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DIVERGENCE FORMS OF THE ∞-LAPLACIAN
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Juan Manfredi and Teresa Radice

Abstract

The central theme running through our investigation is the
∞-Laplacian operator in the plane. Upon multiplication by a
suitable function we express it in divergence form, this allows
us to speak of weak ∞-harmonic function in W 1,2. To every
∞-harmonic function u we associate its conjugate function v.
We focus our attention to the first order Beltrami type equation
for h = u + ıv.

1. Introduction

This paper is concerned with various linear and nonlinear PDEs whose
prototype is the p-harmonic equation

div
(

|∇u|p−2∇u
)

= 0, 1 < p < ∞.

The focus is on the limiting case as p approaches ∞, referred to as the
∞-Laplacian

∆∞u = 2

n
∑

i,j=1

uxi
uxj

|∇u|2
∂2u

∂xi∂xj
.

Upon multiplication by a suitable function λ = λ(∇u) we express this
operator in divergence form. There may be several such functions λ =
λ(∇u). We call them divergence factors. Writing the ∞-Laplacian
in divergence form allows to speak of weak ∞-harmonic functions in
the Sobolev class W

1,2
loc (Ω). In analogy to the Cauchy-Riemann sys-

tem we associate to every ∞-harmonic function u ∈ W 1,2
loc (Ω) in the

planar domain Ω its conjugate function v. In general the complex func-
tion h = u+ ıv is multivalued. This could happen because of the lack of
existence of a continuous branch of the argument of w = ux + ıuy. The
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novelty of our approach is that the first order Beltrami type equation
for h is elliptic and, therefore, defines a mapping of finite distortion.

2. Divergence factors and integrating fields

When dealing with nonlinear partial differential equations, it is often
convenient to write them in divergence form. Consider, for example,
the question of the domain of definition of a given nonlinear differential
operator. Expressing this operator in a divergence form, makes one
derivative dispensable in the definition of its domain. Naturally, there
may exist many divergence forms of an operator, leading to different
domains of definition. A typical example is furnished by the Hessian
determinant in two variables:

detHu = det

[

uxx uxy

uxy uyy

]

= uxxuyy − uxyuxy for u ∈ W
2,2

loc (Ω)

= (uxuyy)x − (uxuxy)y for u ∈ W
2,4/3

loc (Ω)

=
1

2
(u uxx)yy +

1

2
(u uyy)xx − (u uxy)xy for u ∈ W

2,1
loc (Ω)

= (uxuy)xy − 1

2
(uxux)yy − 1

2
(uyuy)xx for u ∈ W

1,2
loc (Ω).

In another example, the reader may try to verify the following identity
for the Gaussian curvature of a surface z = u(x, y) in R3,

Ku =
uxxuyy − uxyuxy

(1 + u2
x + u2

y)2
=

detHu

(1 + |∇u|2)2 .

First notice that Ku is none other than the Jacobian determinant of the
mapping

(A, B) =





ux
√

1 + u2
x + u2

y

,
uy

√

1 + u2
x + u2

y



 ,

K = AxBy − AyBx.

We can express Ku in divergence form using two different formulas

K = (ABy)x − (ABx)y = (AxB)y − (AyB)x .

This leads us to two different divergence forms of the curvature

K = div F.
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The so-called integrating field F = (F 1, F 2) can be expressed as










F 1 =
ux

(1 + u2
x + u2

y)2
[

(1 + u2
x)uyy − uxuyuxy

]

F 2 = − ux

(1 + u2
x + u2

y)
2

[

(1 + u2
x)uxy − uxuyuxx

]

or










F 1 = − uy

(1 + u2
x + u2

y)
2

[

(1 + u2
y)uxy − uxuyuyy

]

F 2 =
uy

(1 + u2
x + u2

y)2
[

(1 + u2
y)uxx − uxuyuxy

]

.

Adding up these two solutions we gain a symmetry with respect to x
and y. Namely,

2K = (ABy − AyB)x + (AxB − ABx)y

2F =

(

uxuyy − uyuxy

1 + u2
x + u2

y

,
uyuxx − uxuxy

1 + u2
x + u2

y

)

.

