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HYBRID BOUNDS FOR TWISTS OF GL(3)
L-FUNCTIONS

QINGFENG SUN

Abstract: Let m be a Hecke-Maass cusp form for SL(3,7Z) and x = x1x2 a Dirichlet
character with x; primitive modulo M;. Suppose that M;, Ms are primes such that
max{(M|t|)l/3+25/3, M2/5|t|_9/20,M1/2+25\t|_3/4+25}(M\t|)5< M <min{(M|t|)2/5,
(M|t))/2=839}(M|t])~* for any € >0, where M = My Ma, |t|>1, and 0 < § < 1/52.
Then we have

1
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1. Introduction

Let m be a Hecke-Maass cusp form for SL(3,Z) with normalized
Fourier coefficients A(n1,n2) such that A\(1,1)=1. Let x be a primitive
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Dirichlet character modulo M. The L-function attached to the twisted
form 7 ® x is given by the Dirichlet series

L(s,m®x) = Z A1, n)x(n)n™*°

for Re(s)>1, which can be continued to an entire function with a func-
tional equation of arithmetic conductor M3. Thus by the Phragmen-—
Lindel6f principle one derives the convexity bound L(1/2+it, 1®x) <x e
(M (1 + |t|))?/**¢, where € > 0 is arbitrary. The important challenge for
us is to prove a sub-convexity bound which improves the convexity bound
by providing a smaller exponent. There has been great progress for the
sub-convexity problem of L(s, 7 ® x) in the works [1], [5], and [12]-[16]
(also see [7], [9], and [17] for the t-aspect sub-convexity for L(s,)).
In [1], Blomer established the bound

1 _
L <§ +it,T® x> Komype MP/ATL/BTE

for 7 self-dual and x a quadratic character modulo prime M. This was
extended by Huang in [5], where by combining the methods in [1] and [7],
he showed that

1. 84146t e
L (5 Lt x) e (M(14 [t/ 1140

for the same form 7 ® x as in [1]. For general GL(3) Hecke—Maass cusp
forms, the sub-convexity results have recently been established in several
cases by Munshi in a series of papers [13]-[16]. In the t-aspect, Munshi
proved in [14] that

(1.1) L (% + itmr) e (14 [¢])Y/471/10%=,

For x a primitive Dirichlet character modulo prime M, he proved in [15],
[16] that

1
I (5’71_ ® X) G Np3/A—1/3084e

For x = x1x2 a Dirichlet character with y; primitive modulo prime M;
such that /Mo M*? < M; < My M~3? he showed in [13] that

1 _
L <§,w ®x) Koo MB/ATTE

where M = M1 M, and 0 < ¥ < 1/28.
In this paper we want to extend some results by Munshi in [13]
and [14]. Our main result is the following;:
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Theorem 1. Let m be a Hecke—-Maass cusp form for SL(3,Z) and x =
X1X2 a Dirichlet character with x; primitive modulo M;. Suppose that
My, My are primes such that

max{(M|t|)1/3+25/3,M2/5|t\_9/20,M1/2+25|t\_3/4+26}(M|t|)E < M,
< min{(M]t)*®, (M]t))"/2~ 5} (M]¢])~®

for any e > 0, where M = M1 Ms, |t| > 1, and 0 < 6 < 1/52. Then we
have

1 _
L <§ +it,T® X> Ko (M]t])3/470Fe,

We also have a result which can be compared with (1.1).

Theorem 2. Let w be a Hecke—-Maass cusp form for SL(3,Z) and x =
X1X2 o Dirichlet character with x; primitive modulo M;. Suppose that
My, My are primes such that
maX{M3/8725/3|t‘3/87M2/5|t|79/207M5/8725|t‘75/8}(M|t|)5 < M,
< min{(M[t])*/®, M} (M]t]) =
for any e > 0, where M = My Ms, |t| > 1, and 0 < § < 1/16. Then we
have
L (% titr® X) e MO(M])Y/ 4 1/16%2

Remark 1. Theorems 1 and 2 give us a sub-convexity bound for L(% +
it,T® X) for M and t in some range. For example, if [t| > M'/® and
(M|t))/3+20/3%e < My < (M|t])?/5~¢ with 0 < § < 1/80, then we have

1
L (5 +it, T ® X) Ko (Mt])3/470Fe,

If |t| > MY* and (M|t|)3/8+e M ~20/3 < My < M®0—° with 0 < § < 1/16,
then we have

1 _
L (§+Zt7ﬂ'®x> <<7r75 MJ(M\t|)3/4 1/16+E.

To prove Theorems 1 and 2, we will use the same method as in [13]
and [14]. Suppose that ¢ > 1. Then by the approximate functional equa-
tion we have

I IS(V)|
1.2 L (7 +it, T ® x) e (MU)® sup ,
(1-2) 2 o e VN

where

NgE

S(N) =S A1, n)x(n)n "tV (%)

n=1
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for some smooth function V' supported in [1,2], normalized such that
Jz V(v)dv =1 and satisfying V(¥ (z) < 1. Note that, by the Cauchy’s
1nequahty and the Rankin-Selberg estimate > . [A(1,n)]? <, =
(see [11]), we have the trivial bound S(N) <. N. Thus Theorem 1
(resp. Theorem 2) is true for N < (Mt)3/2=23 (resp. N < (Mt)'1/8M?9).
In the following, we will estimate S(/V) in the range

(13)  (M)*/* 0 < N<(M)*/** (resp. (M) M < N <(M1)*/*).

The first step is to separate the Fourier coefficients A(1,n) and
x(n)n=%. Let 6(n) be equal to 1 if n=0 and 0 otherwise. Like in [13]
and [14] we apply Kloosterman’s version of the circle method, which
states that for any n € Z and Q € R™, we have

(1.4) = 2Re/0 aiqe (%ﬁ - nC) d¢,

1<q<Q Q<a<q+Q
(a,q)=1
where, throughout the paper, e(z) = €>™* and @ denotes the multiplica-
tive inverse of a modulo gq.
To construct a conductor lowering system to take care of both the t-as-
pect and the M-aspect, we introduce a parameter K satisfying (Mt)®
K <t and write

K/ g,\ 1,n)V (%)
5w ()5 () (2) o

meZ
Mi|n—m

where U is a smooth function supported in [1/2,5/2], U(z) = 1 for
€ [1,2], and U¥ (x) <, 1. Applying (1.4) and choosing

Q=
t
e S(N) =St (N)+ S (N),
where
s = [ [V () S0V (5) 52 om0 (3)
Mi|n—m

1 a(n —m) (n—m)C)

X —el| £ dvd(.
Y (P )
<¢<Q Q<asg+Q

(a,q)=1
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In the rest of the paper we will estimate ST(N) (and the same anal-
ysis holds for S~(N)). Denote by S?(N) and S*(N) the contribution
to ST(N) from Mi|q and (M7, q) = 1, respectively. Then Theorems 1
and 2 follow from (1.2), (1.3), and the following propositions:

Proposition 1. Assume K < min{t, NM;/M?}(Mt)~=¢. Then we have
S*(N) < NVMt/MP?,

Proposition 2. Assume (Mt)%/°/(NM;)%/°> <K < min{t, (Mt)?/NM;,
NM;/M?}(Mt)=¢. Then we have

SHN) < {N5/8(Mt)1/2 if (M2 MY < N < (M)

NYS(ME)"WOMYE i N < (M)A M7
For our purpose we choose the optimal K as
N1/4 (Mt)6/5 }
M, (NM)3/5 [
Propositions 1 and 2 will be proved by summation formulas of Voronoi’s
type and stationary phase method, which are listed in Section 2.

