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1. Introduction

A common characteristic of p-adic L-functions is that they can be
defined by interpolating critical special values of complex L-functions.
Since complex L-functions are attached (at least conjecturally) to mo-
tives, this process can be seen in many instances as associating a p-adic
L-function to a p-adic family of motives. In these cases, if the domain
of the p-adic L-function is a p-adic space W, there is a family of mo-
tives M = {Mx}x∈Σcl parametrized by a subset Σcl ⊂ W of classical
points which is dense with respect to the Zariski topology. The region of
interpolation is a subset Σint ⊂ Σcl, again dense withinW, with the prop-
erty that for each x ∈ Σint there is a canonical period Ωx ∈ C in the sense
of Deligne such that the value of the complex L-function L(Mx, s)/Ωx
at its critical point cx is algebraic; when multiplied by an appropriate
Euler p-factor E(Mx) ∈ Q̄, these values can be p-adically interpolated to
a rigid-analytic function on W. The p-adic L-function attached to M is
then a function Lp(M, s) : W → Cp such that

Lp(M, x) =
E(Mx)

Ωx
L(Mx, cx), x ∈ Σint.

In this framework, it is usually of great interest to study the val-
ues Lp(M, x) at classical points x ∈ Σcl \Σint lying outside the region of
interpolation, as it is believed they should encode a p-adic invariant as-
sociated with the relevant motivic cohomology group of the motive Mx.
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A prototypical and classical example of this situation is Leopoldt’s
p-adic formula for the value at s = 1 of the Kubota–Leopoldt p-adic
L-function associated to an even Dirichlet character χ. The interpolation
formula for this p-adic L-function Lp(χ, s) reads

Lp(χ, k) = (1− χ(p)ω(p)−kp−k)L(χω−k, k) for k ∈ Z≤0,

where ω : Z/pZ → C× is the Teichmüller character. Therefore, Lp(χ, s)
for s ∈ Zp can be interpreted as the p-adic L-function associated to
{Z(χ)(k)}k∈Z, the family of Tate twists of the Dirichlet motive Z(χ),
with region of interpolation Σint = Z≤0. The value at k = 1 is then out-
side the region of interpolation and Leopoldt’s formula relates Lp(χ, 1)
to the p-adic logarithm of a circular unit in the cyclotomic field Q(ζN ):

Lp(χ, 1) = − (1− χ(p)p−1)

g(χ−1)

N−1∑
j=1

χ−1(j) logp(1− ζ
j
N ),

where N is the conductor of χ, ζN is a N -th root of unity, and g denotes
the Gauss sum.

There are many other illustrative examples of this philosophy. Some
classical and relatively recent formulas exhibiting this phenomenon are
summarized in the survey [3], but very recently there have been exciting
developments in this direction, including [8], [16], [10], [28], [27].

In spite of that, all these formulas scattered in the literature do not
provide a systematic and thorough study of the collection of special
values of a p-adic L-function as a whole and it is not always easy to
have a good understanding of the complete picture. The main aim of
the present article is coming to terms with this problem, providing a
complete, systematic (and often conjectural) answer to this question in
the case of the Garret–Hida p-adic L-functions

Lfp(f̆ , ğ, h̆), Lgp(f̆ , ğ, h̆), and Lhp(f̆ , ğ, h̆)

attached to a triple of (test vectors associated to) Hida families f̆ , ğ,

and h̆ introduced by Darmon–Rotger [15].
By symmetry, it is enough to consider one of these functions, say

Lgp(f̆ , ğ, h̆), which interpolates the square roots of the central values of

the classical L-function L(f̆k⊗ ğ`⊗ h̆m, s) attached to the specializations
of the Hida families at classical points of weights k, `, m with k, `,m ≥ 2
and ` ≥ k +m.

There are currently some results and conjectures for the value of

Lgp(f̆ , ğ, h̆)(k, `,m) at some classical points (k, `,m) ∈ Σcl\Σint with k ≥
2 and `,m ≥ 1 that lie outside this region of interpolation. After review-
ing them for the convenience of the reader, our goal is to complete the
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picture by formulating a conjectural formula for each point in Σcl \Σint,
as well as providing evidence for this conjecture by proving some partic-
ular cases.

In order to explain this idea more precisely and to review the known
results and conjectures to date, it is convenient to briefly recall some
terminology related to Hida families.

Let p ≥ 3 be a prime and let Λ = Zp[[1 + pZp]] be the Iwasawa alge-
bra. A cuspidal Hida family f of tame level Nf and Nebentype charac-
ter χf can be regarded as a power series f =

∑
an(f)qn ∈ Λf [[q]], where

Λf is a finite flat extension of Λ. A point ν in the weight space Wf =
Hom(Λf ,Cp) is called classical crystalline of weight k if its restriction
to Λ is of the form x 7→ ωk(x)xk for some k ∈ Z≥2, where ω denotes
the Teichmüller character. The specialization fν =

∑
ν(an(f))qn at such

points is then a p-ordinary cuspidal eigenform of weight k, level pNf ,
and character χf . If fν is old at p, which is always the case if k > 2,
then it is the ordinary p-stabilization of an eigenform of level Nf that
we denote by fk; if it is new at p, which can only occur if k = 2, then
we simply put fk = fν . We will also be interested in some weight one
specializations of cuspidal Hida families, although in this case such spe-
cializations are not guaranteed to be neither classical nor cuspidal. If N
is a multiple of Nf , a test vector for f of tame level N is a family of the
form

∑
λdf(qd) ∈ Λf [[q]] with λd ∈ Λf , where d runs over the divisors

of N/Nf .
Let now f , g, and h be Λ-adic cuspidal Hida families of tame lev-

els Nf , Ng, and Nh, and tame Nebentype characters χf , χg, and χh
satisfying that gcd(Nf , Ng, Nh) is squarefree and χfχgχh = 1. Put N =

lcm(Nf , Ng, Nh) and suppose that p - N . If f̆ , ğ, and h̆ are test vectors
of tame level N associated to f , g, and h, one can consider the three
variable p-adic L-function

Lgp(f̆ , ğ, h̆) : Wf ×Wg ×Wh −→ Cp

constructed in [15].
For simplicity of notation and exposition (and also because this is

the most interesting setting), let us assume that g and h specialize to
a classical modular form at all crystalline points of weight one. Then

the set of classical crystalline specializations of Lgp(f̆ , ğ, h̆)(k, `,m) can
be divided into four regions as follows:

(1) Σf = {(k, `,m) : k ≥ 2, `,m ≥ 1, and k ≥ `+m};
(2) Σg = {(k, `,m) : k ≥ 2, `,m ≥ 1, and ` ≥ k +m};
(3) Σh = {(k, `,m) : k ≥ 2, `,m ≥ 1, and m ≥ k + `};
(4) Σbal = {(k, `,m) : k ≥ 2, `,m ≥ 1} \ (Σf ∪ Σg ∪ Σh).
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The type of arithmetic information encoded by Lgp(f̆ , ğ, h̆)(k, `,m) de-
pends on the region where (k, `,m) lies. For example, Σg is the region

of classical interpolation and therefore Lgp(f̆ , ğ, h̆)(k, `,m) can be ex-
pressed in terms of the algebraic part of the central value of the classical

L-function L(f̆k, ğ`, h̆m, s) by the interpolation formula of [15, Theo-
rem 4.7]. More recently, Hsieh ([22]) found an explicit choice of test
vectors for which an improved interpolation formula holds; see [22, The-
orem A] or Theorem 2.4 below for the precise formula. We remark that
Hsieh’s formula is valid when gcd(Nf , Ng, Nh) = 1, and this is the reason
why we need to assume this hypothesis as well.

On the other hand, if (k, `,m) ∈ Σbal, then Lgp(f̆ , ğ, h̆)(k, `,m) can be
expressed in terms of the syntomic Abel–Jacobi image of a generalized
diagonal cycle ∆k,`,m in the product of Kuga–Sato varieties W = Wk−2×
W`−2 × Wm−2 (here Wk−2 denotes the desingularization of the (k −
2)-fold fiber product of the universal elliptic curve over the modular
curve X1(Nf ), and similarly for W`−2 and Wm−2). More precisely, [15,
Theorem 5.1] states that

Lgp(f̆ , ğ, h̆)(k, `,m) = (−1)(`−k−m+2)/2 E(f, g, h)

E0(g)E1(g)

×AJp(∆k,`,m)(ωf ⊗ ηu-r
g ⊗ ωh),

where AJp is the syntomic Abel–Jacobi map on the Chow group of W ,
E(f, g, h), E0(g), and E1(g) are explicit Euler factors, and ωf⊗ηu-r

g ⊗ωh ∈
Hk+`+m−3

dR (W/Qp) is a certain cohomology class naturally attached to
the forms f , g, and h.

The cases Σf and Σh turn out to be symmetric, so it remains to
consider Σf . In this case, the article [14] can be viewed as the first

step towards understanding the values of Lgp(f̆ , ğ, h̆) at classical weights

in Σf by means of the so-called Elliptic Stark Conjecture, which gives a

conjectural formula for Lgp(f̆ , ğ, h̆)(2, 1, 1) under an additional classicality
assumption on the weight one specialization of g. The aim of the present
article is to extend the conjectural picture proposed in [14] to all classical
weights in Σf , thus completing the (partially conjectural) understanding

of Lgp(f̆ , ğ, h̆)(k, `,m) at all classical weights.
A striking feature of the Elliptic Stark Conjecture of [14] is that it

provides insight into an arithmetic problem related to the Birch and
Swinnerton–Dyer Conjecture in rank 2, as we next recall. Let E be an
elliptic curve defined over Q and denote by Vp(E) its p-adic Tate module,
viewed as a representation of GQ = Gal(Q̄/Q). Let

g ∈M1(Ng, χg)L and h ∈M1(Nh, χh)L
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be eigenforms of weight one, Fourier coefficients in a number field L,
and whose Nebentype characters satisfy that χg · χh = 1. Denote by Vg
(resp. Vh) the Artin representation over L attached to g (resp. h), and
by ρgh the representation associated to Vgh = Vg ⊗ Vh. The L-func-
tion L(E, ρgh, s) associated to the Galois representation Vp(E) ⊗ Vgh
coincides with L(f ⊗ g ⊗ h, s), the Garret–Rankin–Selberg L-function
attached to f , g, and h, where f ∈ S2(Nf ) stands for the modular form
of weight 2 associated to E. The equivariant refinement of the Birch and
Swinnerton–Dyer (BSD) Conjecture then predicts that

ords=1 L(E, ρgh, s)
?
= dimL HomGQ(Vgh, E(H)⊗ L).

Assume that all the local root numbers of L(E, ρgh, s) are +1, and that
ords=1 L(E, ρgh, 1) = 2. Suppose that p ≥ 3 is a prime with ordp(Nf ) ≤ 1
and p - Ng ·Nh, and denote by N the prime-to-p part of lcm(Nf , Ng, Nh).
Denote by αg, βg the two roots of characteristic polynomial of the Hecke
operator Tp acting on g and let gα be the p-stabilization of g such that
Up(gα) = αggα (and define similarly αh, βh, and hα). Let f , g, and h
be Hida families of tame levels Nf , Ng, and Nh and tame Nebentype
characters χf = 1, χg, and χh such that f2 = f , g1 = gα, and h1 = hα.

Let us also assume the classicality hypothesis for gα (labeled as hy-
pothesis C in [14]). A crucial ingredient in the conjecture is a regulator,
defined roughly as follows. Using the action of the geometric Frobe-
nius element σp at p on Vgh, one identifies a certain 2-dimensional sub-
space Vα ⊂ Vgh on which σp acts with eigenvalues αgαh and αgβh.
Suppose now that Φ1, Φ2 is a basis for HomGQ(Vgh, E(H) ⊗ L), and
denote by v1, v2 a basis of Vα. The regulator is then defined as

Rgα(E, ρgh) = det

(
logE,p(Φ1(v1)) logE,p(Φ1(v2))
logE,p(Φ2(v2)) logE,p(Φ2(v1))

)
,

where logE,p : E(H)⊗L→ Cp⊗L is the p-adic formal group logarithm.
The Elliptic Stark Conjecture then states that there exists a choice of

test vectors f̆ , ğ, and h̆ of tame levelN associated to f , g, and h such that

(1.1) Lgp(f̆ , ğ, h̆)(2, 1, 1) =
Rgα(E, ρgh)

logp(ugα)
,

where logp : H× ⊗ L→ Cp ⊗ L is the usual p-adic logarithm and ugα ∈
OH [1/p]× ⊗ L is the so-called Gross–Stark unit attached to gα, defined
in [14, §1.2]. The main theoretical evidence supporting the Elliptic Stark
Conjecture stems from [14, Theorem 3.1], which proves it in the partic-
ular case where g and h are theta series of the same imaginary quadratic
field in which p splits.



582 F. Gatti, X. Guitart

The aim of this article is to study natural generalizations of the El-
liptic Stark Conjecture, as well as to provide theoretical evidence for
them. The first setting we consider is the case where f ∈ Sk(Nf , χf )
is a modular form of weight k = r + 2 ≥ 2 and possibly non-trivial
character χf , and g, h are modular forms of weight 1 satisfying now
χf · χg · χh = 1. That is to say, in [14] the modular form f is the
weight two modular form attached to an elliptic curve E/Q, and we now
allow f to have higher weight, non-trivial character, and non-rational
Fourier coefficients. Observe that the condition χf · χg · χh = 1 ensures
that Vf ⊗ Vg ⊗ Vh is Kummer selfdual, and we denote by L(f, ρgh, s) its
L-series.

