DENSE INFINITE B_h SEQUENCES

Javier Cilleruelo and Rafael Tesoro

Abstract: For h=3 and h=4 we prove the existence of infinite B_h sequences \mathcal{B} with counting function

$$\mathcal{B}(x) = x^{\sqrt{(h-1)^2 + 1} - (h-1) + o(1)}.$$

This result extends a construction of I. Ruzsa for B_2 sequences.

2010 Mathematics Subject Classification: 11B83.

Key words: B_h sequences, Sidon sequences, probabilistic method.

1. Introduction

Let $h \geq 2$ be an integer. We say that a sequence \mathcal{B} of positive integers is a B_h sequence if all the sums

$$b_1 + \dots + b_h \quad (b_k \in \mathcal{B}, 1 \le k \le h)$$

are distinct subject to $b_1 \leq b_2 \leq \cdots \leq b_h$. The study of the size of finite B_h sets or of the growing function of infinite B_h sequences is a classic topic in combinatorial number theory. A simple counting argument proves that if $\mathcal{B} \subset [1,n]$ is a B_h set then $|\mathcal{B}| \leq (C_h + o(1))n^{1/h}$ for a constant C_h (see [2] and [4] for non trivial upper bounds for C_h) and consequently that $\mathcal{B}(x) \ll x^{1/h}$ when \mathcal{B} is an infinite B_h sequence.

Erdős conjectured the existence, for all $\epsilon > 0$, of an infinite B_h sequence \mathcal{B} with counting function $\mathcal{B}(x) \gg x^{1/h-\epsilon}$. It is believed that ϵ cannot be removed from the last exponent, a fact that has only been proved for h even. On the other hand, the *greedy* algorithm produces an infinite B_h sequence \mathcal{B} with

(1.1)
$$\mathcal{B}(x) \gg x^{\frac{1}{2h-1}} \quad (h \ge 2).$$

Up to now the exponent 1/(2h-1) is the largest known for the growth of a B_h sequence when $h \geq 3$. For further information about B_h sequences see [5, §II.2] or [7].

For the case h=2, Ajtai, Komlós, and Szemerédi [1] proved that there exists a B_2 sequence (also called Sidon sequence) with $\mathcal{B}(x) \gg$

 $(x \log x)^{1/3}$, improving by a power of a logarithm the lower bound (1.1). So far the largest improvement of (1.1) for the case h = 2 was achieved by Ruzsa [8]. He constructed, in a clever way, an infinite Sidon sequence \mathcal{B} satisfying

 $\mathcal{B}(x) = x^{\sqrt{2}-1+o(1)}.$

Our aim is to adapt Ruzsa's ideas to build dense infinite B_3 and B_4 sequences so to improve the lower bound (1.1) for h = 3 and h = 4.

Theorem 1.1. For h = 2, 3, 4 there is an infinite B_h sequence \mathcal{B} with counting function

$$\mathcal{B}(x) = x^{\sqrt{(h-1)^2 + 1} - (h-1) + o(1)}.$$

The starting point in Ruzsa's construction were the numbers $\log p$, p prime, which form an infinite Sidon set of *real* numbers. Instead we start from the arguments of the Gaussian primes, which also have the same B_h property with the additional advantage of being a bounded sequence. This idea was suggested in [3] to simplify the original construction of Ruzsa and was written in detail for B_2 sequences in [6].

Since $\sqrt{(h-1)^2+1}-(h-1)\sim 1/(2(h-1))$ for $h\to\infty$ the construction is really meaningful for small values of h and perhaps not so for large ones.

2. The Gaussian arguments

For each rational prime $p \equiv 1 \pmod{4}$ we consider the Gaussian prime \mathfrak{p} of $\mathbb{Z}[i]$ such that

$$\mathfrak{p} := a + bi, \quad p = a^2 + b^2, \quad a > b > 0,$$

so the argument $\theta(\mathfrak{p})$ of $\mathfrak{p} = \sqrt{p}e^{2\pi i\,\theta(\mathfrak{p})}$ is a real number in the interval (0,1/8). We will use several times throughout the paper the following lemma that can be seen as a measure of the quality of the B_h property of this sequence of real numbers.

Lemma 2.1. Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_h, \mathfrak{p}'_1, \ldots, \mathfrak{p}'_h$ be distinct Gaussian primes satisfying $0 < \theta(\mathfrak{p}_r), \theta(\mathfrak{p}'_r) < 1/8, \ r = 1, \ldots, h$. The following inequality holds:

$$\left| \sum_{r=1}^h (\theta(\mathfrak{p}_r) - \theta(\mathfrak{p}_r')) \right| > \frac{1}{7|\mathfrak{p}_1 \cdots \mathfrak{p}_h \mathfrak{p}_1' \cdots \mathfrak{p}_h'|}.$$

Proof: It is clear that

(2.1)
$$\sum_{r=1}^{h} (\theta(\mathfrak{p}_r) - \theta(\mathfrak{p}'_r)) \equiv \theta(\mathfrak{p}_1 \cdots \mathfrak{p}_h \overline{\mathfrak{p}'_1 \cdots \mathfrak{p}'_h}) \pmod{1}.$$

Since $\mathbb{Z}[i]$ is a unique factorization domain, all the primes are in the first octant and they are all distinct, the Gaussian integer $\mathfrak{p}_1\cdots\mathfrak{p}_h$ $\overline{\mathfrak{p}'_1\cdots\mathfrak{p}'_h}$ cannot be a real integer. Using this fact and the inequality $\arctan(1/x) > 0.99/x$ for $x \geq \sqrt{5 \cdot 13}$ (observe that 5 and 13 are the two smallest primes $p \equiv 1 \pmod{4}$) we have

$$(2.2) |\theta(\mathfrak{p}_{1}\cdots\mathfrak{p}_{h}\overline{\mathfrak{p}'_{1}\cdots\mathfrak{p}'_{h}})| \geq \|\theta(\mathfrak{p}_{1}\cdots\mathfrak{p}_{h}\overline{\mathfrak{p}'_{1}\cdots\mathfrak{p}'_{h}})\| \\ \geq \frac{1}{2\pi}\arctan\left(\frac{1}{|\mathfrak{p}_{1}\cdots\mathfrak{p}_{h}\overline{\mathfrak{p}'_{1}}\cdots\overline{\mathfrak{p}'_{h}}|}\right) \\ > \frac{1}{7|\mathfrak{p}_{1}\cdots\mathfrak{p}_{h}\overline{\mathfrak{p}'_{1}}\cdots\overline{\mathfrak{p}'_{h}}|},$$

where $\|\cdot\|$ means the distance to \mathbb{Z} . The lemma follows from (2.1) and (2.2).

We illustrate the B_h property of the arguments of the Gaussian primes with a quick construction of a finite B_h set which is only a $\log x$ factor below the optimal bound. Unfortunately this simple construction cannot be used for infinite B_h sequences because the elements of \mathcal{A} depend on x.

Theorem 2.2. The set

$$\mathcal{A} = \left\{ \lfloor x\theta(\mathfrak{p}) \rfloor : |\mathfrak{p}| \le \left(\frac{x}{7h}\right)^{\frac{1}{2h}} \right\} \subset [1, x]$$

is a B_h set with $|\mathcal{A}| \gg x^{1/h}/\log x$.