One interesting outcome of this calculation is that the Gaussian curva-
ture can be defined for surfaces parameterized by functions in W

2,1
loc (Ω).

Such parametrizations have integrating factors F ∈ L 1
loc(Ω, Rn).

In this paper we are concerned with the differential operators which
are linear with respect to the second order derivatives,

Lu =

n
∑

i,j=1

Gij(∇u)
∂2u

∂xi∂xj
.

Here the symmetric matrix function

G = G(V ) = [Gij(V )], i, j = 1, . . . , n

defined for V ∈ Rn may have a singularity at V = 0. This corresponds
to the critical points of u. Let us try to express Lu in divergence form

Lu = div F(∇u), F = (F 1, . . . , Fn).

Elementary computations show that the integrating field F : Rn \ {0} →
R

n must satisfy the following overdetermined system of PDEs

(2.1) D∗F(V ) + DF(V ) = 2G(V ).

The solvability conditions for such systems of PDEs are well known in
the calculus of differential forms. One particular case arises naturally in
linear elasticity,

(2.2) D∗F + DF − 2

n
(Tr DF)I = C, TrC ≡ 0
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where C = 2G − 2
n (TrG)I. This system also results from infinitesimal

deformations of the nonlinear Beltrami equation

(I + εDF)∗(I + εDF) = [det(I + εDF)]
2

n (I + εC).

The solvability conditions for the system (2.2) have been completely
identified by L. V. Ahlfors [A], [A1].

Consider the simplest second order differential operator

Lu = ∆u, G = I.

Obviously it has the divergence form

∆u = div [F(∇u)]

where F(V ) = V . There are, however, other divergence forms of the
Laplacian once we multiply it by a suitable factor. For example,

ux1
∆u=

1

2

[

(u2
x1
− u2

x2
− · · · − u2

xn
)x1

+(2ux1
ux2

)x2
+ · · · + (2ux1

uxn
)xn

]

.

This corresponds to the following integrating field

F(V ) = (v2
1 − v2

2 − · · · − v2
n, 2v1v2, . . . , 2v1vn)

which satisfies the equation

D∗F(V ) + DF(V ) = 2v1I, V = (v1, v2, . . . , vn).

We say that ux1
is a divergence factor for the Laplacian. Similarly,

ux2
, . . . , uxn

are also divergence factors. As before, we combine those
equations into one symmetric form.

Example 2.1. The vector valued function λ = ∇u is a divergence factor
of the Laplacian. Precisely, we have

(∇u)∆u = Div

[

∇u ⊗∇u − 1

2
, |∇u|2I

]

.

The operator Div applies to the row vectors of the matrix in the right
hand side, resulting in a vector field. What we gain here is not only
symmetry but also the fact that the divergence factor vanishes only at
the critical points of u; that is, when ∇u = 0. Having disposed of these
preliminary examples we are now ready to formulate a more general
concept of divergence factor and associated integrating field.

In what follows E is a finite dimensional linear space.

Definition 2.2. A divergence factor of the differential operator L is a
function λ : Rn \ {0} → E for which there exists F : Rn \ {0} → Rn ⊗ E,
called an integrating field, such that

λ(∇u)Lu = Div [F(∇u)] , at noncritical points of u.
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3. The p-Laplacian

The p-harmonic equation

(3.1) div |∇u|p−2∇u = 0

is the Euler-Lagrange equation of the variational integral

Ep[u] =
1

p

∫

Ω

|∇u(x)|p dx, 1 < p < ∞.

That is why the Sobolev space W 1,p(Ω) is viewed as the natural do-
main of definition of this equation. However, this equation can also
be expressed as a fully non-linear equation, in nondivergence form, by
carrying out the differentiation

(3.2) |∇u|2∆u + (p − 2)

n
∑

i=1

n
∑

j=1

uxi
uxj

uxixj
= 0.

Although it would appear that (3.2) requires u to have second order
derivatives, this equation can also be interpreted in the viscosity sense.
In fact the notions of weak solution of (3.1) and viscosity solution of (3.2)
coincide, see [JLM2].

