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GROUPS WITH NO PROPER

CONTRANORMAL SUBGROUPS
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Abstract: We consider which groups G are nilpotent if they have a nilpotent normal
subgroup N with G/N a restricted soluble group and if G is the only contranormal

subgroup of G. This supplements Kurdachenko, Otal, and Subbotin work of 2009,

where they consider the corresponding question but with G/N nilpotent and N a
restricted soluble normal subgroup.
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Let H be a subgroup of a group G. Following Rose [8] we say H is
contranormal in G if HG = 〈Hg : g ∈ G〉 = G. Further, we say G is
Rose-nilpotent if G is the only contranormal subgroup of G. Clearly, as
Rose undoubtedly knew, finite Rose-nilpotent groups are nilpotent and
all nilpotent groups are Rose-nilpotent. (John Rose was a good algebraist
who died far too young. I think his name is worth preserving.)

Kurdachenko, Otal, and Subbotin in [4] make a serious study of what
I have termed Rose-nilpotence. In many ways their most striking conclu-
sion is their Theorem A; namely, that if N is a soluble-by-finite normal
subgroup of the Rose-nilpotent G such that G/N is nilpotent and N sat-
isfies min-G (the minimal condition on normal subgroups of G contained
in N), then G is nilpotent. This raises the obvious question as to what
happens if N is nilpotent and G/N is soluble-by-finite with min-G.

Restrictions are needed. Heineken and Mohamed in [2] construct an
extension G of a countable elementary abelian p-group by a Prüfer
p-group such that the centre of G is 〈1〉 and every subgroup of G is
subnormal in G. Thus, this group is not nilpotent but is Rose-nilpotent.
Clearly G here is periodic, metabelian, locally nilpotent, and abelian-by-
Chernikov. However, positive results exist, but we must at least avoid
situations where N contains a G-section that is an infinite elementary
abelian p-group for primes p for which G/N contains an infinite p-sub-
group. The following is our main conclusion.
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Theorem 1. Let N be a nilpotent normal subgroup of the Rose-nilpotent
group G such that G/N is soluble-by-finite with min-G. Under any one
of the following three conditions G is nilpotent.

(a) N is a FAR-group.

(b) G/N is finite.

(c) N is a periodic π′-group, where π is a set of primes and G/N is a
π-group.

FAR-groups are defined and their basic properties developed in [5,
Chapter 5]. Thus, the hypotheses on N in (a) are that N satisfies min-p,
the minimal condition on p-subgroups, for every prime p and N has
finite Hirsch number h(N) (also called the torsion-free rank; it means
that N has a series of finite length with h(N) factors infinite cyclic and
the remaining factors all locally finite). Actually, we prove Theorem 1
under slightly weaker hypotheses that are more complicated to state; see
Theorem 2 below.

In the theorem, (a) is our main result and (b) and (c) are important
steps in the proof of (a), whose proof also uses [4]. Next, we consider lin-
ear Rose-nilpotent groups. There are some positive results, for example
periodic such groups and finitely generated such groups are nilpotent,
but much more, linear groups are a fertile source of examples of non-
nilpotent Rose-nilpotent groups. In [4] there is an example of an un-
countable metabelian Rose-nilpotent non-nilpotent group based on the
2-adic integers. This group is isomorphic to a subgroup of GL(2,C). How-
ever, there are countable examples in all characteristics, torsion-free ones
of finite (Prüfer) rank in characteristic 0 and extensions of elementary
abelian groups by torsion-free abelian groups in positive characteristics.

Page 86 of [5] lists a tower of progressively weaker rank conditions
for soluble groups. We pointed out above for metabelian groups of finite
rank that Rose-nilpotence need not imply nilpotence and hence the same
must apply to the two weaker conditions above finite rank (namely FAR
and finite Hirsch number). For the remaining five conditions the results
are all positive. The weakest condition below finite rank is the FATR con-
dition, which can be defined as follows. A group G is a finite extension of
a soluble FATR group if and only if h(G) is finite and τ(G), the unique
maximal locally finite normal subgroup of G, is Chernikov. Then we
prove the following.

