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1. Introduction

In this paper we study neighborhoods of compact, smooth, holomor-
phic curves of complex surfaces which have positive self intersection num-
ber. Our main purpose is to give a condition that guarantees the exis-
tence of an embedding of a neighborhood of the curve into the projective
plane. The first example of a result on this problem comes from [3]. In
that paper the authors showed that if the curve has genus 0 and self
intersection number equal to 1, then the existence of three different fi-
brations over it implies that some neighborhood is diffeomorphic to a
neighborhood of the line in the projective plane. In the present paper we
consider curves of self-intersection n2 with n ≥ 2.
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Since a fibration over a curve of genus 0 is defined by a local submer-
sion over P1 (that is, defined in a neighborhood of the curve), we may
wonder if in the case of higher genus the existence of a number of local
submersions is enough to guarantee an embedding into the projective
plane P2. This is in fact a necessary condition.

In order to discuss this, let us suppose that a curve C contained in
some surface S can be embedded in P2 as a curve C0 of degree n ≥ 2
(we have of course to start with C · C = n2 in S). It is easy to find
infinitely many submersions in a neighborhood of C0. For example, we
take two curves {A = 0} and {B = 0} of the same degree l ∈ N which
cross each other in l2 distinct points not in C0. It can be seen that
the map A/B, which is well defined outside {A = 0} ∩ {B = 0}, has no
multiple fibers so that it has only a finite number of critical points. If C0

avoids all these points, then A/B is a submersion in some neighborhood
of C0 and the restriction of A/B to C0 is a ramified map from C0 to P1

of degree l.n. We will be particularly interested in the case l = 1, that
is, A = 0 and B = 0 are lines whose common point is not in C0; the
submersion A/B will be called a pencil submersion and the restriction
of A/B to C0 is a ramified map of degree n (any local submersion that
leaves such a trace in C0 is in fact a pencil submersion). We see that to
be equivalent to a neighborhood of C0, a neighborhood of C has to carry
also many submersions to P1. However, this is not enough to guarantee
the embedding of a neighborhood of the curve into P2 as we can see in
the following example.

Example 1.1. Consider the rational curve in P2 defined in affine coordi-
nates by the equation y2 = x2(x+1). It is a smooth rational curve except
for the node at the point (0, 0). We blow up first at a point in the curve
different from (0, 0), and then we blow up at (0, 0). The strict transform
is a smooth rational curve C of self intersection number equal to 4 with
many local submersions (which come from submersions constructed in
the plane as above), but its neighborhood can not be embedded in the
plane: given a submersion constructed using l = 1 as above (before blow
ups), we notice that it induces a ramified map from C to P1 of degree 3;
but for a conic C0 in the plane (which has of course self intersection
number equal to 4), the ramified map induced by any local submersion
is of even degree.

The surprising feature in [3], in case n = 1, is that only three sub-
mersions are needed. A natural question would be: can we obtain an
embedding once it is assumed the existence of three local submersions
in a neighborhood of C whose restrictions to C are meromorphic maps
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of degree n, or a multiple of n? We give a partial negative answer in
Section 2.

We introduce then an extra condition (also a necessary one). A curve C
that has an embedding φ : C → C0 ⊂ P2 carries naturally a special set of
meromorphic maps Gφ ={G|C0 ◦φ, G a pencil submersion}. A set {Fi}
of submersions defined in a neighborhood of C whose restrictions to C
have no common critical points is projective at C if Fi|C ∈ Gφ. The sub-
mersions are called independant if the singularities of the correspondent
pencils on P2 are not aligned. We may state then our main result:

Theorem A. The existence of a projective triple of independant sub-
mersions at C implies the existence of an embedding of a neighborhood
of C into the projective plane.

The submersions in the statement of the theorem are supposed to
produce different fibrations; we remark that if F is a submersion over P1

and T is a Moebius transformation, then F and T ◦ F induce the same
fibration.

Remark 1.2. The fibers of a submersion define a regular foliation in a
neighborhood of C, which is generically transverse to C with tangency
points at the critical points of the restriction to the curve. The sub-
mersion is a meromorphic first integral for the foliation. The converse
does not hold, that is, this type of foliation may not have a first integral
(see [5]).

We mention that the study of neighborhoods of curves has already
been pursued when the self-intersection is not positive as we can see
in [4], [8], and [9].

This paper is organized as follows: Section 2 presents some examples
and it is followed by Section 3 where we discuss how to build meromophic
maps starting from two different pencil submersions. This allows (Sec-
tion 4) to show the existence of foliations defined in a neighborhood
of the curve which have this curve as an invariant set and, finally, in
Section 5 we prove our theorem.

