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DENSE INFINITE B, SEQUENCES
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Abstract: For h = 3 and h = 4 we prove the existence of infinite B} sequences B
with counting function

B(z) = 2V (h=1)2+1—(h=1)+o(1)
This result extends a construction of I. Ruzsa for B sequences.
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1. Introduction

Let h > 2 be an integer. We say that a sequence B of positive integers
is a By, sequence if all the sums

bi+---+bn (bpeB, 1<k<h)

are distinct subject to by < by < -+ < by. The study of the size of finite
By, sets or of the growing function of infinite B} sequences is a clas-
sic topic in combinatorial number theory. A simple counting argument
proves that if B C [1,n] is a By, set then |B| < (Cj, + o(1))n'/" for a
constant C}, (see [2] and [4] for non trivial upper bounds for Cj) and
consequently that B(x) < z'/" when B is an infinite B}, sequence.

Erdés conjectured the existence, for all € > 0, of an infinite By, se-
quence B with counting function B(z) > /P~ Tt is believed that
€ cannot be removed from the last exponent, a fact that has only been
proved for h even. On the other hand, the greedy algorithm produces an
infinite Bj, sequence B with

(1.1) B(z) > z71  (h>2).

Up to now the exponent 1/(2h—1) is the largest known for the growth of
a By, sequence when h > 3. For further information about Bj, sequences
see [5, §IL.2] or [7].

For the case h = 2, Ajtai, Komlds, and Szemerédi [1] proved that
there exists a Bs sequence (also called Sidon sequence) with B(z) >
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(xlogz)'/?, improving by a power of a logarithm the lower bound (1.1).
So far the largest improvement of (1.1) for the case h = 2 was achieved by
Ruzsa [8]. He constructed, in a clever way, an infinite Sidon sequence B
satisfying
B(x) = gV2-1+o(1)
Our aim is to adapt Ruzsa’s ideas to build dense infinite Bs and
By sequences so to improve the lower bound (1.1) for h = 3 and h = 4.

Theorem 1.1. For h = 2,3,4 there is an infinite By, sequence B with
counting function

B(l‘) — x\/(h—1)2+1—(h—1)+o(1).

The starting point in Ruzsa’s construction were the numbers log p,
p prime, which form an infinite Sidon set of real numbers. Instead we
start from the arguments of the Gaussian primes, which also have the
same Bj property with the additional advantage of being a bounded
sequence. This idea was suggested in [3] to simplify the original con-
struction of Ruzsa and was written in detail for By sequences in [6].

Since /(h—=1)2+1—(h—1) ~ 1/(2(h — 1)) for h — oo the con-
struction is really meaningful for small values of h and perhaps not so
for large ones.

2. The Gaussian arguments

For each rational prime p = 1 (mod 4) we consider the Gaussian
prime p of Z[i] such that

pi=a+bi, p=a>+0b>, a>b>0,

so the argument 6(p) of p = /pe?™ %) is a real number in the inter-
val (0,1/8). We will use several times throughout the paper the following
lemma that can be seen as a measure of the quality of the B, property
of this sequence of real numbers.

Lemma 2.1. Let py,...,pp,p1,...,p} be distinct Gaussian primes sat-
isfying 0 < 6(p,),0(pl) < 1/8, r = 1,...,h. The following inequality
holds:

h
1
O(p,) —0(pl))| > )
> (0(pr) — 00| > o
Proof: It is clear that

h
(2.1) ) (Opr) = 0(p))) = O(p1---prpi---p},)  (mod 1).

r=1
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Since Z[i] is a unique factorization domain, all the primes are in the first
octant and they are all distinct, the Gaussian integer p; - phpl Sph
cannot be a real integer. Using this fact and the inequality arctan(1/x) >
0.99/x for x > +/5-13 (observe that 5 and 13 are the two smallest
primes p = 1 (mod 4)) we have

10(p1 -+ prph - Pp)| = 1001 -~ pab] -0}l

1 1
> — arctan -
(2'2) 27 <|p1php’1p;1>
1
= P
7|p1php1ph|
where || - || means the distance to Z. The lemma follows from (2.1) and
(2.2). O

We illustrate the By, property of the arguments of the Gaussian primes
with a quick construction of a finite By, set which is only a logx factor
below the optimal bound. Unfortunately this simple construction cannot
be used for infinite By, sequences because the elements of A depend on x.