(1.5) K= max{

Remark 2. With K as in (1.5), one sees that the assumptions for K in
Propositions 1 and 2 are fulfilled if M; is in the range of Theorem 1 or
Theorem 2.

Remark 3. In the appendix of [13], Munshi showed that Kloosterman’s
circle method with suitable conductor lowering mechanism also works
for xy with a prime power modulus. For hybrid bounds in the ¢ and
the M aspects, we will study this in a separate paper.

Notation. Throughout the paper, the letters ¢, m, and n, with or with-
out subscript, denote integers. The letter € is an arbitrarily small positive
constant, not necessarily the same at different occurrences. The sym-
bol <4, denotes that the implied constant depends at most on a, b,
and c¢. The symbols ¢ ~ C and ¢ < C mean that C < ¢ < 2C' and
c1C < g < ¢2C for some absolute constants ci, ¢, respectively. Finally,
fractional numbers such as z—s will be written as ab/cd, and a/b + ¢ or
c+a/b mean ¢ + c.

2. Voronoi formula and stationary phase method

2.1. GL(3) cusp forms and Voronoi formula. Let 7 be a Hecke—
Maass cusp form of type v = (v1,v9) for SL(3,Z), which has a Fourier—
Whittaker expansion (see [3]) with Fourier coefficients A(nj,ng), nor-
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malized so that A(1,1) = 1. By Rankin—Selberg theory, the Fourier
coefficients \(nq, nq) satisfy

(2.1) Do A ne)? e &

n%nggx
Denote the Langlands parameters by
pr=—-v1—2v2+1, ps=-—v1+ve, p3=2v1+rve—1

The generalized Ramanujan conjecture asserts that Re(p;) =0,1 < j <
3, while the current record bound due to Luo, Rudnick, and Sarnak [8]
is |[Re(p;)] <1/2—-1/10,1 < j < 3. For £ = 0,1 we define

B 1 1+S+M3+€)/2)
Ye(s) = or3(s11/2) H T((—s—p; +£)/2)

and set v+ (s) = 70(s) Fiv1(s). Then for o > —1/2,

(22) V(0 i7) K (L4 |77
and, for |7]| > (Mt)¢, we can apply Stirling’s formula to get (see [14])

(2.3) Y (—% —l—i7'> = (;)3” Uy(r), where WUL(7r)< —

Let ¢(x) be a smooth function compactly supported on (O, o0) and
denote by ¢(s) the Mellin transform of ¢(x). Let

+ _ 1 —s P
)= 5 [ e @00 ds
where o > 112122(3{—1—1{6(#]‘)}. Then we have the following Voronoi-type
j

formula (see [4], [10]):

Lemma 1. Suppose that ¢(z) € C(0,00). Let a,q € Z with ¢ > 1,
(a,q) =1, and aa =1 (mod q). Then

S a0me(3) oo S 35 20 (o s ) ().

+ ni|g n2=1

where S(m,n;c) is the classical Kloosterman sum.

2.2. Exponential integral and stationary phase method. Here
we collect relevant results from [2], [6], [14], and [18] that will be used
to estimate some exponential integrals in this paper. First we need the
stationary phase estimates from [6] which will be used to derive asymp-
totic expansion of the exponential integral

Iz/g@ﬂﬂ@ﬂu



HYBRID BOUNDS FOR TWISTS OF GL(3) L-FUNCTIONS 81

where f, g are smooth real valued functions and Supp(g) C [a,b]. The
following result can be found in Huxley [6].

Lemma 2. Assume that O¢,Qf > b—a and
(24) 1) < 0,977, gV (w) <0y’
fori =23 and 5 =0,1,2.
(1) Suppose f' and f" do not vanish in [a,b]. Let A = min|f'(v)].

[a,b]
Then we have

Oy QF Q7 A
T D (143, 7% A )
< Qs ( T, Taze,q;

(2) Suppose [’ changes sign from negative to positive at the unique
point vy € (a,b). Let k = min{b — vg,vg — a}. Further, suppose
(2.4) holds for i =4 and

FP ) > e,/0%
Then

7o 9w)elfwo) +1/8) o f % 9 9
f”(’UO) @fc,‘i3 @:;”/2 @?/QQS ’

For the special exponential integral

T(r,s) = h z)e(—rz)z" ' da
U's) = [ U@e(=ra)e da,

where U is a smooth real valued function with Supp(U) C [a, b] C (0, c0),
we quote the following result from [14] which is derived from Lemma 2.

Lemma 3. Suppose UY) () <,p; 1. Let 7 € R and s = o + i3 € C.
We have

T ) () )

+ 0 (min{|8] 72, Ir7*/*}),

where the implied constant depends only on a, b, and 0. We also have

(2.6) U'(r,s) <ap,o, min { (1 —‘tﬁ"m)J ’ (1 +ﬂ||r|)3} '

In applications, the O-term in (2.5) is not essential. For our purpose,
we will also use the following more precise asymptotic expansion to sim-
plify computations (see [2, Proposition 8.2]). For a proof, see also [18].
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Lemma 4. Let v € R and s = 0 + i € C such that xo = 8/(27r) €
[a/2,2b]. Then we have

+ 0 (min{|8]~"2, Ir~*/}),
where U*(zq) = x5 ° Zi:o pn(x0) and

_L i\ en
(o0 = 3t (e ) &)
Here h(z) = —2mrx + Blogz, G(z) = U(x)z® 1et®) | and
1 "
H(z) = h(z) — h(zo) — Eh (z0)(x — :po)z.

Moreover, G®™(xq) is a linear combination of terms of the form
(U(T/)IUA)(&])|FIOH(£1)(%) . H(Zi)(xo)’ where bo+ 01+ -+0; = 2n,
s0 that U (x0) gape 1.