2. Examples

This section has two parts. In the first part we give examples of sur-
faces containing smooth curves of self-intersection number n2 which are
not embeddable in the plane, although they are fibered by submersions
whose restrictions to the curves are meromorphic functions of a degree
multiple of n. Once this is done, we give examples which satisfy the extra
condition of our Theorem A but have only one or two fibrations and do
not embed them in the plane.
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2.1. Separating branches and examples with 3 fibrations. We
will use the following construction. Let us consider a curve H with an
ordinary singularity P with m branches L1, . . . , Lm. For each branch Lj ,
we take a neighborhood Vj which is biholomorphic to a bidisc Dj by
means of a biholomorphism φj : Dj → Vj . We assume that δLj ∩ Vi = ∅
for all i 6= j. We fix a neighborhood V of H \ ∪m1 Lj . Finally, we take
the disjoint union of V with all the Dj and glue Dj to V using the

restriction of the map φj to φ−1j (V ∩ Vj). In this way the union of the
sets Vj , which contains P , is replaced by m copies of the bidisc, and there
is a new curve H ′ replacing H inside a new surface without the ordinary
singularity. As for the self-intersection number H ′ · H ′, we have that
H ′ ·H ′ = H ·H −m(m− 1) = (H ·H −m2) +m. Also, any holomorphic
foliation F defined in V ∪m1 Vj induces naturally a holomorphic foliation
in the new surface which is F in V and φ∗j (F) in each Dj . We refer to
this construction as separating branches of H at P . This is the simplest
way of desingularizing such a curve.

Vi Vj Vi Vj

Figure 1. Separating branches.

Let us consider then a smooth plane curve C ′ of degree n′ and

genus g(C ′) = (n′−1)(n′−2)
2 . It can be also immersed in the plane as

a curve C of degree n for any n > 2g(C ′) with a number s of nodal

points such that n2 − 3n − 2s = n′
2 − 3n′. We choose n − n′ = e2 for

some e ∈ N such that

(i) n′ divides e3 − e2,
(ii) n′ does not divide 2e2;

we choose also three pencils d
(uj

vj

)
= 0 of curves of degree e whose

sets of e2 base points lie in the regular part of C and are two by two
disjoint. After blowing up at these 3e2 points and separating branches
at the nodal points of C we get a curve C̃ contained in some surface

with self-intersection number equal to n2−3e2−2s = n′
2
. The maps

uj

vj

become submersions whose restrictions to C̃ are meromorphic maps of
degree e.n− e2, which is a multiple of n′ because of (i).
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A neighborhood of C̃ is not equivalent to a neighborhood of the
curve C ′ in the plane. In fact, let us take a linear pencil L in the
plane with base point outside C and transverse to the branches at each
nodal point (this is before blow ups and separation of branches). We
have 2n = Tang(L, C) + χ(C). Since tang(L, C, P ) = 2 for each nodal
point P , we get 2n = 2s+χ(C)+tang(L, C), where the last term counts
the tangencies with the regular part of C. These tangencies persist when
we blow up and separate branches. Therefore, if a neighborhood of C̃ is
equivalent to a neighborhood of C ′, we get in this neighborhood a folia-
tion L′ with Tang(L′, C ′) = tang(L, C) = 2n−2s−χ(C). It follows that
(deg(L′)+2)n′ = 2n−2s−χ(C)+χ(C ′) = 2n−2s+2g(C)−2g(C ′) and
since g(C)−s = g(C ′), we conclude that (deg(L′)+2)n′ = 2n = 2n′+2e2,
a contradiction because of (ii).

We remark that when n = 4, n′ = 3 or n = 3, n′ = 2 the construction
can be done with e = 1 because n > 2g(C ′) (and obviously (i) is satisfied
in both cases). When n = 4, n′ = 3 we have also that (ii) holds true. In
the general case n′ > 3 we may choose e = n′ + 1 for example in order
to get both (i) and (ii) satisfied.

The special case n = 3, n′ = 2 (and e = 1) can be treated with a small

difference in what concerns the proof that the neighborhood of C̃ is not
equivalent to a neighborhood of C: we select L as the pencil whose base
point is the node point P of C. Since Tang(L, C) = 6 = tang(L, C, P ),
we see that there is no other point of tangency between L and C. We
get then (deg(L′) + 2).2 = 4 + 2 (after separating the branches at P

we obtain 2 radial singularities belonging to C̃ and a fortiori to C ′) and
therefore deg(L′) = 1. But it is impossible for a foliation of degree 1 in
the plane to have 2 radial singularities.

It would be nice to have examples where the degree induced by the
submersions on the curve is exactly n′.

2.2. Special examples. Given a meromorphic function of a curve, we
can realize it as the restriction of a submersion defined in some surface
containing the curve (we will say that the submersion is a lifting of
the function). This is a construction already presented in [7] which we
present here again. We start with a line bundle of Chern class n2 ∈ N over
a curve C. The lines of the bundle define a foliation L in the total space
of the bundle. Let f : C → P1 be a ramified map with simple critical
points and let p be one of these points. There exists an involution i
defined in a neighborhood of p in C by f(q) = f(i(q)) for q close to p.

We fix a neighborhood U of p and a holomorphic diffeomorphism
G : U → D×D such that: 1) G(p) = (0, 0); 2) G(C∩U) = {(z1, 0) ∈ D×
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D}; 3) G takes L to the foliation dz1 = 0, and 4) g := G|C∩U conjugates i
to the involution z 7→ −z, that is, g(i(q)) = −g(q). We take also a
biholomorphism ψ from D × D to a neighborhood of (0, 0) with the
properties: 1) ψ(0, 0) = (0, 0); 2) ψ(z1, 0) = (z1, 0); 3) ψ({1/2 < |z1| <
1}×D) is saturated by leaves of the foliation dZ2−Z1 dZ1 = 0, and 4) ψ is
a holomorphic diffeomorphism when restricted to {1/2 < |z1| < 1} × D
that sends the foliation dz1 = 0 to the foliation dZ2 − Z1 dZ1 = 0. Put
G1 = ψ ◦G.

