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1. Introduction

A common characteristic of p-adic L-functions is that they can be
defined by interpolating critical special values of complex L-functions.
Since complex L-functions are attached (at least conjecturally) to mo-
tives, this process can be seen in many instances as associating a p-adic
L-function to a p-adic family of motives. In these cases, if the domain
of the p-adic L-function is a p-adic space W, there is a family of mo-
tives M = {M,},cxe parametrized by a subset X' C W of classical
points which is dense with respect to the Zariski topology. The region of
interpolation is a subset £ € %! again dense within W, with the prop-
erty that for each € X" there is a canonical period €, € C in the sense
of Deligne such that the value of the complex L-function L(M,,s)/S,
at its critical point c, is algebraic; when multiplied by an appropriate
Euler p-factor £(M,) € Q, these values can be p-adically interpolated to
a rigid-analytic function on W. The p-adic L-function attached to M is
then a function £,(M, s): W — C,, such that

o) = S pag, ), a e,

x

In this framework, it is usually of great interest to study the val-
ues £,(M, z) at classical points z € ¥\ X lying outside the region of
interpolation, as it is believed they should encode a p-adic invariant as-
sociated with the relevant motivic cohomology group of the motive M,.
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A prototypical and classical example of this situation is Leopoldt’s
p-adic formula for the value at s = 1 of the Kubota—Leopoldt p-adic
L-function associated to an even Dirichlet character x. The interpolation
formula for this p-adic L-function £,(x, s) reads

L,(x, k) = (1 = x(p)w(p) Fp™*)L(xw ™, k) for k € Z<,

where w: Z/pZ — C* is the Teichmiiller character. Therefore, £,(x;, s)
for s € Z, can be interpreted as the p-adic L-function associated to
{Z(x)(k)}rez, the family of Tate twists of the Dirichlet motive Z(y),
with region of interpolation X" = Z (. The value at k = 1 is then out-
side the region of interpolation and Leopoldt’s formula relates £,(x, 1)
to the p-adic logarithm of a circular unit in the cyclotomic field Q({y):

ﬁp(X,1)=—( Zx L(5)log, (1 — %),

where N is the conductor of x, (x is a N-th root of unity, and g denotes
the Gauss sum.

There are many other illustrative examples of this philosophy. Some
classical and relatively recent formulas exhibiting this phenomenon are
summarized in the survey [3], but very recently there have been exciting
developments in this direction, including [8], [16], [10], [28], [27].

In spite of that, all these formulas scattered in the literature do not
provide a systematic and thorough study of the collection of special
values of a p-adic L-function as a whole and it is not always easy to
have a good understanding of the complete picture. The main aim of
the present article is coming to terms with this problem, providing a
complete, systematic (and often conjectural) answer to this question in
the case of the Garret—Hida p-adic L-functions

cf(f,g h), £o(fgh), and LN(f gh)
attached to a triple of (test vectors associated to) Hida families f', g,
and h introduced by Darmon-Rotger [15].

By symmetry, it is enough to consider one of these functions, say
Eg(f' , 8, Fl), which interpolates the square roots of the central values of
the classical L-function L( fk R ® fLm, s) attached to the specializations
of the Hida families at classical points of weights k, £, m with k,{,m > 2
and ¢ > k + m.

There are currently some results and conjectures for the value of
L£9(f, 8, h)(k,£,m) at some classical points (k, £, m) € £\ £ with & >

2 and £,m > 1 that lie outside this region of interpolation. After review-
ing them for the convenience of the reader, our goal is to complete the
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picture by formulating a conjectural formula for each point in X\ i,
as well as providing evidence for this conjecture by proving some partic-
ular cases.

In order to explain this idea more precisely and to review the known
results and conjectures to date, it is convenient to briefly recall some
terminology related to Hida families.

Let p > 3 be a prime and let A = Z,[[1 + pZ,]] be the Iwasawa alge-
bra. A cuspidal Hida family f of tame level N; and Nebentype charac-
ter x s can be regarded as a power series f = > a,(f)¢™ € Af[[¢]], where
Ag is a finite flat extension of A. A point v in the weight space Wr =
Hom(A¢, Cp) is called classical crystalline of weight k if its restriction
to A is of the form x — w”*(z)x" for some k € Zso, where w denotes
the Teichmiiller character. The specialization f, = Y v(a,(f))¢™ at such
points is then a p-ordinary cuspidal eigenform of weight k, level pNy,
and character xs. If f, is old at p, which is always the case if £ > 2,
then it is the ordinary p-stabilization of an eigenform of level Ny that
we denote by fy; if it is new at p, which can only occur if k¥ = 2, then
we simply put fr = f,. We will also be interested in some weight one
specializations of cuspidal Hida families, although in this case such spe-
cializations are not guaranteed to be neither classical nor cuspidal. If N
is a multiple of Ny, a test vector for f of tame level N is a family of the
form > Aaf(q?) € Ag[[q]] with \q € A¢, where d runs over the divisors
of N/Nf

Let now f, g, and h be A-adic cuspidal Hida families of tame lev-
els Ny, Ny, and N, and tame Nebentype characters xf, x4, and xn
satisfying that gcd(Ny, Ny, Np,) is squarefree and x xgxn =1. Put N =
lem(Ny, Ng, N) and suppose that p{ N. If f, g, and h are test vectors
of tame level N associated to f, g, and h, one can consider the three
variable p-adic L-function

L9(£,8,h): We x Wg x Wy, — C,

constructed in [15].

For simplicity of notation and exposition (and also because this is
the most interesting setting), let us assume that g and h specialize to
a classical modular form at all crystalline points of weight one. Then
the set of classical crystalline specializations of Eg(f‘ .8, h)(k,¢,m) can
be divided into four regions as follows:

(1) o ={(k,&,m):k>2¢6,m>1, and k > £ +m};
(2) 9 ={(k,¢,m): k>2,¢,m>1, and £ > k+ m};
(3) L ={(k,t,m):k>2¢,m>1, and m >k + (};
(4) Pl = {(k,t,m) : k>2,6m>1}\ (Zfunsuxh).
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The type of arithmetic information encoded by Eg(f , 8, fl) (k, ¢, m) de-
pends on the region where (k, ¢, m) lies. For example, 3.9 is the region
of classical interpolation and therefore Lg(f‘,g,ﬁ)(k,e, m) can be ex-
pressed in terms of the algebraic part of the central value of the classical
L-function L(fk,gg,fzm,s) by the interpolation formula of [15, Theo-
rem 4.7]. More recently, Hsieh ([22]) found an explicit choice of test
vectors for which an improved interpolation formula holds; see [22, The-
orem A] or Theorem 2.4 below for the precise formula. We remark that
Hsieh’s formula is valid when ged(Ny, Ny, Nj,) = 1, and this is the reason
why we need to assume this hypothesis as well.

On the other hand, if (k,¢,m) € £*, then £3(f, g, h)(k, £,m) can be
expressed in terms of the syntomic Abel-Jacobi image of a generalized
diagonal cycle Ay, ¢, in the product of Kuga—Sato varieties W = Wj_a x
Wi—g x Wy—o (here Wy_o denotes the desingularization of the (k —
2)-fold fiber product of the universal elliptic curve over the modular
curve X1 (Ny), and similarly for Wy_s and W,,_2). More precisely, [15,
Theorem 5.1] states that

o e E(f,9.h)
g — (_1\(t=k=—m+2)/2 <\ 5 TV)
£3(F, g 0)(k,£,m) = (1) E0(9)&1(9)

X AJp(Ahg,m)(wf ® U;_r & Wh)7

where AJ,, is the syntomic Abel-Jacobi map on the Chow group of W,
E(f,9,h), E(g), and &;(g) are explicit Euler factors, and wy @, @wy, €
HYLAH™=3(W/Q,) is a certain cohomology class naturally attached to
the forms f, g, and h.

The cases ¥/ and £" turn out to be symmetric, so it remains to
consider ¥f. In this case, the article [14] can be viewed as the first
step towards understanding the values of Eg(f' , 8, fl) at classical weights
in ¥/ by means of the so-called Elliptic Stark Conjecture, which gives a
conjectural formula for Lg(f‘ ,&,h)(2,1,1) under an additional classicality
assumption on the weight one specialization of g. The aim of the present
article is to extend the conjectural picture proposed in [14] to all classical
weights in ¥/, thus completing the (partially conjectural) understanding
of Eg(f’, g, fl)(k, £,m) at all classical weights.

A striking feature of the Elliptic Stark Conjecture of [14] is that it
provides insight into an arithmetic problem related to the Birch and
Swinnerton—Dyer Conjecture in rank 2, as we next recall. Let E be an
elliptic curve defined over Q and denote by V,(E) its p-adic Tate module,
viewed as a representation of Gg = Gal(Q/Q). Let

g € Mi(Ng,xg)r and h € Mi(Np, xn)L
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be eigenforms of weight one, Fourier coefficients in a number field L,
and whose Nebentype characters satisfy that x4 - x» =1. Denote by Vj
(resp. Vi) the Artin representation over L attached to g (resp. h), and
by pgn the representation associated to Vg, = Vy ® Vj,. The L-func-
tion L(E, pgn,s) associated to the Galois representation V,(E) ® Vg
coincides with L(f ® g ® h, s), the Garret—Rankin—Selberg L-function
attached to f, g, and h, where f € S3(Ny¢) stands for the modular form
of weight 2 associated to E. The equivariant refinement of the Birch and
Swinnerton-Dyer (BSD) Conjecture then predicts that

)
ords—1 L(E, pgn, s) = dimg Home, (Vyn, E(H) ® L).

Assume that all the local root numbers of L(E, pgp, s) are +1, and that
ords—1 L(E, pgn,1) = 2. Suppose that p > 3 is a prime with ord,(Ny) <1
and p { Ny-Np,, and denote by N the prime-to-p part of lem(Ny, Ny, Ny,).
Denote by ay, 84 the two roots of characteristic polynomial of the Hecke
operator T}, acting on g and let g, be the p-stabilization of g such that
Up(ga) = agga (and define similarly oy, Bi, and h,). Let f, g, and h
be Hida families of tame levels Ny, Ny, and N}, and tame Nebentype
characters xy = 1, x4, and Xy such that fo = f, g1 = go, and hy = h,.

Let us also assume the classicality hypothesis for g, (labeled as hy-
pothesis C in [14]). A crucial ingredient in the conjecture is a regulator,
defined roughly as follows. Using the action of the geometric Frobe-
nius element o, at p on Vjy,, one identifies a certain 2-dimensional sub-
space V, C Vg, on which o, acts with eigenvalues agyaj and ayfh.
Suppose now that ®;, ® is a basis for Homeg, (Vyn, E(H) ® L), and
denote by vy, v a basis of V,,. The regulator is then defined as

logp ,(P1(v1)) logg ,(P1(v2))
R, (E, = det P P ,
1B p) = et (im0 e o)
where logp ,: E(H)® L — C, ® L is the p-adic formal group logarithm.
The Elliptic Stark Conjecture then states that there exists a choice of
test vectors f, g, and h of tame level N associated to f, g, and h such that

Rga <E7 pgh)
logp(uga)

where log,: H* @ L — C, ® L is the usual p-adic logarithm and ug, €
Opull/p)* ® L is the so-called Gross—Stark unit attached to g, defined
in [14, §1.2]. The main theoretical evidence supporting the Elliptic Stark
Conjecture stems from [14, Theorem 3.1], which proves it in the partic-
ular case where g and h are theta series of the same imaginary quadratic
field in which p splits.