3. Estimating S°(IV)

Recall that

K// 3 AL wV(N)

n:l

1 an n¢
% Z Z aq]\Jle(qu2 B aqu)

1<q<Q/M1 Q<a<qM1+Q

(a,qM1)=1
—i(t+v) m am mC
X Z x(m)m U(N)e(_qM12+aqM12) dvd(.
meZ
Mi|n—m

Applying Poisson summation formula with modulus ¢M2M, on the sum
over m we get

—i(t+v) m am m(
E x(m)m U (—) e (— + 7>
= (m) N qM?  aqM?
Mi|n—m

Nl*i(t+'u)

= 2
qu M2 mEeEZ

where UT(r, s) is defined in Section 2 and
_ (m — Maa)c
&(a,m,q) = Z x(c)e (W .

¢ mod quMQ
c=n mod M;

> samau' (Y EEL i)



HYBRID BOUNDS FOR TWISTS OF GL(3) L-FUNCTIONS 83

Lemma 5. Let ¢ = qOMfMQk, (qo, M1 M3) =1 with j,k > 0. We have
&(a,m,q) = e2gMiv/Max1(go Mz n)xa2(qo Mim*)e(m* My n/M)

if m = Msa mod qM, and is zero otherwise. Here e9v/Ms is the value
of the Gauss sum corresponding to the character xa, and

m* = (m — Mya) /Mt M5
In particular, we have a = MMy mod gMy if k =0. If k > 1, we have

Msy|m and a = (m/Ms) mod ¢M; /Ms.

Proof: We have
&la,m,q) = Z e <M)

qo

c1 mod gg
k+1 (m — MQE)CQ
X E X1 (q0M2 02)6 ( Mj+2
J+2 1
c2 mod My
co=n mod M;

x> (oM Pe)e (w) |

k+1
M.
c3 mod 1\/I§+1 2

where the first sum vanishes unless m = Msa mod ¢g, in which case it
. . _ T .
is qo. The second sum vanishes unless m = Msa mod Mf * , in which
case it equals

m*MkEn ;
x1(qoMy* n)e (—2 ) M,
M,

where m* = (m — Maa)/M{ ™' M}. Finally, the last sum equals
e2x2(go M1)Xz(m") M5 v/ Mz
if m = Mya mod M¥, and is zero otherwise, where e91/M> is the value
of the Gauss sum corresponding to the character xa. O
Note that, if m = 0 we have k > 1 and (m,¢M;) = Ms. Then
N|0 = ¢M,| N
aquMg - Q]\42M12
For |m| > 1, we have (recall a > Q)
Nlma — (M| _ N|m)|
agMPM,  — qMEMy'
Applying (2.6) one sees that the contribution from m = 0 and |m| >

qMy(Mt)'¢ /N is negligibly small. For smaller nonzero m, by the second
derivative bound for the exponential integral, we have

Ut N(ma — (M>)
agM3? M>

< (Mt)"¢t.

11— i(t+v)) <tV
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Therefore, using (2.1),

N 1 qMi(Mt)'re
S(N) < ——— > ALn)| >

MV Moty 1<azonn, @M N

(q,M2)=1
N My qMy(Mt)te
+ > L)
MV Mt | 5 1<az0/, @OV N
Mz|q
< NVMt/M}?,
This completes the proof of Proposition 1. O

4. Estimating S*(IN)-I
First we detect the congruence m = mn mod M; using exponential
sums to get (recall M is a prime)
SHN) = So(N) + Si(N),
where
So(N) = — //lv(ﬁ) DI
T RM S, K aq

1<9<Q Q<a<qg+Q
(¢,M1)=1 (a,q)=1

“ f: A1, n)e (WTI”) WV (5 )e <— a:fwl)

n=1

_W —i(t+v
X Z x(m)e (%) m i(t+ >U(%) e (a;nj\il) dvd¢

1 1 v 1
N)= (#) L
sy [[V(F) X X ¥ L
1<¢<Q Q<a<g+Q b mod My
(g,M1)=1 (a,q)=1

oo

a0 e I oy () ()

n=1

—(aM;iM;+b —i(t4v ¢
XZX(m)e(W>m (4 )U(%)e<a;an>dde,

meZ

where the * denotes the condition (b, M) = 1. In the rest of the paper,
we will estimate S;(IN). The analysis for Sp(V) is similar, and following
the proof for S;(N), one can see that it is smaller.
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Applying Poisson summation with modulus ¢M;Ms; = ¢gM on the
sum over m in (4.1) we get

57 wmpe (MR g () e ()

mEZL

Ni—it+v) N(ma — (Ms)
= P(a,b,m, UT(i,lfitJrv),
i O Yabma) o (t+v)
where
_ em c(aMi My + bq)
2(a,b,m,q) = Z x(c)e <7M T an )
c mod ¢gM q q

Lemma 6. Let g = qoM%, (qo, M1 Ms) = 1 with k > 0. We have
D(a,b,m,q) = e162qV M x2(qo M1 )X1(qMzam — b)xz(mo)

if m=Msya mod q, and is zero otherwise. Here, £,4/M; is the value of the
Gauss sum corresponding to the character x; and mo=(m— Mya)/M¥.
In particular, we have a = mMs if k =0. If k > 1, we have Ms|m and

a = (m/Ms) mod q/Ms,.
Proof: Note that

Dabmag) = 3 e((m_q%)

c1 mod qg

<2 X2(QOM102)6(M>

k+1
M.
co mod M§+1 2

Mym — b)go MET?
X Z Xl(qoM§+1c3)e<(q o ]\4)1(10 : 03)7

c3 mod M;

where the first sum vanishes unless m = Msa mod ¢qg, in which case
it is go. The second sum equals €22 (qoM1)Xz(mo)ME /My with mg =
(m— Maya) /MY if m = Mya mod MY, and is zero otherwise. Here e;1/M;
is the value of the Gauss sum corresponding to the character x;. Thus
the lemma follows. O

As before, by Lemma 6 and (2.6), one sees that the contribution
from m = 0 and |m| > q(Mt)!™¢ /N is negligibly small. For 1 < |m| <
q(Mt)'*¢ /N, we have N/(Mt)'*¢ < ¢ < Q. Taking a dyadic subdivision
for the sum over ¢ and denoting C'/2 < g < C by g ~ C, we have the
following:
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Lemma 7. Suppose K < min{t, NM;/M?}(Mt)~¢. We have

SI(N) :5152X2(M1)N_it Z Sl(N,C)JrO((Mt)_lOOO),
N/(MH)'TE<C<Q
C dyadic
where
S1(N,C) = // N—w Z x2(qo) Z 1
’ Kle ] p ”
a=qo M5 ~C Q<a<q+Q
(q0,M)=1 (a,q)=1
’ (@ hm—b)Ys N(ma—¢Ms) |
_ i LV\ma—GMz2)
ap> > whm-swm)u! (M) i)

b mod M 1§\m|§q(1\/1t)1+5/N
m=Moa mod ¢

[e<)