We remove from the total space of the line bundle the fibers over
the points of g−1({|z1| ≤ 1/2}) and glue ψ(D × D) to the remaining
set using G1. In this way we get a new holomorphic surface which
contains C (the same curve we started with) and a holomorphic foliation
transverse to C except at p, where the tangency is simple. Furthermore,
the “local holonomy” of the new foliation at p is exactly i. We repeat
the same procedure for all critical points of f . At the end we have a
holomorphic surface that contains C and a holomorphic foliation which
is transverse to C except at the critical points of f . We may even
assume that the self-intersection number of C is n2 ∈ N. The map f
can be extended along the leaves (because of its compatibility with the
involutions involved). This finishes the construction of the desired lifting.
A similar construction can be made if the critical points are not simple.

z2 Z2

z1 Z1

ψ

Figure 2. Glueing map.

Let us give two examples of pairs (curve, surface) which are not em-
beddable in the projective plane.

Example 2.1. We have already noticed that, in order to be embeddable
in the projective plane, all the submersions defined in the neighborhood
of the curve must have restriction maps whose degrees are multiple of n
(here n2 is the self-intersection number of the curve in the surface).
This does not happen in the example given in the introduction. We give
now another example of a different nature. Take C ⊂ P2. We start by
claiming that there exists a ramified cover f : C → P1 of degree (n−1)n
such that the set of poles is not contained in any curve of degree n−1. In
order to see this, let us start with a ramified cover f0 : C → P1 defined



Positive Neighborhoods of Curves 339

as the restriction of 1
Q0

to C, where Q0 is a polynomial of degree n− 1

which intersects C transversely at l = (n−1)n different points P1, . . . , Pl.
Let us consider nearby points P ′1, . . . , P

′
l and apply Riemann–Roch’s

Theorem to D = P ′1 + · · · + P ′l . Hence l(D) ≥ (n − 1)n − g + 1. If we
want to have l(D) > 1, we ask for (n − 1)n − g + 1 > 1, or (n − 1)n >
(n−1)(n−2)

2 , which is always true when n > 1. In fact, from the proof of
Riemann–Roch’s Theorem, since (P ′1, . . . , P

′
l ) is close to (P1, . . . , Pl), we

may choose a meromorphic function close to f0, so that its polar locus
is D. On the other hand, the points (P ′1, . . . , P

′
l ) which belong to a curve

of degree n−1 are contained in a subvariety of dimension n(n+1)
2 −1 and

all we have to do is to check if (n− 1)n > n(n+1)
2 − 1, which is obvious

if n ≥ 3 (we remark that there are not two different curves of degree n−1
passing through the (n−1)n points P ′1, . . . , P

′
l ). We select then P ′1, . . . , P

′
l

outside this subvariety in order to get the ramification map f and take
a lifting F defined in a surface S. We prove then the statement: there
is no embedding Φ: S → P2. In fact, the submersion F ◦ Φ−1 defined
in a neighborhood of C0 ⊂ P2 extends to P2 as a meromorphic function
(holomorphic in a neighborhood of C0). We observe that, for n ≥ 4, given
two embeddings φi : C → P2, i = 1, 2, there exists an automorphism T ∈
Aut(P2) such that T (φ1(C)) = φ2(C) (see the Appendix). Then the
map Φ|C : C → C0 comes from a linear map on P2 and poles of f are
the intersection of C with a curve of degree n− 1, which is impossible.

Example 2.2. We present now an example of a non embeddable pair
(curve, surface) with a set of two fibrations which is projective at the
curve. We start with a projective, smooth curve C and select two pencil
submersions. Let f1 and f2 be the associated ramification maps of C.
The tangencies between the pencils are obviously pieces of the com-
mon line. We will replace one of these pieces by a non-invariant curve
of tangencies between two new foliations. The idea is the same used
above to realize ramification maps; the homeomorphism ψ is going to
be changed. The point p this time is a point of tangency, and the co-
ordinate chart G sends the foliations associated to the submersions to
two foliations (dz1 = 0,H). We consider in C2 a couple of foliations
(dZ1 = 0,H′ : d(Z1 − Z2(Z2 − Z1)) = 0), which have Z1 = 2Z2 as non-
invariant line of tangencies. The homeomorphism ψ is chosen in order to
satisfy: 1) ψ(0, 0) = (0, 0) and ψ(z1, 0) = (z1, 0); 2) ψ|{1/2<|z1|<1}×D is
a holomorphic diffeomorphism over its image that sends (dz1 = 0,H)
to (dZ1 = 0,H′). We put again G1 = ψ ◦ G, which is the new glueing
map. We can see that the self-intersection C2 does not change and so
the germ of surface is not isomorphic to (C,P2).
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We could also use in the construction the pair of foliations (dZ1 =
0,H′ : d(Z1 − Z2(Z2 − Ze+1

1 )) = 0) for e ∈ N, but the curve C will have
self-intersection number equal to n2 − e.

