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Abstract: It is shown how the graph category of Borisov and Manin can be con-
structed from (a variant of) the graph category of Joyal and Kock, essentially by re-
versing the generic morphisms. More precisely, the morphisms in the Borisov—Manin
category are exhibited as cospans of reduced covers and refinement morphisms.
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1. Introduction

The following definition of graph with open-ended edges is quite stan-
dard in the literature, and is usually attributed to Kontsevich and Ma-
nin [13]: a graph is a quadruple (V, F, 9, j) where V is a set of vertices, F'
is a set of flags (also called half-edges), 9: F — V is a map (assigning to
a flag the vertex it originates from), and j: F' — F' is an involution. The
idea is that the involution interchanges two flags if they are attached
to each other to form an edge. The fixpoints for j are interpreted as
open-ended edges, called tails (this set is denoted T').

The ‘problem’ with this definition (due to the fact that tails are en-
coded as fixpoints, although a tail is not a flag glued to itself) is that it
does not naturally lead to good notions of morphisms, beyond isomor-
phisms: naive attempts in terms of structure-preserving maps tend to
preserve too much structure.

Borisov and Manin [4] overcame this problem with a rather intri-
cate definition of morphism, reproduced below. Their category is rich
enough to capture the combinatorics of both operad-like and prop-like
structures.

A main point to make to explain the significance of the notion and
the intuition behind it is that there are two main classes of morphisms,
called graftings and compressions (the compressions are spanned by the
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contractions and mergers of Borisov—Manin), both expressing operations
that are fundamental to graph theory: a grafting is a morphism that
takes a graph (connected or not) and constructs a new graph by clutching
together some of its tails to form edges. A compression is a morphism
that takes a graph, chooses a collection of nonempty (but not necessarily
connected) subgraphs, and contracts each of them to a vertex. The
point of the Borisov—Manin category is that every morphism factors
as a grafting followed by a compression, and that this factorisation is
essentially unique (cf. Proposition 2.6 below). In this way their category
can be seen to be the smallest category containing these two classes of
morphisms and a sensible notion of composition of such morphisms. It
is remarkable that an elementary description could be found to achieve
this.

The present contribution takes the factorisation property as the start-
ing point for a description of the category, instead of the intricate elemen-
tary description. This can be formalised through a general procedure for
constructing a category from two given classes of morphisms, G and C,
with a common object set. The new morphisms are declared to be for-
mal pairs consisting of a morphism in G followed by a morphism in C'.
To define the composition law for such pairs, one needs a rule for trans-
forming a pair in the wrong order into a pair in the right order, subject
to some axioms reminiscent of the axioms for bimodules or braids. This
is called a commutation law, or sometimes a distributive law [16].

In this strategy, the question then becomes first to describe the two
classes of morphisms individually, hopefully in a more conceptual way,
and then to specify the commutation law. Most of this has already
been accomplished, namely in the Joyal-Kock formalism of graphs [9],
recalled below. This formalism starts with a definition of graph featuring
a canonical notion of etale morphism (such as open inclusions). This
defines the etale topology and a notion of etale cover; a cover is reduced
when it is bijective on vertices. A reduced cover is essentially the same
thing as a grafting in the sense of Borisov—Manin (cf. Proposition 3.6).

The second class of morphisms is generated from the first by a monad,
a version of the free-compact-symmetric-multicategory monad [9], which
could be called the free-compact-coloured-prop monad: this is the class
of generic morphisms, a general categorical notion [17], which in this
case can be described in elementary terms as refinements. A refinement
is the opposite of a compression (Proposition 5.4). Note here that since a
compression is allowed to contract a non-connected graph, an important
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minor adjustment is required in the description of the monad compared
to [9] (essentially passing from connected to non-connected).

These two classes of morphisms already live in a single bigger cate-
gory, namely the Kleisli category for the monad [9], but in here they
interact differently since a refinement morphism between two graphs in
the Kleisli category goes in the opposite direction of the corresponding
compression morphism in the BM category. However, the key observa-
tion at this point is that reduced covers and refinement morphisms admit
pushouts along each other, yielding new morphisms in the same classes
(Proposition 6.1). The pushout construction is precisely the required
commutation law — in this case a prescription for formally reversing one
of the two classes: the new morphisms from graph T to graph R are the
cospans in which the first leg is a reduced cover and the second leg a
refinement morphism:

red.cover refinement
T S R.

The composition of cospans is given by pushout. Now the main result is
this:

Theorem 6.6. The Borisov-Manin category of graphs is equivalent to
the category whose morphisms are cospans of reduced covers and refine-
ment morphisms in the Kleisli category.

The result shows that the Borisov-Manin category of graphs can be
derived from general principles and standard constructions: indeed the
notions of etale morphism and reduced cover are completely canonical,
and the notion of generic morphism is characterised by a universal prop-
erty, relative to the monad, in turn defined in terms of colimits and
presheaves. This gives some theoretical justification for the BM defini-
tion, complementing the significant empirical fact that it just works, and
complementing its pleasing elementary character.

Although the main arguments in the proof are conceptual, some de-
tails of the comparison must be done by hand. These calculations are
illustrative for both formalisms, and it is hoped that they too can be of
some interest also beyond the theorem established.