A e (AR oy (11 v

n=1

Applying the GL(3) Voronoi formula in Lemma 1 with ¢(y) =
y"*V(y/N)e(—Cy/agMy) we have

> (aMi My +bg)n\ n n¢
n:1)\(1,71)6 (—qu ) n"'Vv (ﬁ) e (— aqM1>

iv An2,m1) o (=7 LgM
oty S A (G g )
£ nilgMy n2=1

2
nin2 ¢
X j:i: <q3M?, aqu) )

where

1 _ .
Tolr) = 5z [ (N2 (VI (N, = iv) o

By (2.6),

J
N 1 NK
vi(N o4 ;min { 1 —
(aqu’ s+zv) < mm{ ’ <q|v—7'| M,y > }

for any j > 0. Then shifting the contour to ¢ = ¢ (a large positive
integer) and taking j = 3¢+ 3 (in view of (2.2)) one has

) 5/2 ) )
7 <n1n2 ¢ > = 1 /INK nins
+ @M}’ agM, qV M ]\]1/2[(3/2]\43/2 )
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Thus the contribution from n?ny > N1/2+8K3/2M3/ is negligible. For
n2ny < N2+ K3/2 0132 we shift the contour to o = —1/2, and obtain

2 2 1/2—ir
nine Nnine 1 .
jj:( 3M37aqM1) Z 27{_/(q3M? ) ’Yi( 2+ZT>

Nl <af]\7]\§[1 1—&—1(1/ — 7')) W () dr+O((Mt)~1%%%),

where as in [14], ¢ is a collection of O(log(Mt)) many real numbers in

the interval [—(Mt)*C~1\/NK/M;,(Mt)C~1\/NK/M,], and W is a

smooth partition of unity such that, for J = 0, the function Wy(z) is

supported in [—1, 1] and satisfies Wo(e) (x) <, 1, for each J > 0 (resp. J <
0), the function Wy (x) is supported in [J,4.J/3] (resp. [4J/3,J]) and
satisfies yeWy) (z) < 1 for all £ > 0, and finally

Z Wi(x) =1, for z¢€

Je g

_(aty [NK (py [NK
C M, C M, |’

We conclude with the following:

Lemma 8. Let K be as in Lemma 7. We have

Si1(N,C) = Z Z Z&(N,C’,L,J,j:)_|_O((]\4t)—1oo)7
1§L<N1/2+5K3/21Mi3/2 Je g +
L dyadic
where
n27n1 X2(q0) 1
Si(N,C, L, J, )= ZZ Z 2l Z !
nina~L q=qoM5~C QR<a<g+Q

(q0,M)=1 (a,q)=1
n1lqMy

X > Xz2(mo)Z(n1 ,£n2, m, a,q)J; +(q, m, nina),

1<|m|<q(Mt)' TN
m=Mga mod ¢q

where

* _— M
(4.2) PB(ni,n2,m,a,q)= Z Xi(gMam — b)S (aM1M1 + bg, no; qn 1)
1

b mod M;
and

1 Ny 7 LY e
(4.3) Tr+(g,m,y)= 2ﬂ/<%) ’Y:t<_§+ZT)J (¢, m, T)Wy(r)dr
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T (q,m,T) = /R/ol V()VT <ai]\[]\§[ ; +i(Kv —7'))

< Ut (% 1- i(t—!—KU)) dov d¢.

Let n = nil, (n},My) = 1, and [|M;. Since M; is a prime, we have
l = M or 1. For | = M, by Weil’s bound for Klooertman sums % (n} M,
na,m,a,q) < (q/n1)'/?. Trivially, we have T; 1 (g, m,n? Ming) <
C~'\/NK/M;t. Thus the contribution from [ = M; to S;(N,C, L, J, %)
is at most N3/4K7/4(Mt)1/2M1_5/4, which is admissible by the range
of M. For I = 1, we will need extra cancellation from the character
sum %(n1,ns2,m,a,q) and the integral in(q7m7nﬁ2M12n2). Then, the
rest of the paper is devoted to estimating

with

(4.4)

n27n1 x2(qo) 1
Si(N,C, L, J, %) Z B2 Z a
n?ng~L g=qoMs~C Q(<a§)q4;Q
(q0,M)=1 »U=
(4.5) qonl‘q
X Z E(mo)@(nl,ing,m,a, q)j}‘,ﬂ:(q7m7n§n2)

1<|m|<q(Mt)'F4/N
m=Msa mod q

5. A decomposition of the integral J**(q, m,T)

The aim of this section is to give a decomposition of J**(q, m, ) for
|7| < (Mt)*C~1\/NK/M;. Since we are working on both the variables M
and ¢, we need more prec1se estimates than those used by Munshi.

5.1. Stationary phase expansion for UT and V. Applying (2.7)
we get
N(ma — (M>) . e(1/8) agM+/t + Kv
T _— — =
v ( aghl " Z(”K”)) V2w N(CMz — ma)
—i(t+Kwv)
U (t + Kv)agM (t + Kv)agM + o),
27N ({ M2 — ma) 2weN (( M2 — ma)
By (2.5) we have

(B ) 25

<V <(K’U - T)aqu) ((Ku — T)aqM1)1/2 <(Kv B T)aqu>i(Ku‘r)
2mN¢ N¢ 2meNC

. =32 [ NC )3/2
+O<m1n{|KU 7| ’<qQM1 .
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Plugging the above asymptotic expansions into (4.4) we obtain

aghi \*/?
N

// Vv Vt+ Kv U (t+ Kv)agM
C1/2 CMg ma) 27 N(C Mz — ma)

(t+ Kv)agM THEHKY) v (Kv — 7)agM
(v nn) V(e

T (q,m, ) = c1 Mo (

(5.1)

(Kv —71)agM;
( 2meN(¢

for some absolute constant ¢;, where

e \[/ / mm{|m 3 (qQM >_3/2} dvdC.