3. Constructing meromorphic maps

Let us once more describe the setting we are going to analyse. We have
a curve C contained in some surface S with C ·C = n2 and n ∈ N. There
exist three submersions F , G, and H defined in S and taking values
in P1 which define foliations F , G, and H generically transversal to C
whose leaves are the level curves. In order to simplify the exposition,
we assume that all tangencies with C are simple and distinct (when
we look to the tangencies for any pair of foliations). We denote f =
F |C , g = G|C , and h = H|C , all of them ramification maps from C
to P1 whose ramification points correspond to the tangency points of
the foliations (because F , G, and H are submersions). Furthermore, we
assume that C embeds into P2 by a map φ : C → C0, where C0 is a
smooth algebraic curve of degree n. In order to complete the picture, we
select pencil submersions F0, G0, and H0 (with associated foliations F0,
G0, and H0), with singular points not aligned, which restrict to C0 as
n to 1 maps f0, g0, and h0 to P1 and ask {f, g, h} to be conjugated
by φ to {f0, g0, h0}: f0 ◦ φ = f , g0 ◦ φ = g, and h0 ◦ φ = h. We remark
that φ(tang(F , C)) = tang(F0, C0), once more because these tangency
points are exactly the ramification points of f and f0 (we have also that
φ(tang(G, C)) = tang(G0, C0) and φ(tang(H, C)) = tang(H0, C0)). For
simplicity, we will assume that F |C , G|C , and H|C have only simple
critical points.

Lemma 3.1. Any pair of foliations defined by projective submersions
at C are generically transverse to each other along C.

Proof: Let F and G be two projective submersions at C. The tangency
divisor tang(F ,G) between the foliations is given by

tang(F ,G) · C = NF · C +NG · C +KS · C,

where NF (resp. NG) is the normal bundle associated to F (resp. G) and
KS is the canonical bundle of S. Since, from [2, Section 2.2], one has

NF · C = χ(C) + tang(F , C) = 3n− n2 + n2 − n,
NG · C = χ(C) + tang(G, C) = 3n− n2 + n2 − n,
−KS · C = χ(C) + C · C = 3n− n2 + n2,
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we conclude that tang(F ,G) · C = n so that F and G are not tangent
to each other along C, as otherwise tang(F ,G) = eC + D with e > 0,
D effective, and tang(F ,G) · C ≥ en2.

We observe that the lemma is not true for n = 1 (see [3]).
In this section we will see how to associate to a pair of submersions, say

F , G, a meromorphic map ΦF,G. It is defined initially as a biholormor-
phism from a neighborhood of the set C\(A∪φ−1(A0)) to a neighborhood
of C0\(A0∪φ(A)), where A = tang(F , C)∪tang(G, C)∪(tang(F ,G)∩C)
and A0 = tang(F0, C0) ∪ tang(G0, C0) ∪ (tang(F0,G0) ∩ C0). Given a
point p ∈ C \ (A ∪ φ−1(A0)), the foliations F and G are transverse
to each other and to C in a neighborhood of this point, and the foli-
ations F0 and G0 are transverse to each other and to C0 in a neigh-
borhood of φ(p). Therefore, for q ∈ S close to p we may associate the
points qF and qG where the leaves of F and G intersect C. The leaves
of F0 and G0 through φ(qF ) and φ(qG) will intersect (by definition) at the
point ΦF,G(q). It can be seen that this maps extends biholomorphically
to the points of tang(F , C) and tang(G, C), essentially because the folia-
tions F and G are transverse to each other at those points. From now on
we change A and A0 to A = tang(F ,G)∩C and A0 = tang(F0,G0)∩C0

and analyse the behavior of ΦF,G at points of A ∪ φ−1(A0). We distin-
guish two cases:

(A) φ(p) ∈ tang(F0,G0) ∩ C0.
(B) φ(p) /∈ tang(F0,G0) ∩ C0.

Proposition 3.2. ΦF,G extends meromorphically to a neighborhood of C.

Proof: Case (A): We may assume, choosing conveniently the coordi-
nates (x, y) around p and affine coordinates (X,Y ), that

• p = (0, 0), C is y = 0, and F is defined by dx = 0;
• φ(p) = (0, 0), F0 is defined by dX = 0, and G0 is the radial pencil

with (0, 1) as base point (X = 0 is a common fiber of F0 and G0);
• C0 is defined by Y = h(X) with h(0) = 0, h′(0) = 0, and φ(x) =

(x, h(x)).

The leaf of F (resp. G) through a point (x, y) crosses the x-axis at x
(resp. ξ(x, y)) for a holomorphic function ξ such that ξ(x, 0) = x. It
follows that

ΦF,G(x, y) =

(
x, 1− x(1− h(ξ(x, y)))

ξ(x, y)

)
=

(
x,
u(x, y)

ξ(x, y)

)
.

The expression defines a meromorphic map in a neighborhood of (0, 0).
There are two possible cases:
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Case (A1): The germs x and ξ are relatively prime. The line of poles
of ΦF,G(x, y) is ξ(x, y) = 0 and has multiplicity 1. We write ξ(x, y)−x =
y A1(x, y) for some holomorphic function A1(x, y); the G-fiber may be
transversal to the F-fiber (when A1(0, 0) 6= 0) or tangent to it (in which
case A1(0, 0) 6= 0).

Case (A2): The germs x and ξ have a common factor. Write ξ(x, y) =
x(1+y A2(x, y)). Thus ΦF,G(x, y) is a holomorphic map (F and G have x=
0 as a common fiber), but it may be non-injective (unless A2(0, 0) 6=0).