In this setting, the role played by the elliptic curve E in the previous
discussion is played by the motive attached to f , which arises from the
Kuga–Sato variety Wr by means of a suitable projector ef constructed
using automorphisms of Wr and Hecke operators, which projects to the
f -isotypical component.

Denote by CHk/2(Wr/H)0 the Chow group1 of H-rational null-ho-
mologous cycles in Wr of codimension k/2. An equivariant version of
the Beilinson Conjecture predicts that

ords=k/2 L(f, ρgh, s)
?
= dimL HomGQ(Vgh, ef CHk/2(Wr/H)0 ⊗ L).

In §2 we generalize the Elliptic Stark Conjecture to this setting, in which
(f, g, h) are of weights (k, 1, 1) with k ≥ 2. For this, we extend the
definition of Darmon–Rotger–Lauder’s regulator, which will now involve

the p-adic Abel–Jacobi map of cycles in CHk/2(Wr)0 as a substitute
for the p-adic logarithm of points on E. We then conjecture a formula

akin to (1.1), namely an equality between Lgp(f̆ , ğ, h̆)(k, 1, 1) and the
regulator.

In order to provide evidence for the conjecture, in §3 we prove it in
a particular case where g and h are theta series of the same imaginary
quadratic field in which p splits. The structure of the proof follows the
strategy devised in [14, §3.2]: we prove a factorization formula of the
p-adic L-function in terms of a product of p-adic Rankin L-functions
and a Katz p-adic L-function, and we invoke the main theorem of [5].

We remark that our factorization formula of Lgp(f̆ , ğ, h̆) generalizes those
of [14] and [11] and, in addition, we provide a simpler proof by taking
advantage of the powerful p-adic triple L-function recently constructed
by Hsieh [22].

1Observe that the condition χf ·χg ·χh = 1 forces k+`+m to be even, so in particular

k is even when ` = m = 1.
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We also observe that the results of [5] play a key role in the proof of
this particular case of the conjecture, for they allow us to relate special
values of p-adic Rankin L-functions with p-adic Abel–Jacobi images of
Heegner cycles. But the main result of [5] (and the more general version
of [7, §4.1]) holds in the wider context of generalized Heegner cycles, and
one might naturally wonder whether this is a manifestation of a more
general version of the Elliptic Stark Conjecture in which g and h are of
weight ≥ 2. This is precisely the study that we undertake in §4, which
as mentioned earlier is also motivated by the aim of providing a formula

for Lgp(f̆ , ğ, h̆) at all classical weights where f is dominant.
The second setting that we consider, to which we devote §4, is that

of modular forms (f, g, h) of weights (k, `,m) with k ≥ `+m and `,m ≥
2. As we will see in Conjecture 4.3, Lgp(f̆ , ğ, h̆)(k, `,m) is expected to
be related to a certain regulator (of a more geometric flavor in this
case) of cycles on the motive attached to f ⊗ g ⊗ h. In order to provide
some theoretical evidence for this conjecture, in §4.3 we also prove it
in a certain particular case where g and h are theta series of the same
imaginary quadratic field in which p splits.

Note that in order to complete the study of Lgp(f̆ , ğ, h̆) at the region Σf

one should also consider weights of the form (k, `, 1) and (k, 1, `) with
k, ` ≥ 2. As will be apparent from the contents of §2 and §4, this case
is in fact a combination of the previous two cases and can be dealt with
by using similar techniques, so we do not include it in our analysis.

We finally remark that in this paper we study the values Lgp(f̆ , ğ, h̆)
(k, `,m) at classical points under the assumption that the classical L-

function L(f̆k⊗ğ`⊗h̆m, s) vanishes. The case where L(f̆k⊗ğ`⊗h̆m, s) 6= 0
will be investigated in the forthcoming work [17].

Notations. Throughout the article p will denote an odd prime. We fix
embeddings Q̄ ↪→ C and Q̄ ↪→ Cp, where Cp denotes the completion
of Q̄p. If L ⊂ Q̄ is a number field, we denote by Lp the completion of L
in Q̄p under this embedding. If L is a field, we will denote by Sk(N,χ)L
the space of modular forms of level k and Nebentype character χ with
Fourier coefficients in L (and when L = Q̄ we will usually suppress it
from the notation). If V and W are representations of a group G over a
field L, then WV =

∑
φ∈HomG(V,W ) φ(V ) denotes the V -isotypical com-

ponent of W . If ψ is a Hecke character of an imaginary quadratic field K,
we will denote by Vψ the 2-dimensional GQ-representation obtained by
induction.

Acknowledgments. We are grateful to Victor Rotger for suggesting
the problem to us and for his constant help during the preparation of
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2. The conjecture in weights (k, 1, 1)

The goal of this section is to formulate a generalization of the Elliptic
Stark Conjecture for a triple of forms (f, g, h) of weights (k, 1, 1) with k ≥
2. We begin by recalling in §2.1 the three variable p-adic L-function
constructed in [14], which interpolates special values of Garret–Rankin’s
triple product L function along Hida families, as well as the improved
interpolation formulas arising from [22]. In §2.2 we briefly review the
properties of Kuga–Sato varieties and p-adic Abel–Jacobi maps that we
will need in order to define the regulator. Finally, in §2.3, we construct
the generalized regulator and we state the conjecture.

2.1. The triple product p-adic L-function.

2.1.1. Hida families. Let Γ := 1 + pZp and let Λ := Zp[[Γ]] be the
Iwasawa algebra. We denote by W := Spf(Λ) the usual weight space,
which has the property that for any p-adic ring A the set of A-valued
points of W is given by

W(A) = HomZp−alg(Λ, A) = Homcts(Γ, A
×).

One can attach a weight space to any finite flat extension Λ0 of Λ by
defining W0 := Spf(Λ0). This space comes naturally equipped with a
weight map κ : W0 →W, induced by the inclusion Λ ⊆ Λ0. An element ν
of W(Cp) is called classical if it is of the form νk,ε : x 7→ ε(x)xk for some
Dirichlet character ε of conductor a power of p and some k ∈ Z≥2. An
element z ∈ W0(Cp) is called classical if its restriction κ(z) to Λ is
classical. A classical point z ∈ W0(Cp) is called crystalline if κ(z) is of
the form νk,ωk , where ω : Z×p → µp−1 denotes the Teichmüller character.
In order to simplify the notation, we will write in this case κ(z) = k.
We will denote by Wcl

0 the set of classical points of W0 and by W◦0 the
subset of crystalline points.

Let N be a positive integer such that p - N and let χ : (Z/NZ)× → C×p
be a Dirichlet character.

Definition 2.1. A Hida family of tame level N and tame Nebentype
character χ is a triple f = (Λf ,Wf , f), where:

(i) Λf is a finite flat extension of Λ;
(ii) Wf is a rigid analytic open subvariety of Spf(Λf );
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(iii) f =
∑
an(f)qn ∈ Λf [[q]] is a formal series such that, for each ν ∈

Wcl
f with κ(ν) = νk,ε, the specialization at ν

fν :=

∞∑
n=1

ν(an(f))qn

is the q-expansion of a classical p-ordinary eigenform of weight k
and Nebentype character χεω−k.

We will denote by Sord
Λf

(N,χ) the set of such Hida families.

Note that, if we restrict to W◦f , then all the specializations of f have
Nebentype character χ. In particular, since p does not divide the level
of χ, if ν has weight k > 2, then by [21, Lemma 2.1.5] the specializa-
tion fν is old at p. We will denote fν ∈ Sk(N,χ) the newform whose
p-stabilization is fν . If k = 2, then fν can be either old or new. In this
case we denote fν := fν if it is new, while if fν is old at p, we denote fν
the newform whose p-stabilization is fν .

2.1.2. The complex Garrett–Rankin triple product L-function.
Let

f ∈ Sk(Nf , χf ), g ∈ S`(Ng, χg), and h ∈ Sm(Nh, χh)

be three normalized newforms, cuspidal if they have weight ≥ 2, and as-
sume that χf ·χg ·χh = 1. We denote by Vf , Vg, and Vh the corresponding
2-dimensional p-adic Galois representations.

The Garrett–Rankin triple product L-function L(f ⊗ g ⊗ h, s) is the
complex L-function attached to the tensor product Vfgh := Vf⊗Vg⊗Vh.

It is defined by an Euler product which is absolutely convergent in
the half plane Re(s) > k+`+m−1

2 . With the appropriate Euler factors at
infinity, the completed function

Λ(f ⊗ g ⊗ h, s) = L∞(f ⊗ g ⊗ h, s)L(f ⊗ g ⊗ h, s)

extends to the whole complex plane and satisfies a functional equation
of the form

(2.1) Λ(f ⊗ g ⊗ h, s) = ε(f, g, h)Λ(f ⊗ g ⊗ h, k + `+m− 2− s),

where ε(f, g, h) ∈ {±1} is the sign of the functional equation. The center
of symmetry with respect to (2.1) is then c := k+`+m−2

2 , at which L(f ⊗
g ⊗ h, s) has no pole. Note that the condition χf · χg · χh = 1 implies
that k + `+m is even, so that c ∈ Z, and moreover c is a critical point
for the L-function, meaning that L∞(f ⊗ g⊗h, s) has no poles at s = c.

Definition 2.2. A triple of weights (k, `,m) ∈ Z3 is called unbalanced
if one of the weights is greater than or equal to the sum of the other two
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(in which case the greater weight is called dominant weight). Otherwise,
the triple is called balanced.

The sign of the functional equation can be expressed as a product of
local signs over the places of Q. More precisely, if N := lcm(Nf , Ng, Nh),
then

(2.2) ε(f, g, h) =
∏

v|N ·∞

εv(f, g, h),

and the local sign at infinity depends on whether the weights are bal-
anced or unbalanced:

ε∞(f, g, h) =

{
+1 ⇐⇒ (k, `,m) unbalanced,

−1 ⇐⇒ (k, `,m) balanced.

For more details in the study of the complex L-function, see [31].

2.1.3. The triple product p-adic L-function. Let f , g, and h be
three Hida families of tame levels Nf , Ng, and Nh and tame Neben-
type characters χf , χg, and χh such that χf · χg · χh = 1. As in [22,
Hypothesis (sf) and (CR)], we assume the following hypothesis.

Assumption 2.3. (1) gcd(Nf , Ng, Nh) is squarefree;
(2) the residual representation ρ̄g : GQ → GL2(F̄p) is absolutely ir-

reducible and p-distinguished (i.e., its semisimplification does not
act as multiplication by scalars when restricted to a decomposition
group at p).

Define the setW◦fgh :=W◦f ×W◦g×W◦h of triples of classical crystalline
points for f , g, and h. It can be decomposed as

W◦fgh =Wf
fgh tW

g
fgh tW

h
fgh tWbal

fgh,

whereWf
fgh is the set of triples (ν1, ν2, ν3) ∈ W◦fgh of unbalanced weights

with ν1 dominant, i.e. such that, if νi have weight ki for i ∈ {1, 2, 3},
then k1 ≥ k2 + k3. The sets Wg

fgh and Wh
fgh are defined similarly, with

the weight ν2 and ν3 dominant respectively, and Wbal
fgh := {(ν1, ν2, ν3) ∈

W◦fgh of balanced weights}.
Let N := lcm(Nf , Ng, Nh) and define

Sord
Λf

(N,χf )[f ] :={f̆ ∈Sord
Λf

(N,χf ) | T`f̆ =a`(f)f̆ for ` - Np; Upf̆ =ap(f)f̆}
the set of Λ-adic test vectors for f (here T` and Up stand for the Hecke
operators). Analogously we define Sord

Λg
(N,χg)[g] and Sord

Λh
(N,χh)[h].

For each choice of a triple of test vectors (f̆ , ğ, h̆) for (f ,g,h), let

Lgp(f̆ , ğ, h̆) ∈ Λf ⊗̂Frac(Λg)⊗̂Λh
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be the triple product p-adic L-function constructed in [15]. It interpo-
lates the square root of the central critical values L

(
fk⊗g`⊗hm,k+`+m−2

2

)
as the triple of weights (k, `,m) varies in Wg

fgh.

Hsieh ([22]) constructed an explicit choice of test vector (f̆ , ğ, h̆) for

which Lgp(f̆ , ğ, h̆) actually belongs to Λfgh := Λf ⊗̂Λg⊗̂Λh and it satisfies
a simpler interpolation formula. We fix this choice of test vector once and
for all. Moreover, while for the construction of [15] the specialization
at each classical point of f , g, and h has to be assumed to be old at p,
in [22] the specializations of the three Hida families are allowed to be
either old or new at p. We next summarize the interpolation properties
of the triple product p-adic L-function attached to Hsieh’s tests vectors.

We recall that for an eigenform φ we denote by αφ and βφ the two
roots of the characteristic polynomial x2 − ap(φ)x+ pk−1χφ(p), ordered
in such a way that ordp(αφ) ≤ ordp(βφ). We will use the convention
that, if p divides the level of φ, then βφ = 0.