(1.1) L3(f,8,h)(2,1,1) =

)
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The aim of this article is to study natural generalizations of the El-
liptic Stark Conjecture, as well as to provide theoretical evidence for
them. The first setting we consider is the case where f € Sip(N¢,x¢)
is a modular form of weight k = r + 2 > 2 and possibly non-trivial
character x ¢, and g, h are modular forms of weight 1 satisfying now
Xf - Xg - Xn = 1. That is to say, in [14] the modular form f is the
weight two modular form attached to an elliptic curve E//Q, and we now
allow f to have higher weight, non-trivial character, and non-rational
Fourier coefficients. Observe that the condition x ¢ - x4 - x» = 1 ensures
that V; ® V, ® V3, is Kummer selfdual, and we denote by L(f, pgn, s) its
L-series.

In this setting, the role played by the elliptic curve F in the previous
discussion is played by the motive attached to f, which arises from the
Kuga—Sato variety W, by means of a suitable projector ef constructed
using automorphisms of W,. and Hecke operators, which projects to the
f-isotypical component.

Denote by CH*/2(W,./H), the Chow group! of H-rational null-ho-
mologous cycles in W, of codimension k/2. An equivariant version of
the Beilinson Conjecture predicts that

ordy—g 2 L(f, pgn, s) = dimy, Home, (Vgn, e CHY (W, /H)o ® L).

In §2 we generalize the Elliptic Stark Conjecture to this setting, in which
(f,9,h) are of weights (k,1,1) with k > 2. For this, we extend the
definition of Darmon—Rotger-Lauder’s regulator, which will now involve
the p-adic Abel-Jacobi map of cycles in CH*/ 2(WT)O as a substitute
for the p-adic logarithm of points on E. We then conjecture a formula
akin to (1.1), namely an equality between ﬁg(?,g,ﬁ)(k,l,l) and the
regulator.

In order to provide evidence for the conjecture, in §3 we prove it in
a particular case where g and h are theta series of the same imaginary
quadratic field in which p splits. The structure of the proof follows the
strategy devised in [14, §3.2]: we prove a factorization formula of the
p-adic L-function in terms of a product of p-adic Rankin L-functions
and a Katz p-adic L-function, and we invoke the main theorem of [5].
We remark that our factorization formula of Lg(f‘ , 8, fl) generalizes those
of [14] and [11] and, in addition, we provide a simpler proof by taking
advantage of the powerful p-adic triple L-function recently constructed
by Hsieh [22].

1Observe that the condition Xf Xg-Xn = 1 forces k-+£+m to be even, so in particular
k is even when £ = m = 1.
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We also observe that the results of [5] play a key role in the proof of
this particular case of the conjecture, for they allow us to relate special
values of p-adic Rankin L-functions with p-adic Abel-Jacobi images of
Heegner cycles. But the main result of [5] (and the more general version
of [7, §4.1]) holds in the wider context of generalized Heegner cycles, and
one might naturally wonder whether this is a manifestation of a more
general version of the Elliptic Stark Conjecture in which g and h are of
weight > 2. This is precisely the study that we undertake in §4, which
as mentioned earlier is also motivated by the aim of providing a formula
for Eg(f‘ ,&,h) at all classical weights where f is dominant.

The second setting that we consider, to which we devote §4, is that
of modular forms (f, g, h) of weights (k, ¢, m) with k > £+ m and ¢, m >
2. As we will see in Conjecture 4.3, Eg(f‘,g,fl)(k/’,f,m) is expected to
be related to a certain regulator (of a more geometric flavor in this
case) of cycles on the motive attached to f ® g ® h. In order to provide
some theoretical evidence for this conjecture, in §4.3 we also prove it
in a certain particular case where g and h are theta series of the same
imaginary quadratic field in which p splits.

Note that in order to complete the study of Eg(ﬁ g, B) at the region ¥/
one should also consider weights of the form (k,¢,1) and (k,1,¢) with
k,¢ > 2. As will be apparent from the contents of §2 and §4, this case
is in fact a combination of the previous two cases and can be dealt with
by using similar techniques, so we do not include it in our analysis.

We finally remark that in this paper we study the values £g(f’ ,&,h)
(k,£,m) at classical points under the assumption that the classical L-
function L(fk ®§2®7Lm, s) vanishes. The case where L(fk ®§g®7zm, s)#0
will be investigated in the forthcoming work [17].

Notations. Throughout the article p will denote an odd prime. We fix
embeddings Q < C and Q — C,, where C, denotes the completion
of @p. If L C Q is a number field, we denote by L, the completion of L
in Q, under this embedding. If L is a field, we will denote by Si(N, x)r
the space of modular forms of level £ and Nebentype character y with
Fourier coefficients in L (and when L = Q we will usually suppress it
from the notation). If Vand W are representations of a group G over a
field L, then WV = Z¢6HOIIIG(V7W) #(V') denotes the V-isotypical com-
ponent of W. If ¢ is a Hecke character of an imaginary quadratic field K,
we will denote by Vy the 2-dimensional Gg-representation obtained by
induction.

Acknowledgments. We are grateful to Victor Rotger for suggesting
the problem to us and for his constant help during the preparation of
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2. The conjecture in weights (k,1,1)

The goal of this section is to formulate a generalization of the Elliptic
Stark Conjecture for a triple of forms (f, g, h) of weights (k, 1,1) with k& >
2. We begin by recalling in §2.1 the three variable p-adic L-function
constructed in [14], which interpolates special values of Garret-Rankin’s
triple product L function along Hida families, as well as the improved
interpolation formulas arising from [22]. In §2.2 we briefly review the
properties of Kuga—Sato varieties and p-adic Abel-Jacobi maps that we
will need in order to define the regulator. Finally, in §2.3, we construct
the generalized regulator and we state the conjecture.

2.1. The triple product p-adic L-function.

2.1.1. Hida families. Let ' := 1 4 pZ, and let A := Z,[[I']] be the
Iwasawa algebra. We denote by W := Spf(A) the usual weight space,
which has the property that for any p-adic ring A the set of A-valued
points of W is given by

W(A) = Homg, _a14(A, A) = Homes (I, A).

One can attach a weight space to any finite flat extension Ay of A by
defining Wy := Spf(Ag). This space comes naturally equipped with a
weight map k: Wy — W, induced by the inclusion A C Ay. An element v
of W(C,) is called classical if it is of the form vy .: x +— €(x)z* for some
Dirichlet character e of conductor a power of p and some k € Z>2. An
element z € Wy(C,) is called classical if its restriction x(z) to A is
classical. A classical point z € Wy(C,) is called crystalline if k(z) is of
the form vy, ,,», where w: Z; — 1,1 denotes the Teichmiiller character.
In order to simplify the notation, we will write in this case x(z) = k.
We will denote by W' the set of classical points of Wy and by Wg the
subset of crystalline points.

Let N be a positive integer such that p f N and let x: (Z/NZ)* — Cj
be a Dirichlet character.

Definition 2.1. A Hida family of tame level N and tame Nebentype
character y is a triple f = (Ag, Wk, f), where:

(i) Af is a finite flat extension of A;
(ii) Wk is a rigid analytic open subvariety of Spf(Ag);
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(iii) f = > an(f)g™ € A¢[[¢]] is a formal series such that, for each v €
We! with k(v) = vg ., the specialization at v

f, = Z:l v(an(£))q"

is the g-expansion of a classical p-ordinary eigenform of weight &

and Nebentype character yew *.

We will denote by ST4(N, x) the set of such Hida families.

Note that, if we restrict to WW¢, then all the specializations of f have
Nebentype character x. In particular, since p does not divide the level
of x, if v has weight &k > 2, then by [21, Lemma 2.1.5] the specializa-
tion f, is old at p. We will denote f, € Sk(N,x) the newform whose
p-stabilization is f,. If £ = 2, then f, can be either old or new. In this
case we denote f, := f, if it is new, while if f,, is old at p, we denote f,
the newform whose p-stabilization is f,,.

2.1.2. The complex Garrett—Rankin triple product L-function.
Let

fesk‘(Nf7Xf)7 QESE(Ngan)a and hesm(NhaXh)

be three normalized newforms, cuspidal if they have weight > 2, and as-
sume that xs-xg-xn = 1. We denote by V¢, V;, and V}, the corresponding
2-dimensional p-adic Galois representations.

The Garrett—Rankin triple product L-function L(f ® g ® h,s) is the
complex L-function attached to the tensor product Vig, 1= Vy @V, @V},.

It is defined by an Euler product which is absolutely convergent in
the half plane Re(s) > %. With the appropriate Euler factors at
infinity, the completed function

AMfRg®h,s)=Loo(fRgRh,s)L(f R g h,s)

extends to the whole complex plane and satisfies a functional equation
of the form

(2.1) Afegah,s)=¢ef,g, HDA(f@9gR@h k+L+m—2—s),

where €(f, g,h) € {£1} is the sign of the functional equation. The center
of symmetry with respect to (2.1) is then ¢ := W, at which L(f ®
g ® h,s) has no pole. Note that the condition xf - x4 - X = 1 implies

that & + £ + m is even, so that ¢ € Z, and moreover c is a critical point
for the L-function, meaning that L. (f ® g ® h, s) has no poles at s = c.

Definition 2.2. A triple of weights (k,#,m) € Z3 is called unbalanced
if one of the weights is greater than or equal to the sum of the other two
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(in which case the greater weight is called dominant weight). Otherwise,
the triple is called balanced.

The sign of the functional equation can be expressed as a product of
local signs over the places of Q. More precisely, if N := lem(Ny, Ny, Np),
then

(2'2) e(f,g,h): H €U(f7g7h)a

v|N-oco
and the local sign at infinity depends on whether the weights are bal-
anced or unbalanced:

600(fﬂ97h) = {

+1 <= (k,£¢,m) unbalanced,
-1 <= (k,¢,m) balanced.

For more details in the study of the complex L-function, see [31].

2.1.3. The triple product p-adic L-function. Let f, g, and h be
three Hida families of tame levels N, Ng, and Np and tame Neben-
type characters xf, Xg, and xn such that x¢ - xg - Xn = 1. As in [22,
Hypothesis (sf) and (CR)], we assume the following hypothesis.

Assumption 2.3. (1) ged(Ng, Ng, Nn) is squarefree;

(2) the residual representation pg: Go — GLa(F,) is absolutely ir-
reducible and p-distinguished (i.e., its semisimplification does not
act as multiplication by scalars when restricted to a decomposition
group at p).

Define the set Wg,, := W¢ x Wg x Wy, of triples of classical crystalline
points for f, g, and h. It can be decomposed as

—w/ h bal
Wf?gh - ngh U Wfqgh U ngh U ngahv

where Wéh is the set of triples (v, v9,v3) € ngh of unbalanced weights
with v; dominant, i.e. such that, if v; have weight k; for ¢ € {1,2,3},
then k1 > ko + k3. The sets ngh and Wtbgh are defined similarly, with
the weight vo and v3 dominant respectively, and W}’galll = {(v1,19,v3) €
Wegn, of balanced weights}.

Let N := lem(Nf, Ng, Np,) and define
SR N X)) = {E € SR, xp) | Tk =ag(B)f for ¢ Np: Upf=a, (£)f}

the set of A-adic test vectors for f (here T; and U, stand for the Hecke
operators). Analogously we define ergd(N, Xg)lg] and STA(N, xp)[h].

For each choice of a triple of test vectors (f', g, fl) for (f,g,h), let
£9(f,g,h) € Ae® Frac(Ag)®An
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be the triple product p-adic L-function constructed in [15]. It interpo-
lates the square root of the central critical values L( fr ®gg®hm,W)
as the triple of weights (k,¢,m) varies in We,y,.