The border line exponents p = 1 and p = ∞ can also be considered.
We set

∆∞u
def
== 2

n
∑

i,j=1

uxi
uxj

|∇u|2
∂2u

∂xi∂xj
=

2

|∇u|2 Tr(∇u ⊗∇u)Hu

and

∆1u
def
== 2

n
∑

i,j=1

(

δj
i − uxi

uxj

|∇u|2
)

∂2u

∂xi∂xj
=

2

|∇u|2 Tr(|∇u|2I−∇u⊗∇u)Hu.

The p-Laplacian is then a linear combination of ∆1 and ∆∞,

∆p =
1

p
∆1 +

p − 1

p
∆∞.

More explicitly we have

∆pu =
2

p

n
∑

i,j=1

(

δj
i + (p − 2)

uxi
uxj

|∇u|2
)

∂2u

∂xi∂xj

=
2

p|∇u|2 Tr
(

|∇u|2I + (p − 2)∇u ⊗∇u
)

Hu.
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Thus, the scalar function λ = |∇u|p−2 is a divergence factor of ∆pu.
Precisely we have

|∇u|p−2∆pu =
2

p
div |∇u|p−2∇u.

The corresponding integrating field equals F(V ) = |V |p−2V . Indeed,

DF = |V |p−2

(

I + (p − 2)
V ⊗ V

|V |2
)

.

Hence (2.1) holds with

G(V ) = |V |p−2

(

I + (p − 2)
V ⊗ V

|V |2
)

.

It is worth noting that no other power function of the form |V |kV can
be an integrating field for the p-Laplacian. However, there exist more
sophisticated integrating fields.

4. The p-harmonic equation in the plane

The class of divergence factors is particularly rich in two dimensions
due to the complex structure in R2 ∼= C = {z = x + ıy, x, y ∈ R}.
Let Ω be an open subset of the complex plane. A function u ∈ C 2(Ω) is:

• ∞-harmonic if

(4.1)
1

2
|∇u|2∆∞u = uxxu2

x + 2uxyuxuy + uyyu
2
y = 0,

• 1-harmonic if

(4.2)
1

2
|∇u|2∆1u = uxxu2

y − 2uxyuxuy + uyyu
2
x = 0,

and

• p-harmonic if

(4.3)
1

2
|∇u|2∆pu=

1

p
|∇u|2∆u+

(

1− 2

p

)

(uxxu2
x+2uxyuxuy+uyyu

2
y)=0.

We shall make use of the Cauchy-Riemann derivatives

(4.4)
∂

∂z
=

1

2

(

∂

∂x
− ı

∂

∂y

)

and
∂

∂z
=

1

2

(

∂

∂x
+ ı

∂

∂y

)

and the complex gradient of u, which is defined by

f(z) = uz =
1

2
(ux − ıuy) .
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The p-Laplacian of u can be expressed in terms of f as

1

4
∆pu =

∂f

∂z
+

(

1

2
− 1

p

)[

f

f

∂f

∂z
+

f

f

∂f

∂z

]

.

This is an elliptic operator for all 1 < p < ∞. However, the borderline
cases lead to formally parabolic operators

1

4
∆1u =

∂f

∂z
− 1

2

[

f

f

∂f

∂z
+

f

f

∂f

∂z

]

and

1

4
∆∞u =

∂f

∂z
+

1

2

[

f

f

∂f

∂z
+

f

f

∂f

∂z

]

.

We can view the complex gradient of the p-harmonic function as a solu-
tion of the Beltrami equation

(4.5) fz = µ(z)fz, µ(z) =

(

1

p
− 1

2

)[

f

f
+

f

f

fz

fz

]

which is always elliptic if 1 < p < ∞. For p = 1 and p = +∞ we observe

that the distortion function K(z) =
1 + |µ(z)|
1 − |µ(z)| is still finite at the points

where

f

f

∂f

∂z
/∈ R.

At these points the equation (4.5) remains elliptic.
Of particular interest to us will be the complex gradients of ∞-har-

monic functions. These are solutions of the quasilinear first order system

(4.6)
∂f

∂z
= −ℜe

(

f

f
· ∂f

∂z

)

= −1

2

(

f

f
· ∂f

∂z
+

f

f
· ∂f

∂z

)

.