Case (B): We assume:

• p = (0, 0), C is y = 0, and F is defined by dx = 0;
• φ(p) = (0, 0), F0 is defined by dX = 0, and G0 is defined by
dY − dX = 0 (in affine coordinates);
• C0 is defined by Y = h(X) with h(0) = 0, h′(0) = 0, and φ(x) =

(x, h(x)).

We have then

ΦF,G(x, y) = (x, ξ(x, y)− x+ h(ξ(x, y))).

It follows that ΦF,G is a holomorphic map in a neighborhood of p. Writ-
ing ξ(x, y) − x = y B(x, y), we see that ΦF,G is a local biholomorphism
when B(0, 0) 6= 0, that is, the fibers of F and G are transversal at p.

An important consequence for us is that the pull-back by ΦF,G of a
holomorphic foliation L on P2 is also a holomorphic foliation in S. In
the next section we describe the singularities of Φ∗F,G(L).

4. New foliations on S

Let us take a foliation L on P2 defined by ω = LdP − n.P dL = 0,
where P (X,Y ) =

∑
i+j≤n aijX

iY j is a polynomial of degree n such that

C0 = {P = 0} (we may assume a0n 6= 0) and L is a linear polynomial
such that L = 0 is transverse to C0. The singularities of L contained
in C0 are supposed to be disjoint of A0 ∪ φ(A).

We proceed to compute the multiplicity Z(L∗, C, p) along C of p as
a singularity of L∗ = Φ∗F,G(L) at the points where ΦF,G maybe fails to
be a biholomorphism. In order to make the computation easier, we take
L(X,Y ) = X + b, where b is a constant different from 0.

Proposition 4.1. With the notation of the proof of Proposition 3.2, we
have
Case (A1): Z(L∗, C, p) = n+ mult0(A1(x, 0)).

Case (A2): Z(L∗, C, p) = mult0(A2(x, 0)).

Case (B): Z(L∗, C, p) = mult0(B(x, 0)).
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Proof: Case (A1): x and ξ are relatively prime. It follows that

P (ΦF,G(x, y)) =
yv(x, y)

ξ(x, y)n
.

In fact, P (ΦF,G(x, 0)) = 0 and P (X,Y ) = a0nY
n +

∑
j≤n−1 aijX

iY j ,
and therefore

P (ΦF,G(x, y)) = a0n
un

ξn
+

∑
n−j≥1 aijx

iujξn−j

ξn
.

In particular, v(x, 0) = xn−1A1(x, 0)+· · · . We have also L(ΦF,G(x, y)) =
x+ b, b 6= 0, so that

Φ∗F,G ω =
1

ξn+1
[(x+ b)ξ(y dv + v dy)− n.yv((x+ b) dξ + ξ dx)].

Therefore, L∗ is defined by (x+b)ξ(y dv+v dy)−n.yv((x+b) dξ+ξ dx) = 0
near the point p and

Z(L∗, C, p) = 1 + mult0(v(x, 0)) = n+ mult0(A1(x, 0)).

We observe that Z(L∗, C, p) > 0 when the case (A1) holds.

Case (A2): ξ divides x (F and G share the leaf passing through p). Let
us write as before ξ(x, y) = x(1 + yA2(x, y)). It follows that

ΦF,G(x, y) =

(
x,
yA2(x, y) + h(ξ(x, y))

1 + yA2(x, y)

)
.

Writing P (ΦF,G(x, y)) = yv(x, y), we see that v(x, 0) = A2(x, 0) + · · ·
and

Φ∗F,G ω = (x+ b)(v dy + y dv)− n.yv dx.
We conclude that

Z(L∗, C, p) = mult0(v(x, 0)) = mult0(A2(x, 0)).

Let us notice that Z(L∗, C, p) = 0 impliesA2(0, 0) 6= 0, that is, ΦF,G(x, y)
is a local biholomorphism at p.

Case (B): φ(p) /∈ tang(F0,G0) ∩ C0. We have

ΦF,G(x, y) = (x, ξ − x+ h(ξ(x, y))).

Writing P (ΦF,G(x, y)) = yv(x, y), we see that v(x, 0) = B(x, 0) + · · ·
and

Φ∗F,G ω = (x+ b)(v dy + y dv)− n.yv dx.
We conclude that

Z(L∗, C, p) = mult0(v(x, 0))0 = mult0(B(x, 0)).
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Again, Z(L∗, C, p) = 0 implies that B(0, 0) 6= 0, that is, ΦF,G(x, y) is a
local biholomorphism at the point p.

We intend now to see the implications of having two maps ΦF,G
and ΦF,H simultaneously. The fibrations F , G, and H are associated
to pencil submersions F0, G0, and H0. Let us call B = tang(F ,H) ∩ C
and B0 = tang(F0,H0)∩C0. We consider two foliations I and L on P2 as
before. We remark that Z(I, C0) = Z(L, C0) = n. We will assume: 1) all
singularities of I and L lie outside the set K = A0 ∪ φ(A) ∪B0 ∪ φ(B);
2) all curves of tangencies between I and L cross C0 outside the set K.
We denote I∗ = Φ∗F,G(I) and L∗ = Φ∗F,H(L). We will use again the for-

mulae from [2, Section 2.2] to compute numerical invariants associated
to tangent lines between two foliations. We have:

tang(I,L) · C0 = NI · C0 +NL · C0 +KP2 · C0 = 2n2 − n,

since I and H have degree n− 1 and KP2 · C0 = −3n.
Let us call Z1(I∗, C) (resp. Z1(L∗, C)) the set of points where ΦF,G

is not a local biholomorphism (resp. ΦF,H is not a local biholomor-
phism). We define Z1(I∗, C) as the sum of all indexes Z(I∗, C, p) at
points of Z1(I∗, C) (we put Z1(L∗, C) for the corresponding sum at
points of Z1(L∗, C)).