Hsieh ([ ]) constructed an explicit choice of test vector (f, g, h) for
which £9 (f g, ) actually belongs to Aggn = Af@Ag&Ay and it satisfies
a blmpler interpolation formula. We fix this choice of test vector once and
for all. Moreover, while for the construction of [15] the specialization
at each classical point of f, g, and h has to be assumed to be old at p,
in [22] the specializations of the three Hida families are allowed to be
either old or new at p. We next summarize the interpolation properties
of the triple product p-adic L-function attached to Hsieh’s tests vectors.

We recall that for an eigenform ¢ we denote by ay and 34 the two
roots of the characteristic polynomial 22 — a,(¢)x + p*~1x4(p), ordered
in such a way that ord,(ay) < ord,(Bs). We will use the convention
that, if p divides the level of ¢, then 54 = 0.

Theorem 2.4 (Hsieh). Let (f,g,h) € SN, x5)[f] x Sord(N7 Xg)[g] x

SN, xn)[h] be the triple of A-adic test vectors for (f,g,h) defined
n [227 Chapter 3]. Then the p-adic L-function

Ly (f g, h): Wegn := Spf(Aggn) — C,
1s uniquely characterized by the following interpolation property: for each
(k,¢,m) € ngh
£5(F,8,0)(k, €,m) = L(f52ge @ hun, )

5<flca ge, hm)2
(—4)%ge, 9e)*E0(g¢)*E1(ge)?

a(k, ¢, m) [[(1+¢7),

qE€EXexc
where:

-} is the Peterson product;
k+€+m—2 .

e (,
c= ,
® Yoy 1S the set of exceptional primes defined in [22, §1.5];

o afk, ,m) = T (FEE=2 ) D (SEFRE ) Te (B ) e (SE5E)

and T'c(s) = (1;;3))5 ;:

L g(fkagfahm) = (1 - Bgzafkahmpic)(l - Bgeafkﬂhmpic) X (1 -
Bgzﬂfkahmpic)(l - 5geﬂfk5hmpic);

o Solge) =1—B2x, (0"

o Ei(ge) =1 - B2 x; (P)p~".
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2.2. Kuga—Sato varieties and the p-adic Abel-Jacobi map.

2.2.1. Kuga—Sato varieties and modular forms. Let N > 4 be an
integer and let X; (V) be the modular curve attached to the group I'; (V).
Let m: &€ — X1(N) be the corresponding (generalized) universal ellip-
tic curve and let x be a non-cuspidal point of X;(N). Via the moduli
interpretation of the modular curve, x corresponds to the isomorphism
class of a pair (E,, P;), where E, is an elliptic curve of conductor N and
P, € E, is a point of exact order N. The fiber 7=!(z) is isomorphic to
the elliptic curve FE,.

The r-th Kuga—Sato variety W, is the canonical desingularization of
the r-th fibered product £ x x, (n) ) X x,(n) €. It is a variety of dimen-
sion r + 1 defined over Q. For a detailed description see [5, Appendix].

Let f € Sk(N, x) be a p-ordinary normalized cuspform of weight k& > 2
and field of Fourier coefficients F;. Denote by M; the motive over Q
and coefficients in E¢ attached to f by Scholl [33]. This is constructed
in loc. cit. as a Grothendieck motive, although it is expected to be also a
Chow motive and from now on we will make the assumption that My is a
Chow motive. The motive M is given by the triple (Wy_z, ey, 0), where
ef is a certain projector in the ring of correspondences of Wj_s, which
is constructed from Hecke correspondences. By functoriality, ey acts on
the different cohomological realizations of My, acting as the projection
projecting onto the f-isotypical component of the cohomology of Wi _s.
For example

HET (We—2)g, @) [f] = ef - HET (Wik—2)g, Qy),
which in fact is the 2-dimensional p-adic Galois representation V; at-

tached to f.
Similarly, we denote

Sk(N)clfl =ef - Sk(N)L,
which is the projection onto the eigenspace of f relative to the action
of the Hecke operators Ty with (¢, N) = 1. For any number field L

containing E the above f-isotypical component is isomorphic to a piece
of the de Rham cohomology:

Se(N)p[f] = Fil*  HEZ (We—a/L)[f],

and we denote by wy the element of Fil* ' HE-1 (W}, _»/C,) correspond-
ing to f via the previous isomorphism and our chosen inclusion L C C,,.

Assume that ord, (V) < 1, so that the Kuga—Sato variety Wj_o has
good or semistable reduction at p and let o, denote a geometric Frobe-
nius element at p. The cohomology space Hin (W) _»/C,)[f] associated
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to My has dimension 2 over C, and o, acts on it. Since f is ordinary,
there is a unit-root subspace

Hir' (Wi—2/Cp)[f]™" C Hig' (Wi—2/C,)[f]
of dimension 1 on which o, acts as a p-adic unit. Define 7y to be the
unique element in the space Hiz ' (W _o/C,)[f]"" such that (17, w;) = 1,
where (-,-) denotes the Poincaré pairing on Hiz! (W), _o/C,).

2.2.2. The p-adic Abel-Jacobi map. Let W =W, be the r-th Kuga—
Sato variety of level N. We denote by CH®(W) the Chow group of ratio-
nal equivalence classes of codimension ¢ cycles on W and by CH®(W)q
the subgroup of classes of null-homologous cycles, i.e. the kernel of the
cycle class map. If K is an extension of Q, we denote by CH®(W/K)g the
group of null-homologous cycles defined over K. Also, if L is a number
field, we will denote by CH®(W/K)o 1, the space L ®z CHY(W/K)jo.

Fix a prime p of K above p and denote by Wi, the base extension
of W to the completion K, of K at p. As in §2.2.1, we assume that
ord,(N) < 1, so that W, has either good or semistable reduction. In
both situations (cf. [5, §3.4] for the good reduction case and [12, §2] for
the semistable case) for any ¢ € {0,...,r + 1} there exists a so called
p-adic Abel-Jacobi map

AJy: CHY(W/K,)oq — Fil°HG ' (Wi, /Ky)Y.
Here ¥ denotes the Ky-dual.

Remark 2.5. The p-adic Abel-Jacobi map can be seen as a generalization
of the formal group logarithm attached to a differential form on X;(N).
Indeed, one has that log,, (P) = AJ,(P)(wy) for any P € X1(N)(Qp).

2.3. The conjecture. Let f € Sp(Ny,x5), 9 € M1(Ng,Xq), and h €
M1 (Np, xn) be three normalized eigenforms, with £ > 2 and xy - x4 -
X» = 1. Fix a prime number p such that p { NyN;, and ord,(Ny) <
1. Assume that f, g, and h are p-ordinary, and set N to be the prime-
to-p-part of lem(Ny, Ny, Np,). We begin this section by defining, under
certain additional conditions, a regulator Reg(f, g, ) which generalizes
to weight k& > 2 the one defined in [14] for k = 2, where we recall that
Jo stands for the p-stabilization of g such that U,g. = agg.

Let p, (resp. pp) denote the Artin representation attached to g
(resp. h), regarded as acting on a 2-dimensional L-vector space Vj
(resp. V4,). Let also pgp denote the tensor product representation acting
on Vg =V, ® V), and let H be the field fixed by its kernel, so that we
have:

pgr: Gal(H/Q) — Autr (Vyn).
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We can assume, extending L if necessary, that L contains the Fourier
coefficients of f, g, and h. We denote by H,, the completion of H in Q,
induced from our fixed inclusion Q C Qp. Since p { NgNy,, Hy is unram-
ified and we denote by o, a geometric Frobenius.

The Elliptic Stark Conjecture of [14] is formulated under a certain
classicality hypothesis for g, labeled as Hypothesis C in loc. cit., which
we will also assume. In fact, we will assume the following more explicit
condition, labeled as Hypothesis C’ in [14].

Assumption 2.6. The modular form ¢ satisfies one of the following
conditions:

(1) it is a cuspform regular at p (i.e. ag # fy), and it is not the theta
series of a character of a real quadratic field in which p splits;
(2) it is an Eisenstein form which is irregular (i.e. ag = ).

Assumption 2.6 implies Hypothesis C of [14]; in case (1) this is a
consequence of a result of Bellaiche-Dimitrov [2] (cf. [14, §1]), and in
case (2) it follows from the recent work of Betina—Dimitrov—Pozzi [9].
Under Assumption 2.6 one can define a 1-dimensional L-subspace V*
of V as in [14, §1]:

e If g satisfies the first condition, then the attached Artin representa-
tion V; decomposes as the direct sum of the eigenspaces V* and Vf
with respect to the action of o,, with eigenvalues ayx,(p)~! =
ﬂg71 and Byx,(p)~t = ag_l respectively.

e If g is an irregular Eisenstein form, we take Vi* to be any 1-dimen-
sional subspace of V,; which is not stable under the action of Gg.

From now on, we will also assume the following on the local signs of L(f®
g®h,s).

Assumption 2.7. The local signs ¢,(f,g,h) of (2.2) at finite primes
v | lem(Ny, Ng, Ny) are +1.

Note that, since the weights (k,1,1) of the triple (f,g,h) are unbal-
anced, then e (f,g,h) = +1. Hence the global sign is +1 and the order
of vanishing of L(f ® g ® h, s) at the central point k/2 is even. In order
to simplify a bit the notation for the f-isotypical component, we put

CHM2(Wi_o/H)Y), := e - CHY*(W,_2/H)o,L.
As we mentioned in §1, a conjecture due to Beilinson predicts that

OrdS:k/Q L(f ®g®h, 8) . dimy, HOmG@(Vgh, CHk/2(Wk_2/H)([)f]L).

)
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If dimz, Homg, (Vya, CHk/2(Wk,2/H)([){]L) = 2, then we can define a reg-
ulator by fixing an L-basis (®1, P2) of this space and an L-basis (v1,v2)
of V;}L =V eV, as follows.

Definition 2.8. The regulator attached to the triple (f, ga, h) is
AJp(®1(v1))(wr)  Adp(P1(va ))(W))

Reg(f, ga, h) := det p
o0t = o (RO AT oo o)
where wy € Hyr(Wi—2/C,)[f] is the class defined in §2.2.1.

Observe that, by Remark 2.5, when k = 2 we recover the regulator as
defined in [14].

Let Ad, be the adjoint representation of p, and let H, be the field
fixed by its kernel. Let ug, € (L ®z (Op,[1/p]*))"*% be the Stark unit
defined in [14, §1.2], on which o, acts with eigenvalue a,/8,. The fol-
lowing is a generalization to weights k& > 2 of [14, Conjecture ES]. In
the statement we use the following notation: if ¢ is a modular form of
weight w and level Np which is an eigenform for the good Hecke opera-
tors, then M, (Np)[¢] denotes the isotypical subspace of My (N) defined
as

M, (Np)[¢] = {¢ € My,(Np) : Tup = ar(¢)é for all £ Np}.

If ¢ happens to be also an eigenform for U, then M, (Np)[¢] will be
understood as the isotypical subspace associated to the good Hecke op-
erators and to U, as well.

Conjecture 2.9. Let f, g, and h be the Hida families passing through
the p-stabilizations fo, go, and he, of f, g, and h. Set

r = dimy Homg, (Vyr, CHY2(Wi_o /H)) ).

(i) If r > 2, then Eg(f g,h)(k,1,1) = 0 for any choice of test vec-
tors (f,g,h) for (f,g,h).
(ii) Ifords—y 2 L(f®g®h,s)=2, then there exist a triple of test vectors
(f:Garh) € Sk(Np, x1)L[f] x Mi(Np, Xg)Llgal X Mi(Np,xn)L[h]
and Hida families f, g, and h with fr = f, g1 = Ga, and hy = 71,
such that

(2.3) £o(F, & h)(k,1,1) = Reg(f. ga, )

8(xr) log,(ug, )’
where g(x ) denotes the Gauss sum of the character x;.

