
Publ. Mat. 65 (2021), 129–140
DOI: 10.5565/PUBLMAT6512104

ACYCLIC 2-DIMENSIONAL COMPLEXES AND

QUILLEN’S CONJECTURE

Kevin Iván Piterman, Iván Sadofschi Costa,
and Antonio Viruel

Abstract: Let G be a finite group and Ap(G) be the poset of nontrivial ele-
mentary abelian p-subgroups of G. Quillen conjectured that Op(G) is nontrivial if

Ap(G) is contractible. We prove that Op(G) 6= 1 for any group G admitting a G-in-

variant acyclic p-subgroup complex of dimension 2. In particular, it follows that
Quillen’s conjecture holds for groups of p-rank 3. We also apply this result to es-

tablish Quillen’s conjecture for some particular groups not considered in the seminal

work of Aschbacher–Smith.
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1. Introduction

The study of the poset Sp(G) of nontrivial p-subgroups of a finite
group G started when K. S. Brown proved that the Euler characteris-
tic χ(K(Sp(G))) of its order complex is 1 modulo the greatest power
of p dividing the order of G [6]. Recall that the order complex K(X) of a
posetX is the simplicial complex whose simplices are the finite nonempty
totally ordered subsets of X. Some years later, D. Quillen studied the ho-
motopy properties of K(Sp(G)) [11]. In that article, Quillen considered
the subposet Ap(G) of nontrivial elementary abelian p-subgroups and
proved that its order complex is homotopy equivalent to K(Sp(G)) [11,

This work was partially done at the University of Málaga, during a research stay of
the first two authors, supported by project MTM2016-78647-P.
The first author was supported by a CONICET doctoral fellowship and grants CONI-

CET PIP 112201701 00357CO and UBACyT 20020160100081BA.
The second author was supported by a CONICET postdoctoral fellowship and grants

ANPCyT PICT-2017-2806, CONICET PIP 11220170100357CO, and UBACyT

20020160100081BA.
The third author was partially supported by Ministerio de Economı́a y Competitivi-

dad (Spain), grant MTM2016-78647-P (AEI/FEDER, UE, support included).



130 K. I. Piterman, I. Sadofschi Costa, A. Viruel

Proposition 2.1]. Quillen also proved that, if the largest normal p-sub-
group Op(G) of G is nontrivial, then K(Ap(G)) is contractible [11,
Proposition 2.4] and conjectured that the converse should hold.

In this paper we study the following version of Quillen’s conjecture.
Recall that the homology of a poset is the homology of its order complex.

Quillen’s conjecture. If Op(G) = 1, then H̃∗(Ap(G)) 6= 0.

Aschbacher and Smith’s formulation relates rational acyclicity of
K(Ap(G)) with nontriviality of Op(G) [3]. Thus, our integral homology
version is stronger than Quillen’s original statement but weaker than the
Aschbacher–Smith version.

Quillen proved the conjecture for solvable groups [11, Theorem 12.1].
In [3] M. Aschbacher and S. D. Smith made a huge progress on the study
of this conjecture. By using the classification of finite simple groups,
they proved that Quillen’s conjecture holds if p > 5 and G does not
contain certain unitary components. Previously, Aschbacher and Kleid-
man ([1]) had proved Quillen’s conjecture for almost simple groups (i.e.
finite groups G such that L ≤ G ≤ Aut(L) for some non-abelian simple
group L).

The main result of our paper, which depends on the classification of
the finite simple groups, is the following.

Theorem 3.2. If X is an acyclic and 2-dimensional G-invariant sub-
complex of K(Sp(G)), then Op(G) 6= 1.

Recall that the action of G on Sp(G) is by conjugation. The previous
result provides then a convenient tool to prove that a group verifies
Quillen’s conjecture.

Corollary 3.3. Let G be a finite group. Suppose that K(Sp(G)) admits a
2-dimensional and G-invariant subcomplex homotopy equivalent to itself.
Then Quillen’s conjecture holds for G.

In particular, it follows that Quillen’s conjecture holds for groups of
p-rank 3. Recall that the p-rank of G, usually denoted by mp(G), is the
maximum possible rank of an elementary abelian p-subgroup of G. The
p-rank 2 case was considered by Quillen [11, Proposition 2.10] and is a
consequence of Serre’s result: an action of a finite group on a tree has a
fixed point.