The Jacobian determinant of f is computed as:

(4.7) J (z, f) = |fz|2 − |fz|2 =

∣

∣

∣

∣

ℑm
f

f
· ∂f

∂z

∣

∣

∣

∣

2

.

Thus J (z, f) is positive at the points where (4.6) is elliptic.
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5. The hodograph transformation

Assuming that the complex gradient is a homeomorphism, we can

solve the equation ξ = f(z) for z
def
== Φ(ξ). In this connection we remind

the paper [IMa]. The chain rule gives

(5.1) fz =
−Φξ

J (ξ, Φ)
and fz =

Φξ

J (ξ, Φ)
.

Equation (4.3) becomes linear in Φ

(5.2)
∂Φ

∂ξ
=

(

1 − 2

p

)

ℜe

(

ξ

ξ
· ∂Φ

∂ξ

)

=

(

1

2
− 1

p

)(

ξ

ξ
· ∂Φ

∂ξ
+

ξ

ξ
· ∂Φ

∂ξ

)

.

In particular, for p = ∞ and p = 1, we have

(5.3)
∂Φ

∂ξ
= ±ℜe

(

ξ

ξ
· ∂Φ

∂ξ

)

= ±1

2

(

ξ

ξ
· ∂Φ

∂ξ
+

ξ

ξ
· ∂Φ

∂ξ

)

,

where the + sign corresponds to p = ∞ and the − sign corresponds
to p = 1. A family of basic solutions for the + sign is described in the
following

Proposition 5.1. For k = 0, 1, 2, . . . and γk ∈ C, the functions

(5.4) Φk(ξ) = |ξ|k2
−1

[

(k − 1)γk

(

ξ

|ξ|

)k+1

+ (k + 1)γk

(

ξ

|ξ|

)k−1
]

solve the system (5.3) with the + sign.

It is worth noting that these formulas still define (multivalued) solu-
tions when k is a real parameter. Here are some particular cases

Φ0(ξ) =
γ

ξ
, γ ∈ ıR,(5.5)

Φ1(ξ) = γ, γ ∈ C,(5.6)

and

Φ2(ξ) =



















3|ξ|2ξ + ξ
3

or

ı
(

3|ξ|2ξ − ξ
3
)

.(5.7)

More general solutions are infinite sums of the basic ones

Φ(ξ) =

∞
∑

k=1

akΦk(ξ), ak ∈ R.
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Let us examine the solution Φ2(ξ) = 3|ξ|2ξ + ξ
3
. Using real and

imaginary part of ξ = a + ıb, we see that Φ2(a + ıb) = 4a3 + 4ıb3. It
is a polynomial of degree 3, and it is a homeomorphism of the entire
complex plane. In order to recover the original ∞-harmonic function we
compute the inverse of Φ2

(5.8) f(z) =
1

2

(

3
√

2x + ı 3

√

2y
)

, z = x + ıy;

that is,

(5.9) ux =
3
√

2x and uy = − 3

√

2y.

We integrate this system to find u,

(5.10) u =
3

4

(

x
3
√

2x − y 3

√

2y
)

.

This is an ∞-harmonic function of class C 1,α with α = 1
3 first discovered

by Aronsson [Ar]. It is widely believed that

Conjecture 5.1. All ∞-harmonic functions lie in C
1, 1

3

loc (Ω).

Very recently O. Savin [S] has proved that ∞-harmonic functions in
the plane are indeed C1

loc(Ω).

6. Divergence factors for ∞-Laplacian

To define ∞-Laplacian in the weak sense, in contrast to the vis-
cosity sense, for functions having only first order derivatives we need
to express ∆∞ in a divergence form. Let us find all divergence fac-
tors λ = λ(ux, uy) of the equation (4.1). That is, we are looking for
solutions to

(6.1) λu2
xuxx + 2λuxuyuxy + λu2

yuyy =
∂

∂x
A (ux, uy) +

∂

∂y
B(ux, uy).