As for the foliations I∗ and L∗, we have that

tang(I∗,L∗) · C = NI∗ · C +NL∗ · C +KS · C
= Z(I∗, C) + Z(L∗, C) + 2n2 − 3n

= Z1(I∗, C) + Z1(L∗, C) + 2n2 − n.

We conclude therefore that

tang(I∗,L∗) · C = Z1(I∗, C) + Z1(L∗, C) + tang(I,L) · C0.

Observe that the curves C and C0 appear as components of the tangency
locus in both sides of the last equation. Thus we cancel n from the equa-
tion and consider, from now on, tangency loci besides C and C0. This
formula suggests that tang(I∗,L∗) ∩ C may be also computed looking
at the points of φ−1(tang(I,L) ∩ C) ∪ Z1(I∗, C) ∪ Z1(L∗, C).

Our aim is to prove that ΦF,G and ΦF,H are everywhere local bi-
holomorphisms. First of all, we have to associate the tangencies be-
tween I and L to tangencies between I∗ and L∗. There is a little dif-
ficulty here because I∗ and L∗ are obtained from I and L using dif-
ferent pull-backs; the pre-image by φ of a point of tangency between I
and L might not be a point of tangency between I∗ and L∗. We take
the foliations I and L defined by the equations LdP − n.P dL = 0
and (L + a) dP + n.P dL = 0. Their curve of tangencies is defined by
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dL ∧ dP = 0 (besides the curve C0). When intersecting with C0, these
are the points of tangency of F0 with C0.

Proposition 4.2. Let φ(p) be a point of tangency between F0 and C0.
Then (tang(I∗,L∗), C)p = 1.

Proof: We may take local coordinates (x, y) around p and (r, s) around
φ(p) such that

• C = {y = 0} and C0 = {s = 0}.
• F and F0 are defined by d(y−x2) = 0 and d(s−r2) = 0 respectively.

The foliations I and L are defined as su d(s−r2)− (s−r2 +δ) d(su) = 0
and su d(s− r2)− (s− r2 + a+ δ) d(su) = 0, where u is a holomorphic
function such that u(0, 0) 6= 0 and δ 6= 0. Let us write ΦF,G(x, y) =
(f(x, y), yA(x, y)) and ΦF,H(x, y)=(g(x, y), yB(x, y)). We have A(0, 0) 6=
0, B(0, 0) 6= 0, and (f(x, 0), 0) = (g(x, 0), 0) = φ(x).

The foliations I∗ = Φ∗F,GI and L∗ = Φ∗F,HL are defined as

yAud(yA− f2)− (yA− f2 + δ) d(yAu) = 0,

yBu d(yB − g2)− (yB − g2 + a+ δ) d(yBu) = 0.

We see easily that the curve of tangencies is given by ABau2φφ′y +
y2( . . . ) = 0, so that the component different from C = {y = 0} crosses C
at p transversely.

We proceed now to examine the points of tangency between I∗ and L∗
that possibly appear at Z1(I∗, C)∪Z1(L∗, C). If we denote their number
as tang1(I∗,L∗), we have seen that

tang1(I∗,L∗) = Z1(I∗, C) + Z1(L∗, C).

In fact, we have seen that, out of Z1(I∗, C)∪Z1(L∗, C), tangency curves
correspond to each other when restricted to C and C0.

We claim that this equality holds at each point ofZ1(I∗, C)∪Z1(L∗, C).
Let us consider some point p ∈ Z1(I∗, C). Since ΦF,G is not a local
biholomorphism, we have as explained before the possibilities (A1), (A2),
and (B), the first two occurring when φ(p) ∈ tang(F0,G0) ∩ C0. If
p satisfies (A1) or (A2) for ΦF,G, then p satisfies (B) for ΦF,H . (In the
same way, when q ∈ Z1(L∗, C) satisfies (A1) or (A2) for ΦF,H , then q
satisfies (B) for ΦF,G.) It may happen also that p satisfies (B) for ΦF,G
and ΦF,H . The reason is that we are supposing the submersions F , G,
and H to be independent so that we are in case (A) for the maps ΦF,G
and ΦF,H simultaneously.
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Case 1: p ∈ Z1(I∗, C) satisfies (A1) for ΦF,G and (B) for ΦF,H . The
local equations for I∗ and L∗ at p are

(x+ b)ξ(y dv + v dy)− n.yv{(x+ b) dξ + ξ dx} = 0,

(x+ b′)(v′ dy + y dv′)− n.yv′ dx = 0.

The line of tangencies has equation

(b− b′)ξvv′ − (x+ b)(x+ b′)[vv′ξx + ξ(v′vx − vv′x)] = 0.

We observe that mult0(ξvv′) = mult0(v) + 1 + mult0(v′) = Z(I∗, C, p) +
Z(L∗, C, p) (it may happen Z(L∗, C, p) = 0).