In Section 4 we make an extensive use of Corollary 3.3 to establish
Quillen’s conjecture for some particular groups (of p-ranks 3 and 4) for
which the hypotheses of the results of Aschbacher–Smith ([3]) do not
hold.
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A related conjecture, due to C. Casacuberta and W. Dicks, is that
a finite group acting on a contractible 2-complex has a fixed point [7].
This conjecture was studied by Aschbacher and Segev in [2]. Posteriorly,
Oliver and Segev classified the groups which admit a fixed point free
action on an acyclic (finite) 2-complex [10]. Our proof of Theorem 3.2
is built upon the results of [10], which depend on the classification of
finite simple groups. Theorem 3.2 can also be seen as a special case of
the Casacuberta–Dicks conjecture.

Acknowledgements. We are grateful to the anonymous referee for her
or his suggestions which greatly improved the exposition of the paper
and in particular for simplifying the proofs in Examples 4.10 and 4.11
by indicating Proposition 4.9.

2. The results of Oliver and Segev

In this section we review the results of [10] needed in the proof of
Theorem 3.2. By a G-complex we mean a G-CW complex. Note that
the order complex of a G-poset is always a G-complex.

Definition 2.1 ([10]). A G-complex X is essential if there is no normal
subgroup 1 6= N/G such that for eachH ⊆ G, the inclusionXHN → XH

induces an isomorphism on integral homology.

The main results of [10] are the following two theorems.

Theorem 2.2 ([10, Theorem A]). For any finite group G, there is an
essential fixed point free 2-dimensional (finite) acyclic G-complex if and
only if G is isomorphic to one of the simple groups PSL2(2k) for k ≥ 2,
PSL2(q) for q≡±3 (mod 8) and q ≥ 5, or Sz(2k) for odd k ≥ 3. Fur-
thermore, the isotropy subgroups of any such G-complex are all solvable.

Theorem 2.3 ([10, Theorem B]). Let G be any finite group, and let X be
any 2-dimensional acyclic G-complex. Let N be the subgroup generated
by all normal subgroups N ′ / G such that XN ′ 6= ∅. Then XN is acyclic;
X is essential if and only if N = 1; and the action of G/N on XN is
essential.

The set of subgroups of G will be denoted by S(G).

Definition 2.4 ([10]). By a family of subgroups of G we mean any
subset F ⊆ S(G) which is closed under conjugation. A nonempty family
is said to be separating if it has the following three properties: (a) G /∈ F ;
(b) if H ′ ⊆ H and H ∈ F , then H ′ ∈ F ; (c) for any H / K ⊆ G with
K/H solvable, K ∈ F if H ∈ F .
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For any family F of subgroups of G, a (G,F)-complex will mean a
G-complex all of whose isotropy subgroups lie in F . A (G,F)-complex
is H-universal if the fixed point set of each H ∈ F is acyclic.

Lemma 2.5 ([10, Lemma 1.2]). Let X be any 2-dimensional acyclic
G-complex without fixed points. Let F be the set of subgroups H ⊆ G
such that XH 6= ∅. Then F is a separating family of subgroups of G, and
X is an H-universal (G,F)-complex.

If G is not solvable, the separating family of solvable subgroups of G
is denoted by SLV.

Proposition 2.6 ([10, Proposition 6.4]). Assume that L is one of the
simple groups PSL2(q) or Sz(q), where q = pk and p is prime (p = 2 in
the second case). Let G ⊆ Aut(L) be any subgroup containing L, and let
F be a separating family for G. Then there is a 2-dimensional acyclic
(G,F)-complex if and only if G = L, F = SLV, and q is a power of 2
or q ≡ ±3 (mod 8).

Definition 2.7 ([10, Definition 2.1]). For any family F of subgroups
of G define

iF (H) =
1

[NG(H) : H]
(1− χ(K(F>H))).

Lemma 2.8 ([10, Lemma 2.3]). Fix a separating family F , a finite
H-universal (G,F)-complex X, and a subgroup H ⊆ G. For each n, let
cn(H) denote the number of orbits of n-cells of type G/H in X. Then
iF (H) =

∑
n≥0(−1)ncn(H).