This identity holds if and only if

(6.2)
∂A

∂ux
= λu2

x,
∂B

∂uy
= λu2

y

and

(6.3)
∂A

∂uy
+

∂B

∂ux
= 2λux uy.

It will be advantageous to work with the complex function

F = F (w)
def
== A + ıB,
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of the complex variable w = ux + ıuy. In this notation the system takes
the form

(6.4)
∂F

∂w
=

1

2

w

w

(

∂F

∂w
+

∂F

∂w

)

=
w

w
ℜe

∂F

∂w

and

(6.5) λ =
2Fw

w2
=

2ℜeFw

|w|2 .

Observe that F is orientation preserving in the sense that |Fw|2 −
|Fw|2 = |Fw|2 − |ℜe Fw|2 = |ℑmFw|2 > 0.

Proposition 6.1. All complex integrating fields of the ∞-Laplacian are
determined from the equation (6.4). The associated divergence factor is
the real part of Fw.

We close this section by observing that equations (6.4) and (5.3) are
dual to each other via the complex inversion of variables

(6.6) ξ · w = 1.

Precisely this means that the solutions Φ = Φ(ξ) at (5.3) and the solu-
tions F = F (w) of (6.4) are coupled by the relations

(6.7) F (w) = Φ(ξ), ξ · w = 1.

7. Basic examples

Using the solutions listed at (5.4) we obtain the dual system of solu-
tions of (6.4)

(7.1) Fk(w) =

(k − 1)γk

(

w

|w|

)k+1

+ (k + 1)γk

(

w

|w|

)k−1

|w|k2
−1

for k = 0, 1, 2, . . . . The corresponding divergence factors of (7.1) are

λk(w) =
2ℜeFk(w)

|w|2

= − (k − 1)k(k + 1)

|w|k2+2

[

γk

(

w

|w|

)k

+ γk

(

w

|w|

)k
]

=
ak cos kθ + bk sin kθ

rk2+2
, ak, bk ∈ R,
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where w = reıθ. In particular, the real valued functions

(7.2) λ(w) =
cos kθ

rk2+2
and λ(w) =

sinkθ

rk2+2

are divergence factors of the operator (4.1). We may, therefore, introduce
the complex divergence factors

(7.3) Λk(w) =
cos kθ + ı sin kθ

rk2+2
=

eıkθ

rk2+2
=

wk

|w|k2+k+2
.

The case k = 0 gives F0(w) = γ w, where γ ∈ ıR. Hence the divergence
factor is trivial, λ = 0. For k = 1 we obtain F1 ≡ γ ∈ C, so again λ = 0.
The first nontrivial case occurs when k = 2

(7.4) F2(w) =
γ w3 + 3γw|w|2

|w|6 = Φ2

(

1

w

)

.

Next we look for one solution of particular interest to us by studying
the limiting case of (7.1) in which k is considered as real parameter
approaching zero. Let γk = 1, so that F0(w) = 0. Then we have

(7.5)
Fk(w)

2k
=

(k − 1)eı(k+1)θ + (k + 1)e−ı(k−1)θ

2krk2
−1

.

Therefore, we can compute the limit

(7.6) lim
k→0

Fk(w)

2k
= w(1 − ı Arg w).

Thus

(7.7) F (w) = w(1 − ı Arg w)

might be a solution to (6.4), in any simply connected subset of C −
{0}. Note that choosing a different branch of Arg w will not affect the
equation (6.4) since ıw is also a solution. Direct computations reveal
that indeed (7.7) is an integrating field:

∂ Arg w

∂w
=

−ı

2w
(7.8)

and

∂ Arg w

∂w
=

ı

2w
.(7.9)

Hence, we obtain

(7.10)
∂F

∂w
=

1

2
− ı Arg w.



240 L. D’Onofrio et al.

We find that

(7.11) 2
∂F

∂w
=

w

w
and

∂F

∂w
+

∂F

∂w
= 1

as desired. The corresponding divergence factor is

(7.12) λ =
2Fw

w2
=

1

|w|2 .

Proposition 7.1. The ∞-Laplacian has a divergence form in which the
integrating field F (w) = w(1 − ı Arg w) is multivalued.