Proof: When

$$\lfloor x\theta(\mathfrak{p}_1)\rfloor + \dots + \lfloor x\theta(\mathfrak{p}_h)\rfloor = \lfloor x\theta(\mathfrak{p}_1')\rfloor + \dots + \lfloor x\theta(\mathfrak{p}_h')\rfloor$$

then

$$x|\theta(\mathfrak{p}_1) + \dots + \theta(\mathfrak{p}_h) - \theta(\mathfrak{p}'_1) - \dots - \theta(\mathfrak{p}'_h)| \le h.$$

If the Gaussian primes are distinct, then Lemma 2.1 implies that

$$|\theta(\mathfrak{p}_1) + \dots + \theta(\mathfrak{p}_h) - \theta(\mathfrak{p}'_1) - \dots - \theta(\mathfrak{p}'_h)| > \frac{1}{7|\mathfrak{p}_1 \dots \mathfrak{p}_h \mathfrak{p}'_1 \dots \mathfrak{p}'_h|} \ge h/x,$$

which is a contradiction.

We observe that for each prime $p \equiv 1 \pmod{4}$ there is a Gaussian prime \mathfrak{p} with $|\mathfrak{p}| = \sqrt{p}$ and $\theta(\mathfrak{p}) \in (0, 1/8)$. Thus,

$$|\mathcal{A}| = \# \left\{ p : p \equiv 1 \pmod{4}, p \leq \left(\frac{x}{7h}\right)^{\frac{1}{h}} \right\}$$

and the Prime Number Theorem for arithmetic progressions implies that

$$|\mathcal{A}| \sim \frac{\left(\frac{x}{7h}\right)^{\frac{1}{h}}}{2\log\left(\left(\frac{x}{7h}\right)^{\frac{1}{h}}\right)} \gg x^{1/h}/\log x.$$

3. Proof of Theorem 1.1

We start following the lines of [8] with several adjustments. In the sequel we will write \mathfrak{p} for a Gaussian prime in the first octant $(0 < \theta(\mathfrak{p}) < 1/8)$.

We fix a number $c_h > h$ which will determine the growth of the sequence we construct. Indeed $c_h = \sqrt{(h-1)^2 + 1} + (h-1)$ will be taken in the last step of the proof.

3.1. The construction. We will construct for each $\alpha \in [1,2]$ a sequence of positive integers indexed with the Gaussian primes

$$\mathcal{B}_{\alpha} := \{b_{\mathfrak{p}}\},\$$

where each $b_{\mathfrak{p}}$ will be built using the expansion in base 2 of $\alpha \theta(\mathfrak{p})$:

$$\alpha \theta(\mathfrak{p}) = \sum_{i=1}^{\infty} \delta_{i\mathfrak{p}} 2^{-i} \quad (\delta_{i\mathfrak{p}} \in \{0, 1\}).$$

The role of the parameter α will be clear at a later stage, for the moment it is enough to note that the set $\{\alpha \theta(\mathfrak{p})\}$ obviously keeps the same B_h property as the set $\{\theta(\mathfrak{p})\}$.

To organize the construction we describe the sequence \mathcal{B}_{α} as a union of finite sets according to the sizes of the primes:

$$\mathcal{B}_{\alpha} = \bigcup_{K > h+1} \mathcal{B}_{\alpha,K},$$

where K is an integer and

$$\mathcal{B}_{\alpha,K} = \{b_{\mathfrak{p}} : \mathfrak{p} \in P_K\},\$$

with

$$P_K := \left\{ \mathfrak{p} : 2^{\frac{(K-2)^2}{c_h}} < |\mathfrak{p}|^2 \le 2^{\frac{(K-1)^2}{c_h}} \right\}.$$

Now we build the positive integers $b_{\mathfrak{p}} \in \mathcal{B}_{\alpha,K}$. For any $\mathfrak{p} \in P_K$ let $\widehat{\alpha \theta(\mathfrak{p})}$ denote the truncated series of $\alpha \theta(\mathfrak{p})$ at the K^2 -place:

(3.1)
$$\widehat{\alpha \theta(\mathfrak{p})} := \sum_{i=1}^{K^2} \delta_{i\mathfrak{p}} 2^{-i}.$$

Combining the digits at places $(j-1)^2+1,\ldots,j^2$ into a single number

$$\Delta_{j\mathfrak{p}} = \sum_{i=(j-1)^2+1}^{j^2} \delta_{i\mathfrak{p}} 2^{j^2-i} \quad (j=1,\dots,K),$$

we can write

(3.2)
$$\widehat{\alpha \theta(\mathfrak{p})} = \sum_{j=1}^{K} \Delta_{j\mathfrak{p}} 2^{-j^2}.$$

We observe that if $\mathfrak{p} \in P_K$ then

$$(3.3) |\widehat{\alpha \theta(\mathfrak{p})} - \alpha \theta(\mathfrak{p})| \le 2^{-K^2}.$$

The definition of $b_{\mathfrak{p}}$ is informally outlined as follows. We consider the series of blocks $\Delta_{1\mathfrak{p}}, \ldots, \Delta_{K\mathfrak{p}}$ and re-arrange them opposite to the original left to right arrangement. Then we insert at the left of each $\Delta_{j\mathfrak{p}}$ an additional filling block of 2d+1 digits, with $d=\lceil \log_2 h \rceil$. At the filling blocks the digits will be always 0 but for an only exception: the leftmost filling block contains one digit 1 which marks the subset P_K the prime \mathfrak{p} belongs to. Namely

$$\alpha \theta(\mathfrak{p}) = 0.1 \underbrace{0.1}^{\Delta_1} \underbrace{0.1}^{\Delta_2} \underbrace{0.1}^{\Delta_j} \underbrace{0.1}^{\Delta_K} \underbrace{0.1}^{\Delta_K}$$

where $0^{(m)}$ means a string of m consecutive zeroes and Δ_i denotes the sequence of digits in the definition of $\Delta_{i\mathfrak{p}}$. The reason to add the blocks of zeroes and the value of d will be clarified just before Lemma 3.2.

More formally, for $\mathfrak{p} \in P_K$ we define

(3.4)
$$t_{p} = 2^{K^{2} + (2d+1)(K-1) + (d+1)}$$

and

$$b_{\mathfrak{p}} = t_{\mathfrak{p}} + \sum_{j=1}^{K} \Delta_{j\mathfrak{p}} 2^{(j-1)^2 + (2d+1)(j-1)}.$$

Furthermore we define $\Delta_{j\mathfrak{p}} = 0$ for j > K.

Remark 3.1. The construction in [8] was based on the numbers $\alpha \log p$, with p rational prime, hence the digits of their integral parts had to be also included in the corresponding integers b_p . Ruzsa solved this problem by reserving fixed places for these digits. Since in our construction the integral part of $\alpha \theta(\mathfrak{p})$ is zero there is no need to care about it.

We observe that distinct primes \mathfrak{p} , \mathfrak{q} provide distinct $b_{\mathfrak{p}}$, $b_{\mathfrak{q}}$. Indeed if $b_{\mathfrak{p}} = b_{\mathfrak{q}}$ then $\Delta_{i\mathfrak{p}} = \Delta_{i\mathfrak{q}}$ for all $i \leq K$. Also $t_{\mathfrak{p}} = t_{\mathfrak{q}}$ which means $\mathfrak{p}, \mathfrak{q} \in P_K$, and so

$$|\theta(\mathfrak{p}) - \theta(\mathfrak{q})| = \alpha^{-1} \cdot \sum_{j>K} (\Delta_{j\mathfrak{p}} - \Delta_{j\mathfrak{q}}) < 2^{-K^2}.$$

Now if $\mathfrak{p} \neq \mathfrak{q}$ then Lemma 2.1 implies that $|\theta(\mathfrak{p}) - \theta(\mathfrak{q})| > \frac{1}{7|\mathfrak{p}\mathfrak{q}|} > 2^{-\frac{1}{c}(K-1)^2-3}$. Combining both inequalities we have a contradiction for K > h+1.

