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A COMBINATORIAL APPROACH TO

NONINVOLUTIVE SET-THEORETIC SOLUTIONS OF

THE YANG–BAXTER EQUATION

Tatiana Gateva-Ivanova

Abstract: We study noninvolutive set-theoretic solutions (X, r) of the Yang–

Baxter equations in terms of the properties of the canonically associated braided
monoid S(X, r), the quadratic Yang–Baxter algebra A = A(k, X, r) over a field k,

and its Koszul dual A!. More generally, we continue our systematic study of non-

degenerate quadratic sets (X, r) and their associated algebraic objects. Next we in-
vestigate the class of (noninvolutive) square-free solutions (X, r). This contains the

self distributive solutions (quandles). We make a detailed characterization in terms

of various algebraic and combinatorial properties each of which shows the contrast
between involutive and noninvolutive square-free solutions. We introduce and study

a class of finite square-free braided sets (X, r) of order n ≥ 3 which satisfy the min-

imality condition, that is, dimk A2 = 2n − 1. Examples are some simple racks of
prime order p. Finally, we discuss general extensions of solutions and introduce the

notion of a generalized strong twisted union of braided sets. We prove that if (Z, r)

is a nondegenerate 2-cancellative braided set splitting as a generalized strong twisted
union of r-invariant subsets Z = X \∗ Y , then its braided monoid SZ is a general-

ized strong twisted union SZ = SX \∗ SY of the braided monoids SX and SY . We
propose a construction of a generalized strong twisted union Z = X \∗ Y of braided

sets (X, rX) and (Y, rY ), where the map r has a high, explicitly prescribed order.
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1. Introduction

It was established in the last three decades that solutions of the lin-
ear braid or Yang–Baxter equations (YBE) on a vector space of the
form V ⊗3 lead to remarkable algebraic structures. We will use the nota-
tion r : V ⊗ V → V ⊗ V , r12 = r⊗ id, and r23 = id⊗r. These structures
include coquasitriangular bialgebras A(r), their quantum group (Hopf
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algebra) quotients, quantum planes and associated objects, at least in
the case of specific standard solutions; see [30, 36]. On the other hand,
the variety of all solutions on vector spaces of a given dimension has
remained rather elusive in any degree of generality. It was proposed by
V. G. Drinfeld ([11]) to consider the same equations in the category of
sets and in this setting numerous results were found. It is clear that a set-
theoretic solution extends to a linear one, but more important than this is
that set-theoretic solutions lead to their own remarkable algebraic and
combinatoric structures, only somewhat analogous to quantum group
constructions. In the present paper we continue our systematic study of
set-theoretic solutions based on the associated quadratic algebras and
monoids that they generate.

More generally, we study quadratic sets and their algebraic objects.
The notions of a quadratic set (X, r) and its related algebraic objects
were introduced by the author and studied first in [15]; see also [22, 17]
for more results on quadratic sets (X, r). We shall use the terminology,
notation, and some results from [15, 17, 21, 19, 22].

Definition 1.1 ([15]). Let X be a nonempty set (possibly infinite)
and let r : X × X → X × X be a bijective map. In this case we use
notation (X, r) and refer to it as a quadratic set. The image of (x, y)
under r is presented as

r(x, y) = (xy, xy).

This formula defines a left action L : X × X → X and a right action
R : X ×X → X on X as: Lx(y) = xy, Ry(x) = xy, for all x, y ∈ X.

(1) (X, r) is nondegenerate if the maps Lx and Rx are bijective for
each x ∈ X.

(2) (X, r) is involutive if r2 = idX×X .
(3) (X, r) is square-free if r(x, x) = (x, x) for all x ∈ X.
(4) (X, r) is quantum binomial if it is nondegenerate, square-free, and

involutive.
(5) (X, r) is a set-theoretic solution of the Yang–Baxter equation (YBE)

if the braid relation

r12r23r12 = r23r12r23

holds in X×X×X, where r12 = r× idX and r23 = idX ×r. In this
case we refer to (X, r) also as a braided set. A braided set (X, r)
with r involutive is called a symmetric set.

In this paper we always assume that r is nondegenerate. As a nota-
tional tool, we shall often identify the sets X×m of ordered m-tuples,
m ≥ 2, and Xm, the set of all monomials of length m in the free
monoid 〈X〉.
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As in our previous works ([15, 17, 21, 19, 22]), to each quadratic
set (X, r) we associate canonically several algebraic objects (see Defini-
tion 2.4) generated by X and with quadratic defining relations naturally
determined as

xy = y′x′ ∈ <(r) iff r(x, y) = (y′, x′) and (x, y) 6= (y′, x′) hold in X×X.
Note that in the case when X is finite, the set <(r) of defining relations
is also finite, and therefore the associated algebraic objects are finitely
presented.

We continue our systematic study of the close relations between the
combinatorial properties of the defining relations, i.e. of the map r, and
the structural properties of the associated algebraic objects.

In the first half of the paper we investigate nondegenerate quadratic
sets (X, r) of finite order, their quadratic graded algebras A, and the
monoid S(X, r). Section 2 contains preliminary material on quadratic
sets. In Section 3 we study nondegenerate quadratic sets (X, r), with 2-
cancellation. Proposition 3.10 provides upper and lower bounds for the
dimension dimA2 and shows that the upper bound is attained whenever
r is involutive. The main result of the section is Theorem 3.16. It im-
plies, in particular, that a square-free nondegenerate quadratic set (X, r)
with |X| = n is a symmetric set if and only if its quadratic algebra A
has Hilbert series HA(z) = 1

(1−z)n . The theorem improves an old result

of the author; see [18, Theorem 2]. In Section 4 we pay special atten-
tion to square-free quadratic sets with cyclic conditions. We find some
new combinatorial results, see Theorem 4.7, and use them to show that,
surprisingly, a square-free quadratic set (X, r) of finite order |X| = n
which satisfies the cyclic conditions is a symmetric set if and only if
dimkA

!
3 =

(
n
3

)
; see Proposition 4.8. In Section 5 we study square-free

braided sets and the contrast between the involutive and noninvolutive
cases. We show that every square-free braided set (of arbitrary cardinal-
ity) satisfies the cyclic conditions. Theorem 5.5 characterizes the involu-
tive braided sets (X, r) in terms of various equivalent properties of the
algebra A, its Koszul dual A!, and the monoid S(X, r). Corollary 5.6
provides a characterization of noninvolutive square-free braided sets. In
Section 6 we introduce quadratic sets (X, r) which satisfy the minimality
condition M, that is, dimkA2 = 2n − 1; see Definition 6.1. We first in-
vestigate (general) square-free 2-cancellative quadratic sets (X, r) with
minimality condition and prove Proposition 6.5. We make some initial
steps in the study of braided sets and, in particular, quandles with min-
imality condition M. Corollary 6.18 implies that every square-free self
distributive solution (X, r) (see Definition 6.6) corresponding to a di-
hedral quandle of prime order |X| = p > 2 satisfies the minimality
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condition M. In Section 7 we propose a construction which generates
noninvolutive extensions (Z, r) of braided (or symmetric) sets, where
the map r has high, explicitly prescribed order; see Theorem 7.2. In
Section 8 braided monoids S(X, r) and extensions of solutions are stud-
ied. We consider general extensions of braided sets. In Subsection 8.4
we introduce generalized strong twisted unions Z = X \∗ Y of nonde-
generate braided sets; see Definition 8.8. The main result of the section
is Theorem 8.13. Finally, in Section 9 we give a list of questions and
problems. Some of these are still open questions, other were posed in
earlier versions of our work and have stimulated recent results of other
authors.