Proposition 1. Let G be a finite extension of a soluble FATR group. If
G is Rose-nilpotent, then G is nilpotent.
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The following is the fundamental result from [4, Theorems A and B]
and Corollaries A1, A2, B1, B2, and B3 in [4] being easy consequences
of it.

Theorem 1.6 ([4]). Let A be an abelian normal subgroup of the Rose-
nilpotent group G such that G/A is nilpotent. If A satisfies min-G, then
G is nilpotent.

Finally, in this paper we give an alternative and shorter proof of this
important result. Working with descending central series instead of as-
cending central series produces direct simplifications as well as avoiding
the need to use [4, Proposition 1.4 and Corollary 1.5].

1. The proof of Theorem 1

Note first that the hypotheses in the theorem are all preserved by
homomorphisms. Also G/N is nilpotent by [4] and then min-G yields
that G/N is actually Chernikov. Further, if G/N ′ is nilpotent, then G is
nilpotent by a theorem of P. Hall (e.g. [13, 1.23]). Thus, throughout
the proof of the theorem we may assume that N is abelian and G/N is
Chernikov.

Lemma 1. Let A be an abelian normal subgroup of the Rose-nilpotent
group G such that G/A is Chernikov with G/CG(A) finite, say of order n.
Then G is nilpotent.

Proof: Now G/A is nilpotent (e.g. by [4]) and so, of course, is G/[A,G].
We break the proof into three steps.

Step 1: [A,G] has no section isomorphic to a Prüfer p-group for any
prime p.

For, suppose X < Y ≤ [A,G] with Y/X a Prüfer group. There exists
Z < A with A/X = Y/X × Z/X. Set B =

⋂
g∈G Z

g. Then A/B em-

beds into a direct product of n Prüfer groups. Therefore, P = G/B is
Chernikov and also Rose-nilpotent. Hence P is nilpotent and conse-
quently its minimal subgroup P o of finite index is central in P (e.g. [3,
1.F.1]). Then the kernel Q = R/B of the transfer homomorphism of P
into P o is finite, normal, and satisfies P = P oQ. Hence P ′ ≤ Q, so
Y ≤ [A,G] ≤ R. But B ≤ Z, so Y ∩ B ≤ Y ∩ Z = X and hence
|Y/X| ≤ |Y B/B| ≤ |R/B| = |Q| < ∞. However, Y/X is infinite. This
contradiction completes the proof of Step 1.

Step 2: If [A,G] is periodic, then G is nilpotent.
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By Step 1 each primary component of [A,G] is its own basic sub-
group ([1, 32.3]), is a direct product of cyclic groups, and by Step 1
again has finite exponent. Let π denote the (finite) set of prime divisors
of n. Then [A,G] = P × Q, where P is a π-group and Q is a π′-group.
If x ∈ Q\〈1〉, there is a subgroup B of [A,G] containing P but not
x and of finite index in PQ. Replacing B by

⋂
GB

g if necessary, we
may choose B normal in G (of course P and Q are normal in G). Now
G/B is finite-by-nilpotent, so G/B is nilpotent by [4]. But PQ/B is a
π′-group and G/CG(PQ) is a finite π-group (of order dividing n). There-
fore, [PQ,G] ≤ B. Thus, [A, 2G] ≤

⋂
B B = P .

If instead we choose x ∈ P\〈1〉 there exists a normal subgroup B
of G in PQ containing Q but not x with B of finite index in PQ and
with G/B nilpotent. Now P has finite exponent, e say, so if g denotes
the augmentation ideal of G/CG(A) in its group ring over Z/Ze, then
gm = gm+1 for some m ≤ en. Further, [PQ, jG] in additive notation
equals (PQ)gj for each j ≥ 0. Hence [PQ,mG] ≤ B and [A,m+1G] ≤⋂
B B = Q. Consequently [A,m+1G] ≤ P ∩Q = 〈1〉, and therefore G is

nilpotent, completing the proof of Step 2.