Since all the integers $b_{\mathfrak{p}}$ are distinct, we have that

$$(3.5) \quad |\mathcal{B}_{\alpha,K}| = |P_K| = \pi \left(2^{\frac{(K-1)^2}{c_h}}; 1, 4\right) - \pi \left(2^{\frac{(K-2)^2}{c_h}}; 1, 4\right) \gg K^{-2} 2^{\frac{K^2}{c_h}},$$

where $\pi(x; 1, 4)$ counts the primes not greater than x that are congruent with 1 modulus 4. Note also that

$$b_{\mathfrak{p}} < 2^{K^2 + (2d+1)K + (d+1) + 1}.$$

Using these estimates we can easily prove that $\mathcal{B}_{\alpha}(x) = x^{\frac{1}{c_h} + o(1)}$. Indeed, if K is the integer such that

$$2^{K^2 + (2d+1)K + (d+1) + 1} < x < 2^{(K+1)^2 + (2d+1)(K+1) + (d+1) + 1}$$

then we have

(3.6)
$$\mathcal{B}_{\alpha}(x) \ge |\mathcal{B}_{\alpha,K}| = 2^{\frac{1}{c_h}K^2(1+o(1))} = x^{\frac{1}{c_h}+o(1)}.$$

For the upper bound we have

$$\mathcal{B}_{\alpha}(x) \le \# \left\{ \mathfrak{p} : |\mathfrak{p}|^2 \le 2^{\frac{K^2}{c_h}} \right\} \le 2^{\frac{K^2}{c_h}} = x^{\frac{1}{c_h} + o(1)}.$$

There is a tradeoff in the choice of a particular value of c_h for the construction. On one hand larger values of c_h capture more information from the Gaussian arguments which brings the sequence $\mathcal{B}_{\alpha} = \{b_{\mathfrak{p}}\}$ closer to being a B_h sequence. On the other hand smaller values of c_h provide higher growth of the counting function of \mathcal{B}_{α} .

Clearly \mathcal{B}_{α} would be a B_h sequence if for all l = 2, ..., h it does not contain $b_{\mathfrak{p}_1}, ..., b_{\mathfrak{p}_l}, b_{\mathfrak{p}'_1}, ..., b_{\mathfrak{p}'_l}$ satisfying

(3.7)
$$b_{\mathfrak{p}_{1}} + \dots + b_{\mathfrak{p}_{l}} = b_{\mathfrak{p}'_{1}} + \dots + b_{\mathfrak{p}'_{l}},$$

$$\{b_{\mathfrak{p}_{1}}, \dots, b_{\mathfrak{p}_{l}}\} \cap \{b_{\mathfrak{p}'_{1}}, \dots, b_{\mathfrak{p}'_{l}}\} = \emptyset,$$

$$(3.8) \qquad b_{\mathfrak{p}_{1}} \geq \dots \geq b_{\mathfrak{p}_{l}} \text{ and } b_{\mathfrak{p}'_{1}} \geq \dots \geq b_{\mathfrak{p}'_{l}}.$$

We say that $(\mathfrak{p}_1, \ldots, \mathfrak{p}_l, \mathfrak{p}'_1, \ldots, \mathfrak{p}'_l)$ is a bad 2l-tuple if the equation (3.7) is satisfied by the corresponding $b_{\mathfrak{p}_r}$, $b_{\mathfrak{p}'_r}$ $(1 \le r \le l)$.

The sequence $\mathcal{B}_{\alpha} = \{b_{\mathfrak{p}}\}$ we have constructed so far is not a B_h sequence yet. Some repeated sums as in (3.7) will eventually appear, however the precise way how the elements $b_{\mathfrak{p}}$ are built will allow us to study these bad 2l-tuples in order to prove that there are not too many repeated sums. Then after removing the bad elements involved in these bad 2l-tuples we will obtain a true B_h sequence.

Now we will see why blocks of zeroes were added to the binary expansion of $b_{\mathfrak{p}}$. We can identify each $b_{\mathfrak{p}}$, with $\mathfrak{p} \in P_K$, with a vector as follows:

$$b_{\mathfrak{p}} \leftrightarrow (0^{\infty}, 1, 0^{(d)}, \Delta_K, 0^{(2d+1)}, \Delta_{K-1}, \dots, 0^{(2d+1)}, \Delta_2, 0^{(2d+1)}, \Delta_1),$$

where $0^{(m)}$ means a string of m consecutive zeroes and Δ_i denotes the sequence of digits in the definition of $\Delta_{i\mathfrak{p}}$. Note that the leftmost part of each vector is null. The value of $d = \lceil \log_2 h \rceil$ has been chosen to prevent the propagation of the carry between any two consecutive coordinates separated by a comma in the above identification. So when we sum no more than h integers $b_{\mathfrak{p}}$ we can just sum the corresponding vectors coordinate-wise. This fact is used in the following lemma.

Lemma 3.2. Let $(\mathfrak{p}_1, \ldots, \mathfrak{p}_l, \mathfrak{p}'_1, \ldots, \mathfrak{p}'_l)$ be a bad 2*l*-tuple. Then there are integers $K_1 \geq \cdots \geq K_l$ such that $\mathfrak{p}_1, \mathfrak{p}'_1 \in P_{K_1}, \ldots, \mathfrak{p}_l, \mathfrak{p}'_l \in P_{K_l}$, and we have

(3.9)
$$\widehat{\alpha\theta(\mathfrak{p}_1)} + \dots + \widehat{\alpha\theta(\mathfrak{p}_l)} = \widehat{\alpha\theta(\mathfrak{p}'_1)} + \dots + \widehat{\alpha\theta(\mathfrak{p}'_l)}.$$

Proof: Note that (3.7) implies $t_{\mathfrak{p}_1} + \cdots + t_{\mathfrak{p}_l} = t_{\mathfrak{p}'_1} + \cdots + t_{\mathfrak{p}'_l}$ and $\Delta_{j\mathfrak{p}_1} + \cdots + \Delta_{j\mathfrak{p}_l} = \Delta_{j\mathfrak{p}'_1} + \cdots + \Delta_{j\mathfrak{p}'_l}$ for each j. Using (3.2) we conclude (3.9). As the bad 2l-tuple satisfies condition (3.8) we deduce that \mathfrak{p}_r , \mathfrak{p}'_r belong to the same P_{K_r} for all r.

According to the previous lemma we will write $E_{2l}(\alpha; K_1, \ldots, K_l)$ for the set of bad 2l-tuples $(\mathfrak{p}_1, \ldots, \mathfrak{p}'_l)$ with $\mathfrak{p}_r, \mathfrak{p}'_r \in P_{K_r}, 1 \leq r \leq l$ and

$$E_{2l}(\alpha;K) = \bigcup_{K_l \le \dots \le K_1 = K} E_{2l}(\alpha;K_1,\dots,K_l),$$

where $K = K_1$. Also we define the set

 $\operatorname{Bad}_{\alpha,K} = \{b_{\mathfrak{p}} \in \mathcal{B}_{\alpha,K} : b_{\mathfrak{p}} \text{ is the largest element}$ involved in some equation (3.7)}.

It is clear that $\sum_{l \leq h} |E_{2l}(\alpha, K)|$ is an upper bound for $|\text{Bad}_{\alpha, K}|$, the number of elements we need to remove from each $\mathcal{B}_{\alpha, K}$ to get a B_h sequence:

(3.10)
$$|\operatorname{Bad}_{\alpha,K}| \le \sum_{l \le h} |E_{2l}(\alpha,K)|.$$

We do not know how to obtain a good upper bound for $|E_{2l}(\alpha, K)|$ for a particular α , however we can do it for almost all α .

Lemma 3.3. For l = 2, 3, 4 and $c_h > h \ge l$ we have

$$\int_{1}^{2} |E_{2l}(\alpha, K)| \, \mathrm{d}\alpha \ll K^{m_l} 2^{\left(\frac{2(l-1)}{c_h-1}-1\right)(K-1)^2-2K},$$

for some m_l .