Proposition 2.9 ([10, Tables 2, 3, 4]). Let G be one of the simple
groups PSL2(2k) for k ≥ 2, PSL2(q) for q ≡ ±3 (mod 8) and q ≥ 5, or
Sz(2k) for odd k ≥ 3. Then iSLV(1) = 1.

3. The two-dimensional case

Using the results of Oliver and Segev stated in the previous section
we prove the following.

Theorem 3.1. Every acyclic 2-dimensional G-complex has an orbit with
normal stabilizer.

Proof: If XG 6= ∅, we are done. Otherwise, G acts fixed point freely
on X. Consider the subgroup N generated by the subgroups N ′ / G such
that XN ′ 6= ∅. Clearly N is normal in G. By Theorem 2.3, Y = XN is
acyclic (in particular it is nonempty) and the action of G/N on Y is es-
sential and fixed point free. By Lemma 2.5, F = {H ≤ G/N : Y H 6= ∅}
is a separating family and Y is an H-universal (G/N,F)-complex. Thus,
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Theorem 2.2 asserts that G/N must be one of the groups PSL2(2k)
for k ≥ 2, PSL2(q) for q ≡ ±3 (mod 8) and q ≥ 5, or Sz(2k) for
odd k ≥ 3. In any case, by Proposition 2.6 we must have F = SLV. By
Proposition 2.9, iSLV(1) = 1. Finally, by Lemma 2.8, Y must have at
least one free G/N -orbit. Therefore, X has a G-orbit of type G/N and
we are done.

Theorem 3.2. If X is an acyclic and 2-dimensional G-invariant sub-
complex of K(Sp(G)), then Op(G) 6= 1.

Proof: By Theorem 3.1 there is a simplex σ = (A0 < · · · < Aj) of X
with stabilizer N / G. Since A0 / N , we deduce that Op(N) is nontrivial.
On the other hand, N / G and Op(N) charN implies that Op(N) / G.
Therefore, Op(N) ≤ Op(G) and Op(G) is thus nontrivial.

From Theorem 3.2 we deduce

Corollary 3.3. Let G be a finite group. Suppose that K(Sp(G)) admits a
2-dimensional and G-invariant subcomplex homotopy equivalent to itself.
Then Quillen’s conjecture holds for G.

Since the p-rank of G is equal to dimK(Ap(G)) + 1 we obtain:

Corollary 3.4. Let G be a finite group of p-rank 3. If H̃∗(Ap(G)) = 0,
then Op(G) 6= 1.

We now apply Corollary 3.3 to obtain results for some related p-sub-
group complexes. Recall that a p-subgroup Q ≤ G is radical if Q =
Op(NG(Q)). The Bouc poset Bp(G) is the poset of nontrivial radical
p-subgroups of G. It is well-known that K(Bp(G)) is homotopy equiva-
lent to K(Sp(G)) [5]. Then, by Corollary 3.3, we have

Corollary 3.5. Let G be a finite group such that Bp(G) has height 2. If

H̃∗(Bp(G)) = 0, then Op(G) 6= 1.

We say that a poset X is a reduced lattice if it is obtained from a
finite lattice by removing its minimum and maximum. If X is a reduced
lattice, i(X) denotes the subposet of X given by the elements which can
be written as the infimum of a set of maximal elements of X. It is a
general fact that the order complex of i(X) is homotopy equivalent to
the order complex of X for any reduced lattice X [4, Subsection 9.1].
Hence, by Corollary 3.3, we have

Corollary 3.6. Let G be a finite group. If either i(Sp(G)) or i(Ap(G))
has height 2, then G satisfies Quillen’s conjecture.

For a detailed account of the relations between the different p-sub-
group complexes, see [12].
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4. Some examples

In this section we apply the corollaries of Theorem 3.2 to establish
Quillen’s conjecture for some groups constructed so that the hypothe-
ses of the results of [3] are not satisfied. The main result of [3] is the
following.

Theorem 4.1 (Aschbacher–Smith [3, Main Theorem]). Let G be a finite
group and p > 5 a prime number. Assume that whenever G has a unitary
component Un(q) with q ≡ −1 (mod p) and q odd, then the Quillen
dimension property at p holds for all p-extensions of Um(qp

e

) with m ≤ n
and e ∈ Z. Then G satisfies Quillen’s conjecture.