Theorem 2.4 (Hsieh). Let (f̆ , ğ, h̆) ∈ Sord
Λf

(N,χf )[f ]×Sord
Λg

(N,χg)[g]×
Sord

Λh
(N,χh)[h] be the triple of Λ-adic test vectors for (f ,g,h) defined

in [22, Chapter 3]. Then the p-adic L-function

Lgp(f̆ , ğ, h̆) : Wfgh := Spf(Λfgh) −→ Cp

is uniquely characterized by the following interpolation property: for each
(k, `,m) ∈ Wg

fgh

Lgp(f̆ , ğ, h̆)2(k, `,m)=L(fk⊗g` ⊗ hm, c)

× E(fk, g`, hm)2

(−4) 〈̀g`, g`〉2E0(g`)2E1(g`)2
a(k, `,m)

∏
q∈Σexc

(1+q−1),

where:

• 〈·, ·〉 is the Peterson product;

• c = k+`+m−2
2 ;

• Σexc is the set of exceptional primes defined in [22, §1.5];

• a(k, `,m) = ΓC
(
k+`+m−2

2

)
ΓC
(−k+`−m+2

2

)
ΓC
(
k+`−m

2

)
ΓC
(−k+`+m

2

)
and ΓC(s) = Γ(s)

(2π)s ;

• E(fk, g`, hm) = (1 − βg`αfkαhmp
−c)(1 − βg`αfkβhmp

−c) × (1 −
βg`βfkαhmp

−c)(1− βg`βfkβhmp−c);
• E0(g`) = 1− β2

g`
χ−1
g (p)p1−`;

• E1(g`) = 1− β2
g`
χ−1
g (p)p−`.
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2.2. Kuga–Sato varieties and the p-adic Abel–Jacobi map.

2.2.1. Kuga–Sato varieties and modular forms. Let N > 4 be an
integer and letX1(N) be the modular curve attached to the group Γ1(N).
Let π : E → X1(N) be the corresponding (generalized) universal ellip-
tic curve and let x be a non-cuspidal point of X1(N). Via the moduli
interpretation of the modular curve, x corresponds to the isomorphism
class of a pair (Ex, Px), where Ex is an elliptic curve of conductor N and
Px ∈ Ex is a point of exact order N . The fiber π−1(x) is isomorphic to
the elliptic curve Ex.

The r-th Kuga–Sato variety Wr is the canonical desingularization of

the r-th fibered product E ×X1(N)
(r). . .×X1(N) E . It is a variety of dimen-

sion r + 1 defined over Q. For a detailed description see [5, Appendix].
Let f ∈ Sk(N,χ) be a p-ordinary normalized cuspform of weight k ≥ 2

and field of Fourier coefficients Ef . Denote by Mf the motive over Q
and coefficients in Ef attached to f by Scholl [33]. This is constructed
in loc. cit. as a Grothendieck motive, although it is expected to be also a
Chow motive and from now on we will make the assumption that Mf is a
Chow motive. The motive Mf is given by the triple (Wk−2, ef , 0), where
ef is a certain projector in the ring of correspondences of Wk−2, which
is constructed from Hecke correspondences. By functoriality, ef acts on
the different cohomological realizations of Mf , acting as the projection
projecting onto the f -isotypical component of the cohomology of Wk−2.
For example

Hk−1
et ((Wk−2)Q̄,Qp)[f ] = ef ·Hk−1

et ((Wk−2)Q̄,Qp),
which in fact is the 2-dimensional p-adic Galois representation Vf at-
tached to f .

Similarly, we denote

Sk(N)L[f ] = ef · Sk(N)L,

which is the projection onto the eigenspace of f relative to the action
of the Hecke operators T` with (`,N) = 1. For any number field L
containing Ef the above f -isotypical component is isomorphic to a piece
of the de Rham cohomology:

Sk(N)L[f ] ' Filk−1 Hk−1
dR (Wk−2/L)[f ],

and we denote by ωf the element of Filk−1 Hk−1
dR (Wk−2/Cp) correspond-

ing to f via the previous isomorphism and our chosen inclusion L ⊆ Cp.
Assume that ordp(N) ≤ 1, so that the Kuga–Sato variety Wk−2 has

good or semistable reduction at p and let σp denote a geometric Frobe-

nius element at p. The cohomology space Hk−1
dR (Wk−2/Cp)[f ] associated
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to Mf has dimension 2 over Cp and σp acts on it. Since f is ordinary,
there is a unit-root subspace

Hk−1
dR (Wk−2/Cp)[f ]u-r ⊆ Hk−1

dR (Wk−2/Cp)[f ]

of dimension 1 on which σp acts as a p-adic unit. Define ηf to be the

unique element in the space Hk−1
dR (Wk−2/Cp)[f ]u-r such that 〈ηf , ωf 〉 = 1,

where 〈·, ·〉 denotes the Poincaré pairing on Hk−1
dR (Wk−2/Cp).

2.2.2. The p-adic Abel–Jacobi map. Let W =Wr be the r-th Kuga–
Sato variety of level N . We denote by CHc(W ) the Chow group of ratio-
nal equivalence classes of codimension c cycles on W and by CHc(W )0

the subgroup of classes of null-homologous cycles, i.e. the kernel of the
cycle class map. If K is an extension of Q, we denote by CHc(W/K)0 the
group of null-homologous cycles defined over K. Also, if L is a number
field, we will denote by CHc(W/K)0,L the space L⊗Z CHc(W/K)0.

Fix a prime p of K above p and denote by WKp
the base extension

of W to the completion Kp of K at p. As in §2.2.1, we assume that
ordp(N) ≤ 1, so that WKp

has either good or semistable reduction. In
both situations (cf. [5, §3.4] for the good reduction case and [12, §2] for
the semistable case) for any c ∈ {0, . . . , r + 1} there exists a so called
p-adic Abel–Jacobi map

AJp : CHc(W/Kp)0,Q −→ Filc H2c−1
dR (WKp

/Kp)∨.

Here ∨ denotes the Kp-dual.

Remark 2.5. The p-adic Abel–Jacobi map can be seen as a generalization
of the formal group logarithm attached to a differential form on X1(N).
Indeed, one has that logωf (P ) = AJp(P )(ωf ) for any P ∈ X1(N)(Qp).

2.3. The conjecture. Let f ∈ Sk(Nf , χf ), g ∈ M1(Ng, χg), and h ∈
M1(Nh, χh) be three normalized eigenforms, with k ≥ 2 and χf · χg ·
χh = 1. Fix a prime number p such that p - NgNh and ordp(Nf ) ≤
1. Assume that f , g, and h are p-ordinary, and set N to be the prime-
to-p-part of lcm(Nf , Ng, Nh). We begin this section by defining, under
certain additional conditions, a regulator Reg(f, gα, h) which generalizes
to weight k ≥ 2 the one defined in [14] for k = 2, where we recall that
gα stands for the p-stabilization of g such that Upgα = αgg.

Let ρg (resp. ρh) denote the Artin representation attached to g
(resp. h), regarded as acting on a 2-dimensional L-vector space Vg
(resp. Vh). Let also ρgh denote the tensor product representation acting
on Vgh = Vg ⊗ Vh, and let H be the field fixed by its kernel, so that we
have:

ρgh : Gal(H/Q) −→ AutL(Vgh).
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We can assume, extending L if necessary, that L contains the Fourier
coefficients of f , g, and h. We denote by Hp the completion of H in Q̄p
induced from our fixed inclusion Q̄ ⊂ Q̄p. Since p - NgNh, Hp is unram-
ified and we denote by σp a geometric Frobenius.

The Elliptic Stark Conjecture of [14] is formulated under a certain
classicality hypothesis for g, labeled as Hypothesis C in loc. cit., which
we will also assume. In fact, we will assume the following more explicit
condition, labeled as Hypothesis C’ in [14].

Assumption 2.6. The modular form g satisfies one of the following
conditions:

(1) it is a cuspform regular at p (i.e. αg 6= βg), and it is not the theta
series of a character of a real quadratic field in which p splits;

(2) it is an Eisenstein form which is irregular (i.e. αg = βg).

Assumption 2.6 implies Hypothesis C of [14]; in case (1) this is a
consequence of a result of Belläıche–Dimitrov [2] (cf. [14, §1]), and in
case (2) it follows from the recent work of Betina–Dimitrov–Pozzi [9].
Under Assumption 2.6 one can define a 1-dimensional L-subspace V αg
of Vg as in [14, §1]:

• If g satisfies the first condition, then the attached Artin representa-
tion Vg decomposes as the direct sum of the eigenspaces V αg and V βg
with respect to the action of σp, with eigenvalues αgχg(p)

−1 =

βg
−1 and βgχg(p)

−1 = α−1
g respectively.

• If g is an irregular Eisenstein form, we take V αg to be any 1-dimen-
sional subspace of Vg which is not stable under the action of GQ.

From now on, we will also assume the following on the local signs of L(f⊗
g ⊗ h, s).

Assumption 2.7. The local signs εv(f, g, h) of (2.2) at finite primes
v | lcm(Nf , Ng, Nh) are +1.

Note that, since the weights (k, 1, 1) of the triple (f, g, h) are unbal-
anced, then ε∞(f, g, h) = +1. Hence the global sign is +1 and the order
of vanishing of L(f ⊗ g ⊗ h, s) at the central point k/2 is even. In order
to simplify a bit the notation for the f -isotypical component, we put

CHk/2(Wk−2/H)
[f ]
0,L := ef · CHk/2(Wk−2/H)0,L.

As we mentioned in §1, a conjecture due to Beilinson predicts that

ords=k/2 L(f ⊗ g ⊗ h, s) ?
= dimL HomGQ(Vgh,CHk/2(Wk−2/H)

[f ]
0,L).
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If dimL HomGQ(Vgh,CHk/2(Wk−2/H)
[f ]
0,L) = 2, then we can define a reg-

ulator by fixing an L-basis (Φ1,Φ2) of this space and an L-basis (v1, v2)
of V αgh := V αg ⊗ Vh as follows.

Definition 2.8. The regulator attached to the triple (f, gα, h) is

Reg(f, gα, h) := det

(
AJp(Φ1(v1))(ωf ) AJp(Φ1(v2))(ωf )
AJp(Φ2(v1))(ωf ) AJp(Φ2(v2))(ωf )

)
,

where ωf ∈ HdR(Wk−2/Cp)[f ] is the class defined in §2.2.1.

Observe that, by Remark 2.5, when k = 2 we recover the regulator as
defined in [14].

Let Adg be the adjoint representation of ρg and let Hg be the field
fixed by its kernel. Let ugα ∈ (L ⊗Z (OHg [1/p]×))Adg be the Stark unit
defined in [14, §1.2], on which σp acts with eigenvalue αg/βg. The fol-
lowing is a generalization to weights k ≥ 2 of [14, Conjecture ES]. In
the statement we use the following notation: if φ is a modular form of
weight w and level Np which is an eigenform for the good Hecke opera-
tors, then Mw(Np)[φ] denotes the isotypical subspace of Mk(N) defined
as

Mw(Np)[φ] = {φ̆ ∈Mw(Np) : T`φ̆ = a`(φ)φ̆ for all ` - Np}.
If φ happens to be also an eigenform for Up, then Mw(Np)[φ] will be
understood as the isotypical subspace associated to the good Hecke op-
erators and to Up as well.

Conjecture 2.9. Let f , g, and h be the Hida families passing through
the p-stabilizations fα, gα, and hα of f , g, and h. Set

r = dimL HomGQ(Vgh,CHk/2(Wk−2/H)
[f ]
0,L).

(i) If r > 2, then Lgp(f̆ , ğ, h̆)(k, 1, 1) = 0 for any choice of test vec-

tors (f̆ , ğ, h̆) for (f ,g,h).
(ii) If ords=k/2 L(f⊗g⊗h, s)=2, then there exist a triple of test vectors

(f̆ , ğα, h̆) ∈ Sk(Np, χf )L[f ]×M1(Np, χg)L[gα]×M1(Np, χh)L[h]

and Hida families f̆ , ğ, and h̆ with fk = f̆ , g1 = ğα, and h1 = h̆,
such that

(2.3) Lgp(f̆ , ğ, h̆)(k, 1, 1) =
Reg(f, gα, h)

g(χf ) logp(ugα)
,

where g(χf ) denotes the Gauss sum of the character χf .

Remark 2.10. Note that, since Lgp(f̆ , ğ, h̆)(k, 1, 1) belongs to Lp ⊂ Hp⊗L,
the geometric Frobenius σp acts trivially on the left-hand side of (2.3).
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On the other hand, σp(logp(ugα)) = αg/βg and by definition of the
space V αgh, the element σp acts on the regulator as multiplication by

(βgβh)−1 · (βgαh)−1. Finally, σp acts on the Gauss sum with eigen-
value χf (p). So σp also acts trivially on the right-hand side of (2.3)
as βgαgβhαhχf (p) = χg(p)χh(p)χf (p) = 1.