Theorem 2.2. The set

A={ o)l < (2) 7 <
is a By, set with |A| > 2'/"/log .
Proof: When
[20(p1)] + -+ [20(pn)] = [20(p1)] + - - + [26(p},)]

then
2f(p1) + -+ +0(pn) — 0(p1) — -+ = 0(p3)| < I
If the Gaussian primes are distinct, then Lemma 2.1 implies that
1
|0(p1) + -+ + 0(pr) — O(py) — -+ = O(pp)| > > h/z,

Tlor---pppl---ph] —

which is a contradiction.
We observe that for each prime p = 1 (mod 4) there is a Gaussian
prime p with |p| = /p and 0(p) € (0,1/8). Thus,

A==t moinrs (7))
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and the Prime Number Theorem for arithmetic progressions implies that

z\T
%>>xl/h/logac. O
2log ((%)h)

3. Proof of Theorem 1.1

| Al ~

We start following the lines of [8] with several adjustments. In the
sequel we will write p for a Gaussian prime in the first octant (0 < 6(p) <

1/8).

We fix a number ¢, > h which will determine the growth of the
sequence we construct. Indeed ¢, = /(h—1)2+1+ (h — 1) will be
taken in the last step of the proof.

3.1. The construction. We will construct for each a € [1,2] a se-
quence of positive integers indexed with the Gaussian primes

B, = {bp}a

where each b, will be built using the expansion in base 2 of a 6(p):

af(p) = Zéip27i (6ip € {0,1}).

The role of the parameter « will be clear at a later stage, for the
moment it is enough to note that the set {a8(p)} obviously keeps the
same By, property as the set {0(p)}.

To organize the construction we describe the sequence B, as a union
of finite sets according to the sizes of the primes:

Bo= |J Bax:
K>h+1
where K is an integer and
Bo,x ={by :p € Pk},
with

(K—2)2

(x-1?
Py = {p:Q o <|p)P<2 }

Now we build the positive integers b, € B, k. For any p € Pk let

—

af(p) denote the truncated series of af(p) at the K>-place:

KZ
(3.1) af(p) =Y 627"
1=1
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Combining the digits at places (j —1)? + 1,..., 52 into a single number

j2

Njp= Y 6,27 (j=1,....K),

i=(j—1)2+1
we can write
—_— K .2
(3.2) af(p) = Aj277
j=1

We observe that if p € Pk then
(3:3) ab(p) —ab(p)] <27,

The definition of b, is informally outlined as follows. We consider the
series of blocks Ayy, ..., Agp and re-arrange them opposite to the orig-
inal left to right arrangement. Then we insert at the left of each Aj, an
additional filling block of 2d + 1 digits, with d = [log, h]. At the filling
blocks the digits will be always 0 but for an only exception: the leftmost
filling block contains one digit 1 which marks the subset Px the prime p
belongs to. Namely

Ay Aj Ak
Al AN A~ ——
af(p)=0.100T...7T...0... 01...11...
2
bp o O(d)lo(d)AK0(2d+1)AK_l - 0(2d+1)A20(2d+1)A1’

where 0™) means a string of m consecutive zeroes and A; denotes the

sequence of digits in the definition of A;,. The reason to add the blocks

of zeroes and the value of d will be clarified just before Lemma 3.2.
More formally, for p € Pk we define

(3.4 fy = 2D K=D+4)
and

K
bp =t + Z Ajpz(j*1)2+(2d+1)(j*1)_
j=1
Furthermore we define Aj, =0 for j > K.