Remark 2.10. Note that, since Eg(f g,h)(k,1,1) belongs to L, ¢ H,®L,
the geometric Frobenius o, acts trivially on the left-hand Slde of (2.3).
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On the other hand, o,(log,(ug,)) = ay4/B, and by definition of the
space V3, the element o, acts on the regulator as multiplication by
(ByBr)~! - (Bgan)~!. Finally, o, acts on the Gauss sum with eigen-

value x¢(p). So o, also acts trivially on the right-hand side of (2.3)
as fgagBranx s (p) = Xg(P)xn(p)xs(p) = 1.

3. A particular case of the Elliptic Stark Conjecture in
weights (k,1,1)

The goal of this section is to provide theoretical evidence in support
of Conjecture 2.9 in the particular case where g and h are theta series
of the same imaginary quadratic field in which p splits. The main result
that we prove is Theorem 3.2, which relates the triple product p-adic
L-function in this setting with the p-adic Abel-Jacobi image of certain
Heegner cycles. We begin by reviewing Heegner cycles in §3.1 (and, in
fact, we will describe the so called generalized Heegner cycles introduced
in the works of Bertolini-Darmon—Prasanna, since these more general
cycles will appear in §4). In §3.2 we particularize the Elliptic Stark Con-
jecture to the case of theta series of imaginary quadratic fields, and we
state the main result. The proof is given in §3.4, and it follows from
a factorization formula for the triple product p-adic L-function in this
case. The definition and the main properties of the p-adic L-functions
involved are recalled in §3.3.

We fix from now on an imaginary quadratic field K of discrimi-
nant —Dg. We denote by hg its class number and by O its ring of
integers.

3.1. Generalized Heegner cycles. Let NV be a squarefree positive in-
teger coprime to D . From now on, we will assume the following Heegner
Hypothesis for the pair (K, N).

Assumption 3.1. There exists an ideal A of O coprime to Dy such
that Ox /N 2 Z/NZ.

Notice that this assumption is equivalent to the condition that all the
primes dividing N split in K. Fix an elliptic curve A over the Hilbert
class field of K and with complex multiplication by Ok, and a gener-
ator ¢t of A[N] so that the pair (A,t) corresponds to a point P on the
modular curve X;(NN). In [5] and [7], Bertolini, Darmon, and Prasanna
constructed a family of so called generalized Heegner cycles in the prod-
uct of a Kuga—Sato variety with a power of A, extending Nekovai’s
construction of Heegner cycles of [29]. As we will recall in §3.3.1, these
cycles are related to special values of a p-adic L-function, and we will
use this relation in §3.4.1 to prove a special case of Conjecture 2.9. We
now briefly recall the definition of the cycles.
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Let ¢ be positive integer coprime to NDg, and let O, := Z+c¢- Ok be
the order of K of conductor ¢. Let A. := C/O. be an elliptic curve with
complex multiplication by O, which we can assume is defined over the
ring class field K. of K of conductor c¢. Let ¢.: A — A, be an isogeny of
degree c. Given an ideal a of O, prime to N, := N N O,, denote by A,
the elliptic curve C/a~! and by ¢, the isogeny

Ga: A — Ag.

The isogeny ¢q0¢. defines a T'y (N)-level on Ag, i.e. a point ty := ¢q0d.(t)
of exact order N,.

Let 7o > 71 be two non-negative integers with the same parity, set
s::% u = "5 and let

)
o— T
Koy = Wy X AT

It is a variety of dimension rg 4+ r1 +1 = 25+ 1 defined over the Hilbert
class field K7 of K.
Let
7 Xpgm — Wy — X1(N)
be the composition of the projection on the first component of X, ,,
with the canonical map of the Kuga—Sato variety onto X; (V). For each
ideal a of O, prime to N, the fiber of the point P, = (Aq,tq) is

TH(Py) &2 AT x A™ =2 (Ag x A)™ x (Aq x Ag)™.

Write End(A,) as Z[dc%‘/a}, where we regard v/d, as an endomor-
phism of the curve, and define I'y := (Graph(y/d..))"" C Ay x A4, where
tr denotes the transpose. Let also I'¢ o := Graph(¢q o ¢.)*, which is a
cycle in Aq X A, and Iy 1y ca = I'7ly X I'y, which is a cycle of codi-
mension s+ 1 in X, ., supported on the fiber 7=1(P,). The generalized
Heegner cycle attached to the data rq, r1, a, ¢ is defined as

ATOJ’LC,O =Xy (FTU,h,C,ﬂ) € CH**! (XT’O,Tl)O,Q7

where ey, is the projector defined in [7, §4.1].

Let now f € Sy,+2(V, xs) be amodular form. We want to consider the
projection to the “(f,)-component” of these cycles for certain Hecke
characters 1. Recall that a Hecke character of K of infinity type (¢1,£3) €
Z? is a continuous homomorphism ¢: A% — C* such that

Y-z 20) =P(x) -2l 72 foralla € KX,z € A%, and zo, € C.

The conductor of 1 is the largest ideal ¢y, of K such that, for each prime
ideal g of K, the g-component of v is trivial when restricted to 1+¢,Of, .

The central character of 1 is the Dirichlet character e, := %g Nt

where N stands for the norm character.
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Let € be a Dirichlet character of conductor N, | Ny and let M be the
ideal of Ok such that N | Ny and Ok /N: = Z/N.Z. Let ¢ be a positive
integer such that ged(c, Ny-Dg) = 1, and let U, := O = [1,(0.®Zy,)>.
A Hecke character ¢ of K is of finite type (¢, N, ¢) if the conductor of v
is ¢N: and if, denoting N.. := N, N O, the restriction of ¥ to U.
coincides with the composition

U= OF — (0u/N.0.) = (Ox JN-Og)™ = (Z/N.Z)* 5 .

Let ¢ be a Hecke character of K of infinity type (r1 — j,j) for some
0 < j <7y and such that €, = x¢. The condition on the central character
implies that the complex L-function L(f, ™!, s) is selfdual. Let Ny, be
the ideal of K dividing V' whose norm equals the conductor of xy, and
suppose that the conductor of v is of the form ¢, = c./\/xf7 for some c € Z
coprime to N.

By [7, §4.2] the cycle Ay r, ¢.q is then defined over the number field F'
that corresponds by class field theory to the subgroup K*W C A%,
where

W ={zxeA¥ :20. = O, xt = t}.
Arguing as in [7, Display (4.2.1)] we find that Gal(F/K.) ~ (Z/NZ)*/
{£1}. Define H.; to be the subextension of F//K that corresponds
to ker xy under this isomorphism and let

(31) Aro,rl,a,c = ] TrF/HC,f (Aro,rl,a,c)'

L
[F : Hc7f
Finally, following [7, Definition 4.2.3] define the following cycle:

(3'2) A:‘Z}[),Tl,c = ef (Z w(a)_l : ATO,T‘l,G,C) 9

acsS

where S is a set of representatives for Pic(O,) that are prime to ¢ - N.
This definition might depend on the choice of S, but its image under the
p-adic Abel-Jacobi does not by [7, Remark 4.2.4]. Observe that AY . .

belongs to CH*"' (X, . /He,f)o.0(s), Where Q() denotes the number
field generated by the values of 1.

3.2. The case of theta series of imaginary quadratic fields. Let
f € Sk(Ny,xs) be a normalized newform of weight k¥ > 2. Suppose
that the level Ny is squarefree, coprime to D, and that satisfies the
Heegner Hypothesis for K (cf. Assumption 3.1). Fix from now on an
ideal Ny of Ok of norm Ny and let N, | Ny be the ideal whose norm
is the conductor of xs. Let also g, : A} — C* be finite order Hecke
characters of conductors ¢y, ¢, and central characters €4, €5, and let g
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and h be the theta series attached to 14 and v, respectively. They are
weight 1 modular forms with Nebentype; more precisely, if xx denotes
the quadratic character attached to K, then

geMl(Ngan) and hEMl(N}HXh)a
where
Ng=Dgk -Ngg(cy), No=Dx -Ngso(cn), Xg=XxK &g, and xn =Xk -€n-

Fix a prime number p > 3 that splits in K as pOx = pp. Suppose
that p { Ny - Nj and ord,(Ny) < 1 and suppose that f, g, and h are
p-ordinary. We assume that

(3.3) Xf*Xg - Xn =1,
so that we are in the setting of §2.3. In this section we are interested in
Conjecture 2.9 for the modular forms f, g, and h we just defined. Recall
that the field of coefficients L can be taken to be the field generated by
the Fourier coefficients of f, g, and h.

Let 1}, be the Hecke character defined by ¢, (¢) = v, (co00y ) for o €
Gg, where oy is any lift of the non-trivial involution of K/Q. Define also
the characters

(3-4) 1111 = 1/’97/1117 1/12 = %%

Condition (3.3) implies that Pyppx = wglAg = Xfl and that the con-
ductor of 9; is of the form ¢;N;, where N | N ; and ¢; is an integer
coprime to Ny ;. We will assume from now on that N = N, , fori =1,2.
We further assume that ¢; has finite type (¢;, Ny, x 7).

In this setting, by looking at the Euler factors one checks that there
is a decomposition of Artin representations

(3.5) Vgh = qu D szv
which in turn induces a factorization of L-functions

The conditions imposed so far imply that all the finite local signs of
L(f/K, 1y, s) are +1, so in particular Assumption 2.7 is satisfied. More-
over, the global sign of L(f/K,;,s) is —1, so that L(f/K,1;, s) vanishes
at the central point s = k/2 and therefore ord,_j /o L(f ® g ® h,s) > 2.

Thanks to our assumptions on the characters 11 and 12, we can speak
of the cycles Az)iz,o,ci as defined in §3.1. Observe that in this particular
case in which r; = 0, these are in fact classical Heegner cycles, as defined

in [30]. If we let H; be the field denoted as H,, , in §3.1, then we have

AL oo, € CHY2(WiLo/Hy) .
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Since we want to view the two cycles as being defined over the same field,
we set H := Hj- Ho, the composition of H; and Ha, and ¢ := lem(cy, ¢2).
In this way, the cycle A}fﬂz 0.c, belongs to CHk/Q(Wk,g/H)gf]L.

The following is the main result of this section. It is the geﬁeralization
to weights k > 2 of [14, Theorem 3.3].

Theorem 3.2. Let f, g, and h be Hida families passing through fa, ga,
and he. Let (f,8,h) be the triple of test vectors of Theorem 2.4. There
exists a quadratic extension Lo of L and X\ € L such that

AJP(AZLQ,O,Cl ) (wy) AJP(Agizo,cQ Jwy)
9(xy) log, (ug,)

Remark 3.3. We stress that the non-zero scalar )\ lies in a quadratic

extension of the field of coefficients of f, g, and h. In this sense, this also

represents a slight strengthening of [14, Theorem 3.3], in which one had
a less precise control of the degree of such extension.

L3(f,g,h)(k,1,1) = A

Theorem 3.2 can be seen as giving evidence towards Conjecture 2.9,
as we now explain. The decomposition of representations (3.5) induces
a decomposition

Homg, (Vgn, CHY 2 (Wi_o/H) Y} ) = Homg, (Viy, , CH2(Wie_o/ H)Y )
®Homg, (Vy,, CH’“/Q(kaz/H)([{]L),

where Vy, denotes the 2-dimensional representation over L obtained by
induction from ;.