Step 3: The completion of the proof of the lemma.
Now [A,G] does not contain by Step 1 any free abelian subgroup of

infinite rank. Hence [A,G] contains a free abelian B of finite rank, r ≥
0 say, such that [A,G]/B is periodic. Replacing B by

⋂
GB

g as usual we
may choose B normal in G. If p is any prime, then [A,G]/Bp is periodic
and hence G/Bp is nilpotent by Step 2. Consequently [B, rG] ≤ Bp and
so [B, rG] ≤

⋂p
Bp = 〈1〉. Clearly G/B is nilpotent. Therefore, G is

nilpotent. The proof is now complete.

Lemma 2. Let A be an abelian normal subgroup of the Rose-nilpotent
group G. If for some set π of primes G/A is a Chernikov π-group and
A is a periodic π′-group, then G is nilpotent.

Proof: Now G/A is nilpotent (e.g. by [4]) and G is locally finite satisfying
min-π, the minimal condition on π-subgroups. If p ∈ π, then G contains
a Sylow p-subgroup P ; that is, a maximal p-subgroup P of G containing
isomorphic copies of every p-subgroup of G (see [3, 3.7]). Let P o denote
the minimal subgroup of P of finite index. Then P ∼= PA/A is nilpotent,
so P o is central in P (see [3, 1.F.1]). For each positive integer m set
Pm={x ∈ P o : xm = 1} ≤ P and let K denote the kernel of the transfer
homomorphism of P into P o. Then KP o = P and the set of all KPm,
as P ranges over all the Sylow p-subgroups of G but for fixed m, is a
characteristic conjugacy class of subgroups of G (see [3, 3.9 and 3.10]).
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Set H = NG(KPm). If g ∈ G, then P and P g are Sylow p-subgroups
of L = 〈H,Hg〉 and hence by [3, 3.10] there exists h in L such that
(KPm)g = (KPm)h. Thus, gh−1 ∈ H and g ∈ L. Hence H is abnormal
in G and HG = G. But G is Rose-nilpotent. Therefore H = G, the
subgroups KPm are normal in G for all m, and so P is normal in G.
Then [A,P ] ≤ A∩P = 〈1〉, since A is a π′-group and P is a π-group and
this is for every p in π. Therefore, CG(A) = G by [3, 3.13]. But G/A is
nilpotent. Consequently G is nilpotent.

Lemma 3. Let A be an abelian normal subgroup of the Rose-nilpotent
group G such that G/A is a Chernikov π-group for some finite set π of
primes. Suppose A has finite Hirsch number (= torsion-free rank) and
satisfies min-p for each p in π. Then G is nilpotent.

Proof: Set T = Oπ′(A) (= Oπ′(G) note). Suppose first that Oπ(A) =
〈1〉 = T . Then A is torsion-free of finite rank, r say. Hence G/CG(A) is
isomorphic to a periodic subgroup of GL(r,Q) and consequently is finite
(e.g. [9, 9.33]). Therefore, G is nilpotent by Lemma 1. Then the image
of G/CG(A) in GL(r,Q) is unipotent and hence torsion-free as well as
finite. Consequently [A,G] = 〈1〉.

Returning to the general case Oπ(A) is Chernikov, so Oπ(G) is too. If
G/Oπ(G) is nilpotent, since Oπ(G) is Chernikov, then G too is nilpotent
by [4]. Therefore, assume from now on that Oπ(G) = 〈1〉. The case
where T = 〈1〉 is covered by the above, so assume that T 6= 〈1〉. Now
clearly Oπ(A/T ) = Oπ(A)T/T = 〈1〉 = Oπ(A/T ). Hence by the first
case above we have G/T nilpotent with [A,G] ≤ T .

Now [A,G] ≤ T ≤ A ≤ CG(A) ≤ Z, where Z/CG(A) is the centre
of G/CG(A). Let z ∈ Z. Then φ : a 7→ [a, z] is a G-homomorphism of A
into T and CA(z) = kerφ. Hence CA(z) is normal in G and A/CA(z) is
a π′-group. Then G/CA(z) is nilpotent by Lemma 2, for G/A is a
Chernikov π-group. Therefore, [A,G] ≤ CA(z) and, consequently, [A, z]=
Imφ is centralized by G. This is for all z in Z and hence [A,Z,G] = 〈1〉.