To estimate the error term E**, we split the integral over v into two
pieces: |Kv—7| < N(/agM; and |Kv—7| > N(/agM; as in [14] to get
o (ME)T 10K
BT <L 2gsre ™ 1, I7[ |-

We also note that, by our choice K in (1.5) and |7| < (Mt)*C~/NK/M;

we have (Mo
_ Mt 10K
t5/2 1,—— 5.
< t1/2K3/2 min |T|

5.2. Stationary phase expansion for the v-integral. Now we will
study the integral over v in (5.1). Note that the weight function re-
stricts the v-integral to a range of length (Mt)*N(/agK M;. Thus, for
¢ < K~! we can bound the integral over v trivially to get the bound
(Mt)et=1/2K=5/2(N/agM;)'/?. Denote by T**(q,m,T) the integral in
(5.1). Then

1/2
I _ aqM; ) ) d¢
(g.m, ) ( /K/ Dav e

e 1/2
Lo N 7
t1/2 K5/2 qQM1
where

o0) = aqM\/W ( (t + Kv)agM )) v <(K’U - T)aqM1> Vo)

N({M2 — ma) 2w N (CMs — 2w N¢

iW(Kv—T) .
) dvd¢ + 0@t + E™)

(5.2)

i+ Kv (t + Kv)agM Kv—r1 (Kv — 1)agM:
J) = = e o N M, — ma) o 98T areNC
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By explicit computations,

K (Kv—71)({M2 — ma)

F'w) =510 (t+ Ko)(Ma

and for j > 2,
) () = (Z1' (G —2)! K’ K’
) (i )

27 Kv—71)i-1  (Kv+t)i-1

The stationary phase is given by

(t+ 7)M2¢ — Tma
—Kma '

In the support of the integral, we have

aqK My J .
NC y J

g (v) < (1 +
and by the range of K,

Dy~ NC (agEMY o,
)= N (M) iz

Moreover, if vy & [0.5, 3], then in the support of the integral we also have

@)= Eiog (1+L”° ’”)> S (1+ 71((”0*“))

2w t+ Kv 2 Kv—r1
K(vg —v) . aqK M,

= K1 1+ ——= K 1 .
Og( T Re— 7 ) meh TR

According to the lower bound of f’(v), we distinguish two cases.

Case a. N(/agKM; > 1. If vy & [0.5, 3], then the length of the integral
is b —a = 1. Applying Lemma 2(1) with

0, — N¢ __N¢
f_aqu’ f_aqKMl’

Qy=1, and A=

we obtain

[swetsona < 5 (N

If vg € [0.5,3], then treating the integral as a finite integral over the
range [0.1,4] and applying Lemma 2(2), it follows that

_ g(vo)e(f(vo) +1/8) N\
/Rg(v)e(f(v))dv - P (<qQK2M1> ) '
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Thus, for K as in (1.5), we have

1/2 1
(a?\fj\f) /K-l 1%21/]1{9@)@(]“(”))&1%

653 N C N Ry CTUESTLY
Nt K—1 aqRAir 2! \/m NG

N
+O(QQK3M1\/E ’

where 1g denotes the characteristic function of the set S.

Case b. N(/agKM; <1. In this case [a,b] = [r/K — 20 N({/aqK M,
7/K + 47 N({/aqK M,] and we apply Lemma 2 with

_ N¢ _ N¢ Q. — N¢
f_aqu’ f_aqKMl’ 97 agK My’

If vo & [a,b], then

and A =K.

/R Pl (0) dv < s

If vg € [a,b], treating the integral as a finite integral over [r/K —
3nN(/agK My, 7/K + 57t N(/aqK M), then

_ g(wo)e(f(wo) +1/8) 1 1
[ setrw)av = e+ 0 <Kmf + Kg/m}/g) :

Recall that ¢ > K. We have 2y > K~! and the O-term above is at

most K ~1y/agM;/N(. Thus

oM

(5.4)
() e o (50

Note that the O-terms in (5.2) and (5.4) are dominated by the O-term
in (5.3). By (5.2)—(5.4) we obtain

o m.T) = ¢ agM 1z g(vo)e(f(vo)+1/8)%
wlam e ()

(5.5)

N
+O(qQK3M1\/Z)'
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Finally, we compute the main term. We have

ot (=AM (Kma)”
Flvo) = - 27 log ( 2reNm ) » )= 2m(t + 7)(CM2 — ma)(Ma

and

o(og) = 9M (ma—t(t—krzna))l/QV ((t—i—r)qM)

N (CMs — —2rNm
« [ (E+T)gM T (t+T1)MC
XU(—QWNm)V(?i Kma )

Plugging these into (5.5) we have

T (q,m, 7) _ T ( qM )3/2\/ ((t+T)qM> U ((tJrT)qM)

K mN —27Nm —27Nm
_(t+T1)eM ﬂ.(HT)/l v _ (t+ 7)Mo dc
2meNm K1 K Kma

N
+0|—
(C]QKSMN/Z>

for some absolute constant cz. Extending the integral to the interval [0, 1]

at a cost of an error term dominated by the O-term in (5.1), we conclude
the following:

Lemma 9. We have

j** (q’ m7 T) = jl (q’ m7 T) + j2 (q7 m7 T)?

where
Filgm )= (LETMNTEE (o maM
(5:6) T KJVt+r 2reN'm —2rNm
. «f t+T)gM /1 T (t+T1)M(
xU ( —27Nm ) Jo v K Kma d,
and

(5.7) Jo(g;m, 7) = T (¢;m, 7) = Ji(g,m,7) = O(B(C, 7)(Mt)%),

where

i (. 10K N'/?
(5.8) B(C,T) = ey relE) min {17 7] } + t1/2K5/2M11/20.
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6. Estimating S*(IN)-II
Denote by Jr.7.4(q,m,n3ns) and S ¢(N,C, L, J, £) the contribution
of Ju(q,m,7) to J; (g, m,niny) in (4.3) and S{(N,C, L, J,+) in (4.5),
respectively.

6.1. Estimating S1,1(IN,C, L, J,£). By the Cauchy inequality and
the Rankin-Selberg estimate in (2.1), S11(N,C, L, J, %) is bounded by

N3/2 )\n2,n1 2 1
N YD DD S

OSk‘SlogCn%nzNL q:qoM§~C Q<a<lq+Q
(q0,M)=1 (a,q)=1
n1lq
(6.1) X Z X2(mo)#B(n1, £n2, m,a,q)J1,5,+(q, m, n§n2)

1<|m|<q(Mt) e /N
m=Mosa mod g

< kS VT,

1 0<k<log C

where, temporarily,

T =33 W (”(fL”Q>

2(qo0 1
>oem oy oo

ny n2 g=qoMbs~C QR<a<q+Q
(g0,M)=1 (a:9)=1
nilg 9
_ 2
X ) Xz (mo)PB(n1, £n2,m, a,q)J1,7,%(q, m, ninz)

1<|m|<q(Mt)*T¢/N
m=Msa mod ¢q

with mg defined in Lemma 6 and W a smooth function supported
on [1/2, 3], which equals 1 on [1,2] and satisfies W) () <, 1. Opening
the absolute square and interchanging the order of summations we get

UCEIDVEED YL~ ) DI R DI < (I

n1<VB3L g=qoM5~C QR<asg+Q 1<) m|<q(Mt) TE/N
(go,M)=1 (a,q)=1 m=Moa mod ¢q
nilq
(6.2) X2(q0) 1
’ *
D DNE U S D DR A
a' =gy M ~C Q<ad’<d'+Q  1<|m/|<q¢ (M) e N
(ah,M)=1 (a',q")=1 m/=Msa’ mod ¢
nilq’
where