Remark 3.1. The construction in [8] was based on the numbers «logp,
with p rational prime, hence the digits of their integral parts had to be
also included in the corresponding integers b,. Ruzsa solved this problem
by reserving fixed places for these digits. Since in our construction the
integral part of a@(p) is zero there is no need to care about it.
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We observe that distinct primes p, q provide distinct by, by. Indeed
if by = bq then A;p = Ay for all 4+ < K. Also ¢, = t; which means
p,q € Pk, and so

_ 12
0(p) = (@) = "= D" (Agp — Ajq) <275
i>K
Now if p # ¢ then Lemma 2.1 implies that |6(p) — 6(q)| > ﬁ >
2-¢(K=1)"=3  Combining both inequalities we have a contradiction for
K>h+1
Since all the integers b, are distinct, we have that

(K —1)? (K —2)? g K2
(35) |Bax|=I|Px|=m(2 = ;1,4)—m(2 = ;1,4) > K ?2en,
where m(x;1,4) counts the primes not greater than = that are congruent
with 1 modulus 4. Note also that
by < 2K2+(2d+1)K+(d+1)+1

Using these estimates we can easily prove that B, (z) = « & o) . Indeed,
if K is the integer such that

2K2+(2d+1)K+(d+1)+1 <z < 2(K+1)2+(2d+1)(K+1)+(d+1)+1

then we have
(3.6) Bo(x) > |Ba.x| = gay K2 (Fo(1) _ . g-+o(1).

For the upper bound we have
2 _ o2 +o(1)
Bo(x) <#<p:pl® < 2en <2Lh—x%

There is a tradeoff in the choice of a particular value of ¢, for the
construction. On one hand larger values of ¢j capture more information
from the Gaussian arguments which brings the sequence B, = {b,} closer
to being a By, sequence. On the other hand smaller values of ¢;, provide
higher growth of the counting function of B,.

Clearly B, would be a By sequence if for all [ = 2,...,h it does not

contain by, ..., by, by, ..., by satisfying

(3.7) bp, + -+ by, = by, + -+ by
{bpl,...,bpl}ﬂ{bpl,.. by }

(3.8) bp, =+ > by, and by, > > pr

We say that (p1,...,p:1,07,...,p;) is a bad 2l-tuple if the equation (3.7)
is satisfied by the corresponding by, , by (1 <7 <1).
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The sequence B, = {b,} we have constructed so far is not a B}, se-
quence yet. Some repeated sums as in (3.7) will eventually appear,
however the precise way how the elements b, are built will allow us to
study these bad 2I-tuples in order to prove that there are not too many
repeated sums. Then after removing the bad elements involved in these
bad 2I-tuples we will obtain a true B} sequence.

Now we will see why blocks of zeroes were added to the binary ex-
pansion of b,. We can identify each b,, with p € Pk, with a vector as
follows:

bp Axs (0007 13 O(d)a AK70(2d+1)7 AK—h ceey O(2d+1)a A27 0(2d+1)7 A1)7

where 0™) means a string of m consecutive zeroes and A; denotes the
sequence of digits in the definition of A;,. Note that the leftmost part of
each vector is null. The value of d = [log, h] has been chosen to prevent
the propagation of the carry between any two consecutive coordinates
separated by a comma in the above identification. So when we sum
no more than h integers b, we can just sum the corresponding vectors
coordinate-wise. This fact is used in the following lemma.

Lemma 3.2. Let (p1,...,p,01,...,p)) be a bad 2l-tuple. Then there
are integers K1 > --- > K, such that p1,p} € Pk,,...,p1,p] € Pxk,, and
we have

—

(3.9) af(pr) +-+ab(p) =ad(p)) +- +abp).

Proof: Note that (3.7) implies ¢y, +- - +tp, =tp +- -+ and Ay, +
coo+ Ajp, = Ajpr + -+ Ay for each j. Using (3.2) we conclude (3.9).
As the bad 2I-tuple satisfies condition (3.8) we deduce that p,., p\. belong
to the same Pk, for all r. O

According to the previous lemma we will write Fo(a; K1, ..., K;) for
the set of bad 2i-tuples (p1,...,p;) with p,,p). € Pg,, 1 <r <l and

E2l(a;K): U Eo(a; K, ..., K)),
Ki<-<Ky=K

where K = K. Also we define the set

Bady,x = {bIJ € Ba,k : by is the largest element

involved in some equation (3.7)}.
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It is clear that >, |E(a, K)| is an upper bound for |Bada, x|, the
number of elements we need to remove from each B, x to get a By, se-
quence:

(3.10) Bada, x| < Y |Ea(e, K)|.
I<h

We do not know how to obtain a good upper bound for |Eq(c, K)|
for a particular o, however we can do it for almost all a.