Clearly Z≤CG(A/[A,Z]), so a simple induction applied to T/[A,Z]≤
A/[A,Z] ≤ G/[A,Z] yields that [A, cG] = 〈1〉 for some c (e.g. c the nilpo-
tency class of G/A) and hence G is nilpotent as required. (Actually here
T is a π′-group, A centralizes T , and G/A is a π-group, so [T,G] =
〈1〉.)

Theorem 2 below and hence also Theorem 1 follow at once from
P. Hall’s theorem ([13, 1.23]) and Lemmas 1, 2, and 3.
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Theorem 2. Let N be a nilpotent normal subgroup of the Rose-nilpotent
group G such that G/N is soluble-by-finite with min-G. Under any one
of the following three conditions G is nilpotent.

(a) N/N ′ satisfies min-p for every prime p for which G/N contains an
element of order p and N/N ′ has finite torsion-free rank.

(b) (G : CG(N/N ′)) is finite.

(c) N/N ′ is a periodic π′-group, where π is a set of primes and G/N is
a π-group.

The set of primes p in (a) is always finite, given the other hypotheses
on G/N . Actually (a) in Theorem 2 is not a lot stronger than (a) in
Theorem 1, and (c) in Theorem 2 is no stronger than (c) in Theorem 1.
These follow from the easy facts that for a nilpotent group N , if N/N ′ is
a FAR-group, then so is N and if N/N ′ is a π′-group, then so is N ; use
[13, Sublemma (b) on p. 10] or [6, 2.26].

2. Linear groups

If X is a class of groups such that X-groups all of whose finite im-
ages are nilpotent are themselves nilpotent, then clearly Rose-nilpotent
X-groups are nilpotent. Below we give examples of such classes X.

(a) Finitely generated linear groups.
(b) Subgroups of the groups GL(n,R), for any positive integer n and

any finitely generated (commutative) integral domain R. See [9,
4.16].

(c) Finite extensions of torsion-free soluble minimax groups. This fol-
lows from (b) since for each such group there exist positive inte-
gers m and n such that G embeds into GL(n,Z[1/m]). See 1.3
of [10].

(d) Finitely generated subgroups of the groups AutRM for M any
Noetherian module over any commutative ring R. Apply 6.1 of [11]
and (a) above.

(e) Finitely generated subgroups of the groups AutRM for M any
Artinian module over any commutative ring R with R/AnnRM is
Noetherian. See 3.2 of [12].

(f) Finitely generated hyper (abelian or finite) groups. See [6, 10.51].

Proposition 2. Periodic Rose-nilpotent linear groups are nilpotent.

Proof: Let G be a periodic Rose-nilpotent subgroup of GL(n, F ), n an
integer, F some field. Let p be any prime and P a maximal p-subgroup
ofG. SetH = NG(P ). IfH < G, thenN = HG < G by Rose-nilpotence.
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By [9, 9.10] (the analogue of Sylow’s theorem) and the Frattini argument
G = HN = N . Hence H = G and so G = ×p prime P . If p = charF ,
then P is nilpotent (of class less than n). If p 6= charF and p > n, then
P is abelian. If p 6= charF and p ≤ n, then P is Chernikov. (See [9, 9.1]
for these results.) However, P as an image of G is Rose-nilpotent, so in
the final case here P is at least nilpotent ([4]). Therefore, G is nilpotent.
(Apart from the trivial cases where n = 1 or n = 2 = charF , there is
no general bound on the nilpotency class of G in terms of n and charF ;
see [9, 8.3].)

This proposition, [11, 6.1], and [12, 3.2] immediately yield the follow-
ing.

Corollary. Let G be a periodic Rose-nilpotent subgroup of AutRM ,
where R is a commutative ring and M is either a Noetherian R-module
or an Artinian R-module with R/AnnRM Noetherian. Then G is nilpo-
tent.

We now consider linear counter examples. As pointed out in [4] the
infinite locally dihedral 2-groupG is hypercentral but not Rose-nilpotent.
Clearly this G has a faithful linear representation of degree 2 over any
large enough field of characteristic not 2.

Lemma 4. Let G = UA be the split extension of the abelian group A by
the abelian group U . Then G is Rose-nilpotent if and only if for all X <
A, a normal subgroup of G, we have X[A,U ] < A.