Consider now the Heegner cycle A, := Ak—2,0,00,c defined in (3.1)
with rg=k — 2, r1 =0, and associated to the trivial ideal O.. It belongs
to CHk/Q(Wk,Q/H)([){]L, and we consider the projection to the 1; com-
ponent

(3.7) AVii= Y (o) (A

o€Gal(H/K)

Observe that Af gives an element in Homg, (Vy,,CHF I Wi /H )([)f ]L)
Indeed, since #; is anticyclotomic we have that V,, = Vj; and, by Frobe-
nius reciprocity, giving an element in

Homg, (Vg,, CHY2(Wi_o/H)Y) )
is equivalent to giving a G x-homomorphism from L (viewed as a G-

module via the action of ;) to CHk/2(Wk_2/H)E{]L; the map that sends 1

to Agi is one such homomorphism.
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As we mentioned before, in our setting the sign of the functional
equation of L(f,1;,s) for i = 1,2 is —1 and therefore these L-functions
vanish at the central point s = k/2. Suppose that ord,_s /o L(f,v;,5) =
1 for i = 1,2 (a fact which is actually expected to hold for “generic”
Hecke characters). Then, by the general philosophy of Heegner points
and Heegner cycles it is expected that

(3.8) Homg, (Vy,, CHY2(Wi_o/H)Y ) ) = (A7),

That is to say, the above space is generated by the homomorphism
given by the Heegner cycle. This has been proven for & = 2 by the
results of Gross—Zagier [20], Kolyvagin [26], Zhang [36], and Bertolini—
Darmon [4]. For k > 2, in the particular case where ¢ =1 and x; = 1,
it follows from results of Zhang [35] and Nekovér [30] on Heegner cycles
if one assumes the Gillet—Soulé Conjecture on the non-degeneracy of the
height pairing.
Arguing as in [14, Lemma 3.2] we see that if we assume (3.8), then

Reg(f, ga, h) = AJp(AV ) (wy) - AT, (AY2)(wy).

Finally, observe that A% and Agizo,ci are defined differently (see (3.7)
and (3.2)), but we have

(39)  AJ(AY)(wp) = [H : Ki] - AJp(A 5. )(wy) (mod L¥).

Indeed, by Shimura’s reciprocity law (Aro’rl,omc)" = A,.mrha_17c when
o corresponds to a under the reciprocity map of class field theory. Then
(3.9) follows from the display in the proof of [7, Proposition 4.2.1] and
the fact that v; is of finite type (c;, N7, xf).

Therefore, we see that

Reg(f, ga, h) = AJp(AV ) (wy) - AJp(AY?)(wy)  (mod LX),

and thus Theorem 3.2 proves Conjecture 2.9 in this case (up to the fact
that in Theorem 3.2 A lies in a quadratic extension of L rather than in L
itself).

We devote the rest of §3 to prove Theorem 3.2. The argument follows
essentially the same strategy introduced in [14, §3], which exploits a
certain factorization of p-adic L-functions. In §3.3 we will recall the dif-
ferent p-adic L-functions involved. Then in §3.4 we will state and prove
the factorization formula, and we will prove Theorem 3.2.

3.3. p-adic L-functions. In this subsection we review two types of
p-adic L-functions: the Bertolini-Darmon—Prasanna p-adic L-function
(and Castella’s generalization) and Katz’s p-adic L-function.
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3.3.1. The Bertolini-Darmon—Prasanna p-adic L-function. Let
f € Sk(Ny, xs) be a normalized newform and let ¢ be a Hecke character
of the imaginary quadratic field K of infinity type (¢1, £2), conductor ¢y,
and central character e,,. We can attach to the pair (f,) the complex
L-function

k—1+€1+62>
2 b

D)= DAYy @ Vi) = (7 X 75 -

where 7y and m,, are the unitary automorphic representations of GLa(Ag)
attached to f and 1 respectively. It is defined as an Euler product, and
can be completed to a meromorphic function

A(f,1,8) = Loo (f,0, 8)L(f, 1), 5),

that is an entire function if xs - xx - €4 # 1. Moreover, it satisfies a
functional equation of the form

(310) A(fvwv 5) = €(f7¢)/\(f7157 k + El + 62 - S)'

Following the terminology of [5], the character ¢ is said to be central
critical for f if A(f, =1, s) is selfdual, s = 0 is the center of symmetry
in the functional equation, and the factor L., (f,1 ', s) has no poles
at s = 0. Let X be the set of central critical characters for f. Each ¢ € ¥
satisfies 1 + {2 = k and €y = x . In particular, the set ¥ decomposes as

= yv@) 0@ 2(2')7

where

e XM =lpeX|1<l <k—Tland1<ly<k—1};

o X = {peN |l >k lr <O}

e X = {p e |l <0, 0l >k}

Assume that the pair (Ny, K) satisfies Heegner Hypothesis (cf. As-
sumption 3.1) and let Ny be a cyclic ideal of Ok of norm Ny. We
now recall the definition of the p-adic L-function attached to f and K
constructed in [5] that interpolates central critical values L(f,v~,0).

We will denote %) (c, Ny, xs) the elements of X() of finite type
(¢, Ny, xs). In [5] the p-adic L-function

Ly(f, K): £(e, Ny, x)® — C,

is defined on the completion of (¢, Ny, Xf)(2) with respect to an ade-
quate p-adic topology, and it is characterized by the following interpola-
tion property.
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Proposition 3.4. For each i € Z(C,Nf,)(f)(z) of infinity type (k +

QO 2(k+27)
e = () e i L0,

where
(i) Q (resp. Q) is the complex (resp. p-adic) period determined by A,
defined in [5, (5.1.15)] (resp. [5, (5.2.2)]);
(ii) e(f,9) =1 =9~ (P)ap(f) + ¥~ (P)xs(p)P"
(iii) a(f,s) =a*T2=4l(k +j — D

ok+2j—2

(iV) f(fvz/}) (cv/Dr)Fr2i— 1Hq\cq ,;C,Kl(q)w(fkaw)_l#(oié); wherew(f,z/})
is the scalar of complex norm 1 defined in [5, (5.1.11)].

The set X(c, Ny, x 7)) is contained in the completion (¢, N, x ),
and the main theorem of [5] (and its extension in [7]) relates the values
of the p-adic L-function at characters in X(c, Ny, x f)(l) to the general-
ized Heegner cycles. As in §3.1, we fix an elliptic curve A with complex
multiplication by O, defined over the Hilbert class field K7 of K. As-
sume that A has good reduction at p and let r < k — 2 be an integer
such that £k = r (mod 2). Let H be a number field over which all the
structures above are defined, let w4 be a generator of Q'(A/H), and,
considering the algebraic splitting

Hir(A/H) = Q'(A/H) & Hyg (A/H),

let na € Hig(A/H) be the element such that (wa,n4) = 1. For each
j€{0,...,r}, we define

Wy 7 =€ (Pjwa A APiwa A na A Apina),

where p1,...,p,: A" — A are the projections. The set {wAnk 23 |j=

., k—2} forms a basis for Sym" =2 H: (A/H). The following theorem
is due to Bertolini-Darmon-Prasanna and Castella.

Theorem 3.5 (Bertolini-Darmon—Prasanna, Castella). For each Hecke
character ¢ € Z(C,J\/f,xf)(l) of infinity type (r — j,j) with 0 < j <,

k—2—1r QOr—2i

r e 72 P
p(va)(Q/}NK ) E(fa'@[]NK )(j+l)!-c2j (4d)k§7‘

(AJ (Ak zrc)(wf/\WAUA ))27

where wy € FilF ey, _, HE (Wi—2/H) is the differential attached to f
defined in §2.2.1 and Nx = NoNg q is the norm character on K.
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The result above is [7, Theorem 4.2.5] when Wj,_» has good reduction
at p (in loc. cit. only the case ¢ = 1 is treated, but the proofs therein
generalize to ¢ > 1 with (¢, ND) = 1). The formula was extended by
Castella to the case of semistable reduction [12, Theorem 2.11] (again,
Castella works with trivial character but the proofs extend to the case
of non-trivial character).

Castella constructed in [13] a two variable p-adic L-function that
interpolates the square roots of L£,(f, K)(v) for forms f varying in a
Hida family. More precisely, if £ € A¢[[g]] is a Hida family, Castella’s
construction provides a two variable function £,(f, K)(k, ) (defined on
an appropriate weight space W) such that for (k, 1) € W* one has that

L,(£,K)(k,9)* = Lp(fu, K) ().

The factorization formula that we will prove in §3.4 involves Castella’s
p-adic L-function evaluated at characters which are the classical special-
izations of Hida families of theta series, which we next recall.

3.3.2. Hida families of theta series. Let 9, be a Hecke character of
the imaginary quadratic field K of infinity type (0,¢p — 1) and conduc-
tor ¢. Define g := 0(1p,) € S¢,(INg, Xg) to be the theta series attached
to 1¢4. Fix a prime number p not dividing N, and assume that it splits
in K as pOg = pp. There is a Hida family g of theta series passing
through g,, whose construction can be found in [18, §5]. We next recall
the specializations at integer weights of this family.

Fix a Hecke character A of K with infinity type (0, 1) and conductor p.
Let Qp(A) be the field obtained by adjoining to Q the values of A and
taking the p-adic completion. Consider the factorization of its group of
units (’)(Sp () = KX W where p is finite and W is free over Z,, and take
the projection to the second factor

(-): (’)6 o — W
For each ¢ € Z>( such that £ = ¢y (mod p — 1), define

(p) =
w L— 1( ) q 7& q,
U1 = gV T and g (a) = { ” A
PP U 6) 0=
Then 4 41 is a Hecke character of infinity type (0,¢ —1). Define
ge ‘= 9("/’972—1) € MZ(Ngan)'

The p-stabilization of this modular form is the theta series

g = 9(1/)32_1) € SZ( gD Xg)
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3.3.3. Katz’s p-adic L-function. Using the notation of the previous
sections, fix an ideal ¢ of the ring O and let X(¢) be the set of Hecke
characters of K with conductor dividing c. Let Z([? (¢) and E(I?)(c) be the
subsets of Yk (c) containing the characters of infinity type (¢1,£2) such
that /1 <0, ¢, > 1 and ¢; > 1, {5 < 0 respectively. Define

Sr(e) =20 () usP(e).

Then for each ¢ € Yk (c¢) the point s = 0 is central critical for the
complex L-function L(~!,s).

In [25] Katz attached to K a p-adic L-function £,(K) defined on
the completion of Eg)(c) with respect an adequate p-adic topology and
characterized by the following interpolation property.

Proposition 3.6. For each i € Zg)(c) with infinity type (£1,43), we

have

01—0s
B LW =)o) () Lo
where

(i) Lc(v~1, s) is the product of all the Euler factors defining L(¢~1, s)
except the ones corresponding to the primes dividing c;

(i) a(y) = (6 —Dlr=*;

(iif) e(¥) = (1 —(p)p~")(1 =~ (p));

(iv) f(v) = (Dx)"2/?27";
)

(v) Q and Q, are the periods appearing in Proposition 3.4.

—

From the functional equation satisfied by complex Hecke L-functions
it follows a functional equation for Katz p-adic L-function. In particular,
if 9 is a finite order character such that (¢')~! = 1), then

(3.12) Ly(K)(¥) = Lp(K)(¢ Nkg).
Moreover, in [25, §10.4.9, §10.4.12] Katz related the values of £,(K) at
finite order characters to elliptic units.