3. A particular case of the Elliptic Stark Conjecture in
weights (k, 1, 1)

The goal of this section is to provide theoretical evidence in support
of Conjecture 2.9 in the particular case where g and h are theta series
of the same imaginary quadratic field in which p splits. The main result
that we prove is Theorem 3.2, which relates the triple product p-adic
L-function in this setting with the p-adic Abel–Jacobi image of certain
Heegner cycles. We begin by reviewing Heegner cycles in §3.1 (and, in
fact, we will describe the so called generalized Heegner cycles introduced
in the works of Bertolini–Darmon–Prasanna, since these more general
cycles will appear in §4). In §3.2 we particularize the Elliptic Stark Con-
jecture to the case of theta series of imaginary quadratic fields, and we
state the main result. The proof is given in §3.4, and it follows from
a factorization formula for the triple product p-adic L-function in this
case. The definition and the main properties of the p-adic L-functions
involved are recalled in §3.3.

We fix from now on an imaginary quadratic field K of discrimi-
nant −DK . We denote by hK its class number and by OK its ring of
integers.

3.1. Generalized Heegner cycles. Let N be a squarefree positive in-
teger coprime to DK . From now on, we will assume the following Heegner
Hypothesis for the pair (K,N).

Assumption 3.1. There exists an ideal N of OK coprime to DK such
that OK/N ∼= Z/NZ.

Notice that this assumption is equivalent to the condition that all the
primes dividing N split in K. Fix an elliptic curve A over the Hilbert
class field of K and with complex multiplication by OK , and a gener-
ator t of A[N ] so that the pair (A, t) corresponds to a point P on the
modular curve X1(N). In [5] and [7], Bertolini, Darmon, and Prasanna
constructed a family of so called generalized Heegner cycles in the prod-
uct of a Kuga–Sato variety with a power of A, extending Nekovář’s
construction of Heegner cycles of [29]. As we will recall in §3.3.1, these
cycles are related to special values of a p-adic L-function, and we will
use this relation in §3.4.1 to prove a special case of Conjecture 2.9. We
now briefly recall the definition of the cycles.



On the Elliptic Stark Conjecture in Higher Weight 593

Let c be positive integer coprime to NDK , and let Oc := Z+c ·OK be
the order of K of conductor c. Let Ac := C/Oc be an elliptic curve with
complex multiplication by Oc, which we can assume is defined over the
ring class field Kc of K of conductor c. Let φc : A→ Ac be an isogeny of
degree c. Given an ideal a of Oc prime to Nc := N ∩Oc, denote by Aa

the elliptic curve C/a−1 and by φa the isogeny

φa : Ac −→ Aa.

The isogeny φa◦φc defines a Γ1(N)-level on Aa, i.e. a point ta := φa◦φc(t)
of exact order Nc.

Let r0 ≥ r1 be two non-negative integers with the same parity, set
s := r0+r1

2 , u := r0−r1
2 and let

Xr0,r1 := Wr0 ×Ar1 .
It is a variety of dimension r0 + r1 + 1 = 2s+ 1 defined over the Hilbert
class field K1 of K.

Let
π : Xr0,r1

p1−→Wr0 −→ X1(N)

be the composition of the projection on the first component of Xr0,r1

with the canonical map of the Kuga–Sato variety onto X1(N). For each
ideal a of Oc prime to Nc, the fiber of the point Pa = (Aa, ta) is

π−1(Pa) ∼= Ar0a ×Ar1 ∼= (Aa ×A)r1 × (Aa ×Aa)u.

Write End(Aa) as Z
[
dc+
√
dc

2

]
, where we regard

√
dc as an endomor-

phism of the curve, and define Γa := (Graph(
√
dc))

tr ⊂ Aa ×Aa, where
tr denotes the transpose. Let also Γc,a := Graph(φa ◦ φc)tr, which is a
cycle in Aa × A, and Γr0,r1,c,a := Γr1c,a × Γua , which is a cycle of codi-

mension s+ 1 in Xr0,r1 supported on the fiber π−1(Pa). The generalized
Heegner cycle attached to the data r0, r1, a, c is defined as

∆r0,r1,c,a := εXr0,r1 (Γr0,r1,c,a) ∈ CHs+1(Xr0,r1)0,Q,

where εXr0,r1 is the projector defined in [7, §4.1].

Let now f ∈ Sr0+2(N,χf ) be a modular form. We want to consider the
projection to the “(f, ψ)-component” of these cycles for certain Hecke
characters ψ. Recall that a Hecke character ofK of infinity type (`1, `2) ∈
Z2 is a continuous homomorphism ψ : A×K → C× such that

ψ(α · x · x∞) = ψ(x) · x−`1∞ · x̄−`2∞ for all α ∈ K×, x ∈ A×K , and x∞ ∈ C.
The conductor of ψ is the largest ideal cψ of K such that, for each prime
ideal q of K, the q-component of ψ is trivial when restricted to 1+cψOKq

.

The central character of ψ is the Dirichlet character εψ := ψ|A×Q
·N−`1−`2 ,

where N stands for the norm character.
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Let ε be a Dirichlet character of conductor Nε | Nf and let Nε be the
ideal of OK such that Nε | Nf and OK/Nε ∼= Z/NεZ. Let c be a positive

integer such that gcd(c,Nf ·DK) = 1, and let Uc := Ô×c =
∏
p(Oc⊗Zp)×.

A Hecke character ψ of K is of finite type (c,Nf , ε) if the conductor of ψ
is cNε and if, denoting Nc,ε := Nε ∩ Oc, the restriction of ψ to Uc
coincides with the composition

Uc = Ô×c −→
(
Ôc/Nc,εÔc

)× ∼= (OK/NεOK)× ∼= (Z/NεZ)× ε−1

−→ C×.

Let ψ be a Hecke character of K of infinity type (r1 − j, j) for some
0 ≤ j ≤ r1 and such that εψ = χf . The condition on the central character
implies that the complex L-function L(f, ψ−1, s) is selfdual. Let Nχf be
the ideal of K dividing N whose norm equals the conductor of χf , and
suppose that the conductor of ψ is of the form cψ = cNχf , for some c ∈ Z
coprime to N .

By [7, §4.2] the cycle ∆r0,r1,c,a is then defined over the number field F
that corresponds by class field theory to the subgroup K×W ⊆ A×K ,
where

W = {x ∈ A×K : xOc = Oc, xt = t}.
Arguing as in [7, Display (4.2.1)] we find that Gal(F/Kc) ' (Z/NZ)×/
{±1}. Define Hc,f to be the subextension of F/K that corresponds
to kerχf under this isomorphism and let

(3.1) ∆̃r0,r1,a,c :=
1

[F : Hc,f ]
TrF/Hc,f (∆r0,r1,a,c).

Finally, following [7, Definition 4.2.3] define the following cycle:

(3.2) ∆̃ψ
r0,r1,c := ef

(∑
a∈S

ψ(a)−1 · ∆̃r0,r1,a,c

)
,

where S is a set of representatives for Pic(Oc) that are prime to c · N .
This definition might depend on the choice of S, but its image under the
p-adic Abel–Jacobi does not by [7, Remark 4.2.4]. Observe that ∆̃ψ

r0,r1,c

belongs to CHs+1(Xr0,r1/Hc,f )0,Q(ψ), where Q(ψ) denotes the number
field generated by the values of ψ.

3.2. The case of theta series of imaginary quadratic fields. Let
f ∈ Sk(Nf , χf ) be a normalized newform of weight k ≥ 2. Suppose
that the level Nf is squarefree, coprime to DK , and that satisfies the
Heegner Hypothesis for K (cf. Assumption 3.1). Fix from now on an
ideal Nf of OK of norm Nf and let Nχf | Nf be the ideal whose norm

is the conductor of χf . Let also ψg, ψh : A×K → C× be finite order Hecke
characters of conductors cg, ch and central characters εg, εh, and let g
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and h be the theta series attached to ψg and ψh respectively. They are
weight 1 modular forms with Nebentype; more precisely, if χK denotes
the quadratic character attached to K, then

g ∈M1(Ng, χg) and h ∈M1(Nh, χh),

where

Ng=DK ·NK/Q(cg), Nh=DK ·NK/Q(ch), χg=χK ·εg, and χh=χK ·εh.
Fix a prime number p ≥ 3 that splits in K as pOK = pp̄. Suppose
that p - Ng · Nh and ordp(Nf ) ≤ 1 and suppose that f , g, and h are
p-ordinary. We assume that

(3.3) χf · χg · χh = 1,

so that we are in the setting of §2.3. In this section we are interested in
Conjecture 2.9 for the modular forms f , g, and h we just defined. Recall
that the field of coefficients L can be taken to be the field generated by
the Fourier coefficients of f , g, and h.

Let ψ′h be the Hecke character defined by ψ′h(σ) = ψh(σ0σσ
−1
0 ) for σ ∈

GQ, where σ0 is any lift of the non-trivial involution of K/Q. Define also
the characters

(3.4) ψ1 := ψgψh, ψ2 := ψgψ
′
h.

Condition (3.3) implies that ψ1|A×Q
= ψ2|A×Q

= χ−1
f and that the con-

ductor of ψi is of the form ciNi, where Ni | Nχf and ci is an integer
coprime to Nχf . We will assume from now on that Ni = Nχf for i = 1, 2.
We further assume that ψi has finite type (ci,Nf , χf ).

In this setting, by looking at the Euler factors one checks that there
is a decomposition of Artin representations

(3.5) Vgh = Vψ1
⊕ Vψ2

,

which in turn induces a factorization of L-functions

(3.6) L(f ⊗ g ⊗ h, s) = L(f/K,ψ1, s)L(f/K,ψ2, s).

The conditions imposed so far imply that all the finite local signs of
L(f/K,ψi, s) are +1, so in particular Assumption 2.7 is satisfied. More-
over, the global sign of L(f/K,ψi, s) is−1, so that L(f/K,ψi, s) vanishes
at the central point s = k/2 and therefore ords=k/2 L(f ⊗ g ⊗ h, s) ≥ 2.

Thanks to our assumptions on the characters ψ1 and ψ2, we can speak

of the cycles ∆̃ψ̄i
k−2,0,ci

as defined in §3.1. Observe that in this particular
case in which r1 = 0, these are in fact classical Heegner cycles, as defined
in [30]. If we let Hi be the field denoted as Hci,χf in §3.1, then we have

∆̃ψ̄i
k−2,0,ci

∈ CHk/2(Wk−2/Hi)
[f ]
0,L.
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Since we want to view the two cycles as being defined over the same field,
we set H := H1 ·H2, the composition of H1 and H2, and c := lcm(c1, c2).

In this way, the cycle ∆̃ψ̄i
k−2,0,ci

belongs to CHk/2(Wk−2/H)
[f ]
0,L.

The following is the main result of this section. It is the generalization
to weights k ≥ 2 of [14, Theorem 3.3].

Theorem 3.2. Let f , g, and h be Hida families passing through fα, gα,

and hα. Let (f̆ , ğ, h̆) be the triple of test vectors of Theorem 2.4. There
exists a quadratic extension L0 of L and λ ∈ L×0 such that

Lgp(f̆ , ğ, h̆)(k, 1, 1) = λ
AJp(∆̃

ψ̄1

k−2,0,c1
)(ωf ) AJp(∆̃

ψ̄2

k−2,0,c2
)(ωf )

g(χf ) logp(ugα)
.

Remark 3.3. We stress that the non-zero scalar λ lies in a quadratic
extension of the field of coefficients of f , g, and h. In this sense, this also
represents a slight strengthening of [14, Theorem 3.3], in which one had
a less precise control of the degree of such extension.

Theorem 3.2 can be seen as giving evidence towards Conjecture 2.9,
as we now explain. The decomposition of representations (3.5) induces
a decomposition

HomGQ(Vgh,CHk/2(Wk−2/H)
[f ]
0,L)'HomGQ(Vψ1

,CHk/2(Wk−2/H)
[f ]
0,L)

⊕HomGQ(Vψ2
,CHk/2(Wk−2/H)

[f ]
0,L),

where Vψi denotes the 2-dimensional representation over L obtained by
induction from ψi.

Consider now the Heegner cycle ∆̃c := ∆̃k−2,0,Oc,c defined in (3.1)
with r0 =k − 2, r1 =0, and associated to the trivial ideal Oc. It belongs

to CHk/2(Wk−2/H)
[f ]
0,L, and we consider the projection to the ψ̄i com-

ponent

(3.7) ∆ψ̄i
c :=

∑
σ∈Gal(H/K)

ψi(σ)(∆̃c)
σ.

Observe that ∆ψ̄i
c gives an element in HomGQ(Vψi,CHk/2(Wk−2/H)

[f ]
0,L).

Indeed, since ψi is anticyclotomic we have that Vψi = Vψ̄i and, by Frobe-
nius reciprocity, giving an element in

HomGQ(Vψ̄i ,CHk/2(Wk−2/H)
[f ]
0,L)

is equivalent to giving a GK-homomorphism from L (viewed as a GK-

module via the action of ψ̄i) to CHk/2(Wk−2/H)
[f ]
0,L; the map that sends 1

to ∆ψ̄i
c is one such homomorphism.
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As we mentioned before, in our setting the sign of the functional
equation of L(f, ψi, s) for i = 1, 2 is −1 and therefore these L-functions
vanish at the central point s = k/2. Suppose that ords=k/2 L(f, ψi, s) =
1 for i = 1, 2 (a fact which is actually expected to hold for “generic”
Hecke characters). Then, by the general philosophy of Heegner points
and Heegner cycles it is expected that

(3.8) HomGQ(Vψi ,CHk/2(Wk−2/H)
[f ]
0,L) = 〈∆ψ̄i

c 〉.