The proof of this lemma is involved and we postpone it to §4.

3.2. Last step in the proof of Theorem 1.1: For h = 2, 3, 4 we use (3.10) and (3.5) to get

$$\int_{1}^{2} \frac{|\operatorname{Bad}_{\alpha,K}|}{|\mathcal{B}_{\alpha,K}|} d\alpha \ll \frac{\sum_{l \leq h} \int_{1}^{2} |E_{2l}(\alpha,K)| d\alpha}{K^{-2} 2^{\frac{1}{c_{h}}(K-1)^{2}}}$$

$$\ll \frac{\sum_{l \leq h} K^{m_{l}} 2^{\left(\frac{2(l-1)}{c_{h}-1}-1\right)(K-1)^{2}-2K}}{K^{-2} 2^{\frac{1}{c_{h}}(K-1)^{2}}}$$

$$\ll K^{m_{l}+2} 2^{\left(\frac{2(h-1)}{c_{h}-1}-1-\frac{1}{c_{h}}\right)(K-1)^{2}-2K}$$

$$\ll K^{m_{l}+2} 2^{-2K}$$

for $c_h = \sqrt{(h-1)^2 + 1} + (h-1)$ which is the smallest number c satisfying the inequality $\frac{2(h-1)}{c-1} - 1 - \frac{1}{c} \leq 0$. So for this c_h the sum $\sum_K \int_1^2 \frac{|\mathrm{Bad}_{\alpha,K}|}{|\mathcal{B}_{\alpha,K}|} \, \mathrm{d}\alpha$ is convergent and then we have that $\int_1^2 \sum_K \frac{|\mathrm{Bad}_{\alpha,K}|}{|\mathcal{B}_{\alpha,K}|} \, \mathrm{d}\alpha$ is finite. So $\sum_K \frac{|\mathrm{Bad}_{\alpha,K}|}{|\mathcal{B}_{\alpha,K}|}$ is convergent for almost all $\alpha \in [1,2]$. We take one of these α , say α_0 , and consider the sequence

$$\mathcal{B} = \bigcup_{K} (\mathcal{B}_{\alpha_0,K} \setminus \operatorname{Bad}_{\alpha_0,K}).$$

We claim that this sequence satisfies the condition of the theorem. On one hand this sequence clearly is a B_h sequence because we have destroyed all the repeated sums of h elements of \mathcal{B}_{α_0} by removing one element from each bad 2l-tuple. On the other hand the convergence of $\sum_{K} \frac{|\operatorname{Bad}_{\alpha_0,K}|}{|\mathcal{B}_{\alpha_0,K}|}$ implies that $|\operatorname{Bad}_{\alpha_0,K}| = o(|\mathcal{B}_{\alpha_0,K}|)$. We proceed as in (3.6) to estimate the counting function of \mathcal{B} . For any x let K be the integer such that

$$2^{K^2 + (2d+1)K + (d+1) + 1} < x < 2^{(K+1)^2 + (2d+1)(K+1) + (d+1) + 1}.$$

We have

$$\mathcal{B}(x) \geq |\mathcal{B}_{\alpha_0,K}| - |\mathrm{Bad}_{\alpha_0,K}| = |\mathcal{B}_{\alpha_0,K}|(1+o(1)) \gg K^{-2} 2^{\frac{1}{c_h}K^2} = x^{\frac{1}{c_h}+o(1)}.$$

For the upper bound, we have

$$\mathcal{B}(x) \le \mathcal{B}_{\alpha_0}(x) = x^{\frac{1}{c_h} + o(1)}.$$

Note that $1/c_h = \sqrt{(h-1)^2 + 1} - (h-1)$. Hence

$$\mathcal{B}(x) = x^{\sqrt{(h-1)^2 + 1} - (h-1) + o(1)}.$$

4. Proof of Lemma 3.3

The proof of Lemma 3.3 will be a consequence of Propositions 4.5, 4.6, and 4.7. Before proving these propositions we need some properties of the bad 2*l*-tuples and an auxiliary lemma about visible lattice points.

4.1. Some properties of the 2*l***-tuples.** For any 2*l*-tuple $(\mathfrak{p}_1, \ldots, \mathfrak{p}_l, \mathfrak{p}'_1, \ldots, \mathfrak{p}'_l)$ we define the numbers $\omega_s = \omega_s(\mathfrak{p}_1, \ldots, \mathfrak{p}_l, \mathfrak{p}'_1, \ldots, \mathfrak{p}'_l)$ by

$$\omega_s = \sum_{r=1}^{s} (\theta(\mathfrak{p}_r) - \theta(\mathfrak{p}_r')) \quad (s \le l).$$

The next two lemmas show several properties of the bad 2*l*-tuples.

Lemma 4.1. Let $(\mathfrak{p}_1,\ldots,\mathfrak{p}_l,\mathfrak{p}'_1,\ldots,\mathfrak{p}'_l)\in E_{2l}(\alpha;K_1,\ldots,K_l)$ be a bad 2l-tuple. We have

i)
$$|\omega_l| \le l 2^{-K_l^2}$$
,

ii)
$$|\omega_{l-1}| \ge 2^{-\frac{1}{c_h}(K_l-1)^2-4}$$

iii)
$$(K_l - 1)^2 \le \frac{(K_1 - 1)^2 + \dots + (K_{l-1} - 1)^2}{c_h - 1}$$
.

Proof: i) This is a consequence of (3.9) and (3.3):

$$|\omega_l| = \frac{1}{\alpha} \left| \sum_{r=1}^l (\alpha \, \theta(\mathfrak{p}_r) - \alpha \, \theta(\mathfrak{p}'_r)) \right| \le \frac{1}{\alpha} \left(2^{-K_1^2} + \dots + 2^{-K_l^2} \right) \le l 2^{-K_l^2}.$$

ii) Lemma 2.1 implies

$$(4.1) |\theta(\mathfrak{p}_l) - \theta(\mathfrak{p}'_l)| \ge \frac{1}{7|\mathfrak{p}_l\mathfrak{p}'_l|} \ge 2^{-3 - \frac{1}{c_h}(K_l - 1)^2},$$

and so

$$|\omega_{l-1}| = |\omega_l + \theta(\mathfrak{p}'_l) - \theta(\mathfrak{p}_l)| \ge |\theta(\mathfrak{p}'_l) - \theta(\mathfrak{p}_l)| - |\omega_l|$$

$$\ge 2^{-\frac{1}{c_h}(K_l - 1)^2 - 3} - l2^{-K_l^2} \ge 2^{-\frac{1}{c_h}(K_l - 1)^2 - 4},$$

since $K_l \ge h + 1 \ge l + 1$.

iii) Lemma 2.1 also implies that

$$|\omega_l| = \left| \sum_{r=1}^l (\theta(\mathfrak{p}_r) - \theta(\mathfrak{p}_r')) \right| > \frac{1}{7|\mathfrak{p}_1 \cdots \mathfrak{p}_l'|} > 2^{-3 - \frac{1}{c_h} \sum_{r=1}^l (K_r - 1)^2}.$$

Combining this with i) we obtain

$$(K_l-1)^2 \le \frac{1}{c_h-1} \left((K_1-1)^2 + \dots + (K_{l-1}-1)^2 \right) + \frac{\log_2 l - 2K_l + 4}{1 - 1/c_h}.$$

The last term is negative because $K_l \ge h+1 \ge l+1$ and $l \ge 2$.

Lemma 4.2. Let $(\mathfrak{p}_1,\ldots,\mathfrak{p}_l,\mathfrak{p}'_1,\ldots,\mathfrak{p}'_l)\in E_{2l}(\alpha;K_1,\ldots,K_l)$ be a bad 2*l*-tuple. Then for any $\omega_s=\sum_{r=1}^s(\theta(\mathfrak{p}_r)-\theta(\mathfrak{p}'_r))$ with $1\leq s\leq l-1$ we have

where $\|\cdot\|$ means the distance to the nearest integer.