In other words the 2-form

(7.13)

(

u2
x

u2
x + u2

y

uxx + 2
uxuy

u2
x + u2

y

uxy +
u2

y

u2
x + u2

y

uyy

)

dx ∧ dy

is locally exact and equals

(7.14) d [A (ux, uy) dy − B(ux, uy) dx] ,

where

A (ux, uy) = ux + uy tan−1 uy

ux
(7.15)

B(ux, uy) = uy − ux tan−1 uy

ux
.(7.16)

The Jacobian determinant of F =A +ıB is positive as long as Arg w 6=0.
Indeed, we note that |Fw|2−|Fw |2 = |12−ı Arg w|2−|12 |2 = (Arg w)2 > 0.
Another example of the divergence form of the equation (4.1) is obtained
by taking into consideration the solution

(7.17) F2(w) = Φ2

(

1

w

)

=
3

w2w
+

1

w3 .

Hence, we can write

A + ıB =
1

(ux − ıuy)3
+

3

(ux + ıuy)2(ux − ıuy)

=
4u3

x

(u2
x + u2

y)3
−

4ıu3
y

(u2
x + u2

y)
3
.

(7.18)

Thus, we have

A (ux, uy) =
4 u3

x

(u2
x + u2

y)
3
,(7.19)

B(ux, uy) =
−4 u3

y

(u2
x + u2

y)
3
,(7.20)
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and

λ =
12(u2

y − u2
x)

(u2
x + u2

y)
4

.(7.21)

We conclude this section with one interesting byproduct of our compu-
tations. According to (6.7) the function

(7.22) Φ(ξ) =
1 + ı Arg ξ

ξ

solves equation (5.3). This is none other then the inverse of the com-
plex gradient f = f(z) of an ∞-harmonic function. To compute f(z)
explicitly, we must solve the relation

(7.23)
1 + ı Arg ξ

ξ
= z

for ξ. Let θ = Arg ξ, so that 1 + ıθ = ξ z and Arg(1 + ıθ) = θ + Arg z.
Hence

(7.24) tan−1 θ − θ = Arg z.

As the left hand side decreases in θ we may express θ in terms of Arg z,
say θ = Θ(Arg z). We can then conclude the existence of a multivalued
∞-harmonic function whose complex gradient equals

f(z) =
1 + ıΘ(Arg z)

z
.

8. The conjugate functions

To every integrating field there corresponds a conjugate function.
Having written the ∞-Laplace equation in the divergence form

(8.1) [A (ux, uy)]x + [B(ux, uy)]y = 0

the conjugate function v is defined by the rule

(8.2)

{

A (ux, uy) = vy

B(ux, uy) = −vx

.

Set

∆ =

(

∂A

∂uy
+

∂B

∂ux

)2

− 4
∂A

∂ux

∂B

∂uy
.
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According to the general classification of the first order nonlinear PDEs
(see for example [Sa]), this system is:

• elliptic at the points where ∆ < 0,

• hyperbolic at the points where ∆ > 0,

• parabolic at the points where ∆ = 0.

For the two examples discussed above we obtain


















4u3
x

(u2
x + u2

y)
3

= vy

4u3
y

(u2
x + u2

y)
3

= vx

(8.3)

and










ux + uy tan−1 uy

ux
= vy

uy − ux tan−1 uy

ux
= −vx

.(8.4)

In the first example, the system is well defined outside the zeros of ∇u.
Both systems (8.3) and (8.4) are parabolic at every point. However,
a given pair (u, v) can also be considered as the solution to an elliptic
system. Let us analyze this point of view in a general setting

(8.5)

{

A (ux, uy) = vy

B(ux, uy) = −vx

,

where we recall that A + ıB = F and Fw = 1
2

w
w (Fw +Fw). In analogy

to the Cauchy-Riemann equations we introduce the complex function

(8.6) h(z) = u(z) + ıv(z).

We want to express the system (8.5) as a nonlinear Beltrami type equa-
tion for h. Our computation is as follows

(8.7) F (ux + ıuy) = A (ux, uy) + ıB(ux, uy) = vy − ıvx.