2. Borisov—Manin category of graphs

With graphs defined as in the first paragraph of the introduction,
the graph category BM of Borisov and Manin [4] has the following
morphisms.
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Definition ([4, 1.2.1]). Let 7, o be two graphs. A morphism h: 7 — o
is a triple (hf',hy,jn), where h'': F, — F, is a contravariant map,
hy: V. — V, is a covariant map, and j; is an involution on the set
F, \ hf'(F,). This data must satisfy the following conditions.

(i) k¥ is injective, hy is surjective.

(ii) The image h%'(F,) and its complement F, \h% (F,) are j,-invariant
subsets of flags.

(ii’) The involution jp is fixpoint free, and agrees with j. on edges (but
must necessarily disagree on tails, since jj, is fixpoint free).

We will say that h contracts all flags in F, \ hf'(F,). If two flags
in F, \ hf'(F,) form an edge, we say that this edge is contracted
by h. If two tails in F, \ h¥'(F,) form an orbit of jj,, we say that
it is a virtual edge contracted by h.

(iii) If a flag f, is not contracted by h, that is, has the form hf(f,),
then hy sends O-fr to O, f,. Two vertices of a contracted edge
(actual or virtual) must have the same hy-image.

(iv) The bijection hy': h¥'(F,) — F, maps edges of T to edges of o.

If it maps a pair of tails of 7 to an edge of o, we will say that h
grafts these tails.

Given two morphisms

)
T——o—"p

the composite morphism h = co g is defined to have hy = cy o gy
and hf = g¥" o ¢!". To complete the definition of h we must define
the fixpoint-free involution j, on the complement of A%, which
is the (disjoint) union of the complement of g in F, and the
complement of ¢ in F, C F,. We define Jjn to be jg on the first
and j. on the second.

The definition is reproduced almost verbatim from [4], only with a
slight adjustment to the definition of jj, here defined on the whole com-
plement. In [4] it is defined only on the set of tails in the complement.
This adjustment facilitates the description of the composition law (ad-
justed accordingly).

2.1. Grafting. A morphism of graphs h: 7 — o is called a grafting
when both hy and hf" are bijective.

2.2. Compression. A morphism of graphs h: 7 — o is called a com-
pression when hf" is bijective on tails.
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The notion of grafting is verbatim from [4]. The class of compressions
is spanned by two classes of morphisms described in [4]: contractions
and mergers. A contraction is a compression for which any two vertices
with the same image under hy are connected by a path of contracted
edges in 7. A merger is a compression for which hf" is also bijective on
edges. The reason for singling out the mergers is that in many appli-
cations, this class of morphisms is actually excluded. It is excluded in
operad-like situations (operads, properads, cyclic operads, modular op-
erads, etc.), whereas it is needed in prop-like situations (props, wheeled
props, etc.). The reason presently for treating the two classes together
is Proposition 2.6 below.

Lemma 2.3. A grafting or compression h is uniquely determined by hy
and b (i.e. jj, is implied).

Proof: Indeed, for a grafting, h’" is bijective, so there is no complement
to define j;, on. For a compression, the complement consists entirely of
edges (since h" is a bijection on tails), and here we are forced to let jj
agree with j, (by Axiom (ii’)). O

Lemma 2.4. For a compression h: o — p, the flag map h' : F, = F,
sends edges to edges, tails to tails, and in particular commutes with the
involutions j, and jo.

Proof: Since h¥ induces a bijection on tails, it must also map non-
tails to non-tails. On the other hand, by Axiom (iv) the inverse map
(RF)=1: hF(F,) — F, maps edges to edges, so it follows that A" maps
edges to edges. Thus altogether it maps tails to tails and edges to edges,
and hence commutes with the involutions. O

The following lemma expresses the important property that the ‘sub-
graph’ compressed by a compression has the same ‘interface’ (to be for-
malised in 3.1) as the vertex it is compressed to. The formulation is
slightly awkward here due to the fact that the notion of subgraph has
not been defined (and at any rate is not given by a morphism in the
category):

Lemma 2.5. For a compression h: o — p, and for each vertex x € V),
the flag map ¥ : F, — F, restricts to a bijection

07 () =5 hF(F,) N9~ hy ' (2).
Proof: Injectivity follows from Axiom (i). For surjectivity, note that a

o-flag on the right-hand side must come from some p-flag, and now it
follows from Axiom (iii) that this flag is incident to . O
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Proposition 2.6. FEvery morphism of graphs h: T — p factors essen-

tially uniquely as
h
TP
}\l /‘
o

where g is a grafting and c is a compression. More precisely, the classes
of graftings and compressions form a factorisation system in the Borisov—
Manin category of graphs.