. 1 i
TH=3 W (”L") Tr, (@, mynin) Tr g e (qf s nins)

n2

X ‘@(nlu +n2,m,a, q)‘@(nlv tng,m’,a, q/)'
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Denote ¢ = g/n1. Then #B(n1,n2,m,a,q) in (4.2) is

‘@(nh nz,m, a, q) =X1 (q)S(CLE, nQEa (/]\) Z* K(mm - b)S(@, n25\7 Ml)

b mod My

Applying Poisson summation formula with modulus qA(? M; we obtain

(6.3) = > C ()T
T M1 =3
where
(64) Cg* (n2) = Z 33(7“, c,m,a, q)me <A22]\Z- )
¢ mod quA/Z\/Il 1 '
and

'\ 7. (_ "ely \ dy
(6.5) I"(n2) —/RW(y)Jl,J,i(qvm,Ly)Jl,J,i(q7m,Ly)6( qq’M1> Y

Lemma 10. We have I*(n3) is arbitrarily small unless
|ne| < (Mt)*CVNKMi/L and I%(n2) < (Mt)°B*(n2),

where B*(ngy) is given by

N1/2 . o

. tK3/2M1/2 if ne =0,
B (n2) =

(n2) s ' .

tK3/2(|n2|L)1/2 Zf n2 ?é .

The following estimate for the character sum %*(ny) was proved
in [14] by using Deligne’s bound.

Lemma 11. For no # 0 we have
5 ~2
€ (n2) < 0@ ¢, n2) M7* (M, mz, m® —m'q”)",

and for no = 0 the sum vanishes unless ¢ = a’ (i.e., ¢ = ¢') in which
case

%" (0) < §°Rg(a — o )My"* (M, m — m')"/?,

where R.(u) = Y." e(uy/c) is the Ramanujan sum.

~ mod ¢
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By (6.2), (6.3), and Lemma 10, we have, up to an arbitrarily small
error term,

(Mt)® 9 1
TR <jpds 22 ™M X > o
n1<VBL  g=goM~C Q<aZqtQ
(g0, M)=1 (®0)=1
n1lg

1
DY DD D
1<|m|<q(Mt)' T¢/N ¢/ =gl M ~C Q<a’<d'+Q
m=Msza mod ¢ (qé’j\/[):l (0/7(1/):1
nilq’

* *
X E E |6 (n2)|B™ (n2).
1<|m/|<q’ (M) /N |n2|<(Mt)sC/NKMy /L
m’=Msa’ mod ¢’

Note that, for (g, M2) = 1 the condition m = Msa mod ¢ implies that
a = mMs; mod gq. By Lemmas 10 and 11, the contribution from k£ = 0 is
(6 6)

e X o> 2 > .

n1<v3L a~C 1<|m|<q(Mt)1+e/N Q<a<q+Q
(g, M)=1 a=Msom mod 1
nilq
1 * *
x> > > > €7 (n2)| B (n2)
q'~C 1<|m/|<q/ (M) HE/N Q<a’'<q'+Q [na|<(Mt)sCVNKM;i/L
(¢',M)=1 a'ENIgW mod ¢’
nilq’
(Mt)s N1/2
<<Q2M105 KNP0 Z ni Z Z
1 n1<V3L LZNC 1<|m|<g(Mt)1+e/N
M)=1
nl\q
xS e MY (M m )

1<|m/|<q/ (Mt)1+e /N

Qchs Z ni Z Z Z Z

n1<v3L q~C ¢ ~C 1<|Im|<g(Mt)1te /N 1<|m/ |<¢' (Mt)1+e /N
(0. M)=1 (¢’ M)=1

nilg nilq’

1/2
S 5/2 1/2 N
X E qq (q,q 7n2)M1 (M17n2) tKg/Q(‘nzlL)1/2
1<|na|<(Mt)sCvNEM{/L

MIPMP MEM?t

< N5/2K1/2 + N32KL"
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Note that, for £ > 1 the condition m = Mya mod ¢ implies that Ms|m

and a = (m/Ms) mod q/Ms. Thus

Moy—1 Moy—1
1 1 1 M,
D N S D IR
Q<a<q+Q =0 Qig/My<a<Q+(i+1)q/My i=0 MY
m=Mza mod q a=(m/Mz) mod q/Ms

where a;(m, q) is the unique solution of a = (m/Ms) mod ¢/M5 in Q +
iq/My < a < Q + (i + 1)¢/Ms. Bounding similarly as in the case k =
0, one sees that the contribution from k # 0 is dominated by (6.6).
Therefore

MMt MIM?t

T(k) < N5/2K1/2 + N3/2KIL’

and by (6.1) (also recall that L < N1/2+<3/2\3/2)

N3L [ MP*ME MMt
S11(N,C, L, J,+) < \/M?M < N§/4K1\/C - N:J«/%)
(6.7)
M11/2K1/2 1
N1/4 M11/2K1/2>

< (Mt)5N3/4(Mt)1/2 <

6.2. Bounding S;,2(N,C, L, J,+). Applying the Cauchy inequality
and (2.1), we have

N3L
S12(N,C, L, J, + = =
1’2( ’ ’ b )<< ME’M
(6.8)
x Z / R(k,7)dr,
0<k<log C |r|<(Mt)sC—1y/NK/M;
where, temporarily,
- Ly (nine X2 () 1
Rk, 1) =3 > W (= 3 2 > !
mone q=qoMr§~C QR<a<qg+Q
(g0,M)=1 (a,q)=1
n1lq
2
x Z Xz2(mo)%(n1, £n2, m, a,q)J2(g, m, 7)

1<|m|<q(Mt) /N
m=Mosa mod ¢
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As before, we open the absolute square and interchange the order of
summations to get

2(qo 1
DIED DR S

n1<V3BL g=qo M5 ~C Q<a<q+Q
(g0, M)=1 (a,0)=1
n1lq

X > X2(mo)J2(g,m,T)

1<|m|<q(Mt) T/N
m=Moa mod g

X2(90) 1
X Z q3/? Z a

¢ =g, M§~C Q<a'<q'+Q
(ah,M)=1 (a’,q")=1
nilq’
! *
X > x2(mo)J2(q'sm/, T)R",

1<|m/|<q' (Mt)'FE /N
m/EIMQ? mod ¢’

where

* 1 1
R = Z EW (nlgl2> ’%(n17in27m7a7 Q)gg(nlz in?vmlvalzq/)'
ng

Applying Poisson summation with modulus Z]\(}\’ My, we obtain

i e (o).

no€Z

qq’M1

where €*(nz) is defined in (6.4). By (2.6), the integral is arbitrarily small
if [na| > (Mt)sC2M; /L. By (5.7),

B(C, T)? 1
S RO S S D DR DR
n1<20  g—goMb~C Q@<alqtQ
(q0,M)=1 (a,q)=1
nilg

1
x > > > a
a/
1+e r_ 1 ark '<q’
1<|m|<q(M1t) /N q =qoMz~C Q<a’'<q¢'+Q
m=Mosa mod ¢ (qé’]y[)zl (alaq/):l

nilq’