Proof: Suppose G is Rose-nilpotent and X < A is a normal subgroup
of G. Set H = UX < G. Now HG ≥ H[A,H] ≥ UX[A,U ]. Thus,
HG ∩ A ≥ X[A,U ]. If A ≤ HG, then HG = G, so by Rose-nilpotence
HG ∩A < A and hence X[A,U ] < A.

Now assume G is not Rose-nilpotent. Then there exists H < G with
HG = G. Since U is abelian, HG ≤ HA, so HA = G. Therefore,
X = H ∩ A is normal in G and H < G, so X < A. Finally, A ≤ G =
HG = H[A,H] = H[A,G] = H[A,U ], so A = X[A,U ].

Corollary. Let R be a commutative local ring with maximal ideal m.
Suppose m is not nilpotent and R/m = GF (p) for some prime p. Let A
denote the additive group of R and U = 1 + m, a subgroup of the group
of units of R. Then the split extension G of A by U is Rose-nilpotent
but not nilpotent. Also G is isomorphic to a subgroup of Tr(2, R). If R
is an integral domain, then G is not even locally nilpotent.

Proof: Clearly Z1R[U ] = R. Thus, if X < A is a normal subgroup of G,
then X is an ideal of R. Thus, X ≤ m. Also [A,U ] = Rm = m, so
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X + [A,U ] ≤ m < A. Hence G is Rose-nilpotent by Lemma 4. Also
[A, cU ] = mc for all c ≥ 1 and by hypothesis mc 6= {0}. Therefore, G is
not nilpotent. Finally, if a ∈ A and 1 + x ∈ U with 〈a, 1 + x〉 nilpotent,
then [a, c1+x] = 1 for some c; that is, as elements of R we have axc = 0.
If R is a domain, then either a = 0 or 1 + x = 1, so G cannot be locally
nilpotent.

We now consider special cases of this corollary.

(1) For any prime p let R = Z[1/q : primes q 6= p]. Then R satis-
fies the corollary and G is Rose-nilpotent, not locally nilpotent,
metabelian, countable, torsion-free ((torsion-free)-by-(of index 2)
if p = 2), and isomorphic to a subgroup of Tr(2, R) ≤ Tr(2,Q) ≤
GL(2,Q).

(2) For any prime p set F = GF (p) and let x be an indeterminant
over F . Let R denote the local ring of F [x] over its maximal
ideal xF [x]. Again R satisfies the corollary. Here G is Rose-nilpo-
tent, not locally nilpotent, metabelian, countable, an (elemen-
tary abelian p-group)-by-(torsion-free abelian), and isomorphic to
a subgroup of Tr(2, R)≤Tr(2, F (x)) ≤ GL(2, F (x)).

(3) If p is any prime the ring R of p-adic integers satisfies the corol-
lary. Here G is uncountable and G is Rose-nilpotent, not locally
nilpotent, metabelian, torsion-free ((torsion-free)-by-(of index 2)
if p = 2), and isomorphic to subgroups of Tr(2, R) and Tr(2,C).
If p = 2, then G here is almost the same as the example given on
p. 235 of [4].

Lemma 4 can be used to exhibit other interesting, but now non-linear
examples. For each prime p let Ap be a cyclic group of order pp. Then
Ap has an automorphism bp of order pp−1 and Gp = 〈bp〉Ap is nilpotent
of class p. Set A = ×pAp and G = ×pGp. If X is a proper subgroup
of A, then X = ×p(X ∩Ap) and there is at least one prime q such that
X ≤ Y = (×p 6=qAp) × (Aq)

q. Also [A,G] = ×p(Ap)p ≤ Y and Y is
normal in G. Therefore, G is Rose-nilpotent by Lemma 4. Thus:

(4) The group G is metabelian, hypercentral, periodic, of rank 2, and
Rose-nilpotent but not nilpotent.