2. Preliminaries

During the last two decades the study of set-theoretic solutions of the
Yang–Baxter equation and related structures has notably intensified; a
relevant selection of works for the interested reader is [11, 24, 12, 29,
15, 5, 6, 37, 40, 22, 18, 21, 19, 8, 41, 26, 3, 28, 38, 39, 4], and
the references therein. In this section we recall basic notions and results
which will be used in the paper. We shall use the terminology, notation,
and some results from [15, 17, 21, 19, 22].

Remark 2.1. Let (X, r) be a quadratic set, and let x•, and •x be the
associated left and right actions. Then

(1) The map r is involutive iff the actions satisfy:

(2.1)
uv(uv) = u and (uv)u

v

= v, ∀u, v ∈ X.
(2) r is square-free if and only if xx = x, and xx = x, ∀x ∈ X.
(3) If r is nondegenerate and square-free, then

(2.2)
zt = zu =⇒ t = u ⇐= tz = uz,
zt = z ⇐⇒ t = z ⇐⇒ tz = z.

Remark 2.2 ([12]). Let (X, r) be quadratic set. Then r obeys the YBE,
that is, (X, r) is a braided set iff the following conditions hold for all
x, y, z ∈ X:

l1 : x(yz) =
xy(x

y

z), r1 : (xy)
z

= (x
yz)y

z

,

lr3 : (xy)
(x
y
z)

= (x
yz)(yz).

Convention 2.3. In this paper by a solution we mean a nondegenerate
braided set (X, r), where X is a set of arbitrary cardinality. We shall
also refer to it as a braided set, keeping the convention that we consider
only nondegenerate braided sets. An involutive solution means a non-
degenerate symmetric set. In most cases we shall also assume that r is
2-cancellative but this will be indicated explicitly.
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2.1. Quadratic sets and their algebraic objects. Let X be a non-
empty set, and let k be a field. We denote by 〈X〉 and gr〈X〉, respectively,
the free monoid and the free group generated by X, and by k〈X〉 the free
associative k-algebra generated by X. For a set F ⊆ k〈X〉, we denote
by (F ) the two sided ideal of k〈X〉 generated by F .

For m ≥ 1, the length of a monomial u = x1 · · ·xm ∈ Xm will be
denoted by |u| = m.

As in our works [15, 16, 17, 22, 23, 19], we use the following.

Definition 2.4. To each quadratic set (X, r) we canonically associate
algebraic objects generated by X and with quadratic relations < = <(r)
naturally determined as

xy = y′x′ ∈ <(r) iff r(x, y) = (y′, x′) and (x, y) 6= (y′, x′) hold in X×X.
The monoid S = S(X, r) = 〈X;<(r)〉 with a set of generatorsX and a set
of defining relations <(r) is called the monoid associated with (X, r). The
group G = G(X, r) = GX associated with (X, r) is defined analogously.

For an arbitrary fixed field k, the k-algebra associated with (X, r) is
defined as

A = A(k, X, r) = k〈X〉/(<0) ' k〈X;<(r)〉,
where <0 = <0(r) = {xy − y′x′ | xy = y′x′ ∈ <(r)}.

Clearly, the quadratic algebra A generated by X and with defining rela-
tions <0(r) is isomorphic to the monoid algebra kS(X, r).

Definition 2.5. We shall call a quadratic set (X, r) injective if the set X
is embedded in G(X, r).

Recall that when (X, r) is a braided set, its monoid S = S(X, r)
is a graded braided monoid ([22]) and the group G(X, r) is a braided
group ([29]); see details in Section 8. Moreover, the associated quadratic
algebra A = A(k, X, r) is also called a Yang–Baxter algebra; see [32].

Remark 2.6 ([17, Proposition 2.3]). If (X, r) is a nondegenerate and
involutive quadratic set of finite order |X| = n, then the set <(r) consists
of precisely

(
n
2

)
quadratic relations. Clearly, in this case the associated

algebra A = A(k, X, r) satisfies

dimA2 =

(
n+ 1

2

)
.

Various equivalent conditions are given in Proposition 3.10.

Remark 2.7. Suppose (X, r) is a finite quadratic set. Then A is a qua-
dratic algebra generated by X and with quadratic defining relations <(r).
Clearly, A is a connected graded k-algebra (naturally graded by length),
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A =
⊕

i≥0Ai, where A0 = k, A is generated by A1 = SpankX, so each
graded component Ai is finite dimensional. Moreover, the associated
monoid S = S(X, r) is naturally graded by length:

S =
⊔
m≥0

Sm;

where S0 = 1, S1 = X, Sm = {u ∈ S | |u| = m}, Sm · St ⊆ Sm+t.

In the sequel, by a graded monoid S, we shall mean that S is generated
by S1 = X and graded by length. The grading of S induces a canonical
grading of its monoid algebra kS(X, r). The isomorphism A ∼= kS(X, r)
agrees with the canonical gradings, so there is an isomorphism of vector
spaces Am ∼= Spank Sm.

Remark 2.8 ([16]). Let (X, r) be a quadratic set and let S = S(X, r) be
the associated monoid.

(1) By definition, two monomials w,w′ ∈ 〈X〉 are equal in S iff w can
be transformed to w′ by a finite sequence of replacements, each of the
form

axyb −→ ar(xy)b or axyb −→ ar−1(xy)b, where x, y ∈ X, a, b ∈ 〈X〉.
Clearly, every such replacement preserves monomial length, which

therefore descends to S(X, r). Furthermore, replacements coming from
the defining relations are possible only on monomials of length≥ 2, hence
X ⊂ S(X, r) is an inclusion. For monomials of length 2, xy = zt holds
in S(X, r) iff zt = rk(xy) is an equality of words in X2 for some k ∈ Z.

(2) It is convenient, for each m ≥ 2, to refer to the subgroup Dm of the
symmetric group Sym(Xm) generated concretely by the maps

(2.3) rii+1 : Xm−→Xm, rii+1 =idXi−1×r×idXm−i−1 , i=1, . . . ,m−1.