Lemma 3.3. Forl=2,3,4 and ¢, > h > [ we have
2( )_ _ 2
/|EQZO‘K|dOé<<Km12(C;71 1)(K 1) 2K7
for some my.

The proof of this lemma is involved and we postpone it to §4.

3.2. Last step in the proof of Theorem 1.1: For h = 2, 3,4 we use
(3.10) and (3.5) to get

2
/2 |Bada, x| doi<h Ji |B2(e, K)| dex
——da K
1 |Bakl K—29e K-1)?

Zl<h Kml2(#11)_1)(K_1)2_2K

K-22m (K02

< gmit2g (PG -2 ) (kP 2K

< KMtk
forep, = /(h—1)2 4 +(h 1) which is the smallest number ¢ satisfying
the inequality 2(h 1) —1 <0. So for this ¢, the sum ZKf2 I]?;d";‘(‘ da
is convergent and then we have that f1 YK \1‘3;1@ 2| 4o is finite. So

Sk |Bad‘* K‘ is convergent for almost all @ € [1,2]. We take one of

these a say ag, and consider the sequence

B = J(Ba,.x \ Bada, k).
K
We claim that this sequence satisfies the condition of the theorem. On
one hand this sequence clearly is a Bj sequence because we have de-
stroyed all the repeated sums of h elements of B,, by removing one
element from each bad 2I-tuple.
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On the other hand the convergence of > % implies that
@0

|Bada,, x| = 0(|Bag,i|)- We proceed as in (3.6) to estimate the counting
function of B. For any z let K be the integer such that

2K2+(2d+1)K+(d+1)+1 <z < 2(K+1)2+(2d+1)(K+1)+(d+1)+1'

We have
B(z) > |Bay. i |—|Badag k| = |Bao.x|(140(1)) > Fo-29EKP _rol)
For the upper bound, we have
B(x) < Bay (z) = 2o oW,
Note that 1/¢, = \/(h — 1)2+ 1 — (h — 1). Hence
B(z) = oV (h=D>+1=(h=1)+o(1), -

4. Proof of Lemma 3.3

The proof of Lemma 3.3 will be a consequence of Propositions 4.5,
4.6, and 4.7. Before proving these propositions we need some properties
of the bad 2I-tuples and an auxiliary lemma about visible lattice points.

4.1. Some properties of the 2l-tuples. For any 2I-tuple (p1,...,p:,
pi,...,p}) we define the numbers wy = wy(p1, ..., 01, P1,--.,P)) by

S

ws =Y (0(pr) = 0(p;)) (s <1).

r=1
The next two lemmas show several properties of the bad 2[-tuples.
Lemma 4.1. Let (p1,...,p;,05,...,p)) € Ey(a; Kq,...,K;) be a bad
2l-tuple. We have
) Jwy| <1275,

2
i) fwp_q| > 27 an KD

(K1 =12+ -+ (g — 1)
cp, — 1 '
Proof: i) This is a consequence of (3.9) and (3.3):

i) (K —1)? <

l

faal = — [S"(@b(pr) — a8(3})| <

1 (Q—Kf +--~+2—Kl2) <27 KP,
(8%

r=1
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ii) Lemma 2.1 implies

(4.1) 8(p1) — 0(p))| > = > 273 = D*,

and so
|wi—1] = Jwi + 0(p) — O(po)| > 10(p;) — O(p1)| — |

2 27$(Kl*1)2*3 _ l2_Kl2 2 27%}’/(K171)2747

since K; >h+1>1+1.