As a variation of (4) let 〈b〉 be an infinite cyclic group acting on A by b
acting as bp on each Ap. Now set G = 〈b〉A. Again [A,G] = ×p(Ap)p
and the argument above yields that G is Rose-nilpotent. Thus:

(5) The group G is (locally cyclic)-by-(infinite cyclic), hypercentral, of
rank 2, and Rose-nilpotent but not nilpotent. (Incidentally this
also shows that we cannot replace min-G by max-G in Theorems 1
and 2.)
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3. Proof of Proposition 1

Note that a minor complication of working with the class of FATR
groups is that it is not quotient-closed (just consider Q/Z).

We induct on h(G); if h(G) = 0, then G is Chernikov and nilpotent. If
G/τ(G) is nilpotent, then so is G by [4, Theorem A], so assume τ(G) =
〈1〉. Then G has a torsion-free nilpotent normal subgroup N such that
G/N is finitely generated and abelian-by-finite, see [5, 5.2.2 and 5.2.3].
Then G/N is nilpotent and G is soluble. In particular if N = 〈1〉, then
G is nilpotent, so assume N 6= 〈1〉. Now the centre A of N is a torsion-
free abelian normal subgroup of G of finite rank r ≥ 1, N/A is torsion-
free ([6, 2.25]), and τ(G/A) is finite. By induction G/A is nilpotent.

Now G = TN for some finitely generated subgroup T of G and T/(T ∩
A) is nilpotent. There exists a free abelian subgroup B of A of rank r
with A/B periodic. Since A is central in N and G = TN we have that
T ∩ A is normal in G and BG = BT . Set D = BG(T ∩ A) ≤ A and
H = TBG = TD. Then H is a finitely generated (and soluble) subgroup
of G.

Let K be a normal subgroup of H of finite index. Then K ∩ D is a
normal subgroup of G (again using that A ≥ D is central in N and G =
TN) and A/(K ∩D) is periodic abelian of finite rank. As such, each of
the primary components of A/(K∩D) is Chernikov. Thus, there exists a
normal subgroup C ≥ K ∩D of G in A such that A/C is Chernikov and
C ∩D = K ∩D. By [4, Theorem A] again G/C is nilpotent. Thus, for
some integer k we have [D, kG] ≤ K. But H/D is an image of T/(T ∩A),
which is nilpotent. Therefore, H/K is nilpotent. This for all such K.
Consequently H is nilpotent by [6, 10.51].

From the above it follows that [D, hH] = 〈1〉 for some integer h and
[D, hH] = [D, hG] since D ≤ A and G = HN . But A ≥ D ≥ B 6=
〈1〉. Therefore, CA(G) 6= 〈1〉. Also A/CA(G) is torsion-free (since A is
torsion-free and [an, g] = [a, g]n for all a in A, g in G, and integers n),
so τ(G/CA(G)) is finite. Induction on h(G) yields that G/CA(G) is
nilpotent. Consequently so is G. The proof is complete.

We now return briefly to linear groups.

Corollary. For any integer n, let G be a Rose-nilpotent soluble-by-finite
subgroup of GL(n,Q) that is unipotent-by-(finitely generated). Then G
is nilpotent.

By (1) above, Rose-nilpotent metabelian subgroups of GL(2,Q) need
not be nilpotent, so we need the extra hypothesis.
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Proof: Unipotent subgroups of GL(n,Q) are torsion-free nilpotent of
finite rank and G is unipotent-by-abelian-by-finite. Thus, G satisfies the
hypotheses of Proposition 1 and hence is nilpotent. (Actually if G is as
in Proposition 1, then G/τ(G) embeds into some GL(n,Q), see [10], so
the proposition and its corollary are more or less equivalent.)

4. A proof of [4, Theorem 1.6]

If n ≥ 0 is an integer and if x is an element of a group G, set

EG,n(x) = {g ∈ G : [g, nx] = 1}.

Obviously EG,0(x) = 〈1〉 and x ∈ EG,n(x) for all n ≥ 1. Given n
and x, the set EG,n(x) need not be a subgroup of G, but if [G, x] is
nilpotent of class c there always exists an integer m = m(n, c) such
that 〈EG,nn(x)〉 ⊆ EG,m(x). This follows from a couple of elementary
commutator formulae (see [7, Lemma 4]) and a simple induction (see [4,
Lemma 1.3], cf. [7, Corollary 3*]).