One can also consider the free groups

Dm(r) = gr〈rii+1 | i = 1, . . . ,m− 1〉,
where the rii+1 are treated as abstract symbols, as well as various quo-
tients depending on the further type of r of interest. These free groups
and their quotients act onXm via the actual maps rii+1 so that the image
of Dm(r) in Sym(Xm) is Dm(r). In particular, D2(r) = 〈r〉 ⊂ Sym(X2)
is the cyclic group generated by r. It follows straightforwardly from
part (1) that w,w′ ∈ 〈X〉 are equal as words in S(X, r) iff they have
the same length, say m, and belong to the same orbit of Dm(r) in Xm.
Clearly, in this case the equality w = w′ holds in the group G(X, r) and
in the algebra A(k, X, r).
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An effective part of our combinatorial approach is the exploration
of the actions of the group D2(r) = 〈r〉 on X2, the group D3(r) =

gr〈r12, r23〉 on X3, and, in particular, the properties of the corresponding
orbits. In the literature a D2(r)-orbit O in X2 is often called an r-orbit
and we shall use this terminology.

If r is involutive, the bijective maps r12 and r23 are involutive as well,
so in this case D3(r) is the infinite dihedral group

D3(r) = D(r) = gr〈r12, r23 | (r12)2 = e, (r23)2 = e〉.

Remark 2.9. In notation and assumption as above, let (X, r) be a finite
quadratic set S = S(X, r) graded by length. Then the order of S2 equals
the number of D2(r)-orbits in X2.

For positive integers i < n, the maps rii+1 : Xn → Xn are defined
by (2.3). Recall that the braid group Bn is generated by elements bi,
1 = i = n− 1, with defining relations

bibj = bjbi, |i− j| > 1, bibi+1bi = bi+1bibi+1,

and the symmetric group Sn is the quotient of Bn by the relations b2i = 1.
It is well known (and straightforward) that for every n ≥ 3 the following
hold:

(1) The assignment bi 7→ rii+1 extends to a (left) action of Bn on Xn

if and only if (X, r) is a braided set.
(2) The assignment bi 7→ rii+1 extends to an action of Sn on Xn if

and only if (X, r) is a symmetric set.

3. Nondegenerate quadratic sets with 2-cancellation and
their quadratic algebras

3.1. Basics on quadratic algebras. Our main reference for this sub-
section is [34].

A quadratic algebra is an associative graded algebra A =
⊕

i≥0Ai
over a ground field k determined by a vector space of generators V = A1

and a subspace of homogeneous quadratic relations R = R(A) ⊂ V ⊗V .
We assume that A is finitely generated, so dimA1 < ∞. Thus A =
T (V )/(R) inherits its grading from the tensor algebra T (V ). The Koszul
dual algebra of A, denoted by A!, is the quadratic algebra T (V ∗)/(R⊥);
see [31, 32]. The algebra A! is also referred to as the quadratic dual
algebra to a quadratic algebra A; see [34, p. 6].

Following the classical tradition (and a recent trend), we take a com-
binatorial approach to study A. The properties of A will be read off a
presentation A = k〈X〉/(<), where by convention X is a fixed finite
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set of generators of degree 1, |X| = n, k〈X〉 is the unital free associa-
tive algebra generated by X, and (<) is the two-sided ideal of relations,
generated by a finite set < of homogeneous polynomials of degree two.

A quadratic algebra A is a PBW algebra if there exists an enumeration
of X, X = {x1, . . . , xn}, such that the quadratic relations < form a (non-
commutative) Gröbner basis with respect to the degree-lexicographic
ordering < on 〈X〉 extending x1 < x2 < · · · < xn. In this case the
set of normal monomials (mod <) forms a k-basis of A called a PBW
basis and x1, . . . , xn (taken exactly with this enumeration) are called
PBW-generators of A. The notion of a PBW algebra was introduced by
Priddy [35]. His PBW basis is a generalization of the classical Poincaré–
Birkhoff–Witt basis for the universal enveloping of a finite dimensional
Lie algebra. PBW algebras form an important class of Koszul algebras.
The interested reader can find information on quadratic algebras and, in
particular, on Koszul algebras and PBW algebras in [34].

There are various equivalent definitions of a Koszul algebra; see for ex-
ample [34, p. 19]. We recall one of them. A graded k-algebra A is Koszul
if A is quadratic and Ext∗A(k,k) ' A!. It is known that if (X, r) is a fi-
nite square-free involutive solution, then its quadratic algebra A(k, X, r)
is Koszul; see [24]. We shall prove that, conversely, if (X, r) is a (gen-
eral) square-free nondegenerate braided set and its algebra A(k, X, r) is
Koszul, then r is involutive. This follows from our more general result,
Proposition 3.12.

The following results can be used to test whether a quadratic algebra
is Koszul.

Fact 3.1. (1) ([35, Theorem 5.3]) Every quadratic PBW algebra is
Koszul.

(2) ([34, Corollary 2.2]) If A is a quadratic Koszul algebra, with Koszul
dual A!, then their Hilbert series satisfy

(3.1) HA(z) ·HA!(−z) = 1.

Note that (3.1) is a necessary but not a sufficient condition for
Koszulity of A [34].

3.2. Quadratic set with 2-cancellation and their quadratic al-
gebras. To proceed further, we require some cancellation conditions.

Definition 3.2 ([22, Definition 2-10]). A quadratic set (X, r) is 2-can-
cellative if for every positive integer k, less than the order of r, the
following two conditions hold:

rk(x, y) = (x, z) =⇒ z = y, rk(x, y) = (t, y) =⇒ x = t.
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The monoid S = S(X, r) has cancellation on monomials of length 2 if
and only if r is 2-cancellative; see [22, Proposition 2.11(1)]. Moreover,
every injective quadratic set (X, r) (see Definition 2.5) is 2-cancellative.
Note that if x, y, z ∈ X, y 6= z, each of the equalities rk(x, y) = (x, z),
or rk(y, x) = (z, x) implies y = z in G(X, r).

Remark 3.3. (1) Every nondegenerate involutive quadratic set (X, r)
is 2-cancellative; see [22, Corollary 2.13]. Recall that when X is a
finite (nondegenerate) symmetric set, the monoid S = S(X, r) is
embedded in the group G(X, r) and therefore S is a monoid with
cancellation.

(2) nondegenerate braided set (X, r) may fail to be 2-cancellative; see
Example 3.6.

(3) There exist various examples of (noninvolutive) nondegenerate
braided sets (X, r),where r is 2-cancellative but the corresponding
monoid S(X, r) fails to be 3-cancellative.

We shall prove that if (X, r) is a finite square-free braided set, then
the monoid S(X, r) is cancellative iff r is involutive; see Proposition 5.4.

Notation 3.4. Denote by ∆m the diagonal of X×m, m ≥ 2:

∆m := diag(Xm) = {xm | x ∈ X}.
One has ∆3 = (∆2 ×X) ∩ (X ×∆2).

Notation 3.5. Suppose (X, r) is a quadratic set. The element (x, y) ∈
X2 is an r-fixed point if r(x, y) = (x, y). The set of r-fixed points in X2

will be denoted by F(X, r), that is:

(3.2) F(X, r) = {xy ∈ X2 | r(x, y) = (x, y)}.
Examples 3.6. (1) [22, Example 2.14]. Let X = {x, y, z} and let

ρ = (x y z) be a cycle of length three in Sym(X). Define r(a, b) :=
(ρ(b), a), that is, (x, x)→r (y, x)→r (y, y)→r (z, y)→r (z, z)→r

(x, z) →r (x, x), (x, y) →r (z, x) →r (y, z) →r (x, y). It is easy to
check that (X, r) is a nondegenerate braided set (this is a permu-
tation solution).