iii) Lemma 2.1 also implies that

l

> (0(p,) — 0(p}))

r=1

S e
Tlp1---pjl

Combining this with i) we obtain

|wi| =

1 logy !l —2K; +4
K, —1)2 < Ki—1)24+... K, . —1)2 o520 et -
(K )_ch—l(( 1 =124 (K - 1)) + Ty
The last term is negative because K; > h+1>1[1+1and [ > 2. O

Lemma 4.2. Let (p1,...,p5,04,-..,9]) € Ey(a; Kq,...,K;) be a bad
2l-tuple. Then for any ws =Y »_,(0(p,) —0(pl.)) with1 < s <1—1 we
have

(4.2) a2 i, || < s2Kin—KS (s=1,...,1-1),

where || - || means the distance to the nearest integer.
Proof: Since 0 < af(p) — m < 27K* when p € Py, then

|66 — 06)) = (@(pr) — ablpp) )| <275
for any p,.,pl. € K, with r < s and we can write
25510y (0(p) — 0(6)) = 2550 Y (@ l(p,) — ablp))) + e,
r=1

r=1

with |eg| < s2K5 K2 By the definition (3.1) of m we have

1 1 K7
2650 37 (abpp) — ablpn) = D 02 Gy — b,

r=s+1 r=s+1i=1
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which is an integer. By Lemma 3.2 we know that

i(a@ (pr) — @ O(p.. )) =0.

r=1
It follows that
1255w = fe| < 52K,
as claimed. O

Lemma 4.3.
. KoK w7 (s
/1|E2l(a,K1,...,Kl)|da<<2 (pzp/) o] H(Wﬁl )
|wl|2z.27*lf<?

Proof: We know by Lemma 4.1 1) that if (p1,...,p)) € Ex(o; K1, ..., K)),
then |w;| < 12=K7 . Thus

2
(4.3) /IEzz(a;Kl,...,Kmda
1

< Z pla: (p1y...,p)) € Ey(o; Ky, ..., K))}
(p1,.5p7)

|| <1-2~ KT
We have seen that if (p1,...,p]) € Eo(a; Ky, ..., K;), then
(4.4) [a2B || < s2K5m K2 s=1,...1—1.

Then there exist integers js, s =1,...,l — 1 such that

(4.5) 025410, — j,| < s2Ki K2
SO
. _ 2
(4.6) ‘ SV P
2K§+1ws |w5|

Writing I, ,. .., I;, for the intervals defined by the inequalities (4.6), we
have

pla: (p1,...,p)) € Ba(a; Kq,..., K))}

< Z |Ijlm"'mljl71|

(4.7) Jrseendio
27Kf+1

-1
W# {(j17-~-,jz—1) : i_ﬂlfji#@} :
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To estimate this last cardinal note that for all s =1,...,] — 2 we have
Js Js+1 Js Js+1
- < |la— - ——
2w, 2K, 2K 1w, ’ 2K 210

|ews| |wst1]
Thus
2K s+ 1)|w
(4.8) s fjs_i_leis < 52*K5+K§+1 + w
2% s+2wg1 |ws 1]
We observe that for each s =1,...,1 — 2 and for each js;1, the number
of js satisfying (4.8) is bounded by 2 (SQ_KSQ’LK?H + %) +1x
|ws |
el 11,

Note also that (4.5) for s =1 — 1 implies
i < @25 Wy + (1 1)25F K

< 2Kty +(1-1)

< 2K12w171-
Thus,
=1 2 o |ws|
(4.9) # {(jl, ceyJi—1) m 1;, =+ @} < 2K wi—1 H <|w 51| + 1> .
i=1 s=1 o

The proof can be completed putting (4.9) in (4.7) and then in (4.3). O

4.2. Visible points. We will denote by V the set of points in the integer
two dimensional lattice Z? visible from the origin except (1,0). In the
next subsection we will use several times the following lemma.

Lemma 4.4. The number of points in V that are contained in a circular
sector centred at the origin of radius R and angle € is at most eR? + 1.
In other words, for any real number t

#{v eV, v <R, |0v) +t] <e} <eR®+1.
Furthermore,

#{v eV, v <R, |0(v)| < e} <eR™
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Proof: We order the N points inside de sector vy, vs, ..., vy € V by the
value of their argument so that 6(v;) < 6(v;) for 1 <i < j < N. For each
i=1,...,N —1 the three lattice points O, v;, v;+1 define a triangle T;
with Area(T;) > 1/2, that does not contain any other lattice point.