Theorem 3.7. Let ¢ a finite order character of K of conductor ¢ and
let ¢ be the smallest positive integer in c. Then

3 (5 — 1) log, (up) if o =1,
2120 (¥) X cqaiw. iy ¥ (0) logy (o (w) if ¥ # 1,

where up, € K> is a generator of the principal ideal p"E and u € (’)IX(C 1
an elliptic unit.

Ep(K)(¢) = {
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3.4. A factorization formula and the proof of the special case.

We resume the notations and assumptions described in the beginning of

§3.2. We also let g and h be the Hida families of theta series passing

through g, = (") and hy = 6(1") as described in §3.3.2. Recall

that, using the notation of §3.3.2, the specialization of g at a point of

weight £ is the p-stabilization of g, := 6(t)4,¢—1), and similarly for h.
Define for each k,¢,m € Z>; the following Hecke characters:

(i) Wy(l) := 7/19_,3_19@ Ni(?
kE4+l4m—2

(i) Won(k,l,m) ;= (Yge—1¥hm-1)""Ng =
. 1 k+l+m—2
(111) \I/gh'(k7£7m) = (wg,f—l’(ﬂ;z,mfl)_ NK :
For each k,¢,m € Z>;, we have the following decomposition of the
triple tensor product of representations
ka ® ‘/92 ® th, = ka, ® ng,lfl ® th,nzfl

=V; ® V¢g,271¢h,m71 @V, ® ng,quﬁiz,m,l'

(3.13)

This induces a factorization of complex L-functions, up to a finite
number of factors at the bad reduction primes. Evaluating at the central
critical point ¢g := W we obtain a factorization of the form

L(fr ® ge @ b, co)
(3.14)  =F1(frs 96, P ) L(frs Vg.0—19h.m—1, €0) L(fr Vg.0—1%h 15 C0)
:fl(fkagb hm)L(fk?7 \Ijgh(k7€u m)_17 O)L(fku \Ijgh'(k7 ga m)_17 0)7

where f1(fx, g¢, hm) accounts for the evaluation of the Euler factors at
bad reduction primes. From this decomposition it follows a factorization
of the triple p-adic L-function in terms of Katz’s and Castella’s p-adic
L functions.

Theorem 3.8. For each (k,(,m) € Wg,, we have

Lo(E, & 1) (k, €,m) £, (K) (T 4(0))
= L, (K, £)(k, U (k, €,m))2 L (K, ) (k, U g (k, £,m)) (K, £,m),
where
(i) f(k, €,m) := Hoczex ta™) FW ()1 (fisge.Tom)

(—4)t=2 F2(90)215(92) 21 (k20 g (R, ;) ) (B0 o0 (R, Eom)) 7
(i) §
(iii) 1 (fk,gg,hm) is the factor appearing in (3.14);
) f(k, Ugn(k,l,m)) and §(k,¥Yypn (k, €, m)) are the factors appearing
i Proposition 3./;

(Wy(L)) is the factor appearing in Proposition 3.6;

(iv
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(v) fa(ge) is the factor defined by the equality
L(\Ilg(z)a 0) = TQ(QZ)LC(\IJQ(Z)’ 0)7
where ¢ :=lem(cy, ¢3);
(vi) f3(ge) is the factor defined by the equality

(97,98) = (0= D)7~ F3(ge) L(4(£), 0)
of [14, Lemma 3.7], where g; := g¢ ® Xg_l.

Proof: By Theorem 2.4, for each (k,¢,m) € Wfqgh we have

2 (=4)(ge, 90)*E0(g0)E1(ge)
g(fka ge, hm)2

L(fk ®gf ® hm,CO) = Kg(f'7g7fl)(k7£a m)

1 1
X .
a(k, £,m) [Ies,. (A +a7")
Let ¢ be the smallest positive integer in ¢. Then if (x,y, z) € Wfqgh, the
characters W, (k, £, m) and W,/ (k, £, m) belong to S(c, Ny, x5)?. In-
deed, L(fi, ¥gn(k,¢,m)~1,0) = L(f, ¥g6-1%nm—1, co) and co is central
critical for this complex L-function. Moreover, ¥, (k, ¢, m) has infinity
type

k+¢ -2 k—{— 2
(3.15) < +{+m m+

G2 ) i)

with j = =FEEm=2 > 0 Similarly, ¥y, (k, £, m) has infinity type

k+l—m k—C0+m o
(3.16) ; = (k+J,—J)
2 2
with j = e_k;m > 0. Then using (3.14) and Proposition 3.4 we obtain

o Q44
cten)’ @) (o) o)
P

= L, (K, £) (k, Wn (k. £,m))2 L, (I £) (k, W (k, £,m))?
quEexc(l + qil)fl(fka ge, hm)
(3.17) Dk, W g (b, £m))j(k, Wy (£, m)
a(k,l,m)
a(\llgh(k7 l, m))a(\llgh’ (k, l, m))

o E(fr, 9o, hom)?
Eo(9e)%E1(ge)?e(k, Won(k, £,m))%e(k, W gp (k, €, m))?

X
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On the other hand, the character ¥ (¢) has infinite type (¢,2 —¢) and
conductor dividing ¢, so for £ > 2 it belongs to ¥(c)(?). Substituting [14,
(53) and Lemma 3.7] in the interpolation formula of Proposition 3.6 we
obtain, for each ¢ > 2,

F(Wy(0) (2, mt
(318) Ly(K) (80D =aty )00 G ) 990 G

Plugging (3.18) into (3.17) it follows that:
ﬁq(f g.0)(2,y,2)2 Ly (K)(Ty(0))?
= L,(K, £)(k, Wy, (k, £,m))2 L, (K, £)(k, U n (k, £,m))>

f(k, £, m)n? a( Wy (0)a(fr, go, han)
21[(€ = D)12a(Wyn (K, £,m))a(Wgn: (K, £;m))

) (0 (0)°E i g )
50(95)251 (gf)2e(k7 \Ijgh(kv €7 m))2€(1€, \Ijgh/ (kv gv m))2 '

X

Then the statement of the theorem follows from the identities

: Wzga(\l’ (f)) a(fr,ge,hm) __ 94
®) [(L=D)1Pa(¥ gh(kem)));(\f;qh/(kem)) =2

(11) 5(fka ge, m) = e(kv \I/gh(kv 67 m))e(k7 \I’gh’ (ka Ea m))a
(iil) e(Wy(£)) = Eo(ge)r(ge),
and by continuity. O

)

As we will see, the proof of Theorem 3.2 follows from evaluating the
formula of Theorem 3.8 at weights (k, 1, 1). Since it will be needed later,
we record the following result on the field of definition of f(k, 1, 1).

Proposition 3.9. If k is even, then §(k,1,1)g(xs)? belongs to L.

Proof: 1t follows readily from the definitions that the several factors
that enter into the definition of f(k,1,1) belong to L, except the fac-
tors f(k, Wgn(k,1,1)) and f(k, ¥gnr (K, 1,1)). Indeed, these factors are de-
fined in terms of certain scalars w( f, ¥ g, (k, 1,1)) and w( fx, Ve (k, 1, 1)).
By [5, (5.1.11)] we have that

W(fir g (k, 1, 1))w(fr, Wonr (k,1,1))
w3(~Np) ' N jg(b)?
X7 (Nr/q(b))224 ()2 (b)1y, (b)b26+2
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Here b is a choice of an ideal of O, prime to pNyc and b - Ny = (b),
and wy is the scalar such that Wy, fi = wy fi (here W, is the Atkin—
Lehner involution). The statement then follows from [1, Theorem 2.1],
which implies, when k is even, that w;g(x ) belongs to L. O

3.4.1. Proof of Theorem 3.2. In this paragraph we will use the no-
tation and assume all the hypotheses of §3.2. In particular, f is a nor-
malized cuspidal newform of weight & > 2 and g, h are theta series of the
finite order Hecke characters 1), ¥, of the imaginary quadratic field K in
which the prime number p splits. Let f the Hida family passing through
the only ordinary p-stabilization f, of f, let g and h be the Hida families
of theta series of §3.3.2 passing through g, and h, respectively, and let
(f’, g, Fl) be the choice of test vectors of Theorem 2.4. Then, evaluating
the factorization formula of Theorem 3.8 at (k,1,1) and taking square
roots we obtain:

L(E, 1) (k, £.m) L, () (¥, (1))
= L (K 8) (b, Wan (k, 1, 1)) L (5, ) (b, W (b 1, 1)F (. 1,1),

where f'(k,1,1) := y/f(k,1,1). Then the statement of Theorem 3.2 fol-
lows applying Theorem 3.7, Theorem 3.5, and Proposition 3.9, after
observing that:
(i) Wy(1) = ¢ Nk, where b := 9/ /1), has finite order and it is selfdual,
so that, by (3.12), L,(K)(¥4(1)) = L,(K)(®).

u
(i) Won(k,1,1) = (Ygton) N2 =y N & and o7 " = (1h,00) " has
infinity type (r — 7,7) with r := 0, 5 := 0, and analogously for
U (k,1,1).

4. The conjecture for general unbalanced weights

Let (f, g, h) be a triple of normalized newforms of levels (Ny, Ny, Np)
and weights (k,¢,m) with k > ¢ +m and k,¢,m > 2, and fix a prime
number p such that p { NgNj, and ord,(Ny) < 1 and assume that f, g,
and h are ordinary at p. The aim of this section is to formulate a ver-
sion of the Elliptic Stark Conjecture for (f, g, h) in this setting, and to
give some theoretical evidence for the conjecture in a special case. More
precisely, in §4.1 we state the conjecture, and in §4.2 we focus on the
case in which g and h are theta series of an imaginary quadratic field
where the prime p splits. In this setting, we prove a formula relating the
value £J(f, g, h)(k, £, m) to the p-adic Abel-Jacobi image of certain gen-
eralized Heegner cycles, using the factorisation of Theorem 3.8 and the
result of [7] that we stated as Theorem 3.5. Finally, in §4.3 we particu-
larize the formula to a triple of forms (f, g, h) satisfying some additional
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hypothesis in order to obtain a proof of the conjecture for such triple,
conditional on the validity of Tate’s Conjecture for motives and of certain
standard conjectures on the p-adic Abel-Jacobi map.

4.1. Statement of the conjecture. We begin by recalling some nota-
tion and terminology related to motives. We refer to [34] for further de-
tails. For two number fields K and F, denote by M(K)r the category of
Chow motives over K with coefficients in F'. The objects of M(K)p are
triples (V, g, m), where V is a smooth projective scheme over K, ¢ = ¢ is
a projector in the ring of correspondences of V' tensored with F', and m is
an integer. For ¢ = 1,2, let M; := (V;,¢;,m;) be an object of M(K)p
and assume that V7 is of pure dimension d;. The morphisms from M;
to My are defined in terms of correspondences between the underlying
varieties as

Hom(My, Mz) := g1 o Cort™> ™" (V1, Vz) o ga,
where Corr™2~"™1(Vy,Vy) = CHUY™2"™ (V] x V,) @z F. Let L :=
(Spec(K),id, —1) be the Lefschetz motive and let d be an integer. We

denote L% := L2 the tensor product of L. with itself d times. The Chow
group of a motive M € M(K)p is defined as

(4.1) CHY(M) := Hom(L4, M).

The Chow group of a motive can also be interpreted as a group of

cycles, since

CH((V,q,m)) = - CH"""™(V/K)F.
Then CHd(M )o is defined as the subgroup of the null-homologous cycles
of CH?(M). We will occasionally use the notation CH*(M ) 5 if we need
to emphasize the field of coefficients of the Chow group.