That is to say, the above space is generated by the homomorphism
given by the Heegner cycle. This has been proven for k = 2 by the
results of Gross–Zagier [20], Kolyvagin [26], Zhang [36], and Bertolini–
Darmon [4]. For k > 2, in the particular case where c = 1 and χf = 1,
it follows from results of Zhang [35] and Nekovář [30] on Heegner cycles
if one assumes the Gillet–Soulé Conjecture on the non-degeneracy of the
height pairing.

Arguing as in [14, Lemma 3.2] we see that if we assume (3.8), then

Reg(f, gα, h) = AJp(∆
ψ̄1
c )(ωf ) ·AJp(∆

ψ̄2
c )(ωf ).

Finally, observe that ∆ψ̄i
c and ∆̃ψ̄i

k−2,0,ci
are defined differently (see (3.7)

and (3.2)), but we have

(3.9) AJp(∆
ψ̄i
c )(ωf ) = [H : K1] ·AJp(∆

ψ̄i
k−2,0,ci

)(ωf ) (mod L×).

Indeed, by Shimura’s reciprocity law (∆̃r0,r1,Oc,c)
σ = ∆̃r0,r1,a−1,c when

σ corresponds to a under the reciprocity map of class field theory. Then
(3.9) follows from the display in the proof of [7, Proposition 4.2.1] and
the fact that ψi is of finite type (ci,Nf , χf ).

Therefore, we see that

Reg(f, gα, h) = AJp(∆
ψ̄1
c )(ωf ) ·AJp(∆

ψ̄2
c )(ωf ) (mod L×),

and thus Theorem 3.2 proves Conjecture 2.9 in this case (up to the fact
that in Theorem 3.2 λ lies in a quadratic extension of L rather than in L
itself).

We devote the rest of §3 to prove Theorem 3.2. The argument follows
essentially the same strategy introduced in [14, §3], which exploits a
certain factorization of p-adic L-functions. In §3.3 we will recall the dif-
ferent p-adic L-functions involved. Then in §3.4 we will state and prove
the factorization formula, and we will prove Theorem 3.2.

3.3. p-adic L-functions. In this subsection we review two types of
p-adic L-functions: the Bertolini–Darmon–Prasanna p-adic L-function
(and Castella’s generalization) and Katz’s p-adic L-function.
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3.3.1. The Bertolini–Darmon–Prasanna p-adic L-function. Let
f ∈ Sk(Nf , χf ) be a normalized newform and let ψ be a Hecke character
of the imaginary quadratic field K of infinity type (`1, `2), conductor cψ,
and central character εψ. We can attach to the pair (f, ψ) the complex
L-function

L(f, ψ, s) := L(Vf ⊗ Vψ, s) = L

(
πf × πψ, s−

k − 1 + `1 + `2
2

)
,

where πf and πψ are the unitary automorphic representations of GL2(AQ)
attached to f and ψ respectively. It is defined as an Euler product, and
can be completed to a meromorphic function

Λ(f, ψ, s) = L∞(f, ψ, s)L(f, ψ, s),

that is an entire function if χf · χK · εψ 6= 1. Moreover, it satisfies a
functional equation of the form

(3.10) Λ(f, ψ, s) = ε(f, ψ)Λ(f̄ , ψ̄, k + `1 + `2 − s).

Following the terminology of [5], the character ψ is said to be central
critical for f if Λ(f, ψ−1, s) is selfdual, s = 0 is the center of symmetry
in the functional equation, and the factor L∞(f, ψ−1, s) has no poles
at s = 0. Let Σ be the set of central critical characters for f . Each ψ ∈ Σ
satisfies `1 + `2 = k and εψ = χf . In particular, the set Σ decomposes as

Σ = Σ(1) t Σ(2) t Σ(2′),

where

• Σ(1) := {ψ ∈ Σ | 1 ≤ `1 ≤ k − 1 and 1 ≤ `2 ≤ k − 1};
• Σ(2) := {ψ ∈ Σ | `1 ≥ k, `2 ≤ 0};
• Σ(2′) := {ψ ∈ Σ | `1 ≤ 0, `2 ≥ k}.
Assume that the pair (Nf ,K) satisfies Heegner Hypothesis (cf. As-

sumption 3.1) and let Nf be a cyclic ideal of OK of norm Nf . We
now recall the definition of the p-adic L-function attached to f and K
constructed in [5] that interpolates central critical values L(f, ψ−1, 0).

We will denote Σ(i)(c,Nf , χf ) the elements of Σ(i) of finite type
(c,Nf , χf ). In [5] the p-adic L-function

Lp(f,K) : Σ̂(c,Nf , χf )(2) −→ Cp

is defined on the completion of Σ(c,Nf , χf )(2) with respect to an ade-
quate p-adic topology, and it is characterized by the following interpola-
tion property.
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Proposition 3.4. For each ψ ∈ Σ(c,Nf , χf )(2) of infinity type (k +
j,−j) with j ≥ 0,

Lp(f,K)(ψ) =

(
Ωp
Ω

)2(k+2j)

e(f, ψ)2a(f, ψ)f(f, ψ)L(f, ψ−1, 0),

where

(i) Ω (resp. Ωp) is the complex (resp. p-adic) period determined by Ac
defined in [5, (5.1.15)] (resp. [5, (5.2.2)]);

(ii) e(f, ψ) = 1− ψ−1(p̄)ap(f) + ψ−2(p̄)χf (p)pk−1;

(iii) a(f, ψ) = πk+2j−1j!(k + j − 1)!;

(iv) f(f, ψ)= 2k+2j−2

(c
√
DK)k+2j−1

∏
q|c

q−χK(q)
q−1 ω(fk, ψ)−1#(O×K), where ω(f, ψ)

is the scalar of complex norm 1 defined in [5, (5.1.11)].

The set Σ(c,Nf , χf )(1) is contained in the completion Σ̂(c,Nf , χf )(2),
and the main theorem of [5] (and its extension in [7]) relates the values
of the p-adic L-function at characters in Σ(c,Nf , χf )(1) to the general-
ized Heegner cycles. As in §3.1, we fix an elliptic curve A with complex
multiplication by OK , defined over the Hilbert class field K1 of K. As-
sume that A has good reduction at p and let r ≤ k − 2 be an integer
such that k ≡ r (mod 2). Let H be a number field over which all the
structures above are defined, let ωA be a generator of Ω1(A/H), and,
considering the algebraic splitting

H1
dR(A/H) = Ω1(A/H)⊕H0,1

dR(A/H),

let ηA ∈ H1
dR(A/H) be the element such that 〈ωA, ηA〉 = 1. For each

j ∈ {0, . . . , r}, we define

ωjAη
r−j
A := ε∗Ar (p

∗
1ωA ∧ · · · ∧ p∗jωA ∧ p∗j+1ηA ∧ · · · ∧ p∗rηA),

where p1, . . . , pr : Ar → A are the projections. The set {ωjAη
k−2−j
A | j =

0, . . . , k−2} forms a basis for Symk−2 H1
dR(A/H). The following theorem

is due to Bertolini–Darmon–Prasanna and Castella.

Theorem 3.5 (Bertolini–Darmon–Prasanna, Castella). For each Hecke
character ψ ∈ Σ(c,Nf , χf )(1) of infinity type (r − j, j) with 0 ≤ j ≤ r,

Lp(f,K)(ψN
k−r

2

K ) = e(f, ψN
k−2−r

2

K )2
Ωr−2j
p

(j + 1)! · c2j · (4dc)
k−2−r

2

×
(

AJp(∆
ψ
k−2,r,c)(ωf ∧ ω

j
Aη

r−j
A )

)2

,

where ωf ∈ Filk−1 εWk−2
Hk−1

dR (Wk−2/H) is the differential attached to f
defined in §2.2.1 and NK = N ◦NK/Q is the norm character on K.
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The result above is [7, Theorem 4.2.5] when Wk−2 has good reduction
at p (in loc. cit. only the case c = 1 is treated, but the proofs therein
generalize to c > 1 with (c,ND) = 1). The formula was extended by
Castella to the case of semistable reduction [12, Theorem 2.11] (again,
Castella works with trivial character but the proofs extend to the case
of non-trivial character).

Castella constructed in [13] a two variable p-adic L-function that
interpolates the square roots of Lp(f,K)(ψ) for forms f varying in a
Hida family. More precisely, if f ∈ Λf [[q]] is a Hida family, Castella’s
construction provides a two variable function Lp(f ,K)(k, ψ) (defined on
an appropriate weight space W) such that for (k, ψ) ∈ Wcl one has that

Lp(f ,K)(k, ψ)2 = Lp(fk,K)(ψ).

The factorization formula that we will prove in §3.4 involves Castella’s
p-adic L-function evaluated at characters which are the classical special-
izations of Hida families of theta series, which we next recall.

3.3.2. Hida families of theta series. Let ψg be a Hecke character of
the imaginary quadratic field K of infinity type (0, `0 − 1) and conduc-
tor c. Define g := θ(ψg) ∈ S`0(Ng, χg) to be the theta series attached
to ψg. Fix a prime number p not dividing Ng and assume that it splits
in K as pOK = pp̄. There is a Hida family g of theta series passing
through gα, whose construction can be found in [18, §5]. We next recall
the specializations at integer weights of this family.

Fix a Hecke character λ of K with infinity type (0, 1) and conductor p̄.
Let Qp(λ) be the field obtained by adjoining to Q the values of λ and
taking the p-adic completion. Consider the factorization of its group of
units O×Qp(λ) = µ×W where µ is finite and W is free over Zp, and take

the projection to the second factor

〈·〉 : O×Qp(λ) −→W.

For each ` ∈ Z≥0 such that ` ≡ `0 (mod p− 1), define

ψ
(p)
g,`−1 := ψg〈λ〉`−`0 and ψg,`−1(q) :=

{
ψ

(p)
g,`−1(q) q 6= q̄,

χg(p)p
`−1/ψ

(p)
g,`−1(p) q = p̄.

Then ψg,`−1 is a Hecke character of infinity type (0, `− 1). Define

g` := θ(ψg,`−1) ∈M`(Ng, χg).

The p-stabilization of this modular form is the theta series

g` = θ(ψ
(p)
g,`−1) ∈ S`(Ngp, χg).
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3.3.3. Katz’s p-adic L-function. Using the notation of the previous
sections, fix an ideal c of the ring OK and let Σ(c) be the set of Hecke

characters of K with conductor dividing c. Let Σ
(1)
K (c) and Σ

(2)
K (c) be the

subsets of ΣK(c) containing the characters of infinity type (`1, `2) such
that `1 ≤ 0, `2 ≥ 1 and `1 ≥ 1, `2 ≤ 0 respectively. Define

ΣK(c) := Σ
(1)
K (c) t Σ

(2)
K (c).

Then for each ψ ∈ ΣK(c) the point s = 0 is central critical for the
complex L-function L(ψ−1, s).

In [25] Katz attached to K a p-adic L-function Lp(K) defined on

the completion of Σ
(2)
K (c) with respect an adequate p-adic topology and

characterized by the following interpolation property.

Proposition 3.6. For each ψ ∈ Σ
(2)
K (c) with infinity type (`1, `2), we

have

(3.11) Lp(K)(ψ) = a(ψ)e(ψ)f(ψ)

(
Ωp
Ω

)`1−`2
Lc(ψ

−1, 0),

where

(i) Lc(ψ
−1, s) is the product of all the Euler factors defining L(ψ−1, s)

except the ones corresponding to the primes dividing c;

(ii) a(ψ) = (`1 − 1)!π−`2 ;

(iii) e(ψ) = (1− ψ(p)p−1)(1− ψ−1(p̄));

(iv) f(ψ) = (DK)`2/22−`2 ;

(v) Ω and Ωp are the periods appearing in Proposition 3.4.

From the functional equation satisfied by complex Hecke L-functions
it follows a functional equation for Katz p-adic L-function. In particular,
if ψ is a finite order character such that (ψ′)−1 = ψ, then

(3.12) Lp(K)(ψ) = Lp(K)(ψNK).

Moreover, in [25, §10.4.9, §10.4.12] Katz related the values of Lp(K) at
finite order characters to elliptic units.

Theorem 3.7. Let ψ a finite order character of K of conductor c and
let c be the smallest positive integer in c. Then

Lp(K)(ψ) =

{
1
2

(
1
p − 1

)
logp(up) if ψ = 1,

− 1
24ce(ψ)

∑
σ∈Gal(Kc/K) ψ

−1(σ) logp(σ(u)) if ψ 6= 1,

where up ∈ K× is a generator of the principal ideal phK and u ∈ O×Kc is
an elliptic unit.
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3.4. A factorization formula and the proof of the special case.
We resume the notations and assumptions described in the beginning of
§3.2. We also let g and h be the Hida families of theta series passing

through gα = θ(ψ
(p)
g ) and hα = θ(ψ

(p)
h ) as described in §3.3.2. Recall

that, using the notation of §3.3.2, the specialization of g at a point of
weight ` is the p-stabilization of g` := θ(ψg,`−1), and similarly for h.

Define for each k, `,m ∈ Z≥1 the following Hecke characters:

(i) Ψg(`) := ψ−2
g,`−1χg N`

K ;

(ii) Ψgh(k, `,m) := (ψg,`−1ψh,m−1)−1 N
k+`+m−2

2

K ;

(iii) Ψgh′(k, `,m) := (ψg,`−1ψ
′
h,m−1)−1 N

k+`+m−2
2

K .