Proof: We construct the middle object ¢ in the factorisation. Since we
want a grafting 7 — o, we are forced to take as vertices and flags of o
the same as those of 7. Since now gy and g are bijections, this also
determines ¢y = hy o g‘jl and ¢ = (¢")7' o hF". To specify o, it
only remains to choose the involution j,. By Lemma 2.4, j, must agree
with j, on the image of ¢/ (which is also the image of hf"). Now we
have to define j, outside the image of ¢'. Whatever we choose, this
assignment will define also j. (by Lemma 2.3). But the composite of g
and ¢ will have j., equal to j. (since g¥" has empty complement). So
in order to have co g = h, we need j. = jp, so we are forced to take
Jo = jn- Now we have constructed a factorisation. For any two possible
factorisations (which may differ only by the names of the elements in
the sets), there is a unique comparison, determined by the bijections
already involved. Hence the factorisation is essentially unique. We have
established that the two classes of morphisms constitute a factorisation
system. |

2.7. Commutation law. We shall need the special case of factorisa-
tion where a composable pair of arrows in the ‘wrong order’ is composed
and then factorised into a pair in the ‘right order’. This interchange
of order is an example of the general notion of commutation law. The
axioms for a commutation law will not be listed, since they are automat-
ically satisfied for commutation laws given by a factorisation system, as
is the case here (and in Proposition 6.5). Given a compression morphism
h: 7 — w and a grafting k: w — p,

the commutation law completes the square with g a grafting and ¢ a
compression. As in the proof above, the vertices and flags of o are those
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of 7, with gy and g% the identity maps. Only the involution j, changes:
g grafts the ‘same’ tails as k does — this makes sense since h is bijective
on tails. The compression ¢ has ¢y = hy and ¢ = hf, modulo the
bijections that identity vertices and flags of w with vertices and flags
of p. It other words, it compresses the same ‘subgraphs’ as h does.

3. Joyal-Kock category of graphs and etale morphisms

The following definition of graph is from Joyal-Kock [9]. The defini-
tion can be seen as an natural open-ended version of the Serre definition
of graph, and it is also in the spirit of the polynomial tree formalism
n [11]. A directed variant with the same features was given in [12].

3.1. Definition of graph. A graph is a diagram of finite sets
(1) i C A H- v
such that s is injective and i is a fixpoint-free involution.

The set V is the set of vertices. The set H is the set of half-edges or
flags: these are pairs consisting of a vertex together with the germ of an
emanating arc. Finally the set A is the set of arcs, which can be thought
of as an edge with a chosen orientation. The involution ¢ is thought of
as reversing the orientation. The map p forgets the emanating arc. The
map s returns the emanating arc in the direction pointing away from
the vertex. An edge is by definition an i-orbit, hence consist of two arcs.
An inner edge is an i-orbit both of whose elements are in the image of s.
A port is by definition an arc in the complement of the image of s. The
set of ports of a graph is called its interface. The local interface of a
vertex v € V is the set of arcs pointing towards it, formally i(s(p~*(v))).
A few examples and pictures are given below, in 3.3 and 4.1.

At first look, this definition may not seem so different from the defi-
nition in the introduction, and even a bit more redundant. Its merit is
the natural notion of morphism:

3.2. Etale morphisms. An etale morphism of graphs is a commuta-
tive diagram

A’<—H'J—>V’
2
R

in which the right-hand square is a pullback. The pullback condition
says that each vertex must map to a vertex of the same valence. Let
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Gr denote the category of graphs and etale morphisms. (Note that [9]
considers only connected graphs.) An open subgraph (inclusion) is an
etale morphism that is injective levelwise. In this note, all subgraphs
considered are open, and we suppress the adjective ‘open’.

3.3. Unit graph and effective graphs. The unit graph, denoted |, is
the graph with one edge and no vertices. It is given by

C2<—0—>0.

This graph does not have any correspondent in the BM category. In the
following we will often have to make exception for it, and more generally
exclude graphs with isolated edges (an edge is isolated if neither of its
arcs are in the image of s). A graph is effective if it is nonempty and has
no isolated edges. Note that an effective open subgraph is determined by
its vertices. Unit graphs are, however, essential for the colimit features
of Gr, treated next.

3.4. Colimits and monoidal structure. The category Gr has sums
(disjoint union of graphs), computed levelwise (i.e. by disjoint union
of the sets involved). The empty graph is the neutral object for the
symmetric monoidal structure given by sums. The category Gr also
has other useful colimits, namely certain coequalisers and pushouts over
unit graphs, expressing precisely grafting of graphs at their ports. These
colimits are also computed levelwise. Precisely, a diagram

!
| =7 X s Y

—
g

has a colimit if f and g map to different edges in X, such that f maps
one of the two arcs in | to a port and g maps the other arc in | to another
port: the coequaliser Y is interpreted as the graph obtained by gluing
at the two ports. If X is effective then also Y is effective.

Similarly, pushouts over a unit graph X # | —— X exist if the
/
corresponding coequaliser exists | 2 XA X >Y . The possibil-
g
ity of handling gluing formally in terms of colimits, and the fact that
these colimit are computed levelwise, is a crucial feature of the cate-
gory Gr.

3.5. Reduced covers. A family of etale morphisms with codomain X
is called a covering family of X if it is jointly surjective on edges and
vertices; this defines the etale topology on the category Gr. A covering
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family is called reduced when no member of the family could be omitted
or replaced by a proper subgraph without spoiling the joint surjectivity.
In the absence of isolated edges, this means jointly bijective on vertices.