Note that r(a, b) 6= (a, b), ∀a, b ∈ X, so F(X, r) = ∅, and that
r is not 2-cancellative, since xx = yx in S. Moreover, (X, r) is
not injective, since in the group G(X, r) all generators are equal:
x = y = z.

(2) [22, Example 2.17]. Let X = {x, y, z} and let r be the map

(x, y) −→r (x, z) −→r (y, z) −→r (y, y) −→r (x, y),

(x, x) −→r (z, z) −→r (y, x) −→r (z, y) −→r (x, x), r(z, x) = (z, x).
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The bijective map r is nondegenerate, Lx = Ly = Lz = (x z y);
Rx = Ry = Rz = (x z), r is not 2-cancellative, conditions l1
and r1 are satisfied, but (X, r) is not a braided set. Here F(X, r) =
{(z, x)}.

Lemma 3.7. Suppose (X, r) is a nondegenerate quadratic set (possibly
infinite). Then

(1) If X has finite order, then

(3.3) 0 ≤ |F(X, r)| ≤ |X|.

(2) If (X, r) is square-free, then F(X, r) = ∆2, the diagonal of X2. In
particular, if X has finite order, then |F(X, r)| = |X|.

(3) Suppose (X, r) is nondegenerate and 2-cancellative. Then the fol-
lowing conditions hold:
(a) For every y∈X there exists a unique x ∈ X such that r(x, y) =

(x, y). In other words there exist a bijective map t : X → X
such that r(t(y), y) = (t(y), y), for every y ∈ X.

(b) For every x ∈ X there exists a unique y∈X such that r(x, y) =
(x, y).

(c) If X is finite, X = {x1, . . . , xn}, then

(3.4) F = F(X, r) = {xy ∈ X2 | r(x, y) = (x, y)} = {x1y1, . . . , xnyn},

where yi ∈ X, is the unique element with r(xi, yi) = (xi, yi),
1 ≤ i ≤ n. In particular, |F| = |X| = n.

Proof: (1) The equality r(x, y) = (xy, xy) implies

(x, y) ∈ F if and only if x = xy and xy = y.

It follows from nondegeneracy that for each y ∈ X there exists a unique
x ∈ X, with xy = y. In general, it is possible that xy 6= x, and in this
case r(x, y) = (xy, y) 6= (x, y). This implies (3.3).

(2) Suppose (X, r) is square-free. Then, by definition, ∆2 ⊆ F(X, r).
Assume xy ∈ F(X, r). Then xy = x = xx, and hence y = x by nondegen-
eracy. This gives F(X, r) ⊆ ∆2, and therefore F(X, r) = ∆2. Moreover,
|F(X, r)| = |X| whenever X is a finite set.

(3) Assume (X, r) is 2-cancellative and nondegenerate. Suppose y ∈X.
Then, by nondegeneracy there exists a unique x ∈ X such that xy =
y. Consider the equality r(x, y) = (xy, xy) = (xy, y). Then by the 2-can-
cellation law, one has xy = x, and hence r(x, y) = (x, y), as desired. As-
sume now that r(z, y) = (z, y) for some z ∈ X. Then r(z, y) = (zy, zy) =
(z, y) implies zy = y = xy, which by nondegeneracy gives z = x. This
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proves part (3)(a). Part (3)(b) is analogous. Part (3)(c) follows straight-
forwardly from (3)(a) and (3)(b).

Corollary 3.8. A nondegenerate quadratic set is square-free if and only
if for every pair x, y ∈ X one has

r(x, y) = (x, y)⇐⇒ x = y.

Remark 3.9. (1) Suppose (X, r) is a 2-cancellative nondegenerate qua-
dratic set of finite order |X| = n. One can apply the theory of (non-
commutative) Gröbner bases. We enumerate X, as X = {x1 < x2 <
· · · < xn} and consider the degree-lexicographic ordering ≤ on 〈X〉.
Let Oj , 1 ≤ j ≤ q, be the set of all nontrivial r-orbits. Each r-orbit Oj ,
1 ≤ j ≤ q, has length lj = |Oj | ≥ 2 and contains a unique mono-
mial zjtj ∈ Oj , which is minimal (in Oj) with respect to the ordering <
on 〈X〉. Then the subset of defining relations determined by Oj , namely
{xy − r(xy) | xy ∈ Oj}, reduces to exactly lj − 1 relations with explicit
pairwise distinct highest terms

xy − zjtj = 0, x, y ∈ X, xy ∈ Oj , xy > zjtj .

The set of reduced relations R(r) is defined as

R(r) = {xy − zjtj | xy ∈ Oj , xy > zjtj , 1 ≤ j ≤ q}, and

|R(r)| = s =
∑

1≤j≤q

(lj − 1) =

( ∑
1≤j≤q

lj

)
− q ≥ q.

There is an equality of sets <0(r) = R(r) if and only if r is involu-
tive. The two sets <0(r) and R(r) generate the same two-sided ideal I
of k〈X〉. Hence the algebra A = A(k, X, r) ∼= k〈X〉/(<0(r)) has a fi-
nite presentation as A = k〈X〉/(R(r)). The set of reduced relations R(r)
is exactly the quadratic part of the (minimal) reduced Gröbner basis
of I, denoted GR(I) (with respect to the degree-lexicographic ordering<
on 〈X〉). The set R(r) is linearly independent, so dim I2 = |R(r)| = s.
In general, R ⊂ GR(I), and the reduced Gröbner basis GR(I) may be
infinite. It follows from the theory of Gröbner bases that the set N of
all monomials of length 2 which are normal modulo I (with respect to
the degree-lexicographic ordering < on 〈X〉) projects to a basis of A2.
For every integer m ≥ 2 denote by Nm the set of all monomials in Xm

which are normal modulo I = (R(r)). Then

dimkAm = |Nm| = |Sm|
= the number of all disjoint Dm(r)-orbits in Xm.
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(2) The Koszul dual algebra A! has a presentation A!=k〈ξi, . . . , ξn〉/(R⊥),
where R⊥ consists of s+ n relations and splits into two disjoint sets

R⊥ = R⊥0 ∪ R⊥1 , where

R⊥0 = {ξjξi + ξi′ξj′ | xjxi − xi′xj′ ∈ R}, |R⊥0 | = s,

R⊥1 = {ξjξi | (xjxi) ∈ F(X, r)}, |R⊥1 | = n.

There are equalities

(3.5) dimA2 = n2 − s, dimA!
2 = n2 − s− n.

Suppose now that (X, r) is a nondegenerate square-free quadratic set (we
do not assume 2-cancellativity). Then F(X, r) = ∆2 and |F(X, r)| = n.
Moreover,

R⊥1 = {ξiξi | 1 ≤ i ≤ n}.

Proposition 3.10. Let (X, r) be a nondegenerate quadratic set of finite
order |X| = n ≥ 3, and let A = A(k, X, r) be its associated quadratic
k-algebra, naturally graded by length. Suppose that X2 contains exactly
q nontrivial r-orbits, O1, . . . ,Oq, |Oj | = lj ≥ 2, 1 ≤ j ≤ q.