For each k, `,m ∈ Z≥1, we have the following decomposition of the
triple tensor product of representations

Vfk ⊗ Vg` ⊗ Vhm = Vfk ⊗ Vψg,`−1
⊗ Vψh,m−1

= Vfk ⊗ Vψg,`−1ψh,m−1
⊕ Vfk ⊗ Vψg,`−1ψ′h,m−1

.
(3.13)

This induces a factorization of complex L-functions, up to a finite
number of factors at the bad reduction primes. Evaluating at the central
critical point c0 := k+`+m−2

2 we obtain a factorization of the form

L(fk ⊗ g` ⊗ hm, c0)

= f1(fk, g`, hm)L(fk, ψg,`−1ψh,m−1, c0)L(fk, ψg,`−1ψ
′
h,m−1, c0)

= f1(fk, g`, hm)L(fk,Ψgh(k, `,m)−1, 0)L(fk,Ψgh′(k, `,m)−1, 0),

(3.14)

where f1(fk, g`, hm) accounts for the evaluation of the Euler factors at
bad reduction primes. From this decomposition it follows a factorization
of the triple p-adic L-function in terms of Katz’s and Castella’s p-adic
L functions.

Theorem 3.8. For each (k, `,m) ∈ W◦fgh we have

Lgp(f̆ , ğ, h̆)2(k, `,m)Lp(K)(Ψg(`))
2

= Lp(K, f)(k,Ψgh(k, `,m))2Lp(K, f)(k,Ψgh′(k, `,m))2f(k, `,m),

where

(i) f(k, `,m) :=
∏
q∈Σexc

(1+q−1)

(−4)`−2

f(Ψg(`))2f1(fk,g`,hm)
f2(g`)2f3(g`)2f(k,Ψgh(k,`,m))f(k,Ψgh′ (k,`,m)) ;

(ii) f(Ψg(`)) is the factor appearing in Proposition 3.6;

(iii) f1(fk, g`, hm) is the factor appearing in (3.14);

(iv) f(k,Ψgh(k, `,m)) and f(k,Ψgh′(k, `,m)) are the factors appearing
in Proposition 3.4;
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(v) f2(g`) is the factor defined by the equality

L(Ψg(`), 0) = f2(g`)Lc(Ψg(`), 0),

where c := lcm(cg, ch);

(vi) f3(g`) is the factor defined by the equality

〈g∗` , g∗` 〉 = (`− 1)!π−`f3(g`)L(Ψg(`), 0)

of [14, Lemma 3.7], where g∗` := g` ⊗ χ−1
g .

Proof: By Theorem 2.4, for each (k, `,m) ∈ Wg
fgh we have

L(fk ⊗ g` ⊗ hm, c0) = Lgp(f̆ , ğ, h̆)(k, `,m)2 (−4)`〈g`, g`〉2E0(g`)E1(g`)

E(fk, g`, hm)2

× 1

a(k, `,m)

1∏
q∈Σexc

(1 + q−1)
.

Let c be the smallest positive integer in c. Then if (x, y, z) ∈ Wg
fgh, the

characters Ψgh(k, `,m) and Ψgh′(k, `,m) belong to Σ(c,Nf , χf )(2). In-
deed, L(fk,Ψgh(k, `,m)−1, 0) = L(fk, ψg,`−1ψh,m−1, c0) and c0 is central
critical for this complex L-function. Moreover, Ψgh(k, `,m) has infinity
type

(3.15)

(
k + `+m− 2

2
,
k − `−m+ 2

2

)
= (k + j,−j)

with j = −k+`+m−2
2 ≥ 0. Similarly, Ψgh′(k, `,m) has infinity type

(3.16)

(
k + `−m

2
,
k − `+m

2

)
= (k + j,−j)

with j = `−k−m
2 ≥ 0. Then using (3.14) and Proposition 3.4 we obtain

Lgp(f̆ , ğ, h̆)
2
(x, y, z)

(
Ω

Ωp

)4−4`

〈g`, g`〉2

= Lp(K, f)(k,Ψgh(k, `,m))2Lp(K, f)(k,Ψgh′(k, `,m))2

×
∏
q∈Σexc

(1 + q−1)f1(fk, g`, hm)

(−4)`f(k,Ψgh(k, `,m))f(k,Ψgh′(k, `,m))

× a(k, `,m)

a(Ψgh(k, `,m))a(Ψgh′(k, `,m))

× E(fk, g`, hm)2

E0(g`)2E1(g`)2e(k,Ψgh(k, `,m))2e(k,Ψgh′(k, `,m))2
.

(3.17)
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On the other hand, the character Ψg(`) has infinite type (`, 2− `) and

conductor dividing c, so for ` ≥ 2 it belongs to Σ(c)(2). Substituting [14,
(53) and Lemma 3.7] in the interpolation formula of Proposition 3.6 we
obtain, for each ` ≥ 2,

(3.18) Lp(K)(Ψg(`))=a(Ψg(`))e(Ψg(`))
f(Ψg(`))

f2(`)f3(`)

(
Ωp
Ω

)2`−2

〈g`, g`〉
π`

(`−1)!
.

Plugging (3.18) into (3.17) it follows that:

Lgp(f̆ , ğ, h̆)(x, y, z)2Lp(K)(Ψg(`))
2

= Lp(K, f)(k,Ψgh(k, `,m))2Lp(K, f)(k,Ψgh′(k, `,m))2

× f(k, `,m)π2`a(Ψg(`))
2a(fk, g`, hm)

24[(`− 1)!]2a(Ψgh(k, `,m))a(Ψgh′(k, `,m))

× e(Ψg(`))
2E(fk, g`, hm)2

E0(g`)2E1(g`)2e(k,Ψgh(k, `,m))2e(k,Ψgh′(k, `,m))2
.

Then the statement of the theorem follows from the identities

(i)
π2`a(Ψg(`))2a(fk,g`,hm)

[(`−1)!]2a(Ψgh(k,`,m))a(Ψgh′ (k,`,m)) = 24,

(ii) E(fk, g`, hm) = e(k,Ψgh(k, `,m))e(k,Ψgh′(k, `,m)),

(iii) e(Ψg(`)) = E0(g`)E1(g`),

and by continuity.

As we will see, the proof of Theorem 3.2 follows from evaluating the
formula of Theorem 3.8 at weights (k, 1, 1). Since it will be needed later,
we record the following result on the field of definition of f(k, 1, 1).

Proposition 3.9. If k is even, then f(k, 1, 1)g(χf )2 belongs to L.

Proof: It follows readily from the definitions that the several factors
that enter into the definition of f(k, 1, 1) belong to L, except the fac-
tors f(k,Ψgh(k, 1, 1)) and f(k,Ψgh′(k, 1, 1)). Indeed, these factors are de-
fined in terms of certain scalars ω(fk,Ψgh(k, 1, 1)) and ω(fk,Ψgh′(k, 1, 1)).
By [5, (5.1.11)] we have that

ω(fk,Ψgh(k, 1, 1))ω(fk,Ψgh′(k, 1, 1))

=
ω2
f (−Nf )`−1 NK/Q(b)`−1

χf (NK/Q(b))2ψg(b)2ψh(b)ψ′h(b)b2`+2
.
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Here b is a choice of an ideal of Oc prime to pNfc and b · Nf = (b),
and wf is the scalar such that WNf f

∗
k = wffk (here WNf is the Atkin–

Lehner involution). The statement then follows from [1, Theorem 2.1],
which implies, when k is even, that wfg(χf ) belongs to L.

3.4.1. Proof of Theorem 3.2. In this paragraph we will use the no-
tation and assume all the hypotheses of §3.2. In particular, f is a nor-
malized cuspidal newform of weight k ≥ 2 and g, h are theta series of the
finite order Hecke characters ψg, ψh of the imaginary quadratic field K in
which the prime number p splits. Let f the Hida family passing through
the only ordinary p-stabilization fα of f , let g and h be the Hida families
of theta series of §3.3.2 passing through gα and hα respectively, and let

(f̆ , ğ, h̆) be the choice of test vectors of Theorem 2.4. Then, evaluating
the factorization formula of Theorem 3.8 at (k, 1, 1) and taking square
roots we obtain:

Lgp(f̆ , ğ, h̆)(k, `,m)Lp(K)(Ψg(1))

= Lp(K, f)(k,Ψgh(k, 1, 1))Lp(K, f)(k,Ψgh′(k, 1, 1))f′(k, 1, 1),

where f′(k, 1, 1) :=
√
f(k, 1, 1). Then the statement of Theorem 3.2 fol-

lows applying Theorem 3.7, Theorem 3.5, and Proposition 3.9, after
observing that:

(i) Ψg(1) = ψNK , where ψ := ψ′g/ψg has finite order and it is selfdual,
so that, by (3.12), Lp(K)(Ψg(1)) = Lp(K)(ψ).

(ii) Ψgh(k, 1, 1) = (ψgψh)−1 N
k/2
K =ψ−1

1 N
k−r

2

K and ψ−1
1 = (ψgψh)−1 has

infinity type (r − j, j) with r := 0, j := 0, and analogously for
Ψgh′(k, 1, 1).

4. The conjecture for general unbalanced weights

Let (f, g, h) be a triple of normalized newforms of levels (Nf , Ng, Nh)
and weights (k, `,m) with k ≥ ` + m and k, `,m ≥ 2, and fix a prime
number p such that p - NgNh and ordp(Nf ) ≤ 1 and assume that f , g,
and h are ordinary at p. The aim of this section is to formulate a ver-
sion of the Elliptic Stark Conjecture for (f, g, h) in this setting, and to
give some theoretical evidence for the conjecture in a special case. More
precisely, in §4.1 we state the conjecture, and in §4.2 we focus on the
case in which g and h are theta series of an imaginary quadratic field
where the prime p splits. In this setting, we prove a formula relating the
value Lgp(f ,g,h)(k, `,m) to the p-adic Abel–Jacobi image of certain gen-
eralized Heegner cycles, using the factorisation of Theorem 3.8 and the
result of [7] that we stated as Theorem 3.5. Finally, in §4.3 we particu-
larize the formula to a triple of forms (f, g, h) satisfying some additional
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hypothesis in order to obtain a proof of the conjecture for such triple,
conditional on the validity of Tate’s Conjecture for motives and of certain
standard conjectures on the p-adic Abel–Jacobi map.

4.1. Statement of the conjecture. We begin by recalling some nota-
tion and terminology related to motives. We refer to [34] for further de-
tails. For two number fields K and F , denote byM(K)F the category of
Chow motives over K with coefficients in F . The objects ofM(K)F are
triples (V, q,m), where V is a smooth projective scheme over K, q = q2 is
a projector in the ring of correspondences of V tensored with F , and m is
an integer. For i = 1, 2, let Mi := (Vi, qi,mi) be an object of M(K)F
and assume that V1 is of pure dimension d1. The morphisms from M1

to M2 are defined in terms of correspondences between the underlying
varieties as

Hom(M1,M2) := q1 ◦ Corrm2−m1(V1, V2) ◦ q2,

where Corrm2−m1(V1, V2) := CHd1+m2−m1(V1 × V2) ⊗Z F . Let L :=
(Spec(K), id,−1) be the Lefschetz motive and let d be an integer. We

denote Ld := L⊗d the tensor product of L with itself d times. The Chow
group of a motive M ∈M(K)F is defined as

(4.1) CHd(M) := Hom(Ld,M).

The Chow group of a motive can also be interpreted as a group of
cycles, since

CHd((V, q,m)) ∼= q · CHd+m(V/K)F .

Then CHd(M)0 is defined as the subgroup of the null-homologous cycles

of CHd(M). We will occasionally use the notation CHd(M)0,F if we need
to emphasize the field of coefficients of the Chow group.

Let (f, g, h) be a triple of forms of weights (k, `,m) with k ≥ ` + m
and k, `,m ≥ 2, and let L be a number field that contains the Fourier
coefficients of f , g, and h. The motive attached to f⊗g⊗h is the object
of M(Q)L obtained as the tensor product of motives attached to f , g,
and h:

M(f ⊗ g ⊗ h) := Mf ⊗Mg ⊗Mh,

whose underlying variety is

X := Wk−2 ×W`−2 ×Wm−2.

Put c := (k + `+m− 2)/2 and suppose that

dimL CHc(M(f ⊗ g ⊗ h))0,L = 2.

Under this assumption, we can define the following regulator attached
to (f, g, h).
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Definition 4.1. Let ∆1, ∆2 be a basis of CHc(M(f ⊗ g ⊗ h))0,L. The
regulator attached to (f, g, h) is

(4.2) Reg(f, g, h) :=

∣∣∣∣AJp(∆1)(ωf ∧ ηg ∧ ωh) AJp(∆1)(ωf ∧ ηg ∧ ηh)
AJp(∆2)(ωf ∧ ηg ∧ ωh) AJp(∆2)(ωf ∧ ηg ∧ ηh)

∣∣∣∣ ,
where ωf , ηg, ηh, ωh are the de Rham classes defined in §2.2.1.

Remark 4.2. Since the definition of regulator involves the choice of an
L-basis of CHc(M(f ⊗ g ⊗ h))0,L, it is only defined up to multiplication
by an element of L×.