Since Gr has sums, one may regard a covering family as a single
etale morphism, by taking sum of the domains. We shall do this con-
sistently. The single etale morphism obtained from a reduced covering
family is called a reduced cover. The quotient morphism of a coequaliser
(or pushout) as in 3.4 is always a reduced cover, and every reduced cover
can be described as an iterated coequaliser quotient morphism like this.
In particular (still in the absence of isolated edges), the reduced covers
of a given graph X form the boolean lattice of subsets of the set of inner
edges of X.

Proposition 3.6. Let BM,, C BM denote the wide subcategory with
only graftings as morphisms, and let GIr. C Gr denote the wide sub-
category whose objects are the graphs without isolated edges, and whose
morphisms are the reduced covers. There is a canonical equivalence

®y: BM,, =% G

Proof: On objects (cf. also [1, 15.3]): given a BM graph (V, F,d,j),
define a JK graph (1) with the same V, with H := F and A := F+T
(the disjoint union of the set of all flags and the set of all tails), with s
the sum inclusion and p := 9. The fixpoint-free involution i: A — A is
given by j. on the fixpoint-free part of F', and interchanges each fixed
flag in F' with its corresponding copy in 7. The part T plays the role
of ports. It is clear that there are no isolated edges. Conversely, given
a JK graph without isolated edges, take the same V', put F := H, and
define an involution j: F — F by j(f) = s~ lisf if f is part of an inner
edge, and j(f) = f otherwise.

On morphisms: given a grafting h: 7 — o between BM graphs, then
since h¥': F, — F, is bijective, we can use its inverse to define the
component on half-edges between the corresponding JK graphs. The
required map on arcs A, — A, has to be a map F. + 1T, — F, +T,.
For the left-hand square of (2) to commute, we are forced to take f —
(RF)=1(f) for f € F,. For the map to be compatible with the fixpoint-
free involutions i, we are also forced to take f +— j, (RT)~L(f) for f € T}.
Conversely, given a reduced cover between JK graphs without isolated
edges, since it is bijective on vertices, it is also bijective on half-edges
(by the pullback condition), so we can obtain a grafting between the
corresponding BM graphs by taking the inverse on flags, and simply
forgetting the component on arcs. O
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4. Graphical species, monad, and Kleisli category

4.1. Elementary graphs. An elementary graph is a connected graph
without inner edges. (Connected means: nonempty and not the sum of
smaller graphs.) Here are the first few elementary graphs:

X

The first one is the unit graph already mentioned; the remaining ones
are the corollas n, given by

C n+n' n 1,
where n and n’ are finite sets with a bijection n = n’ defining the in-

volution. (The set of ports of n is thus n.) Let elGr denote the full
subcategory of Gr consisting of the elementary graphs.

It is easy to check that every graph G is canonically a colimit in Gr of
its elementary subgraphs. The indexing category is the category of ele-
ments el(G) := elGrlG. The canonical colimit decomposition of a graph
is also a canonical cover, and it follows readily that there is an equiva-
lence of categories between presheaves on elGr and sheaves on Gr, for
the etale topology:

PrSh(elGr) = Sh(Gr).

4.2. Graphical species. A presheaf F': elGr°® — Set is called a graph-
ical species [9]; its value on n is denoted F[n|. Explicitly, a graphical
species is given by an involutive set C' = F[I] (of ‘colours’), and for
each n € N a set F[n] (of ‘operations’) with 2n projections to C, per-
muted by a &,,-action on F[n] and by the involution on C.

Each graphical species F' defines a notion of F'-graph: these are graphs
decorated on edges by the colours of F' and on vertices by the oper-
ations of F. More formally, the category of F-graphs is the comma
category GrlF.

The equivalence PrSh(elGr) ~ Sh(Gr) means that every graphical
species can be evaluated not only on elementary graphs but on all graphs:
if F'is a graphical species and G is a graph, then

F[G] = lim FJ[E],
Ecel(G)
where E runs over the category of elements of G, i.e. all the elementary
subgraphs of G and the way they are glued together to give G.
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4.3. The idea of generating more graph morphisms by a monad.
The etale morphisms, and in particular the injective ones, serve as the
geometric fabric supporting further algebraic features, essentially graph
substitution, which will now be generated by a monad defined in terms
of colimits. The new morphisms generated allow for refining a graph by
substituting a foreign graph into a vertex. For the notions of monad and
Kleisli category we refer to Mac Lane [14, Chapter VI].

Generating new morphisms by means of a monad is an important
construction in the combinatorics of higher structures [17]. As impor-
tant examples, the simplex category A arises in this way from the free-
category monad, Joyal’s cell category © from the free-strict-w-category
monad [3], the Moerdijk—Weiss category Q of trees from the free-operad
monad [11].

The following description of the monad and its restricted Kleisli cat-
egory is essentially that of Joyal-Kock [9], but with modified conditions
imposed on n-graphs. These conditions control what kind of graphs are
allowed to be substituted into a vertex, and it is modified in order to ac-
commodate the Borisov—Manin mergers. The adjustments are explained
in 4.7 below. Monads of this flavour — defined as a colimit of limits —
abound in the literature on operads and related structures. The general
theory of such monads can be efficiently cast in a polynomial formalism,
for which the current state-of-the-art is Batanin—Berger [1], but going
in this direction is beyond the scope of this note.