Proof: Since $0 \le \alpha \theta(\mathfrak{p}) - \widehat{\alpha \theta(\mathfrak{p})} \le 2^{-K^2}$ when $\mathfrak{p} \in P_K$, then

$$\left| \left(\theta(\mathfrak{p}_r) - \theta(\mathfrak{p}_r') \right) - \left(\widehat{\alpha \, \theta(\mathfrak{p}_r)} - \widehat{\alpha \, \theta(\mathfrak{p}_r')} \right) \right| \leq 2^{-K_s^2}$$

for any $\mathfrak{p}_r, \mathfrak{p}'_r \in K_r$ with $r \leq s$ and we can write

$$2^{K_{s+1}^2} \alpha \sum_{r=1}^s (\theta(\mathfrak{p}_r) - \theta(\mathfrak{p}_r')) = 2^{K_{s+1}^2} \sum_{r=1}^s \left(\widehat{\alpha \theta(\mathfrak{p}_r)} - \widehat{\alpha \theta(\mathfrak{p}_r')} \right) + \epsilon_s,$$

with $|\epsilon_s| \leq s2^{K_{s+1}^2 - K_s^2}$. By the definition (3.1) of $\widehat{\alpha \theta(\mathfrak{p})}$ we have

$$2^{K_{s+1}^2} \sum_{r=s+1}^l \left(\widehat{\alpha \theta(\mathfrak{p}_r')} - \widehat{\alpha \theta(\mathfrak{p}_r)} \right) = \sum_{r=s+1}^l \sum_{i=1}^{K_r^2} 2^{K_{s+1}^2 - i} (\delta_{i\mathfrak{p}_r'} - \delta_{i\mathfrak{p}_r})$$

which is an integer. By Lemma 3.2 we know that

$$\sum_{r=1}^{l} \left(\widehat{\alpha \theta(\mathfrak{p}_r)} - \widehat{\alpha \theta(\mathfrak{p}'_r)} \right) = 0.$$

It follows that

$$||2^{K_{s+1}^2}\omega_s|| = |\epsilon_s| < s2^{K_{s+1}^2 - K_s^2},$$

as claimed.

Lemma 4.3.

$$\int_{1}^{2} |E_{2l}(\alpha; K_{1}, \dots, K_{l})| \, d\alpha \ll 2^{K_{l}^{2} - K_{1}^{2}} \sum_{\substack{(\mathfrak{p}_{1}, \dots, \mathfrak{p}'_{l}) \\ |\omega_{l}| < l \cdot 2^{-K_{l}^{2}}}} \frac{|\omega_{l-1}|}{|\omega_{1}|} \prod_{j=1}^{l-2} \left(\frac{|\omega_{j}|}{|\omega_{j+1}|} + 1\right).$$

Proof: We know by Lemma 4.1 i) that if $(\mathfrak{p}_1, \ldots, \mathfrak{p}'_l) \in E_{2l}(\alpha; K_1, \ldots, K_l)$, then $|\omega_l| < l2^{-K_l^2}$. Thus

$$(4.3) \int_{1}^{2} |E_{2l}(\alpha; K_{1}, \dots, K_{l})| d\alpha$$

$$\leq \sum_{\substack{(\mathfrak{p}_{1}, \dots, \mathfrak{p}'_{l}) \\ |\omega_{l}| < l \cdot 2^{-K_{l}^{2}}}} \mu\{\alpha : (\mathfrak{p}_{1}, \dots, \mathfrak{p}'_{l}) \in E_{2l}(\alpha; K_{1}, \dots, K_{l})\}.$$

We have seen that if $(\mathfrak{p}_1,\ldots,\mathfrak{p}'_l)\in E_{2l}(\alpha;K_1,\ldots,K_l)$, then

(4.4)
$$\|\alpha 2^{K_{s+1}^2} \omega_s\| \le s 2^{K_{s+1}^2 - K_s^2}, \quad s = 1, \dots, l-1.$$

Then there exist integers j_s , s = 1, ..., l-1 such that

$$(4.5) |\alpha 2^{K_{s+1}^2} \omega_s - j_s| \le s 2^{K_{s+1}^2 - K_s^2},$$

so

$$\left|\alpha - \frac{j_s}{2^{K_{s+1}^2}\omega_s}\right| \le \frac{s2^{-K_s^2}}{|\omega_s|}.$$

Writing I_{j_1}, \ldots, I_{j_s} for the intervals defined by the inequalities (4.6), we have

$$\mu\{\alpha: (\mathfrak{p}_{1}, \dots, \mathfrak{p}'_{l}) \in E_{2l}(\alpha; K_{1}, \dots, K_{l})\} \\
\leq \sum_{j_{1}, \dots, j_{l-1}} |I_{j_{1}} \cap \dots \cap I_{j_{l-1}}| \\
\leq \frac{2^{-K_{1}^{2}+1}}{|\omega_{1}|} \# \left\{ (j_{1}, \dots, j_{l-1}) : \bigcap_{i=1}^{l-1} I_{j_{i}} \neq \emptyset \right\}.$$

To estimate this last cardinal note that for all $s = 1, \ldots, l-2$ we have

$$\left| \frac{j_s}{2^{K_{s+1}^2} \omega_s} - \frac{j_{s+1}}{2^{K_{s+2}^2} \omega_{s+1}} \right| < \left| \alpha - \frac{j_s}{2^{K_{s+1}^2} \omega_s} \right| + \left| \alpha - \frac{j_{s+1}}{2^{K_{s+2}^2} \omega_{s+1}} \right| < \frac{s2^{-K_s^2}}{|\omega_s|} + \frac{(s+1)2^{-K_{s+1}^2}}{|\omega_{s+1}|}.$$

Thus

$$(4.8) \left| j_s - j_{s+1} \frac{2^{K_{s+1}^2 \omega_s}}{2^{K_{s+2}^2 \omega_{s+1}}} \right| < s2^{-K_s^2 + K_{s+1}^2} + \frac{(s+1)|\omega_s|}{|\omega_{s+1}|}.$$

We observe that for each $s=1,\ldots,l-2$ and for each j_{s+1} , the number of j_s satisfying (4.8) is bounded by $2\left(s2^{-K_s^2+K_{s+1}^2}+\frac{(s+1)|\omega_s|}{|\omega_{s+1}|}\right)+1 \ll \frac{|\omega_s|}{|\omega_{s+1}|}+1$.

Note also that (4.5) for s = l - 1 implies

$$|j_{l-1}| \le \alpha 2^{K_l^2} \omega_{l-1} + (l-1) 2^{K_l^2 - K_{l-1}^2}$$
$$\le 2^{K_l^2 + 1} \omega_{l-1} + (l-1)$$
$$\ll 2^{K_l^2} \omega_{l-1}.$$

Thus,

$$(4.9) \quad \#\left\{ (j_1, \dots, j_{l-1}) : \bigcap_{i=1}^{l-1} I_{j_i} \neq \emptyset \right\} \ll 2^{K_l^2} \omega_{l-1} \prod_{s=1}^{l-2} \left(\frac{|\omega_s|}{|\omega_{s+1}|} + 1 \right).$$

The proof can be completed putting (4.9) in (4.7) and then in (4.3). \square

4.2. Visible points. We will denote by \mathcal{V} the set of points in the integer two dimensional lattice \mathbb{Z}^2 visible from the origin except (1,0). In the next subsection we will use several times the following lemma.