Recall that a group H satisfies the Quillen dimension property at p if
H̃mp(H)−1(Ap(H)) 6= 0. The presence of simple components of G isomor-

phic to L2(23) or U3(23) (in the p = 3 case) and Sz(25) (in the p = 5 case)
is an obstruction to extending Theorem 4.1 to p = 3 and p = 5. The
case p = 2 is not considered in [3] and would require a much more de-
tailed analysis. One of the first steps in the proof of Theorem 4.1 is the
reduction to the case Op′(G) = 1 (see [3, Proposition 1.6]). To do this,
[3, Theorems 2.3 and 2.4] are needed and these theorems make a strong
use of the hypothesis p > 5. Concretely, it is not possible to apply [3,
Theorem 2.3] if a component of CG(Op′(G)) is isomorphic to L2(23),
U3(23) (if p = 3), or Sz(25) (if p = 5).

Before presenting the examples for p = 3 and p = 5, we give some
motivation. Most of the groups G in these examples satisfy the following
conditions. First, Op′(G) 6= 1 and CG(Op′(G)) contains a component
isomorphic to U3(23) if p = 3 and to Sz(25) if p = 5. Thus, we cannot
find nontrivial homology forAp(G) in the same way it is done in the proof
of [3, Proposition 1.6] since we are not able to invoke [3, Theorems 2.3

and 2.4]. Secondly, since there is an inclusion H̃∗(Ap(G/Op′(G)) : Q) ↪→
H̃∗(Ap(G);Q) (see [3, Lemma 0.12]), we require Op(G/Op′(G)) 6= 1 so

that H̃∗(Ap(G/Op′(G))) = 0. Finally, we require Op(G) = 1.
The groups presented in Examples 4.5 and 4.7 have p-rank 3. The

groups presented in Examples 4.6 and 4.8 have p-rank 4 and are con-
structed in the following way. We take a direct product of a groupN , con-
sisting of one or more copies of a particular simple p′-group, by a group K
consisting of one or more copies of L = U3(23) if p = 3 or L = Sz(25)
if p = 5. Then we take two cyclic p-groups A and B and we let them
act on the direct product N × K as follows. We take a faithful action
of A×B onN , and we choose a representation A×B → Aut(K) such that
Op(Ko (A×B)) ∼= Op(CA(K)) 6= 1. The group G = (N ×K)o (A×B)
satisfies the conditions Op(G) = 1, Op′(G) = N 6= 1, CG(N) = K, and



Acyclic 2-Dimensional Complexes and Quillen’s Conjecture 135

Op(G/N) = Op(Ko (A×B)) 6= 1. Moreover, since the p-rank of L is at
most 2, we can construct G to have p-rank 4 by adjusting the number
of copies of L in K.

For these groups we show that K(Sp(G)) has a 2-dimensional G-in-
variant subcomplex homotopy equivalent to itself, and thus Corollary 3.3
applies.

In Examples 4.10 and 4.11 we describe two groups of 2-rank 4 such
that K(S2(G)) admits a 2-dimensional G-invariant homotopy equivalent
subcomplex.

For the claims on the structure of the automorphism group of the
finite groups of Lie type we refer to [8] and [9].

Lemma 4.2. Let 1 → N → G → K → 1 be an extension of finite
groups. Then

mp(G) = max
A∈S

mp(CN (A)) +mp(A),

where S is the set of elementary abelian p-subgroups 1 ≤ A ≤ G such
that A ∩N = 1. In particular, we have mp(G) ≤ mp(N) +mp(K).

Proof: If A ∈ S, we have CN (A)×A ∼= CN (A)A and hence mp(CN (A))+
mp(A) ≤ mp(CN (A)A) ≤ mp(G). Taking maximum over A ∈ S gives
the lower bound for mp(G). We now prove the other inequality. Let E
be an elementary abelian p-subgroup of G and write E = (E ∩N)A for
some complement A of E∩N in E. Then mp(E∩N) ≤ mp(CN (A)) and
A ∈ S. Now mp(E) = mp(E∩N)+mp(A) ≤ mp(CN (A))+mp(A), giving
the upper bound for mp(G). For the last claim note that CN (A) ≤ N
and mp(A) ≤ mp(K) by the isomorphism theorems.

