
∗

t
u = +∞. Insert g := χ(b∗,b) into (16) and we find that

∫ b

b∗
v(x)−p dx = 0.
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Now fix any measurable f ≥ 0. If
∫

b
∗

a∗
u(x)

[∫ x

a∗
fv
]q

dx = +∞,

then (18) holds. Let
∫ b

∗

a∗
u(x)

[∫ x

a∗
fv
]q

dx < +∞. Denote

E :=

{

x ∈ (a∗, b∗) | u(x)

[∫ x

a∗

fv

]q

< +∞

}

.

By the definition of b∗ for any ξ ∈ (a∗, b∗) there exists x ∈ (ξ, b∗) ∩ E

such that u(x) 6= 0. Then
∫ x

a∗
fv < +∞. Since ξ was taken arbitrary we

have fv < +∞ a.e. on (a∗, b∗) and

mes{x ∈ (a∗, b∗) | f(x) 6= 0, v(x) = +∞} = 0.

This relation and v > 0 a.e. on (a∗, b∗) imply that f(y)v(y)v(y)−1 = f(y)
for almost every y ∈ (a∗, b∗). It remains only to put g := fvχ(a∗,b∗)

into (16) to obtain (18).

Sufficiency. Fix any measurable g ≥ 0. Let
∫

a
∗

a
g = 0. Insert f(x) =

g(x)v(x)−1, x ∈ (a∗, b∗), into (18). Since fv ≤ g and
∫ b

b∗
v(x)−p dx = 0

we obtain

(

∫ b

a

[g(y)v(y)−1]
p
dy

)
1
p

=

(

∫

b
∗

a∗

[g(y)v(y)−1]
p
dy

)
1
p

≤ C

(

∫ b
∗

a∗

u(x)

[∫ x

a∗

g

]q

dx

)
1
q

= C

(

∫ b

a

u(x)

[∫ x

a

g

]q

dx

)
1
q

.

If
∫

a
∗

a
g > 0, then there exists a number t ∈ (a, a∗) such that

∫ t

a
g > 0

and
(

∫ b

a

u(x)

[∫ x

a

g

]q

dx

)
1
q

≥

(

∫ b
∗

t

u

)
1
q ∫ t

a

g = +∞

by the first condition.

Finally, in a similar way we can prove the following statement:
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Proposition 7. Let p, q ∈ (0, 1) and I = I×. Then (16) holds, iff
∫ t

ā
u = +∞ for all t ∈ (b̄, b),

∫ ā

a
v(x)−p dx = 0 and

(19)

(

∫ b̄

ā

f(x)p dx

)
1
p

≤ C

(

∫ b̄

ā

u(x)

[

∫ b̄

x

fv

]q

dx

)
1
q

for all f ∈ M
+(ā, b̄)

holds, where b̄ := sup{t ∈ [a, b) | mes{x ∈ (a, t) | v(x) = 0} = 0} and

ā := sup{t ∈ [a, b̄] |
∫ t

a
u = 0}.
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