In terms of h this reads as

F (hz + hz) = hz − hz(8.8)

or, equivalently

F (hz + hz) + hz + hz = 2hz.(8.9)

Next we consider the function

(8.10) Ψ(w)
def
== F (w) + w = w(2 − ı Arg w)
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that we need to invert. First compute its complex derivatives

Ψw = 1 + Fw =
3

2
− ı Arg w(8.11)

and

Ψw = Fw =
1

2

w

w
.(8.12)

Hence the Jacobian determinant of Ψ is positive

(8.13) |Ψw|2 − |Ψw|2 =
9

4
+ (Arg w)2 − 1

4
= 2 + (Arg w)2 > 2.

Therefore, the function Ψ can be locally inverted. We proceed as follows

hz + hz = Ψ−1(2hz)(8.14)

or, equivalently

hz = Ψ−1(2hz) − hz.(8.15)

It takes a form of a nonlinear Beltrami equation

(8.16) hz = H (hz).

9. Analysis of W 1,2-solutions

We consider here ∞-harmonic functions in the Sobolev class W
1,2
loc (Ω).

To make use of the integrating field F (w) = w(1 − ı Arg w) we must
specify a branch of the argument of w = ux + ıuy. There are many

ways to choose a measurable branch of Arg w
def
== Arg∇u. The diver-

gence equation at (8.1) has a meaning in the distributional sense only if
both A (ux, uy) and B(ux, uy) are locally integrable. This will be easily
assured by assuming that the branch of Arg∇u lies in L 2

loc(Ω).

Definition 9.1. A function u ∈ W
1,2

loc (Ω) for which we can choose an
L 2-branch of Arg∇u, is called a weak solution to the ∞-Laplace equa-
tion if

(9.1)

∫

Ω

[ηxA (ux, uy) + ηyB(ux, uy)] dxdy = 0

for every η ∈ C∞

0 (Ω).

Since ∞-harmonic functions have continuous derivatives by Savin’s
theorem [S], every ∞-harmonic function is a weak solution in the sense
of Definition 9.1 in a neighborhood of points where the gradient does
not vanish.
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From now on we assume that Ω is a simply connected domain in C

and that u is a weak solution to the ∞-Laplace equation. Thus the
system (8.4) admits a unique (up to a constant) conjugate function v ∈
W

1,1
loc (Ω).

Theorem 9.2. The mapping h(z) = u+ ıv ∈ W
1,1

loc (Ω) solves the elliptic
Beltrami type equation

hz = µ(z)hz, µ(z) =
ıθ(z)

2 − ıθ(z)

where θ(z) = Arg∇u. Moreover, the distortion function of h is locally
integrable

K(z) =
1 + |µ(z)|
1 − |µ(z)| =

1

4

(

|θ| +
√

4 + θ2
)2

6 (1 + |θ|)2 ∈ L
1
loc(Ω).

The Jacobian determinant of h actually does not depend on the choice
of Arg∇u. Indeed, the first order system takes the form

{

ux + θuy = vy

uy − θux = −vx

,

or equivalently

div

[

1 Arg∇u
−Arg∇u 1

]

∇u = 0.

Hence

J(z, h) = uxvy − uyvx = u2
x + θuxuy + u2

y − θuxuy = |∇u|2 ∈ L
1
loc(Ω).

Next, let us assume that Arg∇u ∈ L ∞(Ω), say |θ| < M . For example,
this is the case if uy > 0 a.e. in Ω. In this case the distortion function is

bounded and h ∈ W
1,2

loc (Ω).

Corollary 9.3. If Arg∇u ∈ L ∞(Ω) a.e. in Ω then h is a K-quasiregular
mapping, with K = (1 + ‖Arg∇u‖∞)2. In particular, ∇u may vanish
only on a set of measure zero.

Proof: In fact, by Astala’s area distortion theorem [As] we see that

h ∈ W
1,p
loc (Ω) with every p < 2K

K−1 . Also, h is Hölder continuous of

exponent α = 1
K . Its Jacobian is positive a.e. and hence ∇u may vanish

only on a set of zero measure.