The following lemma will be used to obtain proper subcomplexes
of K(Ap(G)) without changing the homotopy type. We write X ' Y if
the order complexes K(X) and K(Y ) are homotopy equivalent.

Lemma 4.3. Let G be a finite group and let H ≤ G. In addition, suppose
that Op(CH(E)) 6= 1 for each E ∈ Ap(G) with E∩H = 1. Then Ap(G) '
Ap(H).

Proof: Consider the subposet N = {E ∈ Ap(G) : E ∩H 6= 1}. We have
order preserving maps r : N → Ap(H) and i : Ap(H) ↪→ N , given by
r(E) = E ∩ H and i(E) = E such that ir(E) ≤ E and ri(E) = E.
Therefore, N ' Ap(H).

Let S = {E ∈ Ap(G) : E∩H = 1} be the complement of N in Ap(G).
For any E ∈ S consider Ap(G)>E ∩N = {A ∈ N : A > E}. It is easy to
see that r : Ap(G)>E ∩ N → Ap(CH(E)) defined by r(B) = B ∩H is a
homotopy equivalence with inverse i(B) = BE. Then Ap(G)>E ∩ N '
Ap(CH(E)) is contractible since Op(CH(E)) 6= 1.
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Now take a linear extension E1, . . . , Er of S (i.e. enumerate the ele-
ments of S so that Ei ≤ Ej implies i ≤ j) and let Xi = N∪{E1, . . . , Ei}.
Note that Xi = Xi−1 ∪ {Ei} and by the linear extension Xi

>Ei
=

Ap(G)>Ei
∩ N , which is contractible. Now Xi

≥Ei
is a cone over Xi

>Ei

with vertex Ei. Therefore, Xi−1 ↪→ Xi is a homotopy equivalence for
each 1 ≤ i ≤ r. In consequence,

Ap(G) = Xr ' X0 = N ' Ap(H).

Remark 4.4. In the above result it can be shown that if H / G, then the
homotopy equivalence is G-equivariant.

Example 4.5. Let p = 3 and let L = L2(23)×L2(23)×L2(23). Let A be
a cyclic group of order 3 acting on L by permuting the copies of L2(23).
Take G = L o A. Since m3(L2(23)) = 1 and CL(A) ∼= L2(23), we see
that m3(G) = 3. By Corollary 3.4, G satisfies Quillen’s conjecture.

Example 4.6. Let p = 3, N = Sz(23)×Sz(23)×Sz(23), and U = U3(23).
Let A = 〈a〉 and B = 〈b〉 be cyclic groups of order 3. We construct a
semidirect product G = (N ×U)o (A×B). To do this we need to define
a map A×B → Aut(N × U) = Aut(N)×Aut(U).

Choose a field automorphism φ ∈ Aut(U3(23)) of order 3. By the prop-
erties of the p-group actions, there exists an inner automorphism x ∈
Inn(U3(23)) of order 3 commuting with φ. Then A× B → Aut(U3(23))
is given by a 7→ x and b 7→ φ. Choose a field automorphism ψ ∈
Aut(Sz(23)) of order 3. Let A act on each coordinate of N as ψ and
let B act on N by permuting its coordinates. This gives rise to a well
defined map A×B → Aut(N).

The 3-rank of G is m3(G) = m3(U3(23)AB). We can take an ele-
mentary abelian subgroup E ≤ CU (φ) of order 9 containing x since
CU (φ) ∼= PGU3(2) ∼= ((C3×C3)oQ8)oC3 by [9, Chapter 4, Lemma 3.10]
and A3(PGU3(2)) is connected of height 1. Then EAB is an elementary
abelian subgroup of order 34. Hence, m3(UAB) ≥ 4. Sincem3(U3(23))=
2 and m3(AB) = 2, by Lemma 4.2 we have m3(G) = 4.

By Corollary 3.3, to show that Quillen’s conjecture holds for G and
p = 3, it is enough to find a 2-dimensional G-invariant subcomplex X
of K(S3(G)) homotopy equivalent to K(S3(G)) (or, equivalently, to
K(A3(G))).