Since all T; are inside the circular sector their union covers at most
the area of the sector. Their interiors are pairwise disjoint, thus

N N
N—1<) 2-Area(T;) =2 Area <U 71) < R%e.

i=1 i=1
For the last statement we add vg = (1,0) to the points v1,...,vy and
we repeat the argument. O

4.3. Estimates for the number of bad 2I-tuples (I = 2, 3,4). We
start with the case [ = 2 which was considered by Ruzsa for By sequences.
In the sequel all lattice points v appearing in the proofs belong to V and
Lemma 4.4 applies.

Proposition 4.5. For any cp, > 2 we have

2 (¢—1)(K—1)2—2K
/ |Es(a; K)|da < K -2\en—1 .
1

Proof: Lemma 4.3 implies that

2
/ |Ba(a; K, o)l da < 25554 Loy, o1 o, b)) | < 22753 )
1

We get an upper bound for the second factor here by using Lemma 4.4
to estimate the number of lattice points of the form vy = p1ppaps such
that

wa| = 0(v2)]| <, |1o] < R with e=2.275%

and R= Qi((K1—1)2+(K2—1)2)'

We have
2 2 2 2 (K _1)2 K _1)2 _K2
/ |Es(o; K, Ko)| da < 2827 K7 93, (%1 +(K2—1)%)— K2

1

< 95 (K1=)?+(K2=1)*) - K7
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By Lemma 4.1 iii) we also have (K3 — 1)? < (Kl 1) , thus

2 2 2
/ |Eq(a; Ki, Kp)|da < oG 1) i-2m
1

and

2
/ |Ey(e; K)| da = / |Ey(e; K, Ks)| da
1

Ko<K

< K .o(@= )12k

Proposition 4.6. For any cp > 3 we have

? —4__1)(K-1)2—2K
[ 1B 0] o actp ) b
1

Proof: Lemma 4.3 says that
1

2
/ |Eg(a; K, Ky, K3)| da < 255K Z ol
1 w1

(191,--.,%,)2
|ws|<3-27 53

2
Since |wy| = [|8(p1p])| > 2737% we split the sum above according
lwi] <27™ for m < M = 3+ (K; — 1)?/cj,. Summing for all m in this
range and applying Lemma 4.4 with vy = p1p) and va = popsphps, we
have that

Z | | < Z 2m {pla7pé)|w1|§2_m7|w3|S32_K§}
w1

(p1,-s0%) m<M
|ws| <327 53

< Y g {nm) s o) <27,

m<M

1001) + 0(w)]| < 3-2755

< Yo Y} #{y2;||9(y1)+9(y2)|\ 33-2—K§}

m<M  |6()|<2—m

< S oma 9o (Ki=1)? —m(2 2 (K2=1)%+(K3-1)%) = K§+1).

m<M
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Hence using the inequalities K3 < Ky < K7 and (K3—1)2< ) (Ky —1)?

Ch—l
(property iii) in Lemma 4.1) we have

/12|E6(04;K1,K2,K3)|da
<« K2l Ki+d (K1) (2%(<K271>2+(K371)2)*K§ n 1)
< K1227K12+%h((K171)2+(K2—1)2+(K371)2) n K122K§*K12+C%(K1*1)2
« K29~ KD+ (K =) (o) +(Ka— 1)) —2K,
n K122(K371)27(K171)2+%(K171)2
P

Then we can write
2
/ |Eg(cv; K)| da
1

2
= Z / |E6(05’K7K2,K3)|da < K42($71)(K71) 72K7
K3<K;<K 1

as claimed. O

Proposition 4.7. For any cp > 4 we have
2 .
/ |Bs(o K| da < K5~V =2K
1

Proof: Considering the two possibilities |w1| < |wz| and |wi| > |wa| we
get the inequality

w w w w w 1 1 1
( n 1)('2' n 1)<<'3' ('1' +1)<<max ()
|| \ |wz| |ws] || \ Jwel |ws| w1 wal
This combined with Lemma 4.3 implies that