Lemma 4.4. The number of points in V that are contained in a circular sector centred at the origin of radius R and angle ϵ is at most $\epsilon R^2 + 1$. In other words, for any real number t

$$\#\{\nu \in \mathcal{V}, |\nu| < R, \|\theta(\nu) + t\| < \epsilon\} \le \epsilon R^2 + 1.$$

Furthermore.

$$\#\{\nu \in \mathcal{V}, |\nu| < R, \|\theta(\nu)\| < \epsilon\} \le \epsilon R^2.$$

Proof: We order the N points inside de sector $\nu_1, \nu_2, \ldots, \nu_N \in \mathcal{V}$ by the value of their argument so that $\theta(\nu_i) < \theta(\nu_j)$ for $1 \le i < j \le N$. For each $i = 1, \ldots, N-1$ the three lattice points O, ν_i, ν_{i+1} define a triangle T_i with Area $(T_i) \ge 1/2$, that does not contain any other lattice point.

Since all T_i are inside the circular sector their union covers at most the area of the sector. Their interiors are pairwise disjoint, thus

$$N-1 \le \sum_{i=1}^{N} 2 \cdot \operatorname{Area}(T_i) = 2 \cdot \operatorname{Area}\left(\bigcup_{i=1}^{N} T_i\right) \le R^2 \epsilon.$$

For the last statement we add $\nu_0 = (1,0)$ to the points ν_1, \dots, ν_N and we repeat the argument.

4.3. Estimates for the number of bad 2*l*-tuples (l = 2, 3, 4). We start with the case l = 2 which was considered by Ruzsa for B_2 sequences. In the sequel all lattice points ν appearing in the proofs belong to \mathcal{V} and Lemma 4.4 applies.

Proposition 4.5. For any $c_h > 2$ we have

$$\int_{1}^{2} |E_{4}(\alpha; K)| \, \mathrm{d}\alpha \ll K \cdot 2^{\left(\frac{2}{c_{h}-1}-1\right)(K-1)^{2}-2K}.$$

Proof: Lemma 4.3 implies that

$$\int_{1}^{2} |E_{4}(\alpha; K_{1}, K_{2})| \, \mathrm{d}\alpha \ll 2^{K_{2}^{2} - K_{1}^{2}} \# \left\{ (\mathfrak{p}_{1}, \mathfrak{p}'_{1}, \mathfrak{p}_{2}, \mathfrak{p}'_{2}) : |\omega_{2}| \leq 2 \cdot 2^{-K_{2}^{2}} \right\}.$$

We get an upper bound for the second factor here by using Lemma 4.4 to estimate the number of lattice points of the form $\nu_2 = \mathfrak{p}_1 \mathfrak{p}_1' \overline{\mathfrak{p}_2 \mathfrak{p}_2'}$ such that

$$|\omega_2| = \|\theta(\nu_2)\| < \epsilon, \ |\nu_2| < R \quad \text{with} \quad \epsilon = 2 \cdot 2^{-K_2^2}$$

and $R = 2^{\frac{1}{c_h}((K_1 - 1)^2 + (K_2 - 1)^2)}$.

We have

$$\int_{1}^{2} |E_{4}(\alpha; K_{1}, K_{2})| d\alpha \ll 2^{K_{2}^{2} - K_{1}^{2}} \cdot 2^{\frac{2}{c_{h}}((K_{1} - 1)^{2} + (K_{2} - 1)^{2}) - K_{2}^{2}}$$

$$\ll 2^{\frac{2}{c_{h}}((K_{1} - 1)^{2} + (K_{2} - 1)^{2}) - K_{1}^{2}}.$$

By Lemma 4.1 iii) we also have $(K_2 - 1)^2 \le \frac{(K_1 - 1)^2}{c_h - 1}$, thus

$$\int_{1}^{2} |E_{4}(\alpha; K_{1}, K_{2})| \, \mathrm{d}\alpha \ll 2^{\left(\frac{2}{c_{h}-1}-1\right)K_{1}^{2}-2K_{1}}$$

and

$$\int_{1}^{2} |E_{4}(\alpha; K)| \, d\alpha = \sum_{K_{2} \le K} \int_{1}^{2} |E_{4}(\alpha; K, K_{2})| \, d\alpha$$

$$\ll K \cdot 2^{\left(\frac{2}{c_{h} - 1} - 1\right)(K - 1)^{2} - 2K}.$$

Proposition 4.6. For any $c_h > 3$ we have

$$\int_{1}^{2} |E_{6}(\alpha; K)| \, \mathrm{d}\alpha \ll K^{4} 2^{\left(\frac{4}{c_{h}-1}-1\right)(K-1)^{2}-2K}.$$

Proof: Lemma 4.3 says that

$$\int_{1}^{2} |E_{6}(\alpha; K_{1}, K_{2}, K_{3})| \, \mathrm{d}\alpha \ll 2^{K_{3}^{2} - K_{1}^{2}} \sum_{\substack{(\mathfrak{p}_{1}, \dots, \mathfrak{p}_{3}') \\ |\omega_{3}| \leq 3 \cdot 2^{-K_{3}^{2}}}} \frac{1}{|\omega_{1}|}.$$

Since $|\omega_1| = \|\theta(\mathfrak{p}_1\overline{\mathfrak{p}_1'})\| \ge 2^{-3-\frac{(K_1-1)^2}{c_h}}$ we split the sum above according $|\omega_1| \le 2^{-m}$ for $m \le M = 3 + (K_1-1)^2/c_h$. Summing for all m in this range and applying Lemma 4.4 with $\nu_1 = \mathfrak{p}_1\overline{\mathfrak{p}_1'}$ and $\nu_2 = \mathfrak{p}_2\mathfrak{p}_3\overline{\mathfrak{p}_2'\mathfrak{p}_3'}$, we have that

have that
$$\sum_{\substack{(\mathfrak{p}_1, \dots, \mathfrak{p}_3') \\ |\omega_3| \leq 3 \cdot 2^{-K_3^2}}} \frac{1}{|\omega_1|} \ll \sum_{m \leq M} 2^m \# \left\{ (\mathfrak{p}_1, \dots, \mathfrak{p}_3') : |\omega_1| \leq 2^{-m}, |\omega_3| \leq 3 \cdot 2^{-K_3^2} \right\}$$

$$\ll \sum_{m \leq M} 2^m \# \left\{ (\nu_1, \nu_2) : \|\theta(\nu_1)\| \leq 2^{-m}, \right.$$

$$\|\theta(\nu_1) + \theta(\nu_2)\| \leq 3 \cdot 2^{-K_3^2} \right\}$$

$$\ll \sum_{m \leq M} 2^m \sum_{|\theta(\nu_1)| \leq 2^{-m}} \# \left\{ \nu_2 : \|\theta(\nu_1) + \theta(\nu_2)\| \leq 3 \cdot 2^{-K_3^2} \right\}$$

$$\ll \sum_{m \leq M} 2^m \cdot 2^{\frac{2}{c_h}(K_1 - 1)^2 - m} \left(2^{\frac{2}{c_h}\left((K_2 - 1)^2 + (K_3 - 1)^2\right) - K_3^2} + 1 \right).$$