Let H = (N × U) oA. Note that H / G and m3(H) = 3. Therefore,
K(A3(H)) is a 2-dimensional G-invariant subcomplex of K(A3(G)). Now
the plan is to use Lemma 4.3 to show that A3(H) ' A3(G). Let E ∈
A3(G) be such that E ∩H = 1. Then E ∼= EH/H ≤ B ∼= C3 and hence
E is cyclic generated by some element e ∈ E. Write e = nuaibj with



Acyclic 2-Dimensional Complexes and Quillen’s Conjecture 137

n ∈ N , u ∈ U , and i, j ∈ {0, 1, 2}. Note that j 6= 0 since E ∩ H = 1.
If v ∈ U , then

ve = vnua
ibj = (vua

i

)b
j

.

Since j 6= 0 and e induces an automorphism of U of order 3 in Inn(U)φj ,
by [8, Proposition 4.9.1] and the definition of field automorphisms [8,
Definition 2.5.13], e is Inndiag(U)-conjugate to φj and acts as a field
automorphism on U . In particular, CU (E) = CU (e) ∼= CU (φj) = CU (φ).
Note that O3(CU (E)) ∼= O3(CU (φ)) ∼= C3 × C3 6= 1. Since CU (E) /
CH(E) and O3(CU (E)) 6= 1, we conclude that O3(CH(E)) 6= 1. By
Lemma 4.3, A3(G) ' A3(H), which is 2-dimensional and G-invariant. In
conclusion, the subcomplex K(A3(H)) satisfies the hypothesis of Corol-
lary 3.3, and therefore Quillen’s conjecture holds for G.

Note that O3(G) = 1, O3′(G) = N , CG(O3′(G)) = U3(23), and
O3(G/O3′(G)) = O3(U3(23)AB) = 〈ax−1〉 ∼= C3.

Example 4.7. Let p = 5. Let r be a prime number such that r ≡
2 or 3 (mod 5) and let q = r5

n

with n ≥ 2. Let N be one of the
simple groups L2(q), G2(q), 3D4(q3), or 2G2(35

n

) and let A = 〈a〉 be a
cyclic group of order 5n. Note that 5 - |N |. Let a act on N as a field
automorphism of order 5n. Choose a field automorphism φ ∈ Aut(Sz(25))
of order 5 and let A act on Sz(25)× Sz(25) as φ× φ. Now consider the
semidirect product G = (N×Sz(25)×Sz(25))oA defined by this action.

Since the Sylow 5-subgroups of Sz(25) are cyclic of order 25, by
Lemma 4.2 we have that m5(G) = 3. By Corollary 3.4, Quillen’s conjec-
ture holds for G.

Moreover, O5(G) = 1, O5′(G) = N , CG(O5′(G)) = Sz(25)2, and
O5(G/O5′(G)) = CA(Sz(25)2) = 〈a5〉 6= 1.

Example 4.8. Let p = 5 and let N = L5, where L is one of the simple
5′-groups of the previous example. Let A = 〈a〉 ∼= C5n and B = 〈b〉 ∼= C5.
Let G = (N × Sz(25)2) o (A× B), where a acts on each copy of L as a
field automorphism of order 5n and trivially on Sz(25)2, and b permutes
the copies of L and acts as a field automorphism of order 5 on each copy
of Sz(25).

To compute the 5-rank of G we use Lemma 4.2:

m5(G) = m5(Sz(25)2 o (A×B))

= m5(A× (Sz(25)2 oB))

= m5(A) +m5(Sz(25)2 oB)

= 1 + 3

= 4.
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Now the aim is to apply Corollary 3.3 on G by finding a 2-dimensional
G-invariant homotopy equivalent subcomplex X of K(S5(G)).

Let H = (N × Sz(25)2) o A = NA × Sz(25)2. Note that H / G and
m5(H) = 3. Hence K(A5(H)) is 2-dimensional and G-invariant. We will
show that A5(H) ' A5(G) by applying Lemma 4.3.