2
/\Es<a,K1,K2,K37K4)|da
1

< o~ Ki+Kj] E 1 4 E 1
(P15-50%) o] (P1-0s0%) eoa|
b4 [ARREE
wa|<4-2- K3 wa|<4-2~KZ
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Applying Lemma 4.4 with the notation v :plg and vy =Ppapspaphphipl
and taking again M = 3 + (K; — 1)?/cp,, we have that

1 . . s
Z m<< Z 2m#{(P17--~7P4)3|W1|<2 , |wa| <42 K4}
(p1,-.-,p) N om<m

2
wa|<4-27 54

< Z 2m# {(1/17y2) : ||0(1/1>|| < 2—m’
m<M
0(v1) + 0(r2)]| < 4- Q*Kf}
< Z Z #{V2 2 10(v1) + 0(v2)]| §4.2*K§}

m<M [6(v) | <2

< Z 2%(1{1*1)2(2%((Kz*1)2+(K3*1)2+(K4*1)2)*K2+1)

m<M
< K122%((K171)2+(K271)2+(K371)2+(K471)2)7Kf
+ K297 KD

Similarly, but writing now 11 = p1papp5 and vo = papapsp) we have

> < X o B ] <27 ] <4275

wa| =,

<Y 2m#{(y1,u2) o) < 27,

mSK%

16(11) + 0(v2)|| < 4- Q—K:;‘}

+ 30 2 {0 < 27,

m>K?

0(v1) + 0(12)]| < 4- Q*Kf}

=51+ 5.
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We observe that if m < KZ? then ||0(vs)|| < [|0(v1) + 0(v2)|| + [|10(v1)]] <
5-27™. Thus

Si S0 2 { v, m0) < [0 <527, [00) + 0()]| < 427}

m< K2
<Y o ¥ #{VlﬂWOq)+90Qﬂ|§4~2_Ki}
m< K3 [[0(v2)]|<5-2—m

< Z om 2%((K3—1)2+(K4—1)2)_m (2%((K1—1)2+(K2—1)2>_K2+1>

mSKg

< KEQC%((Kl_1)2+(K2_1)2+(K3_1)2+(K4_1)2)_Ki

+ K29 (Um0 ssn?)

To estimate Sz, we observe that if m > K3 then ||0(v2)| < ||0(v1) +
O(v)]| + [10()|| < 52755, Thus

So< >0 2 me) 000 <27 0(m)| <527

K2<m<M

< Z om g ((Ki=1)?+(K2=1)?)=m o2 ((Ks—1)°+(Ka—1)*) =K}
K2<m<M

< KIQQ%((Kl71)2+(K271)2+(K371)2+(K471)2)7K§.

Putting together the estimates we have obtained for ) ﬁ and > ﬁ
we get

2
/ ‘Eg(athKZaKSszl)‘da
1
< K122%((K1—1)2+(K2—1)2+(K3—1)2+(K4_1)2)_K12
4 K2 KK (K1) oo KE-KGH 0 (K1) 4 (Ka—1)%)

=T+ Ty +Ts.
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Using the inequalities (K; —1)? < 1= (K1 —1)24 (K2 —1)2+(K3—1)?)
and Ky < K3 < K9 < Ky we have

Ty < K22 o (T ) (- D2k

Ty < K1227(K171)2+(K471)2+%(K171)2

<« g2o(rEs G

< K122(’1+oh ) (-2 2K

and

Ty « K220 U014 2 (Ka= D)™+ (Ka-1)7)

« K2o(1+ &) G (K- 4 (Kam 1)+ (Ko =1)?) ~ (1 -1+ 2 (Ka=1)?

<<K122((1+% ?*1+ )(Kl 1)?

< K v,

since ¢, > 4. Finally

2 2
/ |Es(a, K)|da < > g2o(~1 a2k
1 Ki<K3<K:<K

< K59 (% - )(K—1)2—2K

as claimed. O
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