(1) If (X, r) is 2-cancellative, then the following conditions hold:
(a) X2 has exactly n one-element r-orbits, that is, |F(X, r)| = n.

(b) The following inequalities hold:

(3.6) 2n− 1 ≤ dimkA2 = n+ q ≤
(
n+ 1

2

)
and n− 1 ≤ q ≤

(
n

2

)
,

where the upper bounds for dimkA2 and for q are exact for
all n ≥ 3, and the lower bounds are exact whenever n = p > 2
is a prime number.

(2) Suppose |F(X, r)|=n. Then the following conditions are equivalent:
(a) The map r is involutive.

(b) dimkA2 =
(
n+1
2

)
.

(c) q =
(
n
2

)
.

(d) dim I2 = |<(r)| =
(
n
2

)
.

(e) dimkA
!
2 =

(
n
2

)
.

Each of these conditions implies that (X, r) is 2-cancellative.
(3) For every integer m≥ 2, dimkAm = |Sm|= the number of all dis-

joint Dm-orbits in Xm.

Proof: (1) Suppose (X, r) is 2-cancellative. Part (1)(a) follows from Lem-
ma 3.7.
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(1)(b) The action of the cyclic group 〈r〉 on X2 splits X2 into disjoint
r-orbits O. We shall analyze the possible number of orbits and their
lengths. It is clear that the map r is involutive iff every nontrivial or-
bit O(xy) has precisely two elements.

Let X = {x1, . . . , xn} be an arbitrary enumeration on X. By Lem-
ma 3.7, X2 contains exactly n elements fixed under r (see (3.4)), so there
are exactly n one-element r-orbits O(xiyi) = {xiyi}, 1 ≤ i ≤ n.

By assumption, the complement X2 \ F(X, r) splits into q disjoint
orbits:

X2 \ F(X, r) =
⋃

1≤j≤q

Oj , where |Oj | = lj ≥ 2.

Then
|X2 \ F(X, r)| = n2 − n =

∑
1≤j≤q

lj .

By the 2-cancellativity of r, a nontrivial orbit O does not contain distinct
monomials of the shape xu, xv, u 6= v, or xu, yu, x 6= y, hence

2 ≤ |Oj | = lj ≤ n, ∀1 ≤ j ≤ q.
Therefore

2q ≤
∑

1≤j≤q

lj = n2 − n ≤ nq.

But 2q ≤ n2 − n is equivalent with q ≤ n(n − 1)/2 =
(
n
2

)
, moreover

n2−n ≤ nq implies n−1 ≤ q. This proves the right-hand side inequalities
in (3.6).

Recall that a, b ∈ Oj if and only if a = b in the algebra A or, equiva-
lently, in the monoid S. We argue with the number of distinct words of
length 2 in S which is the same as the number of all orbits

|S2| = n+ q.

One has A2 = Spank S2, and since every set of pairwise distinct words
in S2 is linearly independent, we obtain

2n− 1 ≤ dimkA2 = |S2| = n+ q ≤ n+

(
n

2

)
=

(
n+ 1

2

)
,

which proves the left-hand side inequalities in (3.6). (One may also use
the theory of Gröbner basis for a detailed proof; see Remark 3.9.) We
shall discuss the exactness of the bounds after the proof of part (2).

(2) The equality dimkA2 = n+ q implies the equivalence of (b) and (c).
The equivalence of (b) and (e) follows from (3.5).

Each w ∈ X2 \ F belongs to a nontrivial orbit O(w), and |X2 \ F| =
n(n− 1). It is clear that q =

(
n
2

)
if and only if each nontrivial orbit has
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exactly two elements, which is equivalent to r2 = 1. Thus (a) and (c) are
equivalent. One has

k〈X〉2 = I2 ⊕A2, dim(k〈X〉)2 = dim I2 + dimA2,

so

n2 − dimA2 = dim I2 =
∑

1≤j≤q

(lj − 1) =

( ∑
1≤j≤q

lj

)
− q

and dim I2 =
(
n
2

)
if and only if dimA2 =

(
n+1
2

)
, which gives the equiva-

lence of (b) and (d).
It follows from [22, Corollary 2.13] that every nondegenerate involu-

tive quadratic set (X, r) is 2-cancellative. Therefore each of the equiva-
lent conditions (a) through (d) implies that (X, r) is 2-cancellative.

Part (2) implies that the upper bounds in (3.6) are exact. If n =
p > 2 is a prime number, then by Corollary 6.18 every square-free
self distributive solution (X, r) corresponding to a dihedral quandle of
prime order |X|= p> 2 satisfies what we call the minimality condition:
dimkA2 = 2n − 1, which is equivalent to q = n − 1; see Definition 6.1.
This proves the exactness of the lower bound, whenever n = p > 2 is a
prime number.

(3) The distinct elements of the monoid S = S(X, r) form a k-basis of
the monoid algebra kS ' A(k, X, r). In particular, dimAm equals the
number of distinct monomials of length m in S which is exactly the
number of Dm(r)-orbits in Xm; see Remark 3.9.

Corollary 3.11. Let (X, r) be a nondegenerate quadratic set of finite
order |X| = n ≥ 3. Suppose one of the following two conditions holds:

(1) |F(X, r)| = n.
(2) (X, r) is a square-free quadratic set.

Then the map r is involutive if and only if dimkA2 =
(
n+1
2

)
. In this case

(X, r) is 2-cancellative.

Proposition 3.12. Retaining the above notation, suppose that (X, r) is
a nondegenerate quadratic set of finite order |X| = n and |F(X, r)| =
n. Let A=A(k, X, r) be its associated quadratic algebra A=k〈X〉/(R(r)).

(1) If A is Koszul, then r2 = id and |R(r)| =
(
n
2

)
.

(2) In particular, if there exists an enumeration of X such that the set
of quadratic relations R(r) is a Gröbner basis or, equivalently, A is
a PBW algebra, then (X, r) is involutive.

(3) In each of the cases:
(a) (X, r) is 2-cancellative, or
(b) (X, r) is square-free,
there is an equality |F(X, r)| = n.
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Proof: (1) Denote s := |R(r)|. Suppose A is Koszul, so its dual algebra A!

is also Koszul and their Hilbert series satisfy (3.1). By (3.5) one has

HA(z) = 1 + nz + (n2 − s)z2 + (dimA3)z3 + · · · ,

HA!(−z) = 1− nz + (n2 − s− n)z2 − (dimA!
3)z3 + · · ·

We replace these in (3.1) and compute the coefficient for z2 to yield:

(n2 − s− n)z2 − n2z2 + (n2 − s)z2 = 0,

which implies

(3.7) |R(r)| = s =

(
n

2

)
.

Each word xy ∈ (X2 \ F(X, r)) belongs to a nontrivial r-orbit, so xy
occurs once in a relation in R(r). One has |X2\F(X, r)| = n2−n = 2

(
n
2

)
.