Let E ∈ A5(G) be such that E ∩H = 1. Then E is cyclic generated
by an element e of order 5 and e = lsaibj with l ∈ N , s ∈ Sz(25)2,
0 ≤ i ≤ 5n− 1, and j ∈ {1, 2, 3, 4}. Thus E acts by field automorphisms
on each copy of the Suzuki group and e is Inndiag(Sz(25))-conjugate to
the field automorphism induced by bj on Sz(25) (see [8, Proposition 4.9.1]
and Example 4.6). Hence, CH(E) = CNA(E) × CSz(25)2(E). Note that

CSz(25)2(E) / CH(E) and CSz(25)2(E) ∼= CSz(25)(E)2 ∼= (C5 o C4)2 has a
nontrivial normal 5-subgroup. Therefore, A5(G) ' A5(H) by Lemma 4.3
and Quillen’s conjecture holds for G by Corollary 3.3 applied to the
subcomplex K(A5(H)).

Note that O5′(G) = N and CG(O5′(G)) = Sz(25)2. On the other
hand, O5(G) = 1 and O5(G/O5′(G)) = A 6= 1.

We conclude with two examples of groups satisfying Quillen’s conjec-
ture for p = 2. We say that a finite group G has the trivial intersection
property at p if any two different Sylow p-subgroups of G have trivial
intersection.

Proposition 4.9. Let L1 and L2 be two finite groups with the trivial
intersection property at p. Let L = L1 × L2 and take an extension G
of L such that |G : L| = p. Then i(Sp(G)) and Bp(G) are at most
2-dimensional. If in addition the Sylow p-subgroups of L1 and L2 have
abelian Ω1, then i(Ap(G)) is at most 2-dimensional.

Proof: The elements of i(Sp(L)) are of the form P1×P2, 1×P2, or P1×1,
where Pi ≤ Li are Sylow p-subgroups. Hence, i(Sp(L)) is 1-dimensional.

Now suppose that Q0 < Q1 < · · · < Qn is a chain in i(Sp(G)). Then

Q0 ∩ L ≤ Q1 ∩ L ≤ · · · ≤ Qn ∩ L

is a chain in i(Sp(L)). We claim that there is at most one index i such
that Qi ∩ L = Qi+1 ∩ L. To see this note that

|Qj : Qj ∩ L| =

{
1 if Qj ⊆ L,
p if Qj 6⊆ L.

We have |Qi+1 : Qi| · |Qi : Qi∩L| = |Qi+1 : Qi+1∩L| · |Qi+1∩L : Qi∩L|.
Then, if Qi ∩ L = Qi+1 ∩ L, since |Qi+1 : Qi| ≥ p, we must have
|Qi : Qi ∩L| = 1 and |Qi+1 : Qi+1 ∩L| = p. Then i = max{j : Qj ⊆ L}.
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From this we conclude that dim i(Sp(G)) ≤ 1 + dim i(Sp(L)) = 2. It
is well-known that Bp(G) is a subposet of i(Sp(G)) (i.e. every radical
p-subgroup is an intersection of Sylow p-subgroups). Then Bp(G) is at
most 2-dimensional also. The same proof can be easily adapted to prove
that if the Sylow p-subgroups of L1 and L2 have abelian Ω1, i(Ap(G)) is
at most 2-dimensional.

In the following examples we use the fact that the groups A5 and
U3(22) have the trivial intersection property at 2 and that Ω1(P ) is
abelian for P a Sylow 2-subgroup of either A5 or U3(22).

Example 4.10. Let G be the group extension (A5 × A5) o C2, where
the generator of C2 acts on each coordinate as conjugation by the trans-
position (1 2). Since m2(A5) = 2 = m2(Aut(A5)), by Lemma 4.2, G has
2-rank 4. By Proposition 4.9, i(A2(G)), i(S2(G)), and B2(G) are 2-di-
mensional and then Quillen’s conjecture holds for G since Corollaries 3.5
and 3.6 apply.

Example 4.11. Let G = (U3(22)×A5)oC2 be the semidirect product
constructed in the following way. Let H = U3(22)×A5. Then Out(H) ∼=
Aut(U3(22))/ Inn(U3(22)) × Aut(A5)/ Inn(A5) ∼= C4 × C2. Take t ∈
Out(H) to be the involution which acts nontrivially on both factors.
Therefore, G = Ho〈t〉. Sincem2(U3(22)) = 2 = m2(A5) = m2(Aut(A5))
and m2(Aut(U3(22))) = 3, by Lemma 4.2, G has 2-rank 4. Just as before,
Quillen’s conjecture holds for G.
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