We are given an abelian normal subgroup A of the Rose-nilpotent
group G such that A satisfies min-G and G/A is nilpotent of class c. We
have to prove that G is nilpotent.

SupposeG is not nilpotent. By min-G we may assume that A = [A,G].
Since G is not nilpotent but G/A is nilpotent, so A ≤ CG(A) < G and
we may pick an x in G\CG(A) with [G, x] ≤ CG(A). Since x is central
in G modulo CG(A), each [A, jx] is normal in G for j ≥ 0. Hence
[A, sx] = [A, s+1x] = B say, for some minimal s ≥ 1.

Let g ∈ G. Then [g, c+sx] ∈ B = [B, x] and hence there exists b in B
with [b, c+sx] = [g, c+sx]. Since [G, x] and A commute this implies that

[gb−1, c+sx] = [g, c+sx][b, c+sx]−1 = 1.

Hence EG,c+s(x)B = G. Set L = 〈EG,c+s(x)〉, so LB = G. Now [G, x] ≤
CG(A), which is nilpotent (of class at most c+1). Thus, L ⊆ EG,m(x) for
some m, see above. Also LG ≥ L[A,L] = L[A,G] = LA = G. Since G is
Rose-nilpotent, this implies that L = G. But then L ≥ B, so [B,mx] =
〈1〉. Hence if B 6= 〈1〉, we have B > [B, x] = B. Consequently B = 〈1〉.
Therefore, [A, sx] = 〈1〉. Since x /∈ CG(A) we have s ≥ 2.

Set D = [A, s−1x] > 〈1〉. Now, thinking of A as a G-module, in addi-
tive notationD=A(x−1)s−1 and (x−1)s−1 defines aG-homomorphism φ
of A onto D, say with kernel E. Then E is a normal subgroup of G
with [A, x] = A(x − 1) ≤ E < A, using A/E ∼= D 6= 〈1〉. Re-
peat the above but with A and G replaced by A/E and G/E. Thus,
we choose y in G\CG(A/E) and an integer t with [G, y] ≤ CG(A/E),
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[A, ty] ≤ E, [A, t−1y] not contained in E and t ≥ 2. Thus, using the
G-homomorphism φ we now have

D > [D, t−1y] > 〈1〉; that is, [A, s−1x] > [A, s−1x, t−1y] > 〈1〉.

Note that (x−1)s−1(y−1)t−1 (≡ (y−1)t−1(x−1)s−1 modulo AnnZG(A)
does determine a G-homomorphism ψ of A into itself, indeed into D.

Now apply this argument to A and G modulo F = kerψ. Then
A > F > E and we produce z ∈ G\CG(A/F ) with [G, z] ≤ CG(A/F )
and an integer u ≥ 2 with [A, uz] ≤F, [A, u−1z] not contained in F and
satisfying

[A, s−1x] > [A, s−1x, t−1y] > [A, s−1x, t−1y, u−1z] > 〈1〉.

In this way, by keep repeating the above argument, we can construct
an infinite strictly descending series of normal subgroups of G in A,
contradicting the min-G hypothesis. Therefore, G is nilpotent.

Remark (Chernikov groups). We have repeatedly used above the fact
that Chernikov Rose-nilpotent groups are nilpotent, justifying its use by
quoting Theorem A of [4]. However, it is a much more elementary result
than the theorems of [4]. Perhaps it is worthwhile recording a short
elementary proof.

Thus, let G be a Chernikov Rose-nilpotent group, A its minimal sub-
group of finite index, n = (G : A), T a transversal of A to G, H = 〈T 〉,
and γ =

∑
t∈T t ∈ ZG. Suppose G is not nilpotent, so G is infinite

and r = total-rankA ≥ 1. We induct on r. Now Aγ is divisible and
central in G. If Aγ 6= 〈1〉, then G/Aγ is nilpotent by induction, so G
is too. Hence assume Aγ = 〈1〉. If a ∈ A, then in additive notation
na =

∑
T a(1 − t). Thus, in multiplicative notation [A,H] ≥ An = A.

Hence HG ≥ H[A,H] ≥ HA = G. But G is infinite and H is finite,
so H < G. This contradicts Rose-nilpotence and completes the proof
that G is nilpotent.
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