Denote f , g, and h the Hida families passing through the ordinary
p-stabilizations of f , g, and h. The following is the analog of the Elliptic
Stark Conjecture in this setting.

Conjecture 4.3. Set r := dimL CHc(M(f ⊗ g ⊗ h))0,L.

(i) If r > 2, then Lgp(f̆ , ğ, h̆)(k, `,m) = 0 for any choice of test vec-

tors (f̆ , ğ, h̆) for (f ,g,h).
(ii) If ords=c L(f ⊗g⊗h, s) = 2, then there exists a finite extension L0

of L, a triple of test vectors

(f̆ , ğα, h̆) ∈ Sk(Np, χf )L[f ]×M`(Np, χg)L[gα]×Mm(Np, χh)L[h]

and Hida families f̆ , ğ, and h̆ with fk = f̆ , g` = ğ, and hm = h̆
such that

(4.3) Lgp(f̆ , ğ, h̆)(k, `,m) = Reg(f, g, h) (mod L×0 ).

4.2. The case of theta series of imaginary quadratic fields. Let
K be an imaginary quadratic field of discriminant coprime to Nf in
which the prime p splits as pOK = pp̄ and such that the pair (K,Nf )
satisfies the Heegner Hypothesis (cf. Assumption 3.1). In this subsection
we consider the case in which g and h are theta series of two Hecke
characters ψg, ψh of K. We will use the same notations and assume the
same hypotheses of §3.2, with only two differences. The first one is that
in §3.2 the characters ψg, ψh were assumed to be of infinity type (0, 0),
whereas we now suppose that they are of infinity type (0, `−1), (0,m−1)
for some `,m ≥ 2. The second difference is that now we will define the
characters ψ1 and ψ2 to be

(4.4) ψ1 := ψgψh N2−`−m
K , ψ2 := ψgψ

′
h N2−`−m

K .

As in §3.2, we assume that for i = 1, 2 the conductor of ψi is of
the form ciNi with ci ∈ Z coprime to DKNf and Ni | Nχf . Using the
notation introduced in §3.1 we consider the generalized Heegner cycles

(4.5) ∆̃ψ−1
i := ∆̃

ψ−1
i

k−2,`+m−2,ci
∈ CHc(Wk−2 ×A`+m−2/Hci,f )0,L,
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where A is an elliptic curve defined over the Hilbert class field K1 of K
with CM by OK that we fix once and for all.

Proposition 4.4. Let (f̆ , ğ, h̆) be the choice of test vector of Theo-
rem 2.4. There exist a quadratic extension L0/L and λ ∈ L0 such that

Lgp(f̆ , ğ, h̆)(k, `,m) =
λ

µ
·AJp(∆̃

ψ−1
1 )(ωf ∧ η`+m−2

A )

×AJp(∆̃
ψ−1

2 )(ωf ∧ η`−1
A ωm−1

A ),

(4.6)

where

µ := Ω2−2`π`−2L(Ψg(`)
−1, 0) ∈ Q̄.

Proof: Let r := `+m− 2. Applying Theorem 3.5 to the characters

(i) Ψgh(k, `,m) = ψ−1
1 N

k−r
2

K where ψ−1
1 has infinity type (r − j, j)

with j = 0,

(ii) Ψgh′(k, `,m) = ψ−1
2 N

k−r
2

K where ψ−1
2 has infinity type (r − j, j)

with j = m− 1,

and substituting into equation (3.17), we obtain

Lgp(f̆ , ğ, h̆)2(k, `,m)× Ω4−4`〈g, g〉2 a(k,Ψgh(k, `,m))a(k,Ψgh(k, `,m))

a(k, `,m)

=
(−1)`

∏
q∈Σexc

(1 + q−1)

m!c2m−2
2 4k−`−m(dc1dc2)

k−`−m
2

× f1(f, g, h)

f(k,Ψgh(k, `,m))f(k,Ψgh′(k, `,m))

E(f, g, h)2

E0(g)2E1(g)2

×AJp(∆̃
ψ−1

1 )2(ωf ∧ η`+m−2
A ) ·AJp(∆̃

ψ−1
2 )2(ωf ∧ η`−1

A ωm−1
A ).

Using the definition of the factors involved, the left-hand side of the
previous equality is

Lgp(f̆ , ğ, h̆)2(k, `,m)(Ω2−2`〈g, g〉π2`−2)2.

As ` ≥ 2, the character Ψg(`) belongs to the region of classical interpo-
lation for Katz’s p-adic L-function, and following the computations of
the proof of [14, Lemma 3.7] we obtain

〈g, g〉 =
L(Ψg(`)

−1, 0)

π`
√
DK

(mod Q×).

Then we see that

µ = (Ω2−2`〈g, g〉π2`−2)−1 = (Ω2−2`π`−2L(Ψg(`)
−1, 0))−1
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is algebraic by [7, Proposition 2.11 (1) and Theorem 2.12], and the fac-

tors f1(k, `,m) and E(f,g,h)
E0(g)E1(g) belong to L by the definition of these fac-

tors.

4.3. Proof of a special case. The rest of this section will be devoted
to analyzing the connection between Proposition 4.4 and Conjecture 4.3
in a particular case where ψg and ψh are powers of the Hecke character
of an elliptic curve with CM by OK . More precisely, in this subsection
we continue to denote by f a modular form of weight k ≥ 2, level Nf ,
and Nebentype character χf , and we make the following additional as-
sumptions regarding K, ψg, and ψh:

(1) K is an imaginary quadratic field of class number 1.
(2) We fix an elliptic curve A0/Q with CM by K. We denote by A :=

A0⊗K its extension of scalars to K and by ψA the Hecke character
of A. Then we assume that ψg = ψ`−1

A and ψh = ψm−1
A , with

` > m ≥ 2 and k ≥ `+m.

As usual, we denote g :=θ(ψg)∈S`(Ng, χg) and h :=θ(ψh)∈Sm(Nh, χh).
We simplify further the setting assuming the following on the discrimi-
nant of K.

Assumption 4.5. The discriminant −DK of K satisfies one of the fol-
lowing conditions:

(i) DK is odd;
(ii) 8 | DK ;
(iii) there exists a prime ` | DK such that ` ≡ 3 (mod (4)).

Under this assumption, the elliptic curve A0/Q can be constructed
as in [19, §11], so that the conductor of ψA is generated by

√
−DK , a

condition that we will assume from now on. From the conditions imposed
in this section and using the fact that θ(ψA) is the cuspform attached to
the elliptic curve A that descends to Q, it follows that

(4.7) Ng = Nh = D2
K

and

(4.8) χg = χ`K ; χh = χmK ; χf = χ`+mK =

{
1 if `+m even,

χK if `+m is odd.

In this setting, the involved Hecke characters are

ψ1 = ψgψh N2−`−m
K = ψ`+m−2

A N2−`−m
K ,(4.9)

ψ2 = ψgψ
′
h N2−`−m

K = ψ`−1
A ψ̄m−1

A N2−`−m
K = ψ`−mA N1−`

K ,(4.10)

where we have used that ψ′A = ψ̄A and ψA · ψ̄A = NK .
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Let us assume, as in §4.1, that we are in a rank 2 setting. That is to
say,

dimL CHc(M(f ⊗ g ⊗ h))0,L = 2,

say with basis ∆1, ∆2. The main result of this section is Theorem 4.14
below. It states that assuming Tate’s Conjecture for motives (cf. Conjec-
ture 4.7) and a natural property of the p-adic Abel–Jacobi map (cf. As-

sumption 4.9), if ords=c L(f ⊗ g ⊗ h, s) = 2 and Lgp(f̆ , ğ, h̆)(k, `,m) 6= 0,

then Reg(f, g, h) is a non-zero algebraic multiple of Lgp(f̆ , ğ, h̆)(k, `,m).
It can thus be viewed as the (conditional) proof of a particular case of
Conjecture 4.3.

The strategy of the proof is roughly as follows. Under Tate’s Con-
jecture, the motive M(f ⊗ g ⊗ h) decomposes as a sum of motives
whose underlying varieties are Wk−2×A`+m−2 and Wk−2×A`−m. Using
this decomposition and Assumption 4.9 we are able to write the regula-
tor Reg(f, g, h) in terms of cycles in these varieties (Proposition 4.10).
Then in Proposition 4.13 we relate the p-adic Abel–Jacobi image of these
cycles to that of the generalized Heegner cycles

(4.11) ∆̃ψ−1
i := ∆̃

ψ−1
i

k−2,`+m−2,ci
∈ CHc(Wk−2 ×A`+m−2/Hci,f )0,

and then Proposition 4.4 provides the relation with the special value of
the p-adic L-function.

Before giving the details of this decomposition, as well as the state-
ment and proof of Theorem 4.14, we record some basic results on motives
attached to Hecke characters and on restriction of scalars of motives.

4.3.1. Motives attached to certain Hecke characters. In this sub-
section we follow [6, §2.2]. Fix an identification K ' End(A), and for
each α ∈ K let α∗ denote the pull back on differentials of the endo-
morphism of A corresponding to α. Recall that ψA stands for the Hecke
character of K of infinity type (0, 1) associated to A. The motive at-
tached to ψA belongs to M(K)Q and is of the form

M(ψA) = (A, eψA , 0),

for an appropriate projector eψA . The de Rham realization of this motive
is the K-vector space

eψAH
1
dR(A).

It is endowed with an action [·] of K given as follows: if ω is a differential
form on A and α ∈ K, then [α]ω = α∗ω. Fix a holomorphic differen-
tial ωA on A/K such that [α]ωA = αωA for all α ∈ K, and let ηA be
the unique element of H1

dR(A) such that [α]ηA = ᾱηA for all α ∈ K and
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〈ωA, ηA〉 = 1 (where 〈·, ·〉 stands for the Poincaré pairing). The Hodge
filtration of M(ψA)dR is:

Fil0(M(ψA)dR) = K · ωA +K · ηA,

Fil1(M(ψA)dR) = K · ωA,

Fili(M(ψA)dR) = 0 for i ≥ 2.

Now, for r ∈ Z>0 consider the motive M(ψrA) associated to ψrA. It is
of the form

M(ψrA) = (Ar, eψrA , 0)

for a certain projector eψrA (cf. [6, §2.2]). The Hodge filtration is given
by:

Fil0(M(ψrA)dR) = K · ωrA +K · ηrA,

Fili(M(ψrA)dR) = K · ωrA for i = 1, . . . , r,

Fili(M(ψrA)dR) = 0 for i > r.

4.3.2. Restriction of scalars of motives. There is a restriction of
scalars functor

ResK/Q : M(K) −→M(Q)

which extends the restriction of scalars on algebraic varieties to the cat-
egory of motives (see [24]).

Suppose that M ∈ M(K), and put R = ResK/Q(M). Also, for Y ∈
M(Q) denote by YK = Y ⊗Q K the extension of scalars of Y from Q
to K. Then there is a canonical morphism

w : M −→ RK

satisfying the following universal property: if Y ∈ M(Q) and f is a
morphism f : YK →M , then there exists a unique morphism s : Y → R
such that w ◦ f = s. In other words, there is a canonical identification

Hom(YK ,M) ' Hom(Y,ResK/Q(M)).

In particular,

(4.12) CHc(M)=Hom(LcK,M)'Hom(Lc,ResK/QM)=CHc(ResK/QM).

Here we have used that the Lefschetz motive over K is the base exten-
sion LK . We will need the following generalization of (4.12).

Lemma 4.6. Suppose that M is a motive over K and N is a motive
over Q. There is a canonical isomorphism of Chow groups

CHc(N ⊗ ResK/Q(M)) ' CHc(NK ⊗M).
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Proof: By definition of Chow group, and using the standard formula
relating tensor products and duals (see [34, §1.5]) we have:

CHc(N ⊗ ResK/Q(M)) = Hom(Lc, N ⊗ ResK/Q(M))

= Hom(Lc ⊗N∨,ResK/Q(M))

= Hom(LcK ⊗N∨K ,M)

= Hom(LcK ,NK ⊗M) = CHc(NK ⊗M).

There is a natural isomorphism of Q-vector spaces, preserving the
Hodge filtration (cf. [23, p. 16])

(4.13) HdR(M) ' HdR(ResK/Q(M)).

We will make extensive use of the well-known fact that the restriction
of scalars of a motive and the motive itself have the same L-function,
that is

L(M, s) = L(ResK/Q(M), s).

4.3.3. A decomposition of M(f ⊗ g ⊗ h) and the main result.
Recall that the motive over Q associated to f is Mf = (Wk−2, ef , 0),
and let Mf/K be its base change to K. As explained in §4.3.1, we have
the following motives in M(K)Q

M(ψ`+m−2
A ) = (A`+m−2, e1, 0), M(ψ`−mA ) = (A`−m, e2, 0)

for suitable projectors that we now denote by e1 and e2.
Define the Hecke characters

ψ̃1 := ψgψh = ψ`+m−2
A , ψ̃2 := ψgψ

′
h = ψ`−mA Nm−1

K .

For i = 1, 2, denote by Mi the motive associated to ψ̃i. Observe that
(see cf. [32, p.98]):

M1 = M(ψ`+m−2
A ), M2 = M(ψ`−mA )(1−m) (the Tate twist).

We need to assume the following classical conjecture.