Case 2: p ∈ Z1(I∗, C) satisfies (A2) for ΦF,G and (B) for ΦF,H . The
local equations are

(x+ b)(y dv + v dy)− n.yv dx = 0,

(x+ b′)(v′ dy + y dv′)− n.yv′ dx = 0.

The line of tangencies has equation

(b− b′)vv′ − (x+ b)(x+ b′)[v′vx − vv′x] = 0.

We remark that mult0(vv′) = mult0(v) + mult0(v′) = Z(I∗, C, p) +
Z(L∗, C, p) (it may happen that Z(L∗, C, p) = 0).

Case 3: p ∈ Z1(I∗, C) satisfies (B) for ΦF,G and ΦF,H . The conclusion
is the same as above: mult0(vv′) = mult0(v) + mult0(v′) = Z(I∗, C, p) +
Z(L∗, C, p) (it may happen Z(L∗, C, p) = 0).

The remaining cases (when p ∈ Z1(L∗, C, p)): p satisfies (A1) for ΦF,H
and (B) for ΦF,G; p satisfies (A2) for ΦF,H and (B) for ΦF,G; p satis-
fies (B) for both ΦF,H and ΦF,G are entirely similar.

We conclude from tang1(I∗,L∗) = Z1(I∗, C)+Z1(L∗, C) (and the fact
that b, b′ are generic) that the terms [vv′ξx + ξ(v′vx − vv′x)] (first case)
and [v′vx − vv′x] (second and third cases) have the same multiplicities
at 0 as ξvv′ and vv′ respectively. Thus, the claim is proved.

Let us make explicit the relations between the several multiplicities
involved before.

Case 1: We write v(x, 0) = axl + · · · and v′(x, 0) = cxm + · · · . It follows
that [vv′ξx+ξ(v′vx−vv′x)] = ac(1−m+l)xm+l+· · · . Since mult0(ξvv′) =
m + l + 1, necessarily m = l + 1. Using v(x, 0) = xn−1A1(x, 0) (and
v′(x, 0) = B′(x, 0)) we get

mult0(A1(x, 0)) + n = mult0(B′(x, 0)).
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Case 2: We write again v(x, 0) = axl + · · · and v′(x, 0) = cxm + · · · .
Then [v′vx − vv′x)] = ac(l −m)xm+l−1 + · · · . Since mult0(vv′) = m+ l,
we see that l = m. Using v(x, 0) = A2(x, 0) and v′(x, 0) = B′(x, 0), we
obtain

mult0(A2(x, 0)) = mult0(B′(x, 0)).

Case 3: It is analogous to Case 2 and we find

mult0(B(x, 0)) = mult0(B′(x, 0)).

There are correspondent equalities when p satisfies (A1) for ΦF,H and
(B) for ΦF,G (mult0(A′1(x, 0)) + n = mult0(B(x, 0))), or p satisfies (A2)
for ΦF,H and (B) for ΦF,G (mult0(A′2(x, 0)) = mult0(B(x, 0)).

5. Proof of Theorem A

Let us take some C∞ perturbation C̃ of C and look at the curves
ΦF,G(C̃) and ΦF,H(C̃), which are C∞ perturbations of C0. We ask

C̃ to be a holomorphic smooth curve with (C̃.C)p = 1 when passing
through each p ∈ Z1(I∗, C)∪Z1(L∗, C) and ask also that ΦF,G and ΦF,H
be holomorphic along these (local) holomorphic curves. Let us observe
again that ΦF,G is not a local biholomorphism at a point p ∈ Z1(I∗, C)
(and ΦF,H is not a local biholomorphism at a point p ∈ Z1(L∗, C) either).

We proceed now to prove that for any p ∈ Z1(I∗, C)∪Z1(L∗, C) one
has ∑

q

(ΦF,G(C̃).C0)q + (ΦF,H(C̃).C0)q ≥ 2,

for q close to φ(p). Observe that in principle this number should be equal

to (C̃.C)p + (C̃.C)P = 2. Let us go back to the cases we discussed in
the last section.

Case 1: p ∈ Z1(I∗, C) satisfies (A1) for ΦF,G and (B) for ΦF,H . The

perturbation C̃ near p has to be contained in some small sector around C,
where ΦF,G is holomorphic. Since

ΦF,G =

(
x,
yA1(x, y) + xh(ξ(x, y))

x+ yA1(x, y)

)
when we put y = εx (for C̃), we see that

∑
q(ΦF,G(C̃).C0)q is the number

of solutions (near φ(p)) to the equation

ε xA1(x, ε x) + xh(ξ(x, ε x))

x+ ε xA1(x, ε x)
= h(x),
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which is = mult0(A1(x, 0)). In order to estimate
∑
q(ΦF,H(C̃).C0)q we

use

ΦF,H(x, y) = (x, yB′(x, y) + h(ξ(x, y)))

and we have to find the number of solutions of

ε xB′(x, ε x) + h(ξ(x, ε x)) = h(x)

(remember that now p satisfies (B) for ΦF,H), which is readily seen
to be 1 + mult0(B′(x, 0)). We have seen before that mult0(B′(x, 0)) =
mult0(A1(x, 0)) + n, so for q close to φ(p),∑

q

(ΦF,G(C̃).C0)q + (ΦF,H(C̃).C0)q = 2 mult0(A1(x, 0)) + n+ 1,

which is strictly bigger than 2 when n > 1.