Hence using the inequalities $K_3 \le K_2 \le K_1$ and $(K_3-1)^2 \le \frac{(K_2-1)^2+(K_1-1)^2}{c_h-1}$ (property iii) in Lemma 4.1) we have

$$\begin{split} &\int_{1}^{2} |E_{6}(\alpha;K_{1},K_{2},K_{3})| \, \mathrm{d}\alpha \\ &\ll K_{1}^{2} 2^{K_{3}^{2}-K_{1}^{2}+\frac{2}{c_{h}}(K_{1}-1)^{2}} \left(2^{\frac{2}{c_{h}}\left((K_{2}-1)^{2}+(K_{3}-1)^{2}\right)-K_{3}^{2}}+1\right) \\ &\ll K_{1}^{2} 2^{-K_{1}^{2}+\frac{2}{c_{h}}\left((K_{1}-1)^{2}+(K_{2}-1)^{2}+(K_{3}-1)^{2}\right)}+K_{1}^{2} 2^{K_{3}^{2}-K_{1}^{2}+\frac{2}{c_{h}}(K_{1}-1)^{2}} \\ &\ll K_{1}^{2} 2^{-(K_{1}-1)^{2}+\frac{2}{c_{h}}\left((K_{1}-1)^{2}+(K_{2}-1)^{2}+(K_{3}-1)^{2}\right)-2K_{1}} \\ &+K_{1}^{2} 2^{(K_{3}-1)^{2}-(K_{1}-1)^{2}+\frac{2}{c_{h}}(K_{1}-1)^{2}} \\ &\ll K_{1}^{2} 2^{\left(\frac{4}{c_{h}-1}-1\right)(K_{1}-1)^{2}-2K_{1}}+K_{1}^{2} 2^{\left(\frac{4}{c_{h}-1}-1\right)(K_{1}-1)^{2}-\frac{2}{c_{h}(c_{h}-1)}(K_{1}-1)^{2}} \\ &\ll K_{1}^{2} 2^{\left(\frac{4}{c_{h}-1}-1\right)(K_{1}-1)^{2}-2K_{1}}. \end{split}$$

Then we can write

$$\begin{split} &\int_{1}^{2} |E_{6}(\alpha;K)| \, \mathrm{d}\alpha \\ &= \sum_{K_{3} \leq K_{2} \leq K} \int_{1}^{2} |E_{6}(\alpha;K,K_{2},K_{3})| \, \mathrm{d}\alpha \ll K^{4} 2^{\left(\frac{4}{c-1}-1\right)(K-1)^{2}-2K}, \\ \text{as claimed.} \end{split}$$

Proposition 4.7. For any $c_h > 4$ we have

$$\int_{1}^{2} |E_{8}(\alpha; K)| \, \mathrm{d}\alpha \ll K^{5} 2^{\left(\frac{6}{c_{h}-1}-1\right)(K-1)^{2}-2K}.$$

Proof: Considering the two possibilities $|\omega_1| < |\omega_2|$ and $|\omega_1| \ge |\omega_2|$ we get the inequality

$$\frac{|\omega_3|}{|\omega_1|} \bigg(\frac{|\omega_1|}{|\omega_2|} + 1\bigg) \bigg(\frac{|\omega_2|}{|\omega_3|} + 1\bigg) \ll \frac{|\omega_3|}{|\omega_1|} \left(\frac{|\omega_1|}{|\omega_2|} + 1\right) \frac{1}{|\omega_3|} \ll \max\bigg(\frac{1}{|\omega_1|}, \frac{1}{|\omega_2|}\bigg).$$

This combined with Lemma 4.3 implies that

$$\int_{1}^{2} |E_{8}(\alpha, K_{1}, K_{2}, K_{3}, K_{4})| d\alpha$$

$$\ll 2^{-K_{1}^{2} + K_{4}^{2}} \left(\sum_{\substack{(\mathfrak{p}_{1}, \dots, \mathfrak{p}'_{4}) \\ |\omega_{4}| \leq 4 \cdot 2^{-K_{4}^{2}}}} \frac{1}{|\omega_{1}|} + \sum_{\substack{(\mathfrak{p}_{1}, \dots, \mathfrak{p}'_{4}) \\ |\omega_{4}| \leq 4 \cdot 2^{-K_{4}^{2}}}} \frac{1}{|\omega_{2}|} \right).$$

Applying Lemma 4.4 with the notation $\nu_1 = \mathfrak{p}_1 \overline{\mathfrak{p}_1'}$ and $\nu_2 = \mathfrak{p}_2 \mathfrak{p}_3 \mathfrak{p}_4 \overline{\mathfrak{p}_2' \mathfrak{p}_3' \mathfrak{p}_4'}$ and taking again $M = 3 + (K_1 - 1)^2 / c_h$, we have that

$$\sum_{\substack{(\mathfrak{p}_1,\ldots,\mathfrak{p}_4')\\ |\omega_4|\leq 4\cdot 2^{-K_4^2}}} \frac{1}{|\omega_1|} \ll \sum_{m\leq M} 2^m \# \left\{ (\mathfrak{p}_1,\ldots,\overline{\mathfrak{p}_4}) : |\omega_1| < 2^{-m}, \ |\omega_4| \leq 4\cdot 2^{-K_4^2} \right\}$$

$$\ll \sum_{m\leq M} 2^m \# \left\{ (\nu_1,\nu_2) : \|\theta(\nu_1)\| \leq 2^{-m}, \\ \|\theta(\nu_1) + \theta(\nu_2)\| \leq 4\cdot 2^{-K_4^2} \right\}$$

$$\ll \sum_{m\leq M} \sum_{\|\theta(\nu_1)\| < 2^{-m}} \# \left\{ \nu_2 : \|\theta(\nu_1) + \theta(\nu_2)\| \leq 4\cdot 2^{-K_4^2} \right\}$$

$$\ll \sum_{m\leq M} 2^{\frac{2}{c_h}(K_1-1)^2} \left(2^{\frac{2}{c_h}((K_2-1)^2 + (K_3-1)^2 + (K_4-1)^2) - K_4^2} + 1 \right)$$

$$\ll K_1^2 2^{\frac{2}{c_h}((K_1-1)^2 + (K_2-1)^2 + (K_3-1)^2 + (K_4-1)^2) - K_4^2}$$

$$+ K_1^2 2^{\frac{2}{c_h}(K_1-1)^2}.$$

Similarly, but writing now $\nu_1 = \mathfrak{p}_1 \mathfrak{p}_2 \overline{\mathfrak{p}_1' \mathfrak{p}_2'}$ and $\nu_2 = \mathfrak{p}_3 \mathfrak{p}_4 \overline{\mathfrak{p}_3' \mathfrak{p}_4'}$ we have

$$\sum_{\substack{(\mathfrak{p}_1, \dots, \mathfrak{p}_4') \\ |\omega_4| \le 4 \cdot 2^{-K_4^2}}} \frac{1}{|\omega_2|} \ll \sum_{m \le M} 2^m \# \left\{ (\mathfrak{p}_1, \dots, \overline{\mathfrak{p}_4}) : |\omega_2| \le 2^{-m}, |\omega_4| \le 4 \cdot 2^{-K_4^2} \right\}$$

$$\ll \sum_{m \le K_4^2} 2^m \# \left\{ (\nu_1, \nu_2) : \|\theta(\nu_1)\| \le 2^{-m}, \|\theta(\nu_1) + \theta(\nu_2)\| \le 4 \cdot 2^{-K_4^2} \right\}$$

$$+ \sum_{m > K_4^2} 2^m \# \left\{ (\nu_1, \nu_2) : \|\theta(\nu_1)\| \le 2^{-m}, \|\theta(\nu_1) + \theta(\nu_2)\| \le 4 \cdot 2^{-K_4^2} \right\}$$

$$= S_1 + S_2.$$

We observe that if $m \le K_4^2$ then $\|\theta(\nu_2)\| \le \|\theta(\nu_1) + \theta(\nu_2)\| + \|\theta(\nu_1)\| \le 5 \cdot 2^{-m}$. Thus

$$\begin{split} S_1 \ll & \sum_{m \leq K_4^2} 2^m \# \left\{ (\nu_1, \nu_2) : \|\theta(\nu_2)\| \leq 5 \cdot 2^{-m}, \|\theta(\nu_1) + \theta(\nu_2)\| \leq 4 \cdot 2^{-K_4^2} \right\} \\ \ll & \sum_{m \leq K_4^2} 2^m \sum_{\|\theta(\nu_2)\| \leq 5 \cdot 2^{-m}} \# \left\{ \nu_1 : \|\theta(\nu_1) + \theta(\nu_2)\| \leq 4 \cdot 2^{-K_4^2} \right\} \\ \ll & \sum_{m \leq K_4^2} 2^m \cdot 2^{\frac{2}{c_h} \left((K_3 - 1)^2 + (K_4 - 1)^2 \right) - m} \left(2^{\frac{2}{c_h} \left((K_1 - 1)^2 + (K_2 - 1)^2 \right) - K_4^2} + 1 \right) \\ \ll & K_4^2 2^{\frac{2}{c_h} \left((K_1 - 1)^2 + (K_2 - 1)^2 + (K_3 - 1)^2 + (K_4 - 1)^2 \right) - K_4^2} \\ & + K_4^2 2^{\frac{2}{c_h} \left((K_3 - 1)^2 + (K_4 - 1)^2 \right)}. \end{split}$$