X
x > > |6 (n2)],
1<|m/|<q' (Mt)}T¢ /N |n2|<(Mt)sC2M; /L
m/EMQ? mod ¢’
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where B(C, 7) is defined in (5.8). By Lemmas 10 and 11, we have

R(0,7) < (M1)* MQ2C’5 Z Z Z

ny<2C qg~C  1<|m|<C(Mt)1+te /N
(q,M)=1
n1lg
x > @°(@m —m")My*(My,m —m')"/?
1<|m/|<C(Mt)1+e /N
(6.9)
+ (o DO RIS > >
1Q
n1<2C q~C ¢ ~C 1< |m|<C(Mt)1+e /N
(¢ M)=1[1pt] nilq (¢’ rM)=1
nilq’
x > > G0 (@, @', n2) M7 (M1, )/
1<|m/ |<C(Mt)1+e/N 1< |no | <(Mt)eC2 My /L
KMMt  KC*M!*(Mt)?
£ 2 1 1
L (Mt)*B(C,T) < Nz + NOL )

and similarly the contribution from & # 0 is dominated by (6.9). Thus
by (6.8),

N3L [ KVRMP ()2 KV AMy
S15(N,C, L, J,+) < \/E< ~ + i

B(C,7)dr

X
/f|<<Mz>ECI\/W
where by (5.8)

(Mt)* N
B(C,7)dr < s (14 Gagaarmar )

~/\r|§(Mt)€C—1\ /NK /M,
Thus (note that L < N/2+€ K3/2 0 3/% and N/(Mt)'+2 < C' < \/N/K M)
S12(N,C, L, J, +)

2 1/2
< (Mt N®/ <K3/4M13/4+ (M?) (M¢) M ) :

NK3/4M11/4 K3/4M11/2 + N1/4K3/2Mf’/4
where the second term dominates the last two terms by the range of M;
and our choice of K in (1.5). Therefore

2
(6.10)  S12(N,C, L, J,+) < (Mt)*N*/* <K3/4M3/4 + (Mt)H) .
NK3/4M)/
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Under the assumptions (Mt)%/°/(NM;)3/®> < K < (Mt)?/N M, we see
that the bound in (6.10) can be controlled by (6.7). By (6.7), Lemmas 7
and 8 we conclude that

1/24-1/2
S1(N) < (Mt)°N**(Mt)'/? (Ml K ! )

N1/4 M}2K1/2
Then Proposition 2 follows in view of our choice of K in (1.5).

6.3. Proof of Lemma 10. We follow closely [14]. By (4.3) and (6.5),
7* (ng) is

1 NL\TT(NL T N
)47T2 e /e \®M} q* M7 7 2 T 2

’IIQL
qq' My’

(6.11

x Ji(q, m, 7)J1(q",m’, 7")VVJ(7’)VVJ(T,)WJr < 7Z.(T7’T/)) drdr’.

By (2.6), the integral WT(nyL/qq’ My, —i(T — 7)) is negligible if |ng| >
(Mt)*C/NKDM, /L. For smaller |ns|, we plug (5.6) into (6.11) to get

() = oo TNENT (L
47r2K2 3M3 q/S M13 e 2 T

T —i(t+7) N i(t+71")
X e (_% +w) GW) (_w)

2reNm 2reNm’/

x Hy(q,m,a,7)Hy (¢ ,m' a', 7" )W' (qZ’2AZ1 ,—i(r — T')) drdr’,
where
1 (t+7)gM\*? [ (t+7)gM
H = — SR el
s(a,m, a,7) VEt+T ( 2reNm ) v —27Nm
o+ T)gM /1 T (t+ 7)Mo
xU ( —2rNm W (7) 0 v K Kma d¢
satisfies the bound
_ 0 (Mt)®
H vz Sy Y
s(gm, a,7) <t ar Ho(@m:aT) < R AT

For ny = 0, by (2.6) we have WT(0, —i(7 — 7')) is arbitrarily small if
T — 7| > (Mt) . For |7 — 7/| < (Mt)?, we have W1 (0, —i(t — 7)) < 1
and
N1/2

I%(n2) < (Mt)* ————75—.
( 2) ( ) tKg/ZMll/QC
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For ny # 0 we apply (2.5) to get

L . ca (r'=7)ag' My \ ( (' = 7)gq' My Y77
WT n2 - o _ W
(qq’M1 »—ir=T) g 2mna L 2mens L

T —

, 1 a2 \*?
e (mm { e ()

for some absolute constant ¢4. The contribution from the above O-term
towards Z*(ns) is bounded by

—1 / / min 1 (02M1)3/2 drdr’
K2t Jiri<iq2101 1 1< 142191 |7 =732\ |n2|L

N1/2
KD

< (Mt)*®

For the main term, we write by Fourier inversion

2mno L 1/2 W (" = 71)qq¢' My
(7" — 7)qq’ M1 2mno L

1 (" = 7)qq' M
— f = YA St
—/RW (r,z)e( py— r ) dr.
Then Z*(ng) can be written as

/ 1/2 -

s (99 M i 1 1. 1
2 —3 —>+ir’ | H

w(mr) [w0s) [Le(arm) (g rm)maman

NL —iT NL ir!
H ’ ror
X J(qvmvavT) q3Mf q/3M13

N a2 A S N (e VTR
2reNm 2reNm/

(7' = 7)ad M\ ( (7' — r)gq' M / -
- — Mt)"B
X < G~ e ol r | drdr’ dr+O((Mt) (n2))

for some absolute constant c; where, for ng # 0,

N1/2

B(n2) = tK3/2(|na|L)1/2

Note that, for J =0 we have trivially Z* (ny) < N2 /tK>/?(|ny|L)'/?,
which is dominated by B*(nz). In the following, for notational simplicity
we only consider the case of J > 0. The same analysis holds for J < 0.
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By (2.3), we write

7 1/2
. _ 6 (499 M v 1
v = () L7 (3)

(6.12)
X /R/Rg(rm')e(f(r,rl))drdr' dr + O((Mt)° B*(n2)),
where
g(r, 7)) =V (T)Vy () Hs(q,m,a,7)H;(qd',m',a',7")
and

! NL NL
27 f (T, 7") = 37 log (é) — 37" log (e%> —1log <7q3M3) + 7' log <7q’3M3>
1 1

(t+7)gM / t+71)gM
- 1 R CALEVL el 1 BT 4
(t+7)log ( 2mreNm +{t+7)log 2meNm/

/ / / / 2
- M (7" = 7)aqg' ML

' Vo (T T4 .