4.4. n-graphs. Let n be a finite set. An n-graph is a graph G whose
set of ports is n (or more precisely, equipped with a bijection with the
ports of n). A morphism of n-graphs is an isomorphism leaving the set of
ports fixed (or more precisely, compatible with the specified bijections).
We shall need only effective n-graphs and their isomorphisms, forming a
groupoid denoted n-Grig,.

4.5. Monad [9]. Define a monad by the assignment
PrSh(elGr) — PrSh(elGr)

F+——F,
where F is the graphical species given by FJ[I] := F[l] and
= . FlG]
Flnls= oot FIOI= D0 g gy — ™o Grisatd)

Gemo(n-Griso)

The monad multiplication is described as follows. F[n] is the set of
isomorphism classes of effective n-F-graphs: it is the set of ways to deco-

rate effective n-graphs by the graphical species F.. Now F|[n] is the set of
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effective n-graphs decorated by effective F-graphs: this means that each
vertex is decorated by an F-graph with matching interface. We can draw
each vertex as a circle with the decorating F-graph inside, and the monad
multiplication then consists in erasing these circles, turning a graph with
vertices decorated by F-graphs into a single F-graph. More formally, we
can use the n-graph as indexing a diagram of F-graphs, and then take the
colimit in Gr. In detail, the groupoid Gris.| F has as objects pairs (R, ¢)
where R is a graph, and ¢: Hom(—,R) — F is a natural transforma-
tion. Equivalently we can regard ¢ as a functor el(R) — elGrlF. Now
there is also a canonical functor elGrlF — GrlF, which takes unit
graphs to unit graphs, and takes a corolla decorated by an F-graph
to that same F-graph. We take the colimit of the composite functor
el(R) — elGrlF — GrlF to obtain a single F-graph. The whole con-
struction defines a functor

GPiSO\LF — GI‘iSO \LF,

whose fibrewise 7y defines the monad multiplication. The unit for the
monad interprets an F-corolla as an F-graph. (More details and a careful
proof of associativity can be found in [12], in the case of directed graphs.)

4.6. ‘Compact coloured props’. Let CCP denote the category of al-
gebras for the monad F — F, tentatively called compact coloured props
(although rightly the word ‘effective’ ought to be part of the name).
Hence a compact coloured prop is a graphical species F': elGr® — Set
equipped with a structure map F — F: it amounts to a rule which
for any effective n-graph G € n-Gr;s, gives a map F[G] — FIn], i.e. a
way of constructing a single operation from a whole graph of them. This
rule satisfies an associativity condition (cf. [14, Chapter VI]), amounting
roughly to independence of the different ways of breaking the computa-
tion into steps.

4.7. Choices involved in the definition of the CCP monad. By
adjusting the conditions imposed on n-graphs, one can get different mon-
ads. The original choice of Joyal-Kock [9] is to allow only connected
n-graphs. This excludes the empty graph, but allows the unit graph,
and leads to a notion of compact symmetric multicategory, essentially a
coloured version of the modular operads of Getzler and Kapranov [7].
For the present purposes the connectedness requirement is given up,
in order to be general enough to model also prop-like structures, and
not just operad-like structures. Specifically it is the availability of non-
connected graphs in n-Grig, that leads to morphisms corresponding to
the mergers of Borisov-Manin. On the other hand we choose not to
allow the empty graph in 0-Gris,. This choice is merely taken in order
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to agree with Borisov—Manin. Actually the empty graph is a perfectly
valid 0-graph, and it could be included in 0-Gris, without problems. It
would actually make sense to include it, so as to allow an isolated vertex
to be refined into the empty graph, in turn a substitution relevant for the
graphical modelling of props, where it accounts for the neutral element
in the monoid of (0,0)-operations, not guaranteed in the formalisms
of [4] or [10]. See also Remark 10.5 of Batanin—Berger [1] for related
discussion. Finally we choose to exclude the unit graph | from 2-Grig,,
and with it all graphs with isolated edges. A superficial reason is to
arrive precisely at the BM category, where unit graphs are not allowed.
But a deeper reason is that Proposition 6.1 below would not be true if
we allowed | as an object in 2-Grigo.

4.8. Kleisli category. Recall that the Kleisli category (see Mac La-
ne [14, §VIL.5]) is the full subcategory of the category of algebras spanned
by the free algebras. By adjunction, this can also be described as the cat-
egory whose objects are graphical species, and where a morphism F' — Y
is a morphisrr/l\gf graphical species F' — Y. We are interested in the full
subcategory Gr of the Kleisli category given by restricting to graphs, via
the fully faithful embedding Gr — PrSh(elGr). In [9] this meant re-
stricting to connected graphs (including the unit graph). In the present
modified version we allow non-connected graphs, but exclude graphs
with isolated edges, such as most importantly the unit graph. We do
allow the empty graph as object in the restricted Kleisli category Gr
(although we have excluded it from 0-Grig,).