Conjecture 4.7 (Tate’s Conjecture). Let F be a number field and de-
note by RepQ`(GF ) the category of `-adic representations of Gal(F̄ /F ).
The functor

(·)` : M(F )Q −→ Rep(GF ),

that sends a motive over F to its étale `-adic realization, is fully faithful.



On the Elliptic Stark Conjecture in Higher Weight 613

Proposition 4.8. Assuming Conjecture 4.7, there are natural isomor-
phisms

βCH : CHc(M(f ⊗ g ⊗ h))0 ' CHc(Mf/K ⊗M(ψ`+m−2
A ))0

⊕ CHc−m+1(Mf/K ⊗M(ψ`−mA ))0

(4.14)

and

βdR : (M(f)dR ⊗ (M(g ⊗ h))dR ' (Mf )dR ⊗ [(M(ψ`+m−2
A )dR

⊕M(ψ`−mA )(1−m))dR].

Proof: By (3.13) and Artin formalism we have

L(f ⊗ g ⊗ h, s) = L(Vf ⊗ (Vψ̃1
⊕ Vψ̃2

), s)=L(Vf ⊗ Vψ̃1
, s)·L(Vf ⊗ Vψ̃2

, s)

= L(f/K ⊗ ψ̃1, s) · L(f/K ⊗ ψ̃2, s)

= L(Mf/K ⊗M(ψ̃1)) · L(Mf/K ⊗M(ψ̃2))

= L(Mf ⊗ ResK/Q(M1)) · L(Mf ⊗ ResK/Q(M2)).

Tate’s Conjecture implies then the existence of an isomorphism of mo-
tives

M(f ⊗ g ⊗ h, s) 'Mf ⊗ (ResK/Q(M1)⊕ ResK/Q(M2)),

which induces isomorphisms at the level of Chow groups and de Rham
realizations:

CHc(M(f ⊗ g ⊗ h)) ' CHc(Mf ⊗ (ResK/Q(M1)⊕ ResK/Q(M2))),

(M(f ⊗ g ⊗ h))dR ' (Mf ⊗ (ResK/Q(M1)⊕ ResK/Q(M2)))dR.

By Lemma 4.6 and using the fact that the cycle class map commutes
with the restriction of scalars (see [23, p. 75]), we see that there is a
natural isomorphism

(4.15) CHc(M(f⊗g⊗h))0 ' CHc(Mf/K⊗M1)0⊕CHc(Mf/K⊗M2)0.

Observe also that there is a canonical isomorphism

CHc(Mf/K ⊗M2) ' CHc−m+1(Mf/K ⊗M(ψ`−mA )).

Indeed, this follows from the very definition of the Chow group of a
motive and the fact that M2(1−m) = M2⊗Lm−1. Therefore, we obtain
the canonical isomorphism βCH. Also, the isomorphism (4.13) gives the
natural isomorphism βdR.

Recall that we are in a situation of algebraic rank 2. We will fur-
ther assume that we are in a rank (1, 1)-setting, meaning that the rank

of both CHc(Mf/K ⊗M(ψ`+m−2
A ))0 and CHc−m+1(Mf/K ⊗M(ψ`−mA ))0
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is one. This hypothesis is not too restrictive for the aim of this sec-
tion. Indeed, the proof Theorem 4.14 shows that it is satisfied whenever

Lgp(f̆ , ğ, h̆)(k, `,m) 6= 0, and we will prove the main result under this
non-vanishing hypothesis.

Since in the definition of Reg(f, g, h) we are free to choose the basis
of CHc(M(f ⊗ g ⊗ h))0 we can, and do, assume that (∆1,∆2) are cho-
sen to be adapted to the decomposition of Chow groups given by the
isomorphism βCH. That is to say, we can suppose that

(4.16) βCH(∆1) = (∆1
1, 0) and βCH(∆2) = (0,∆2

2)

for some cycles

∆1
1∈CHc(Mf/K⊗M(ψ`+m−2

A ))0 and ∆2
2∈CHc−m+1(Mf/K⊗M(ψ`−mA ))0.

In view of the naturalness of the isomorphisms of Proposition 4.8, it is
also natural to assume that they behave well with respect to the p-adic
Abel–Jacobi map.

Assumption 4.9. For any cycle ∆ and de Rham class ω, we have that

AJp(∆)(ω) = AJp(βCH(∆))(βdR(ω)).

Proposition 4.10. Under the assumptions of this subsection, the matrix
defining Reg(f, g, h) can be chosen to be diagonal. More precisely,

Reg(f, g, h) = AJp(∆
1
1)(η`+m−2

A ) ·AJp(∆
2
2)(η`−mA ) (mod K×).

In order to prove the proposition, we need a lemma on the behavior
of the de Rham classes via the isomorphism βdR.

Lemma 4.11. If we regard the target of βdR as the direct sum

((Mf )dR ⊗M(ψ`+m−2
A )dR)

⊕
((Mf )dR ⊗M(ψ`−mA )(1−m)dR),

then we have

βdR(ωf ∧ ηg ∧ ηh) = (ωf ∧ η`+m−2
A , 0) (mod K×),

βdR(ωf ∧ ηg ∧ ωh) = (0, ωf ∧ η`−mA ) (mod K×).

Proof: The isomorphism βdR is induced from an isomorphism

M(g ⊗ h)dR 'M(ψ`+m−2
A )dR ⊕M(ψ`−mA )(1−m)dR

that respects the Hodge filtration. Observe that

Fil0M(g ⊗ h)dR/Film−1M(g ⊗ h)dR = 〈ηg ∧ ηh〉,

Film−1M(g ⊗ h)dR/Fil`−1M(g ⊗ h)dR = 〈ηg ∧ ωh〉.
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On the other hand, we have that:

Fil0(M(ψ`+m−1
A ))dR/Film−1(M(ψ`+m−1

A ))dR = η`+m−2
A ,

Film−1(M(ψ`+m−1
A ))dR/Fil`−1(M(ψ`+m−1

A ))dR = 0.

As for (M(ψ`−mA )(1−m))dR, recall that it is isomorphic to (M(ψ`−mA ))dR

with the Hodge filtration shifted (m− 1)-positions. That is:

Fil0(M(ψ`−mA )(1−m))dR = · · · = Film−1(M(ψ`−mA )(1−m))dR

= 〈ω`−mA , η`−mA 〉,

Film(M(ψ`−mA )(1−m))dR = · · · = Fil`−1(M(ψ`−mA )(1−m))dR

= 〈ω`−mA 〉,

Fil`(M(ψ`−mA )(1−m))dR = 0.

Therefore

Fil0(M(ψ`−mA )(1−m))dR/Film−1(M(ψ`−mA )(1−m))dR =0,

Film−1(M(ψ`−mA )(1−m))dR/Fil`−1(M(ψ`−mA )(1−m))dR =〈η`−mA 〉.

Proof of Proposition 4.10: By Assumption 4.9, the regulator of f , g,
and h, can be computed as

Reg(f, g, h)

=

∣∣∣∣AJp(βCH(∆1))(βdR(ωf∧ηg∧ωh)) AJp(βCH(∆1))(βdR(ωf∧ηg∧ηh))
AJp(βCH(∆2))(βdR(ωf∧ηg∧ωh)) AJp(βCH(∆2))(βdR(ωf∧ηg∧ηh))

∣∣∣∣ .
By choosing a basis of the Chow group satisfying (4.16), we find that

Reg(f, g, h)

=

∣∣∣∣AJp((∆
1
1, 0))((η`+m−2

A , 0)) AJp((∆1, 0))((0, η`−mA ))

AJp((0,∆
2
2))((η`+m−2

A , 0)) AJp((0,∆
2
2))((0, η`−mA ))

∣∣∣∣ (mod K×)

= AJp(∆
1
1)(η`+m−2

A ) ·AJp(∆
2
2)(η`−mA ) (mod K×).

In order to compare the regulator expressed as in Proposition 4.10
with the right-hand side of (4.6), we focus on the generalized Heegner
cycles (4.11) appearing in this setting.

Lemma 4.12. In the setting of this subsection we have Hci,f = K. That

is to say, the Heegner cycles ∆̃ψ−1
i are defined over K.

Proof: Recall that

ψ1 = ψm+`−2
A N2−`−m

K , ψ2 = ψ`−mA N1−`
K .

For i ∈ {1, 2}, the conductor of ψi is of the form ci ·Nχf where the norm
of Nχf equals the conductor Nχf of χf and (ci, Nχf ) = 1.
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By (4.7) and (4.8), the conductor of χf is Nχf = (DK)ε where ε ∈
{0, 1}. On the other hand, the conductor of ψA is only divisible by primes
above DK , so ci = 1. Recall the extension F/K defined in [7, §4.2] such
that Gal(F/K) ∼= (Z/NχfZ)×/(±1). The field Hc1,f =Hc2,f =H1,f is the
subextension of F/K corresponding to ker(χf )(±1) ⊆ (Z/NfZ)×/(±1),
which is K by (4.8).

Denote ∆̃ψ−1
2 N1−m

K := ∆̃
ψ−1

2 N1−m
K

k−1,`−m,1 ∈ CHc−m+1(Wk−1 ×A`−m/K)0.

Proposition 4.13. We have

AJp(∆̃
ψ−1

2 )(ωf∧ωm−1
A η`−1

A )=(2
√
−DK)1−mAJp(∆̃

ψ−1
2 N1−m

K )(ωf∧η`−mA ).

Proof: By [7, Proposition 4.1.1], there is a correspondence

P : Wk−2 ×A`+m−2 −→Wk−2 ×A`−m,

induced by the cycle

Z = Wk−2×A`−m×Am−1 ∈ CHk+`−2(Wk−2×A`+m−2×Wk−2×A`−m)

embedded into

Wk−2×A`+m−2×Wk−2×A`−m=Wk−2×A`−m×(A×A)m−1×Wk−2×A`−m

via

Id×(
√
−DK × Id)m−1 × Id .

It induces a homomorphism of Chow groups

P∗ : CH
k+`+m−2

2 (Wk−2 ×A`+m−2) −→ CH
k+`−m

2 (Wk−2 ×A`−m).

For each a ideal of OK prime to N , let

∆k−1,a ∈ CHk−1(Wk−2 ×Ak−2)

be the generalized Heegner cycle defined in [5]. As we recalled in §3.1,
for each b ≤ k − 2 such that b ≡ k (mod 2) there is a cycle

∆k−1,b,a ∈ CH
k+b

2 (Wk−2 ×Ab),

as defined in [7].
The correspondence above gives the relations between these cycles:

P∗(∆k−1,`+m−2,a) = (Na)m−1∆k−1,`−m,a.

Using this relation, as in [7, Proposition 4.1.2], we obtain

(2
√
−DK)m−1 AJp(∆k−1,`+m−2,a)(ωf ∧ ωm−1

A η`−1
A )

= (Na)m−1 AJp(∆k−1,`−m,a)(ωf ∧ η`−mA ).
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Then, finally,

AJp(∆̃
ψ−1

2 )(ωf ∧ ωm−1
A η`−1

A )

= (2
√
−DK)1−m AJp(∆̃

ψ−1
2 N1−m

K )(ωf ∧ η`−mA ).

Finally, we state and prove the main result of this section. Recall that
f , g, and h are modular forms of weights k, `, andm respectively with ` >
m ≥ 2 and k ≥ `+m. In addition, g and h are theta series of an imaginary
quadratic field K of class number 1 that satisfies Assumption 4.5 and
in which p splits. More precisely, g = θ(ψ`−1

A ) and h = θ(ψm−1
A ), where

A/K is an elliptic curve of conductor
√
−DK which has CM by OK .

Theorem 4.14. Let (f̆ , ğ, h̆) be the choice of test vector of Theorem 2.4.
Assume that

dimL CHc(M(f ⊗ g ⊗ h))0,L = 2 and Lgp(f̆ , ğ, h̆)(k, `,m) 6= 0.

Under Conjecture 4.7 and Assumption 4.9, there exists a quadratic ex-
tension L0 of L and λ ∈ L0 such that

Lgp(f̆ , ğ, h̆)(k, `,m) = Reg(f, g, h) (mod (K · L0)×).

Proof: Assume that Lgp(f ,g,h)(k, `,m) 6= 0. Combining Proposition 4.4
and Proposition 4.13 with the fact that the kernel of the p-adic Abel–
Jacobi map contains all torsion cycles, we obtain that the generalized

Heegner cycles ∆̃ψ−1
1 and ∆̃ψ−1

2 N1−m
K are nontorsion. Since we are in a

situation of algebraic rank 2, this implies that the preimages via βCH of

(∆̃ψ−1
1 , 0), (0, ∆̃ψ−1

2 N1−m
K )

generate CHc(M(f ⊗ g⊗ h))0. In other words, we can choose ∆1, ∆2 in
such a way that

∆1
1 = ∆̃ψ−1

1 , ∆2
2 = ∆̃ψ−1

2 N1−m
K .

On the other hand, the period Ω attached to the elliptic curve A/K
coincides with the period Ω(ψA) attached to the Hecke character ψA as
in [7, §2.3]. It follows from [7, Proposition 2.11 (2)] that Ω(ψrA) = Ωr

(mod K×) for r ≥ 0. Using [7, Proposition 2.11 (2)], we conclude that
the factor µ appearing in (4.6) lies in K×.

The result then follows by combining Propositions 4.10, Proposi-
tion 4.13, and Proposition 4.4.
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