This, together with (3.7), implies that each nontrivial r-orbit O in X2

has length |O| = 2, and therefore (X, r) is involutive. Clearly, in this
case <(r) = R(r).

(2) Assume now that there exists an enumeration of X, such that the
set of quadratic relations R(r) is a Gröbner basis. Then A is a PBW
algebra (in the sense of Priddy), so A is Koszul and, by part (1), (X, r) is
involutive.

Corollary 3.13. Let (X, r) be a nondegenerate quadratic set of finite
order |X| = n, let A = A(k, X, r) = k〈X〉/(<(r)), and let I = (<(r)) be
the corresponding ideal of k〈X〉. Consider the following conditions:

(1) (X, r) is involutive.

(2) (X, r) is 2-cancellative.

(3) The set of fixed points F(X, r) has cardinality n.

(4) The number q of nontrivial r-orbits in X2 is q =
(
n
2

)
.

(5) dimA2 =
(
n+1
2

)
.

(6) dim I2 =
(
n
2

)
.

(7) The algebra A has exactly
(
n
2

)
defining relations |<(r)| =

(
n
2

)
.

(8) dimA!
2 =

(
n
2

)
.

(9) The algebra A is Koszul.

The following implications hold.

(1) =⇒ (2), (3), (4), (5), (6), (8).

(2) =⇒ (3) and n− 1 ≤ q ≤
(
n

2

)
, 2n− 1 ≤ dimA2 ≤

(
n+ 1

2

)
.
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Assume (2) holds. Then

(1)⇐⇒ (4)⇐⇒ (5)⇐⇒ (6)⇐⇒ (7)⇐⇒ (8) (9) =⇒ (1).

Lemma 3.14. Suppose X = {x1, x2, x2}, and (X, r) is a nondegenerate,
2-cancellative, and square-free quadratic set.

Then (up to isomorphism) there are exactly two nonisomorphic qua-
dratic algebras A(i) corresponding to quadratic sets (X, ri), i = 1, 2,
which satisfy the hypothesis. These are

A(1) = k〈X : x3x2 − x2x3, x3x1 − x1x3, x2x1 − x1x2〉,

A(2) = k〈X : x3x2 − x1x3, x3x1 − x2x3, x2x1 − x1x2〉.

The algebras A(1) and A(2) are PBW algebras with GK dimA = 3 (in fact
these are binomial skew-polynomial rings). The quadratic set (X, r1) is
the trivial solution of the YBE. Up to isomorphism, (X, r2) is the unique
nontrivial square-free solution of the YBE of order |X| = 3.

Question 3.15. Let (X, r) be a 2-cancellative nondegenerate quadratic
set of finite order |X| = n. Suppose A = A(k, X, r) is PBW. (We know
that this implies r2 = 1.)

(1) Is it true that if (X, r) is square-free, thenA has polynomial growth?

An equivalent question is:

(2) Is it true that if (X, r) is square-free, then A has finite global di-
mension?

This is so for |X| = 3; see Lemma 3.14. An affirmative answer would
imply that (X, r) is a solution of the YBE, and A satisfies all condi-
tions (1) through (8) in Theorem 3.16. We do not know of a counterex-
ample.

In [18] we study the close relation between square-free nondegenerate
symmetric sets (X, r) and a class of Artin–Schelter regular algebras.
Our result ([18, Theorem 2]) investigates quantum binomial quadratic
sets (X, r), that is, square-free nondegenerate involutive quadratic set,
in terms of various algebraic, homological, and numerical properties of
the algebra A(k, X, r). We have proven that each of these properties of A
is equivalent to the fact that (X, r) is a solution of the YBE. Our new
Theorem 3.16 is a similar but stronger result. We weaken the hypothesis,
assuming only that (X, r) is a square-free nondegenerate quadratic set
(we do not assume involutiveness of r) and give a list of similar algebraic
and homological properties of A each of which is equivalent to saying
that (X, r) is an involutive solution of the YBE (that is, a symmetric
set).
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Theorem 3.16. Let (X, r) be a square-free nondegenerate quadratic set
of finite order |X| = n. Let A be its associated quadratic algebra A =
k〈X〉/(R(r)). The following conditions are equivalent:

(1) The Hilbert series of A is

(3.8) HA(z) =
1

(1− z)n
.

(2) A is a PBW algebra with a set X = {x1, x2, . . . , xn} of PBW gen-
erators and with polynomial growth.

(3) A is a PBW algebra with a set X = {x1, x2, . . . , xn} of PBW gen-
erators and with finite global dimension gl dimA <∞.

(4) A is a PBW Artin–Schelter regular algebra.

(5) There exists an enumeration X = {x1, x2, . . . , xn} such that the
set

N = {xα1
1 xα2

2 · · ·xαnn | αi ≥ 0 for 1 ≤ i ≤ n}

is a k-basis of A. We also have:

(6)

dimkA2 =

(
n+ 1

2

)
and dimkA3 =

(
n+ 2

3

)
.

(7)

dimkA
!
2 =

(
n

2

)
and dimkA

!
3 =

(
n

3

)
.

(8) A is a binomial skew polynomial ring in the sense of [14].

(9) (X, r) is a square-free symmetric set, that is, an involutive solution
of the YBE.

In this case A is a Noetherian domain. Moreover,

(3.9) GK dimA=n = gl dimA, dimkAm=

(
n+m− 1

m

)
, m ≥ 2.

Proof: We shall prove that each one of the conditions (1) through (9)
implies that (X, r) is involutive.

Note first that the hypothesis of the theorem implies |F(X, r)| = n.
Then by Proposition 3.10, part (2), the map r is involutive iff dimkA2 =(
n+1
2

)
.

Each of the conditions (6), (7), and (9) implies straightforwardly that
(X, r) is involutive. Each of the conditions (2), (3), (4), (5), (8) gives that
A is a PBW algebra. Hence, by Proposition 3.12, (X, r) is involutive.
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Assume (1) holds. Then A and the algebra of polynomials Pn =
k[x1, . . . , xn] have the same Hilbert series HA(z) = HPn(z); see (3.8).
Therefore A and Pn have the same Hilbert functions

dimAm = hA(m) = hPn(m) =

(
n+m− 1

m

)
, m ≥ 1.

In particular, dimA2 =
(
n+1
2

)
, so r is involutive. Moreover, dimkA3 =(

n+2
3

)
.

We have shown that each one of the conditions (1) through (9) implies
that (X, r) is a square-free nondegenerate involutive quadratic set, that
is, (X, r) is a quantum binomial quadratic set ; see Definition 1.1(4). Now
our result [18, Theorem 1.2] implies straightforwardly the equivalence of
conditions (1) through (9), the equalities (3.9), and the fact that A is a
Noetherian domain.

The 3-generated PBW algebras from Lemma 3.14 are particular cases
of the class of PBW algebras described by Theorem 3.16.

4. Square-free quadratic sets with cyclic conditions

In this section we continue the study of square-free nondegenerate
quadratic sets (X, r), the associated algebra A(k, X, r), and the
monoid S(X, r). In a series of works (see [15, 22, 21, 7]), we have
shown that the combinatorial properties of a solution of the YBE (X, r)
are closely related to the algebraic and combinatorial properties of its
associated structures. Solutions satisfying some of the conditions defined
below are of particular interest.