In intuitive terms, a morphism in this restricted Kleisli category Gris
a map that sends edges to edges and sends vertices to effective subgraphs
with the same interface, and respects the flag incidences. More formally,
a Kleisli morphism from graph R to graph Y is a morphism of graphical
species R — Y. This can also be described as a functor el(R) — GrlY,
with the property that each edge element of el(R) is sent to a unit graph
(over Y) and each n-vertex element z is sent to an effective n-graph S,
(over Y). (The vertex condition involves a specific bijection between the
interface of the R-corolla at 2 and the interface of the graph S,.) The
colimit of this diagram exists in GrlY, and is denoted S: it is the graph
obtained by gluing together all the graphs S, according to the same
‘recipe’ el(R) that serves to assemble R from its elements. The graph S
is etale over Y by construction. (The formal colimit description of the
various notions involved has been detailed in [12], in the case of directed
graphs.)

There is a subtlety here: for all colimit computations we work in Gr
where the unit graph is a crucial element. However, we only glue effective
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graphs, and the result is always effective again, so that both input and
output to the computation are objects in Gr.

The following lemma is easy, but important.

Lemma 4.9. Every cover morphism R — R’ is an epimorphism in the
Kleiwsli category. That is, the extension

el(R) —— el(R’)

GrlY
is unique if it exists.

Proof: This follows since the functor el(R) — el(R’) is surjective on ob-
jects, and in particular is an epi-functor. O

4.10. Generic morphisms and generic factorisations. We say that
a Kleisli morphism R — Y as above is generic if the colimit graph S is
terminal in GrlY, or, equivalently, if the etale morphism S — Y is
invertible. We shall see in a moment that generic morphisms have a
natural interpretation as refining the vertices into effective graphs with
matching interfaces.

It follows from the previous descriptions that every Kleisli morphism
R — Y has a canonical factorisation into a generic morphism R — S
followed by a free morphism S — Y. ‘Free’ just means that it is the
image of a etale morphism under the monad. Such generic factorisations
can be deduced formally from properties of the monad [17]. (In fact,
these abstract properties of the monad allows one to characterise the
graphs among all graphical species as those objects that can arise as
the middle object of a generic factorisation of a Kleisli morphism from
a representable (i.e. an elementary graph).)

5. Generic morphisms (refinements)
versus compressions

5.1. Generic morphisms as graph refinements. From the general
description of the Kleisli morphisms, we see that generic morphisms out
of a graph R are given by collections of effective graphs S, indexed by
the vertices of R, which are then glued together in the same way as the
corollas in R are glued together to give R. Furthermore, each S, has
the same interface as the corolla at x. Geometrically, what the generic
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morphism does is therefore to refine each vertex in R into an effective
graph with the same interface.

5.2. Duality between generic morphisms and reduced covering
families. Each generic morphism with codomain S gives rise to a re-
duced covering family of S, namely (S, — S | « € V) corresponding
to the quotient morphism ) S, — S in the colimit description (it is
reduced since the graphs S, are effective). Conversely, every reduced
covering family (S, — S |z € V) is the quotient morphism of a canoni-
cal coequaliser diagram of graphs of form

Zel — Zzsw

where e runs over the set of edges of S hit twice by the cover. Since
the cover is reduced, no edge is hit more than twice, and all the S, are
effective (but not necessarily connected). The same shape of coequaliser
diagram can be formed with a corolla n, in place of each S,:

> [ >z Na

The colimit of this diagram is a graph R with a vertex for each z € V.
The assignment = — S, now defines a generic morphism R — S. It
is readily seen that these two constructions are essentially inverse to
each other. This ‘duality’ between reduced covering families and generic
morphisms was first observed by Berger [3] in the cases of A and ©; see
[11, Remark 2.3.2] for the case of trees.

5.3. Diagrammatic description of generic morphisms. It is a key
feature of the JK formalism that etale morphisms are given by straight-
forward diagrams (2). A similar diagrammatic description is possible
for refinement morphisms. Namely, a refinement morphism R — S is
specified unambiguously by a diagram

Ar Hr VR

I

Q Ag +—— Sub’(S) —— Sub(S)

in which the right-hand square is a pullback, and required to be bijective
on ports. The bottom diagram is not a graph, only a graphical species.
Here Sub(S) is the set of effective subgraphs of S, and Sub’(S) is the
set of effective subgraphs of S with a specified outer flag. The outer
flags of an (effective) subgraph are i of its ports. Note that applying
the involution ensures that the notion agrees with the flags of a vertex
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considered as a one-vertex subgraph, and let us define ports of a diagram
like the bottom row as those arcs that are not s of a flag of any effective
subgraph. It is clear that the ports of this bottom row are just the ports
of S.

Indeed, given a generic morphism, the assignment x +— S, defines
the right-most vertical map. The middle vertical map is canonically
defined since each flag belongs to a vertex x, and the data in a generic
morphism includes bijections between the flags of x and the flags of S,.
Commutativity of the left-hand square and with the involutions expresses
precisely that the gluing data is the same for S from the S, as for R
from its vertex subgraphs. From this it is also clear that the left-hand
map induces a bijection on ports. Conversely, given such a diagram,
the assignment x — S, is already given by the right-hand map, and it
has the correct interfaces because the second square is a pullback. It is
routine to check that the two constructions are inverse to each other.

Proposition 5.4. Let BMcomp C BM denote the wide subcategory with
only the compression morphisms, and let Grgcn C Gr denote the wide
subcategory with only generic morphisms. There is a canonical equiva-
lence

op
®y: BMeomp =% Grye,

Proof: We define functors in both directions.