+ (7 —7)log 2meng L + no L "

For the double integral over 7, 7/ in (6.12), Munshi [14] showed that
//g(T,T’)e(f(r, ) drdr’ < Jte.
RJR

Then using W1 (r, 1) < [r|77 we obtain
T* (ns) < (Mt)° B (n2).
This completes the proof of Lemma 10. O

Acknowledgements. The author expresses her heartfelt thanks to Ro-
man Holowinsky for many valuable suggestions, Ritabrata Munshi for
useful discussions related to his work, and she would like to thank the
Department of Mathematics at The Ohio State University for hospital-
ity. This work is supported by the National Natural Science Founda-
tion of China (Grant No. 11871306), Young Scholars Program of Shan-
dong University, Weihai (Grant No. 2015WHWLJHO04), the Natural Sci-
ence Foundation of Shandong Province (Grant No. ZR2016AQ15), and
a scholarship from the China Scholarship Council.

References

[1] V. BLOMER, Subconvexity for twisted L-functions on GL(3), Amer. J. Math.
134(5) (2012), 1385-1421. DOI: 10.1353/ajm.2012.0032.

[2] V. BLOMER, R. KHAN, AND M. YOUNG, Distribution of mass of holomor-
phic cusp forms, Duke Math. J. 162(14) (2013), 2609-2644. DOI: 10.1215/
00127094-2380967.

[3] D. GOLDFELD, “Automorphic Forms and L-functions for the Group GL(n,R)”,
With an appendix by K. A. Broughan, Cambridge Studies in Advanced Math-
ematics 99, Cambridge University Press, Cambridge, 2006. DOI: 10.1017/
CB09780511542923.


http://dx.doi.org/10.1353/ajm.2012.0032
http://dx.doi.org/10.1215/00127094-2380967
http://dx.doi.org/10.1215/00127094-2380967
http://dx.doi.org/10.1017/CBO9780511542923
http://dx.doi.org/10.1017/CBO9780511542923

102

(4]
(5]
(6]
[7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

Q. SuN

D. GoLpFELD AND X. LI, Voronoi formulas on GL(n), Int. Math. Res. Not.
2006, Art. ID 86295 (2006), 25 pp. DOI: 10.1155/IMRN/2006/86295.

B. HuaNG, Hybrid subconvexity bounds for twisted L-functions on GL(3),
Preprint (2016). arXiv:1605.09487.

M. N. HUXLEY, On stationary phase integrals, Glasgow Math. J. 36(3) (1994),
355-362. DOI: 10.1017/50017089500030962.

X. L1, Bounds for GL(3) x GL(2) L-functions and GL(3) L-functions, Ann. of
Math. (2) 173(1) (2011), 301-336. DOI: 10.4007/annals.2011.173.1.8.

W. Luo, Z. RUDNICK, AND P. SARNAK, On the generalized Ramanujan conjec-
ture for GL(n), in: “Automorphic Forms, Automorphic Representations, and
Arithmetic”, Part 2 (Fort Worth, TX, 1996), Proc. Sympos. Pure Math. 66,
Amer. Math. Soc., Providence, RI, 1999, pp. 301-310. DOI: 10.1090/pspum/066.
2.

M. McKEE, H. SuN, AND Y. YE, Improved subconvexity bounds for GL(2) X
GL(3) and GL(3) L-functions by weighted stationary phase, Trans. Amer. Math.
Soc. 370(5) (2018), 3745-3769. DOI: 10.1090/tran/7159.

S. D. MILLER AND W. SCHMID, Automorphic distributions,L-functions, and
Voronoi summation for GL(3), Ann. of Math. (2) 164(2) (2006), 423-488.
DOI: 10.4007/annals.2006.164.423.

G. MOLTENI, Upper and lower bounds at s = 1 for certain Dirichlet series with
Euler product, Duke Math. J. 111(1) (2002), 133-158. DOI: 10.1215/S0012~
7094-02-11114-4.

R. MunsHI, Bounds for twisted symmetric square L-functions, J. Reine Angew.
Math. 682 (2013), 65-88.

R. MunsHI, The circle method and bounds for L-functions, II: Subconvexity for
twists of GL(3) L-functions, Amer. J. Math. 137(3) (2015), 791-812. DOI: 10.
1353/ajm.2015.0018.

R. MunsHI, The circle method and bounds for L-functions—III: t-aspect sub-
convexity for GL(3) L-functions, J. Amer. Math. Soc. 28(4) (2015), 913-938.
DOI: 10.1090/jams/843.

R. MunsHi, The circle method and bounds for L-functions - IV: Subconvexity
for twists of GL(3) L-functions, Ann. of Math. (2) 182(2) (2015), 617-672.
DOI: 10.4007/annals.2015.182.2.6.

R. MuNsHI, Twists of GL(3) L-functions, Preprint (2016). arXiv:1604.08000.
R. M. NUNES, On the subconvexity estimate for self-dual GL(3) L-functions in
the t-aspect, Preprint (2017). arXiv:1703.04424.

A. PEYROT, Analytic twists of modular forms, Acta Arith. 185(2) (2018),
157-195. DOI: 10.4064/2a170303-19-1.

School of Mathematics and Statistics, Shandong University, Weihai, Weihai, Shan-
dong 264209, China
E-mail address: qfsun@sdu.edu.cn

Rebut el 17 de gener de 2018.


http://dx.doi.org/10.1155/IMRN/2006/86295
https://arxiv.org/abs/1605.09487
http://dx.doi.org/10.1017/S0017089500030962
http://dx.doi.org/10.4007/annals.2011.173.1.8
http://dx.doi.org/10.1090/pspum/066.2
http://dx.doi.org/10.1090/pspum/066.2
http://dx.doi.org/10.1090/tran/7159
http://dx.doi.org/10.4007/annals.2006.164.423
https://doi.org/10.1215/S0012-7094-02-11114-4
https://doi.org/10.1215/S0012-7094-02-11114-4
http://dx.doi.org/10.1353/ajm.2015.0018
http://dx.doi.org/10.1353/ajm.2015.0018
http://dx.doi.org/10.1090/jams/843
http://dx.doi.org/10.4007/annals.2015.182.2.6
https://arxiv.org/abs/1604.08000
https://arxiv.org/abs/1703.04424
http://dx.doi.org/10.4064/aa170303-19-1

	1. Introduction
	2. Voronoi formula and stationary phase method
	2.1. GL(3) cusp forms and Voronoi formula
	2.2. Exponential integral and stationary phase method

	3. Estimating S(N)
	4. Estimating S(N)-I
	5. A decomposition of the integral J**(q,m,)
	5.1. Stationary phase expansion for U† and V†
	5.2. Stationary phase expansion for the v-integral

	6. Estimating S(N)-II
	6.1. Estimating S1,1(N,C,L,J,)
	6.2. Bounding S1,2(N,C,L,J,)
	6.3. Proof of Lemma 10
	Acknowledgements

	References