Definition 4.1 ([22, 15]). Let (X, r) be a quadratic set.

(1) The following are called cyclic conditions on (X, r).

cl1 : (yx)x = yx, for all x, y ∈ X; cr1 : x(
xy) = xy, for all x, y ∈ X;

cl2 : (xy)x = yx, for all x, y ∈ X; cr2 : x(y
x) = xy, for all x, y ∈ X.

(2) Condition lri on (X, r) is defined as

lri : (xy)x = y = x(yx), for all x, y ∈ X.
In other words, lri holds if and only if (X, r) is nondegenerate and

Rx = L−1x and Lx = R−1x .

The cyclic conditions were introduced by the author in [13, 14] in
the context of binomial skew polynomial algebras and were crucial for
the proof that every binomial skew polynomial algebra defines canoni-
cally (via its relations) a set-theoretic solution of the YBE; see [24]. It



Noninvolutive YBE 765

is known that every square-free nondegenerate symmetric set (X, r) sat-
isfies the cyclic conditions cc and condition lri, so the map r is uniquely
determined by the left action: r(x, y) = (Lx(y),L−1y (x)); see [15, 22]. We
shall prove that every square-free nondegenerate braided set (X, r) (not
necessarily finite or involutive) satisfies the cyclic conditions cl1 and cr1;
see Proposition 4.4. The main result of this section is Theorem 4.7.

4.1. Combinatorics in square-free quadratic sets with cyclic
conditions. We recall the following useful result.

Fact 4.2 ([22, Proposition 2.25]). Suppose (X, r) is a quadratic set.

(1) Any two of the following conditions imply the remaining third con-
dition:
(a) (X, r) is involutive.
(b) (X, r) is nondegenerate and cyclic.
(c) (X, r) satisfies lri.

(2) In particular, if (X, r) satisfies cl1 and cr1, then (X, r) is involutive
iff condition lri holds.

Sketch of the proof: For convenience of the reader we shall sketch the
proof of (2). Assume lri. We shall prove that r is involutive or, equiv-
alently, (2.1) holds. We apply first cr1 and lri, and next cl1 and lri to
yield:

uv(uv) =
uv(u

uv) = u, (uv)u
v

= (u
v

v)u
v

= v, ∀u, v ∈ X.
Conversely, assume that (X, r) is involutive. We shall prove that lri holds.
Let u, t ∈ X. We have to show t(ut) = u and (tu)t = u. By nondegener-
acy, there exist v, w ∈ X such that t = uv = wu. Then we use cr1, cl1,
and (2.1) to yield:

t(ut) =
uv(u

uv) =
uv(uv) = u, (tu)t = (w

u

u)w
u

= (wu)w
u

= u.

Suppose (X, r) is a finite nondegenerate quadratic set S = S(X, r).
As we discussed in the preliminaries, for every integer m ≥ 2, the
group Dm(r) = gr〈rii+1, 1 ≤ i ≤ m − 1〉 acts on the left on Xm. Each
element a ∈ S can be presented as a monomial a = ζ1ζ2 · · · ζn, ζi ∈ X.
Two words a, b ∈ 〈X〉 are equal in S if they have the same length, say
a, b ∈ Xm, and belong to the same orbit of Dm(r) = gr〈rii+1, 1 ≤ i ≤
m − 1〉. Clearly, (X, r) is square-free if and only if Dm(r) acts trivially
on ∆m, m ≥ 2.

Corollary 4.3. Suppose (X, r) is a square-free quadratic set. Let x, y ∈
X, let m be an integer, m ≥ 2. If xm = ym is an equality in S, then
x = y.
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Proposition 4.4. Let (X, r) be a square-free nondegenerate braided set
of arbitrary cardinality. Then (X, r) satisfies the cyclic conditions cl1
and cr1. Moreover, (X, r) is involutive iff condition lri holds.

Proof: Let a, x ∈ X. Consider the Yang–Baxter diagram on monomials
of length 3 in X3.

axx axx

(ax)(ax)x (ax)(ax)x

(ax)((a
x)x)(axx) (ax)((a

x)x)(axx)

r23

r12 r12

r23 r23

r12

It follows that r(ax, (a
x)x) = (ax, (a

x)x) and therefore, by Corollary 3.8,
(ax)x = ax, which proves cl1.

Similarly, a YB diagram starting with the monomial xxa implies
r(x(

xa), xa)=(x(
xa), xa), hence x(

xa) =xa, which proves cr1. Now Fact 4.2
implies straightforwardly that (X, r) is involutive iff lri holds.

The action of the infinite dihedral group D on X3 is of particular im-
portance in this section. Assuming that (X, r) is a nondegenerate square-
free quadratic set we shall find some counting formulae and inequalities
involving the orders of the D-orbits in X3 and their number. As usual,
the orbit of a monomial ω ∈ X3 under the action of D will be denoted
by O = O(ω).

Definition 4.5. We call a D-orbit O square-free if

O ∩ (∆2 ×X ∪X ×∆2) = ∅.
A monomial ω ∈ X3 is square-free in S if its orbit O(ω) is square-free.

Notation 4.6. Denote E(O) = O ∩ ((∆2 ×X ∪X ×∆2)\∆3).

Theorem 4.7. Suppose (X, r) is a nondegenerate square-free quadratic
set of finite order.

(1) Let O be a D-orbit in X3. The following implications hold:
(a) O ∩∆3 6= ∅ ⇔ |O| = 1.

(b) E(O) 6= ∅ ⇒ |O| ≥ 3.
In this case we say that O is a D-orbit of type (b).
(c) O ∩ (∆2 ×X ∪X ×∆2) = ∅ ⇒ |O| ≥ 6.
Recall that in this case O is called a square-free orbit; see Defini-
tion 4.5.
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(2) The following two conditions are equivalent:
(a) (X, r) is involutive and satisfies the cyclic conditions cl1 and

cr1.
(b) Every orbit O of type (b) contains exactly three distinct ele-

ments.

Proof: Condition (1)(a) is clear.

(1)(b) Assume that E(O) 6= ∅. Then O contains an element of the
shape ω = xxy, or ω = xyy, where x, y ∈ X, x 6= y. Without loss
of generality we can assume ω = xxy ∈ O. We look at a fragment of the
Yang–Baxter diagram starting with ω:

ω = ω1 = xxy −→r23 ω2 = x(xy)(xy) −→r12 ω3 = (x
2

y)(x
xy)(xy) −→ · · ·

Note that the first three elements ω1, ω2, ω3 are distinct monomials
in X3. Indeed, x 6= y implies r(xy) 6= xy in X2 (see Corollary 3.8),
so ω2 6= ω1. By assumption, (X, r) is square-free, so xx = x, and y 6= x,
implies xy 6= x, by nondegeneracy. Therefore r(x(xy)) 6= x(xy) and ω3 6=
ω2. Furthermore, ω3 6= ω1. Indeed, if we assume x = x2

y = x(xy), then
by (2.2) one has xy = x, and therefore y = x, a contradiction. It follows
that |O| ≥ 3.