Given a generic morphisms R — S in terms of a diagram (3), let p
and o be the corresponding BM graphs, as in the object-part of the
proof of Proposition 3.6. We need to construct a compression mor-
phism h: o — p. For each vertex x € Vg, we have an effective sub-
graph S, C S, and we have a reduced cover ) S, — S. Since it
is bijective on vertices, every vertex v of S belongs to a unique sub-
graph S,. We define the map hy: V, — V, by sending v to =. It is
surjective as required since each subgraph S, has at least one vertex by
the effectivity assumption. Now we define A’ : F, — F, to be the com-
posite Hg — Sub’(S) — Hs. This map is injective as a consequence of
the fact that the graphs S, are effective. Indeed, each flag in R is either i
of a port, in which case its image is too, and generic morphisms are bi-
jective on ports, or it is part of an inner edge of R, which means that it
appears once for gluing R from its elementary graphs, and hence also ap-
pears once for gluing together S from the S,. Since none of the S, have
isolated edges, no step in the gluing procedure can collapse flags. Since a
generic morphism induces a bijection on ports, it is also clear that hf" is
a bijection on tails, and it sends edges to edges (hence verifying (iv)),
just by commutativity of the left hand square and the involutions, and
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Axiom (ii), follows also from this. We need to verify Axiom (iii), that
endpoints of contracted edges of h have equal image under hy. Con-
tracted edges in o is the same thing as inner edges of S not in the image
of R. Let v,v" € V, be the endpoints of a contracted edge of o. That the
edge is not the image of an inner edge in R means that v and v’ belong to
the same subgraph S,, and hence they have the same image = under hy
as required. Finally, it is clear that h is a compression (so Axiom (ii’) is
void).

Conversely, given a compression morphism h: ¢ — p in the BM cat-
egory, we must construct a diagram like (3). For each z € V,, let S,
denote the open subgraph of S spanned by the set of vertices h(,l(x);
it is effective since hy is surjective. The map hf": F, — F, already
gives us Hr — Hs. For each vertex o € V,, the map R restricts to a
bijection 9~ (z) =% h¥ (F,)NO~hy' () (by Lemma 2.5), which tells us
on one hand that each flag in Hgr incident to x is sent to a flag of the
subgraph S, so as to give altogether a well-defined map Hg — Sub/(S),
and on the other hand that the right-hand square commutes and is a
pullback. Finally we take the map Agr — As to be

Y+ hF\r Fy+ T, — Fy + Ty,

well-defined since h is a compression and hence h'" preserves tails. The
left-hand square now commutes by construction. Since h*" also preserves
edges (by Lemma 2.4), this map commutes with the involutions. Since
hT' is bijective on tails, the new map induces a bijection on ports, as
required.

It is straightforward to check that the two constructions are inverse
to each other. O

6. Borisov—-Manin morphisms as cospans in the
Kleisli category

Proposition 6.1. In the restricted Kleisli category a/r, reduced cov-
ers and generic morphisms admit pushouts along each other, and the
resulting two new morphisms are again a reduced cover and a generic
morphism:

R red.cover R’/

red.cover
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Intuitively, S’ is obtained by refining R’ by the exact same prescription
as S refines R. This makes sense since R’ and R have the ‘same vertices’.
Equivalently, S’ is obtained by gluing some ports of S in the same way
as R is obtained from R. This makes sense since S and R have the ‘same
ports’. The proof formalises this in terms of colimits:

Proof: Since a reduced cover can be realised as a sequence of quotient
morphisms of simple coequaliser diagrams, it is enough to treat pushout
along such a morphism, so we assume that the reduced cover R — R’ is
the quotient I’ ——{ R ——— R’ expressing the gluing of two ports of R
to form an inner edge of R’. The generic morphism R — S is given by a
functor el(R) — Gr, which in turn unpacks to a coequaliser diagram

Doele _i > wSe ——S,

where e runs over the inner edges of R and x runs over the vertices
of R, and the parallel arrows express the incidences of inner edges and
vertices in R. The extra gluing producing R’ from R can now be added
to this diagram as an extra summand in the edge sum. This is possible:
since that extra gluing connects two distinct port-edges of R it will also
connect two distinct port-edges of S, because a generic morphism is
injective on edges and preserves ports. This gives another coequaliser
diagram, pictured as the bottom row:

Zele E Zzsz—>s

[

3,01 —3 3,5, ——9

expressing a generic morphism R’ — S/, The universal property of S as
a coequaliser now induces the dotted arrow, which is the reduced cover
given precisely by gluing those two ports, i.e. is the quotient morphism
I"—S——S". We now have the promised square of generic and
etale morphisms. It commutes because the Kleisli morphism R — R’ —
S is given by el(R) — GrlS’ with colimit S (over S’) by construction.
This shows that the generic-free factorisation is R — S — S’ as required.
Finally we check that this square is a pullback in the Kleisli category.
Given a commutative square of Kleisli morphisms

R——R

| |

S——T
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we need to show there is a unique Kleisli morphism S’ — T making the
triangles commute. There can be at most one extension