Let (f,g,h) be a triple of forms of weights (k,¢,m) with k > ¢+ m
and k,¢,m > 2, and let L be a number field that contains the Fourier
coefficients of f, g, and h. The motive attached to f ® g® h is the object
of M(Q) obtained as the tensor product of motives attached to f, g,
and h:

M(f®g®h):=M;r®M;® My,
whose underlying variety is
X = Wk,Q X Wg,g X Wmfg.
Put ¢:= (k+ ¢+ m — 2)/2 and suppose that
dim, CH(M(f ® g®@h))o.r = 2.

Under this assumption, we can define the following regulator attached
to (f,g,h).
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Definition 4.1. Let Ay, Ag be a basis of CH(M(f ® g ® h))o,. The
regulator attached to (f,g,h) is

AT (AN (wp Amg Awn) ATy (A1) (wr Ag A
(42) Realh 0 1= (3 0 oy Amg hen) - Ay (o) Ay A

where wy, 14, M, wp, are the de Rham classes defined in §2.2.1.

Remark 4.2. Since the definition of regulator involves the choice of an
L-basis of CH°(M(f ® g® h))o,L, it is only defined up to multiplication
by an element of L*.

Denote f, g, and h the Hida families passing through the ordinary
p-stabilizations of f, g, and h. The following is the analog of the Elliptic
Stark Conjecture in this setting.

Conjecture 4.3. Set r :=dim;, CH*(M(f ® g ® h))o,L-
(i) If r > 2, then ﬁg(ﬁg,ﬁ)(k,e,m) = 0 for any choice of test vec-
tors (f,g,1) for (f,g,h).
(ii) Ifords—c L(f @ g®h, s) = 2, then there exists a finite extension L
of L, a triple of test vectors

(f,das ) € Sk(Np, x£)LLf] X Me(NDp, Xg)Llga] X Mm(Np, xn)[h]

and Hida families f', g, and h with fr = f, ge = @, and hy, = h
such that

(4.3) £o(f,g,h)(k,¢,m) = Reg(f,g,h) (mod Lg).

4.2. The case of theta series of imaginary quadratic fields. Let
K be an imaginary quadratic field of discriminant coprime to Ny in
which the prime p splits as pOx = pp and such that the pair (K, Ny)
satisfies the Heegner Hypothesis (cf. Assumption 3.1). In this subsection
we consider the case in which g and h are theta series of two Hecke
characters 14, ¥, of K. We will use the same notations and assume the
same hypotheses of §3.2, with only two differences. The first one is that
in §3.2 the characters 1, 1, were assumed to be of infinity type (0,0),
whereas we now suppose that they are of infinity type (0,¢—1), (0, m—1)
for some ¢, m > 2. The second difference is that now we will define the
characters 1 and 1, to be

(4.4) Y1 =Yg NI e = g, N

As in §3.2, we assume that for ¢ = 1,2 the conductor of %; is of
the form c;N; with ¢; € Z coprime to Dg Ny and N; | Ny ;. Using the
notation introduced in §3.1 we consider the generalized Heegner cycles

At < c m—
45) AV =AY, € CHY (Wi x A™2/H,, 1),



608 F. GarTi, X. GUITART

where A is an elliptic curve defined over the Hilbert class field K7 of K
with CM by Ok that we fix once and for all.

Proposition 4.4. Let (f‘,g,ﬁ) be the choice of test vector of Theo-
rem 2.4. There exist a quadratic extension Lo/L and A € Ly such that

o o A 1
Lo(F,g ) (k,6m) = = AT, (A% ) (wy Ay 2)
(4.6) y pwoor oA
x ATy (A% ) (wp Ay W),
where
pi= QA2 L(W, (071 0) € Q.
Proof: Let r := £+ m — 2. Applying Theorem 3.5 to the characters
k—r
(i) Wyn(k,6,m) = Y N2 where ¢; " has infinity type (r — j,5)
with 7 =0,
u
(i) Wy (k,€,m) = 5 ' N2 where ¢; ' has infinity type (r — 7,5)
with j =m — 1,
and substituting into equation (3.17), we obtain
qa(k, Uop(k,€,m))a(k, ¥gp(k, £,m))

9(f & h)? -4t
L9(f,8,h)%(k, £,m) x (9,9) a(k. 2, m)

(=D ez, A +a™)

= 2m—2 gy k—fl—m
mlcs™ 2 4k—t=m(d,. d.,)

« fl(fagah) 5(fag7h)2
f(k, Wgn(k, £, m))f(k, Won: (K, £,m)) Eo(9)%€1(9)?
X ATy (AVT )2 (o A ) - AT AV (wp ATt ).
Using the definition of the factors involved, the left-hand side of the
previous equality is
Py T2 2-2¢ 20-2)2
L3(E,8,h)"(k, £,m) (" (g, g)m™")".
As £ > 2, the character U (¢) belongs to the region of classical interpo-

lation for Katz’s p-adic L-function, and following the computations of
the proof of [14, Lemma 3.7] we obtain

(9.9) = 2200

(mod Q™).
Then we see that
= (92—2€<g7 g>ﬂ_2€—2)—1 — (QQ—Qéﬂ_Z—QL(\I,gw)—l’ 0))—1
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is algebraic by [7, Proposition 2.11 (1) and Theorem 2.12], and the fac-
tors f1(k, ¢, m) and % belong to L by the definition of these faE
tors.

4.3. Proof of a special case. The rest of this section will be devoted
to analyzing the connection between Proposition 4.4 and Conjecture 4.3
in a particular case where 14 and v, are powers of the Hecke character
of an elliptic curve with CM by Ok. More precisely, in this subsection
we continue to denote by f a modular form of weight k > 2, level Ny,
and Nebentype character x r, and we make the following additional as-
sumptions regarding K, 14, and vp:

(1) K is an imaginary quadratic field of class number 1.

(2) We fix an elliptic curve Ag/Q with CM by K. We denote by A :=
Ap® K its extension of scalars to K and by 14 the Hecke character
of A. Then we assume that ¢, = 1@4—1 and 1, = Zl_l, with
{>m>2and k> /{+m.

As usual, we denote g:=60(0y) € Se(Ng, xg) and h:=60(1n) € S (Np, Xn)-
We simplify further the setting assuming the following on the discrimi-
nant of K.

Assumption 4.5. The discriminant —D g of K satisfies one of the fol-
lowing conditions:

(i) Dk is odd;
(i) 8| Dg;
(iii) there exists a prime ¢ | Dy such that £ =3 (mod (4)).

Under this assumption, the elliptic curve Ay/Q can be constructed
as in [19, §11], so that the conductor of ¢4 is generated by v/—Dk, a
condition that we will assume from now on. From the conditions imposed
in this section and using the fact that 8(1)4) is the cuspform attached to
the elliptic curve A that descends to Q, it follows that
(4.7) N, = N, = D%
and

(4.8) Xg=Xki xn=xXW xr=xg"=

1 if £+ m even,
xx if £+ mis odd.

In this setting, the involved Hecke characters are
(4.9) =g N = g RN

(G10) NG NG N
where we have used that ¢’y =14 and ¥4 - s = Ng.
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Let us assume, as in §4.1, that we are in a rank 2 setting. That is to
say,
dim;, CH* (M (f ® g ® h))o, = 2,

say with basis A1, Ay. The main result of this section is Theorem 4.14
below. It states that assuming Tate’s Conjecture for motives (cf. Conjec-
ture 4.7) and a natural property of the p-adic Abel-Jacobi map (cf. As-
sumption 4.9), if ord,—. L(f ® g ® h, s) = 2 and L(f, &, h)(k, £,m) #0,
then Reg(f,g,h) is a non-zero algebraic multiple of Eg(f’, g, fl)(k,ﬁ, m).
It can thus be viewed as the (conditional) proof of a particular case of
Conjecture 4.3.

The strategy of the proof is roughly as follows. Under Tate’s Con-
jecture, the motive M(f ® g ® h) decomposes as a sum of motives
whose underlying varieties are Wjy,_o x A“™™=2 and Wj,_s x A*~™. Using
this decomposition and Assumption 4.9 we are able to write the regula-
tor Reg(f,g,h) in terms of cycles in these varieties (Proposition 4.10).
Then in Proposition 4.13 we relate the p-adic Abel-Jacobi image of these
cycles to that of the generalized Heegner cycles

—1
(411) A% =AY, L, € CHA(Wig x AP 2/H, ),
and then Proposition 4.4 provides the relation with the special value of
the p-adic L-function.

Before giving the details of this decomposition, as well as the state-
ment and proof of Theorem 4.14, we record some basic results on motives
attached to Hecke characters and on restriction of scalars of motives.

4.3.1. Motives attached to certain Hecke characters. In this sub-
section we follow [6, §2.2]. Fix an identification K ~ End(A), and for
each a € K let a* denote the pull back on differentials of the endo-
morphism of A corresponding to a. Recall that ¢4 stands for the Hecke
character of K of infinity type (0,1) associated to A. The motive at-
tached to 14 belongs to M(K)g and is of the form

M(de) = (A’ Chas O>7

for an appropriate projector ey ,. The de Rham realization of this motive
is the K-vector space

Cpa H&R(A)'
It is endowed with an action [-] of K given as follows: if w is a differential
form on A and « € K, then [¢Jw = a*w. Fix a holomorphic differen-
tial wy on A/K such that [aJws = awy for all @ € K, and let n4 be
the unique element of H}g(A) such that [a]na = ana for all @ € K and
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(wa,na) = 1 (where (-, ) stands for the Poincaré pairing). The Hodge
filtration of M (14 )4r is:

FilO(M(QZJA)dR) =K -wa+ K -na,
Fil'(M(¢4)ar) = K - wa,
Fil' (M (1 4)qr) = 0 for i > 2.

Now, for r € Z( consider the motive M (¢") associated to ¢7. It is
of the form

M(%) = (Arv €y 0)
for a certain projector eyr, (cf. [6, §2.2]). The Hodge filtration is given
by:
Fil®(M(¢))ar) = K - W + K - 0%,
Fil'(M(¢")ar) = K -’ fori =1,...,r,
Fil' (M (4"})ar) = 0 for i > r.

4.3.2. Restriction of scalars of motives. There is a restriction of
scalars functor
Resg/g: M(K) — M(Q)

which extends the restriction of scalars on algebraic varieties to the cat-
egory of motives (see [24]).

Suppose that M € M(K), and put R = Resg/g(M). Also, for Y €
M(Q) denote by Yx = Y ®g K the extension of scalars of Y from Q
to K. Then there is a canonical morphism

w: M — Rk

satisfying the following universal property: if ¥ € M(Q) and f is a
morphism f: Yx — M, then there exists a unique morphism s: ¥ — R
such that wo f = s. In other words, there is a canonical identification

Hom(Yy, M) ~ Hom(Y, Resg /q(M)).
In particular,
(4.12) CH(M)=Hom(IL%, M) ~Hom(L", Resg o M) =CH"(Resg /o M).

Here we have used that the Lefschetz motive over K is the base exten-
sion Lg. We will need the following generalization of (4.12).

Lemma 4.6. Suppose that M is a motive over K and N is a motive
over Q. There is a canonical isomorphism of Chow groups

CH(N ® Resgg(M)) ~ CH*(Nx @M).
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Proof: By definition of Chow group, and using the standard formula
relating tensor products and duals (see [34, §1.5]) we have:
CH(N ® Resg/q(M)) = Hom(IL*, N ® Resg /q(M))
= Hom(L ®NV Resg/(M))
= Hom (L% Yo, M)
= Hom(ILK,NK ®M) =CH(Ng @M). O

There is a natural isomorphism of Q-vector spaces, preserving the
Hodge filtration (cf. [23, p. 16])

(413) HdR(M) >~ HdR(ResK/Q(M)).