Case 2: p ∈ Z1(I∗, C) satisfies (A2) for ΦF,G and (B) for ΦF,H . We have

ΦF,G(x, y) =

(
x,
yA2(x, y) + h(ξ(x, y))

1 + yA2(x, y)

)
and

ΦF,H(x, y) = (x, yB′(x, y) + h(ξ(x, y))).

Using again y = εx, we get
∑
q(ΦF,G(C̃).C0)q = 1 + mult0A2(x, 0) and∑

q(ΦF,H(C̃).C0)φ(q) = 1 + mult0(B′(x, 0)). Therefore, for q close to

φ(p), ∑
q

(ΦF,G(C̃).C0)q + (ΦF,H(C̃).C0)q = 2 + 2 mult0(A2(x, 0)).

Case 3: p ∈ Z1(I∗, C) satisfies (B) for ΦF,G and (B) for ΦF,H . Similarly,
we find for q close to φ(p):∑

q

(ΦF,G(C̃).C0)q + (ΦF,H(C̃).C0)q = 2 + 2 mult0(B(x, 0)).

The remaining cases are analogous. We conclude that Case (A1) never
appears and that Cases (A2) and (B) are present only at points p where
ΦF,G is a local biholomorphisms and give us the desired conjugation.

Appendix A. Automorphisms of a plane curve

We present a proof of the following theorem which was explained to
us by J. F. Voloch.
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Theorem A.1. Let C be a smooth plane curve of degree n≥4. Then ev-
ery automorphism of C is linear, i.e. it comes from an element
of Aut(P2).

Before proving the theorem we give some useful remarks based on ex-
ercises 17 and 18 of [1, Chapter 1]. We say that the set S = {p1, . . . , pk}⊆
P2 of distinct points impose independent conditions on curves of degree d
if h0(P2, IS(d)) = h0(P2,O(d))− k.

Lemma A.2. Any set of d+ 1 points impose independent conditions on
curves of degree d. On the other hand, d+ 2 points impose independent
conditions if and only if they are not aligned.

Proof: Take first S={p1, . . . , pd+1} and denote Sk={p1, . . . , pk}. Taking
the product of d lines through another point we see that H0(P2, ISi+1

(d))
is strictly contained in H0(P2, ISi

(d)). Therefore,

h0(P2, IS(d)) = h0(P2,O(d))− (d+ 1).

Consider now a set S = {p1, . . . , pd+1, pd+2}. If they are on a line L
and E is a curve of degree d passing through d + 1 of them, Bezout’s
Theorem implies L ⊆ E. This shows that S fails to impose independent
conditions on curves of degree d. Suppose now that every curve of de-
gree d passing by d+ 1 points contains also the other point of S. If they
are not aligned, we can take for example the curve E formed by lines
joining pd+1 with points p1, . . . , pd. Thus pd+2 must be on this curve
and we can assume that pd, pd+1, and pd+2 are aligned. If some pj ,
j = 1, . . . , d − 1, is not on this line, we consider E′ obtained from E
replacing pd+1, pj by a generic line passing by pd+1. Thus E′ contains
(d+ 1) points but not S, a contradiction.

Let D be an effective divisor on C of degree m. We use the previous
lemma in order to study meromorphic functions on C having D as polar
divisor. Changing the fiber if necessary we will assume from now on that
D has not multiple points. We recall that l(D) is the dimension of the
space of meromorphic functions f such that (f) +D ≥ 0 and i(D) is the
dimension of the space of holomorphic forms ω such that (ω) ≥ D.

Proposition A.3. If m ≤ n− 2, then l(D) = 1.

Proof: Recall (see [6, Chapter VII, Section 4]) that holomorphic 1-forms

on C = {P = 0} are generated by elements xiyj

Py
dx with i+j ≤ n−3. By

the previous lemma the dimension of the space of polynomials vanishing
at D is g(C)−m. Thus i(D) = g(C)−m and Riemann–Roch’s Theorem
gives l(D) = 1.
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Proposition A.4. If m = n − 1 and l(D) ≥ 2, then D = E − p where
p ∈ C and E ∈ |OC(1)|.

Proof: Once again Riemann–Roch’s Theorem gives i(D) = g−n+l(D) ≥
g−(n−1)+1. Then the points ofD do not impose independent conditions
and they must be aligned. We conclude by noting that the intersection
of a line with C is a divisor of degree n.

Finally, we have

Proposition A.5. |OC(1)| is the only linear system of degree n and
dimension 3.

Proof: Let D ∈ |OC(1)| be an aligned divisor of degree n on C. Then the
points of D fail to impose independent conditions on curves of degree n−
3 and i(D) = g(C)− (n− 2) or, equivalently, l(D) = 3. If A is another
effective divisor of degree n and l(A) = 3, then any subset of n−1 points
are aligned. We conclude that A ∈ |OC(1)| and is linearly equivalent
to D.

Proof of Theorem A.1: Let φ : C → C be an automorphism of C. The
last proposition implies that for any line L on P2, points of φ(L ∩ C)
determine a line L′ ⊆ P2, and thus φ comes from an automorphism of P̌2

which corresponds to an element of Aut(P2).
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