S——9

T

because S — S’ is an epimorphism by Lemma 4.9. The graphs S and S’
differ only in that two ports have been glued, so the extension exists if
and only if the morphism to T glues the two ports. But the two ports
come from R, and via R — R” — T they are certainly glued, so S’ — T
is unique as required. O

6.2. Remarks. (1) The proposition is analogous to Lemma 2.4.7 in [12],
which concerns open inclusions and generic morphisms in the category
of acyclic directed graphs. The statement is true more generally for etale
morphisms that are injective on vertices, but not for all etale morphisms.
It would not be true either if we permitted the unit graph to be sub-
stituted into a 2-valent vertex. Formally this would break an injectivity
condition. Essentially, the problem is the following. The substitution of
a unit graph into the vertex of a graph consisting of only one vertex and
one loop edge ought to yield a loop without vertices. But this is not a
valid graph in Gr (and is not included in the Borisov—Manin definition
either). This may be seen as a shortcoming of both definitions. Ref-
erences [15], [18], [8], [1] address the issue with the vertex-less loop in
various ways.

(2) Generic-free pushouts in the simplex category A play an essential
role in the theory of decomposition spaces [6] (also called unital 2-Segal
spaces [5]): a decomposition space is a simplicial space sending generic-
free pushouts to pullbacks, precisely the condition ensuring associativity
of incidence algebras. The proposition suggests that it might be possible
to develop analogous theory for compact coloured props.

6.3. Cospans and factorisation system. In any category in which
two classes of morphisms (containing all the isomorphisms) interact un-
der pushouts as in the proposition, one can define a new category with
the same objects, whose morphisms are isomorphism classes of cospans
whose left leg belongs to one class and the right leg belongs to the other
class. Such cospans are composed by taking a pushout. By construc-
tion every morphism admits a factorisation as a morphism in the first
class followed by a reversed-morphism in the second class. This does not
always constitute a factorisation system, since the factorisation is not
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necessarily unique up to unique comparison isomorphism, as required
in a factorisation system. However, if one of the two classes consists of
epimorphisms, then the comparison isomorphism will be unique.

In the present case, the two classes are the reduced covers and the
generic morphisms. Denote by Cosp the category whose objects are
graphs without isolated edges, and whose morphisms are iso-classes of
cospans in Gr in which the first leg is a reduced cover and the second
leg is a generic morphism

red.cover refinement
T S R.

Since reduced covers are epimorphisms in the Kleisli category (Lem-
ma 4.9), we thus have:

Proposition 6.4. The category Cosp has a factorisation system in
which the left-hand class consists of the cospans ‘reduced-cover/identity-
read-backwards’ and the right-hand class consists of ‘identity/generic-
morphisms-backwards’.

Proposition 6.5. The commutation law in Gr giwen by pushout is com-
patible with the commutation law in BM given by the factorisation sys-
—~ -~ 0O

tem 2.7 via the equivalences BMy, — Gryc and BMomp — Grgsn.

Proof: The statement is that given h and k in the commutation square
in 2.7, applying the two functors yields a pushout square as in Proposi-
tion 6.1. But this is clear from the explicit descriptions given in 2.7 and
Proposition 6.1. |

Theorem 6.6. The reduced-cover/generic cospan category Cosp is
equivalent to the Borisov-Manin category BIVI.

Proof: The argument is a general fact about gluing functors along com-
mutation laws. We already have functors ®,: BM,, — Gry. and ®,:
BM omp — GrZSn which agree on objects and on isomorphisms. We

define a functor ®: BM — Cosp on morphisms by the assignment
®(h) = Pa(c) o Pa(g)
with reference to the factorisation h = c o g of Proposition 2.6:

21(g) P2(c)
—

(T'—q>ai>p) — (T S<—R).

The factorisation h = c o g is only determined up to isomorphism, but
that is good enough, because the morphisms in Cosp are iso-classes of
cospans. This assignment respects composition by Proposition 6.5, hence
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® is a functor. It is clear that ® agrees with ®; and ®- on the subcate-
gories, and it induces an equivalence at the level of maximal groupoids
(this follows from either Proposition 3.6 or Proposition 5.4). In partic-
ular it is essentially surjective. Finally is follows from Propositions 3.6
and 5.4 that @ is fully faithful:

o€lso(BM)
Hompm (T, p) = / Hompwm,, (1,0) x Hompw,,,,, (0, p)

Selso Gr
:/ Homg, (T,S) x Homgrgen(R,S)

= Homcosp (T, R).

Here the integral signs are coends (see [14, §IX.6]), which is the appro-
priate way of summing over all factorisations modulo isomorphisms at
the middle object. O

6.7. Remark. The BM category of graphs plays an important role in
the work of Kaufmann and Ward [10] as source of examples of Feynman
categories, an interesting alternative formalism to coloured operads (the
two notions have been established equivalent in [2]). In that context, the
interest is in the full subcategory of the BM category spanned by the
disjoint unions of corollas. They show that every such morphism 7 — p
is specified by a so-called ghost graph. Their construction is clarified by
the observation that their ghost graph is precisely the graph ¢ appearing
in the grafting-compression factorisation, or equivalently, is the apex of
the corresponding cospan.
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