Whether ∇u may vanish is not clear. For example, Aronsson [Ar]
proved that non-constant ∞-harmonic functions of class C 2(Ω) have
nonvanishing gradient. Based on the example (5.10), we believe that
∇u 6= 0 if u ∈ C 1,α(Ω), with α > 1/3.
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Corollary 9.4. Suppose that θ ∈ W
1,2

loc (Ω), then u has locally integrable

second derivatives; that is u ∈ W
2,1
loc (Ω).

Proof: It suffices to observe that the Laplacian of u lies in the Hardy
space H 1

loc(Ω). Indeed,

uxx + uyy = uxθy − uyθx = det

[

ux uy

θx θy

]

∈ H
1

loc(Ω).

The Laplace equation with the Jacobian determinant in the right hand
side has been investigated by Wente in 1969 [W]. His work originated
intensive study of the Jacobian determinants in Hardy spaces [CLMS],
[IV].

Finally we note that if θ ∈ W
1,2
loc (Ω) a theorem of Hempel, Morris and

Trudinger [HMT] implies that there exists λ > 0 so that
∫

Ω
exp λθ2 <∞.

Then h = u+ıv becomes a mapping of exponentially integrable distortion

|Dh(z)|2 6 K(z)J(z, h), K ∈ Exp(Ω),

see [IM], [MM], [IKMS], [IKO] for properties of such mappings.
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per la mobilità di breve durata di docenti, studiosi e ricercatori”.

J. Manfredi was supported by NSF grant DMS-0500983.

References

[A] L. V. Ahlfors, Conditions for quasiconformal deformations in
several variables, in: “Contributions to analysis (a collection of
papers dedicated to Lipman Bers)”, Academic Press, New York,
1974, pp. 19–25.

[A1] L. V. Ahlfors, Quasiconformal deformations and mappings
in Rn, J. Analyse Math. 30 (1976), 74–97.

[Ar] G. Aronsson, On the partial differential equation ux
2uxx +

2uxuyuxy + uy
2uyy = 0, Ark. Mat. 7 (1968), 395–425.

[As] K. Astala, Area distortion of quasiconformal mappings, Acta
Math. 173(1) (1994), 37–60.



246 L. D’Onofrio et al.

[BDM] T. Bhattacharya, E. DiBenedetto and J. Manfredi,
Limits as p → ∞ of ∆pup = f and related extremal problems.
Some topics in nonlinear PDEs (Turin, 1989), Rend. Sem. Mat.
Univ. Politec. Torino 1989, Special Issue (1991), 15–68.

[BI] B. Bojarski and T. Iwaniec, p-harmonic equation and
quasiregular mappings, in: “Partial differential equations”
(Warsaw, 1984), Banach Center Publ. 19, PWN, Warsaw, 1987,
pp. 25–38.

[CLMS] R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes,
Compensated compactness and Hardy spaces, J. Math. Pures
Appl. (9) 72(3) (1993), 247–286.

[HMT] J. A. Hempel, G. R. Morris and N. S. Trudinger, On the
sharpness of a limiting case of the Sobolev imbedding theorem,
Bull. Austral. Math. Soc. 3 (1970), 369–373.

[I] T. Iwaniec, p-harmonic tensors and quasiregular mappings,
Ann. of Math. (2) 136(3) (1992), 589–624.

[I1] T. Iwaniec, On the concept of the weak Jacobian and Hessian,
in: “Papers on analysis”, Rep. Univ. Jyväskylä Dep. Math.
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[IV] T. Iwaniec and A. Verde, A study of Jacobians in Hardy-
Orlicz spaces, Proc. Roy. Soc. Edinburgh Sect. A 129(3) (1999),
539–570.

[JLM] P. Juutinen, P. Lindqvist and J. Manfredi, The ∞-eigen-
value problem, Arch. Ration. Mech. Anal. 148(2) (1999),
89–105.

[JLM1] P. Juutinen, P. Lindqvist and J. Manfredi, The in-
finity Laplacian: examples and observations, in: “Papers on



Divergence Forms of the ∞-Laplacian 247
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