We will make extensive use of the well-known fact that the restriction
of scalars of a motive and the motive itself have the same L-function,
that is

L(M,s) = L(Resg/q(M), s).

4.3.3. A decomposition of M(f ® g ® h) and the main result.
Recall that the motive over Q associated to f is My = (Wi_2,ey¢,0),
and let My, be its base change to K. As explained in §4.3.1, we have
the following motives in M(K)q

M5 %) = (A2 e1,0),  M(Y7™) = (A", e2,0)

for suitable projectors that we now denote by e; and es.
Define the Hecke characters

P1 = Pgtn = P52 o = byl = TN

For i = 1,2, denote by M; the motive associated to 77711 Observe that
(see cf. [32, p.98)):

M; = M(5T™™2), My = M5™)(1 —m) (the Tate twist).
We need to assume the following classical conjecture.

Conjecture 4.7 (Tate’s Conjecture). Let F' be a number field and de-
note by Repg, (Gr) the category of £-adic representations of Gal(F/F).
The functor

()e: M(F)g — Rep(GFr),

that sends a motive over F to its étale (-adic realization, is fully faithful.
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Proposition 4.8. Assuming Conjecture 4.7, there are natural isomor-

phisms
(a1p) P CHQI(f @ g W) > CH(My e @ M( Ao

@ CH™ " (M5 © M(¥5™))o
and

Bar + (M(f)ar ® (M (g ® h))ar = (My)ar ® [(M (57 )ar
® M5 ™)(1 = m))ar].
Proof: By (3.13) and Artin formalism we have
L(f@g@h,s)=L(Vy & (Vg ®Vy,),s) =LV @V ,s) LV ®Vy,.s)
= L(f/K @¥1,5) - L(f/K @12, 5)
= L(M¢/K @ M (1)) - L(M¢ /K @ M(1)2))
= L(M; ® Resgq(M1)) - L(M; ® Resg/g(Ma)).

Tate’s Conjecture implies then the existence of an isomorphism of mo-
tives

M(f RgR h, S) ~ Mf (24 (RGSK/Q(Ml) D RGSK/Q(MQ)),

which induces isomorphisms at the level of Chow groups and de Rham
realizations:

(M(f®g®h))ar ~ (Mg @ (Res /(M) ® Res/g(Mz)))ar-
By Lemma 4.6 and using the fact that the cycle class map commutes

with the restriction of scalars (see [23, p. 75]), we see that there is a
natural isomorphism

(415) CHC(M(f®g®h))0 ~ CHC(Mf/K ®M1)0@CHC(MJC/K ®M2)0.
Observe also that there is a canonical isomorphism
CH® (M ® M) ~ CH ™ (M e @ M(5™)).

Indeed, this follows from the very definition of the Chow group of a
motive and the fact that My(1—m) = My ®@L™~!. Therefore, we obtain
the canonical isomorphism fScg. Also, the isomorphism (4.13) gives the
natural isomorphism Sy4g. O

Recall that we are in a situation of algebraic rank 2. We will fur-
ther assume that we are in a rank (1, 1)-setting, meaning that the rank
of both CH®(M;,x @ M(¢57™2))o and CH™ ™ (M /e @ M (5 ™))o
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is one. This hypothesis is not too restrictive for the aim of this sec-
tion. Indeed, the proof Theorem 4.14 shows that it is satisfied whenever
£g(f,g7f1)(k,€7 m) # 0, and we will prove the main result under this
non-vanishing hypothesis.

Since in the definition of Reg(f, g, h) we are free to choose the basis
of CH(M(f ® g ® h))o we can, and do, assume that (Ay, Ay) are cho-
sen to be adapted to the decomposition of Chow groups given by the
isomorphism Scy. That is to say, we can suppose that

(4.16) Ben (A1) = (A},0) and Beu(As) = (0, A2)
for some cycles
AL €CH(M;, g @M (15T 72))g and A€ CHE ™ My e @M (5™))o.

In view of the naturalness of the isomorphisms of Proposition 4.8, it is
also natural to assume that they behave well with respect to the p-adic
Abel-Jacobi map.

Assumption 4.9. For any cycle A and de Rham class w, we have that
AJp(A)(w) = Ay (Bou(A))(Bar (w))-

Proposition 4.10. Under the assumptions of this subsection, the matriz
defining Reg(f, g, h) can be chosen to be diagonal. More precisely,

Reg(f,g.h) = AT, (A (3™ 7%) - AT, (AD) (3 ™) (mod K*).

In order to prove the proposition, we need a lemma on the behavior
of the de Rham classes via the isomorphism Sgg.

Lemma 4.11. If we regard the target of Bar as the direct sum
(Mp)ar © M (5™ %) ar) @ (My)ar © M (5 ™) (1 — m)ar),
then we have
Bar(wr Ang Agn) = (wy Anig™72,0) (mod K,
Bar(w A Awn) = (0,05 Anfy™)  (mod K*).
Proof: The isomorphism 4R is induced from an isomorphism
M(g® h)ar = M5 %) ar © M (95 ™)(1 = m)ar
that respects the Hodge filtration. Observe that
Fil® M(g ® h)ar/ FiI" ™" M(g @ h)ar = (ng A1n),
Fil™ ™" M(g © h)ar/ Fil'™ M(g @ h)ar = (n, Awn).
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On the other hand, we have that:
Fil’ (M (4 1))ar/ Fil™ 1 (M (57 ))ar = 03"
Fil™ = (M (@41 ar/ Fil ™ (M (57 1))ar = 0.

As for (M (4'7™)(1—m))qr, recall that it is isomorphic to (M (¢™))ar
with the Hodge filtration shifted (m — 1)-positions. That is:

)

Fil’ (M (™) (1 = m))ar = -+ = Fil" (M (5™ (1 = m))ar
= (Wi ™™,
Fil™ (M (4 ™)(1 = m))ar = -+ = Fil' (M (¢5™) (1 = m))ar
= (Wi ™),
Fil (M (¢%™)(1 — m))ar = 0.
Therefore

Fil’ (M (™) (1 = m))an/ Fil™ (M (65™)(1 = m))ar =0,
R (M (™) (1 = m)an/ Fil' ™ (M (05™) (1 = m))an = (05 ™). ©

Proof of Proposition 4.10: By Assumption 4.9, the regulator of f, g,
and h, can be computed as

Reg(f,g,h)
_ ‘AJP(BCH(Al))(BdR(Wf/\ng Awn)) Adp(Bor(A1))(Bar(wsAngAnn))

AT (Ben(A2)) (Bar(wsAngAwn)) Adp(Ben(A2))(Bar(wr Atig Ank))
By choosing a basis of the Chow group satisfying (4.16), we find that
Reg(f, g, h)
—[ABUBLON 00 ABLAL O (0 10
AJp((0,A9)((n'sF™2,0)) AJ,((0,A3))((0,7s ™))
= AJ,(AD (52 - ATy (AD) (™) (mod K*). O

In order to compare the regulator expressed as in Proposition 4.10
with the right-hand side of (4.6), we focus on the generalized Heegner
cycles (4.11) appearing in this setting.

Lemma 4.12. In the setting of this subsection we have H., y = K. That
1s to say, the Heegner cycles A¥ are defined over K.

Proof: Recall that
Y1 =Rt ENG T g =g N

For i € {1,2}, the conductor of 1); is of the form ¢; - N, , where the norm
of Ny, equals the conductor Ny, of x and (¢c;, Ny,) = 1.
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By (4.7) and (4.8), the conductor of xs is N,, = (Dk)¢ where € €
{0,1}. On the other hand, the conductor of ¢ 4 is only divisible by primes
above Dk, so ¢; = 1. Recall the extension F/K defined in [7, §4.2] such
that Gal(F'/K) = (Z/Ny,Z)* /(£1). The field H., ;= H., ;= H, y is the
subextension of F/K corresponding to ker(xs)(£1) C (Z/N;Z)* /(£1),
which is K by (4.8). O

11—m
NK

Denote A%z ' N ™ .— A;fi_u_m’l € CHcme(Wk,l x ALK,
Proposition 4.13. We have
ATy (A (wprwy Ty ) =2V D) AT (AN (wp ).
Proof: By [7, Proposition 4.1.1], there is a correspondence
P: Wi_g x A2 Wiy x A,
induced by the cycle
Z =Wy_gx A x AL e CHF P2 (o x A2 Wy x APT™)
embedded into
Wi o X AFM=2 W o x AT M=), _yx A" (Ax A)™ Ix Wy o x AS™
via
Id x(/—Dg x 1d)™ ! x Id.

It induces a homomorphism of Chow groups
P,: CH ™ 2" (Wy_g x AX™=2) 5 CHT 2™ (Wj_p x A™™).
For each a ideal of Ok prime to N, let

Ak—l,a S CHk_l(Wk_g X Ak_Q)

be the generalized Heegner cycle defined in [5]. As we recalled in §3.1,
for each b < k — 2 such that b = k (mod 2) there is a cycle

Ak—10 € CHZ (Wy_y x AY),

as defined in [7].
The correspondence above gives the relations between these cycles:

Po(Ar—10vm—2.0) = (NO)™ ' Ak 1 0m.a-
Using this relation, as in [7, Proposition 4.1.2], we obtain
(2 =Dr)"™ " AJp (A1 p4m-2.0)(ws AT i)
= (Na)™ P ATy (A1 0mma) (s AnST™).



ON THE ELLIPTIC STARK CONJECTURE IN HIGHER WEIGHT 617

Then, finally,
AT (A7) (wy w0
~ -1 1—m
= 2/ =D)AL (AY: N Y (wp AnyT™). O

Finally, we state and prove the main result of this section. Recall that
f, g, and h are modular forms of weights k, ¢, and m respectively with £ >
m > 2 and k > ¢+m. In addition, g and h are theta series of an imaginary
quadratic field K of class number 1 that satisfies Assumption 4.5 and
in which p splits. More precisely, g = 6( f;(l) and h = 6( Z71)7 where
A/K is an elliptic curve of conductor v/— Dy which has CM by Ok.

Theorem 4.14. Let (f', g, ﬁ) be the choice of test vector of Theorem 2.4.
Assume that

dimz CHY (M (f ® g® h))o, =2 and LI(f, g, ) (k,¢,m) # 0.

Under Conjecture 4.7 and Assumption 4.9, there exists a quadratic ex-
tension Lo of L and A € Ly such that
L9(f,g,h)(k,£,m) = Reg(f,g,h) (mod (K -Lg)™).

Proof: Assume that £9(f, g, h)(k,£,m) # 0. Combining Proposition 4.4
and Proposition 4.13 with the fact that the kernel of the p-adic Abel-
Jacobi map contains all torsion cycles, we obtain that the generalized
Heegner cycles A¥1 "and A¥: "Nk ™ are nontorsion. Since we are in a
situation of algebraic rank 2, this implies that the preimages via B¢y of

(A¥70), (0,A% N
generate CH°(M(f ® g ® h))o. In other words, we can choose Ay, Ag in
such a way that
Al = A¥T' AZ=Av: N

On the other hand, the period Q attached to the elliptic curve A/K
coincides with the period Q(v4) attached to the Hecke character 14 as
in [7, §2.3]. It follows from [7, Proposition 2.11 (2)] that Q(y7) = Q"
(mod K*) for r > 0. Using [7, Proposition 2.11 (2)], we conclude that
the factor u appearing in (4.6) lies in K*.

The result then follows by combining Propositions 4.10, Proposi-
tion 4.13, and Proposition 4.4. U
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