To estimate S_2 , we observe that if $m > K_4^2$ then $\|\theta(\nu_2)\| \le \|\theta(\nu_1) + \theta(\nu_2)\| + \|\theta(\nu_1)\| \le 5 \cdot 2^{-K_4^2}$. Thus

$$S_{2} \ll \sum_{K_{4}^{2} < m \leq M} 2^{m} \# \left\{ (\nu_{1}, \nu_{2}) : \|\theta(\nu_{1})\| \leq 2^{-m}, \|\theta(\nu_{2})\| \leq 5 \cdot 2^{-K_{4}^{2}} \right\}$$

$$\ll \sum_{K_{4}^{2} < m \leq M} 2^{m} \cdot 2^{\frac{2}{c_{h}} \left((K_{1} - 1)^{2} + (K_{2} - 1)^{2} \right) - m} \cdot 2^{\frac{2}{c_{h}} \left((K_{3} - 1)^{2} + (K_{4} - 1)^{2} \right) - K_{4}^{2}}$$

$$\ll K_{1}^{2} 2^{\frac{2}{c_{h}} \left((K_{1} - 1)^{2} + (K_{2} - 1)^{2} + (K_{3} - 1)^{2} + (K_{4} - 1)^{2} \right) - K_{4}^{2}}.$$

Putting together the estimates we have obtained for $\sum \frac{1}{|\omega_1|}$ and $\sum \frac{1}{|\omega_2|}$ we get

$$\begin{split} & \int_{1}^{2} |E_{8}(\alpha, K_{1}, K_{2}, K_{3}, K_{4})| \, \mathrm{d}\alpha \\ & \ll K_{1}^{2} 2^{\frac{2}{c_{h}} ((K_{1}-1)^{2} + (K_{2}-1)^{2} + (K_{3}-1)^{2} + (K_{4}-1)^{2}) - K_{1}^{2}} \\ & \quad + K_{1}^{2} 2^{-K_{1}^{2} + K_{4}^{2} + \frac{2}{c_{h}} (K_{1}-1)^{2}} + K_{1}^{2} 2^{K_{4}^{2} - K_{1}^{2} + \frac{2}{c_{h}} \left((K_{3}-1)^{2} + (K_{4}-1)^{2} \right)} \\ & = T_{1} + T_{2} + T_{3}. \end{split}$$

Using the inequalities $(K_4-1)^2 \le \frac{1}{c_h-1} \left((K_1-1)^2 + (K_2-1)^2 + (K_3-1)^2 \right)$ and $K_4 \le K_3 \le K_2 \le K_1$ we have

$$T_1 \ll K_1^2 2^{\left(-1 + \frac{6}{c_h - 1}\right)(K_1 - 1)^2 - 2K_1},$$

$$T_2 \ll K_1^2 2^{-(K_1 - 1)^2 + (K_4 - 1)^2 + \frac{2}{c_h}(K_1 - 1)^2}$$

$$\ll K_1^2 2^{\left(-1 + \frac{3}{c_h - 1} + \frac{2}{c_h}\right)(K_1 - 1)^2}$$

$$\ll K_1^2 2^{\left(-1 + \frac{6}{c_h - 1}\right)(K_1 - 1)^2 - 2K_1},$$

and

$$\begin{split} T_3 &\ll K_1^2 2^{(K_4-1)^2 - (K_1-1)^2 + \frac{2}{c_h} \left((K_3-1)^2 + (K_4-1)^2 \right)} \\ &\ll K_1^2 2^{\left(1 + \frac{2}{c_h}\right) \frac{1}{c_h - 1} \left((K_1-1)^2 + (K_2-1)^2 + (K_3-1)^2 \right) - (K_1-1)^2 + \frac{2}{c_h} (K_3-1)^2} \\ &\ll K_1^2 2^{\left(\left(1 + \frac{2}{c_h}\right) \frac{3}{c_h - 1} - 1 + \frac{2}{c_h}\right) (K_1-1)^2} \\ &\ll K_1^2 2^{\left(-1 + \frac{6}{c_h - 1}\right) (K_1-1)^2 - 2K_1}, \end{split}$$

since $c_h > 4$. Finally

$$\int_{1}^{2} |E_{8}(\alpha, K)| \, d\alpha \ll \sum_{K_{4} \le K_{3} \le K_{2} \le K} K^{2} 2^{\left(-1 + \frac{6}{c_{h} - 1}\right)(K - 1)^{2} - 2K}$$

$$\ll K^{5} 2^{\left(\frac{6}{c_{h} - 1} - 1\right)(K - 1)^{2} - 2K},$$

as claimed.

Acknowledgements

We thank the reviewer for the careful reading of our manuscript and the valuable comments. During the preparation of this paper J. Cilleruelo was supported by grant MTM 2011-22851 of MICINN (Spain) and ICMAT Severo Ochoa project SEV-2011-0087.

References

- M. AJTAI, J. KOMLÓS, AND E. SZEMERÉDI, A dense infinite Sidon sequence, European J. Combin. 2(1) (1981), 1–11. DOI: 10.1016/ S0195-6698(81)80014-5.
- [2] J. CILLERUELO, New upper bounds for finite B_h sequences, Adv. Math. 159(1) (2001), 1-17. DOI: 10.1006/aima.2000.1961.

- [3] J. CILLERUELO AND I. Z. RUZSA, Real and p-adic Sidon sequences, Acta Sci. Math. (Szeged) 70(3–4) (2004), 505–510.
- [4] B. GREEN, The number of squares and $B_h[g]$ sets, Acta Arith. **100(4)** (2001), 365–390. DOI: 10.4064/aa100-4-6.
- [5] H. HALBERSTAM AND K. F. ROTH, "Sequences", Second edition, Springer-Verlag, New York-Berlin, 1983.
- [6] J. P. MALDONADO, A remark of Ruzsa's construction of an infinite Sidon set (2011), arXiv:1103.5732.
- [7] K. O'BRYANT, A complete annotated bibliography of work related to Sidon sequences, *Electron. J. Combin.* DS11 (2004), 1–39.
- [8] I. Z. Ruzsa, An infinite Sidon sequence, J. Number Theory 68(1) (1998), 63-71. DOI: 10.1006/jnth.1997.2192.

Javier Cilleruelo:

Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) and Departamento de Matemáticas Universidad Autónoma de Madrid 28049 Madrid Spain

Spain

 $E ext{-}mail\ address: franciscojavier.cilleruelo@uam.es}$

Rafael Tesoro:

Departamento de Matemáticas Universidad Autónoma de Madrid 28049 Madrid

Spain

E-mail address: rafael.tesoro@estudiante.uam.es

Primera versió rebuda el 18 de setembre de 2013, darrera versió rebuda el 14 de gener de 2014.