(1)(c) Suppose O = O(xyz) is a square-free D-orbit in X3. Consider the
set

O1 = {vi | 1 ≤ i ≤ 6} ⊆ O
consisting of the first six elements of the Yang–Baxter diagram

v1 = xyz (xyxy)z = v2

v3 = x(yzyz) (xy)(x
y

z)(xy)z = v5

v4 = x(yz)(x
yz)(yz) [

xy(x
y

z)][(xy)(
xy z)][(xy)z] = v6

r12

r23 r23

r12 r12

Clearly,

O1 = U1 ∪ U3 ∪ U5, where Uj = {vj , vj+1 = r12(vj)}, j = 1, 3, 5.

We claim that U1, U3, U5 are pairwise disjoint sets, and each of them
has order 2. Note first that since vj is a square-free monomial, for each
j = 1, 3, 5, one has vj 6= r12(vj) = vj+1, therefore |Uj | = 2, j = 1, 3, 5.
The monomials in each Uj have the same tail. More precisely, v1 = (xy)z
and v2 = r(xy)z have a tail z; the tail of v3 and v4 is yz; and the
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tail of v5 and v6 is (xy)z. It will be enough to show that the three
elements z, yz, (xy)z ∈ X are pairwise distinct. But O(xyz) is square-
free, so y 6= z and by (2.2), yz 6= z. Furthermore v2 = (xy)(xy)z ∈
O(xyz), so xy 6= y and xy 6= z. Now by nondegeneracy one has

xy 6= z =⇒ (xy)z 6= z, xy 6= y =⇒ (xy)z 6= yz.

Therefore, the three elements z, yz, (xy)z ∈ X occurring as tails in U1,
U3, U5, respectively, are pairwise distinct, so the three sets are pairwise
disjoint. This implies 6 = |O1| ≤ |O|.

(2)(a) ⇒ (b) Suppose (X, r) is involutive and satisfies cl1 and cr1. Let
O be an orbit of type (b). Without loss of generality we may assume
O = O(xxy). Then (since r is involutive) each arrow in diagram (4.1) is
pointed in both directions, i.e. the arrows have the shape ←→ or l.

(4.1)

v1 = xxy xxy = v1

v2 = x(xyxy) x(xyxy) = v2

v3 =(x(xy))(x
xy)(xy)=(xxy)xyxy (x(xy))(x

xy)(xy)=(xxy)(xy)(xy)=v3

r12

r23 r23

r12 r12

r23

It is clear that the diagram contains all elements of O, hence |O| = 3.

(b) ⇒ (a) Suppose every orbit O of type (b) contains exactly three
elements. The diagram

v1 = xxy xxy = v1

v2 = x(xyxy) x(xyxy) = v2

v3 = x(xy)(x
xy)(xy) x(xy)(x

xy)(xy) = v3

r12

r23 r23

r12 r12

contains three distinct elements of O, and therefore it contains the whole
orbit O.

The element r23(v3)=x(xy)r((x
xy)(xy)) belongs toO = {v1, v2, v3}. It

is clear that r23(v3) 6= v1 and r23(v3) 6= v2, so r23(v3) = v3. This im-
plies that r((x

xy)(xy)) = (x
xy)(xy), hence (x

xy)(xy) ∈ F(X, r) = ∆2.
Therefore

x
xy = xy, ∀x, y ∈ X,
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that is, cr1 holds. An analogous argument proves cl1 (in this case we
work with a YB diagram with a left top element v1 = xyy).

Notice that if there exists a pair (x, y) with r2(xy) 6= xy, then the
orbit O(xxy) contains (but is not limited to) the following four distinct
elements

v1 = xxy, v2 = r23(v1) = xr(xy) = x(xyxy),

v3 = r12(v2) = (xxy)(x
xy)(xy), v4 = r23(v2) = xr2(xy),

which contradicts (b). It follows that r is involutive. We have proven
(b) ⇒ (a).

4.2. More on square-free quadratic sets with cyclic conditions.
We end up the section with new results on square-free quadratic sets
which will be used to describe the contrast between involutive and non-
involutive solutions of the YBE in the next section.

Proposition 4.8. Suppose (X, r) is a finite nondegenerate square-free
quadratic set with |X| = n and that satisfies cl1 and cr1. Then (X, r) is
a symmetric set if and only if dimkA

!
3 =

(
n
3

)
.

Proof: By hypothesis, cl1 and cr1 hold. Assume dimkA
!
3 =

(
n
3

)
. We

have to show that (X, r) is a symmetric set. We shall prove first that
(X, r) is involutive, and therefore it is a quantum binomial set; see Def-
inition 1.1(4).

As usual, we study the D3-orbits O. Our assumption implies that
X3 contains exactly

(
n
3

)
square-free orbits O(s), 1 ≤ s ≤

(
n
3

)
. By Theo-

rem 4.7, part (1)(c), the length of each square-free orbit satisfies

(4.2) |O(s)| = ls ≥ 6, ∀1 ≤ s ≤
(
n

3

)
.

Denote by W the set of all words w ∈ X3 \ ∆3 which vanish in A!
3.

Note first that if y, b ∈ X, y 6= b, the orbit O(yyb) ⊂ W contains the
three distinct monomials occurring in the following diagram

u = yyb −→r23 y(ybyb) −→r12 (yyb)(y
yb · yb) = (yyb)(yb · yb).

We shall call the word r23(yyb) = y(ybyb) the transition element for
the pair of words u = yyb, czz = r12 ◦ r23(u) ∈ W . It is clear that
each pair y, b ∈ X, y 6= b, determines uniquely the three elements yyb,
r23(yyb), czz = r12 ◦ r23(yyb) ∈W .

Note that if (y, b) 6= (t, c), then the transition elements y(ybyb) 6=
t(tctc). Indeed, the inequality is straightforward if t 6= y. If t = y, b 6= c,
then by nondegeneracy one has yb 6= yc = tc. So W contains n(n −
1) disjoint triples yyb, r23(yyb), r12 ◦ r23(yyb) = czz. Therefore |W | ≥
3n(n− 1).
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Assume that (X, r) is not involutive, we shall prove that |W | > 3n(n−
1).

Clearly, there exist a pair x, a ∈ X, x 6= a, such that r2(x, a) 6= (x, a)
so the words xa, r(xa), r2(xa) are distinct elements of X2. Then the
orbit O = O(xxa) contains at least the set O of four distinct monomials
given below:

O = {v1 = xxa, v2 = r23(xxa) = x(xaxa),

v3 = r12 ◦ r23(v1) = (xxa)(xaxa),

v4 = (r23)2(v1) = xr2(xa)}.

Moreover, the set O contains the word v4 = xr2(xa) which is square-
free, but is not a transition element for any triple yyb, r23(yyb), r12 ◦
r23(yyb) = czz. This implies that

(4.3) |W | > 3n(n− 1).

The set X3 splits into the following disjoint subsets

X3 = ∆3 ∪W ∪
( ⋃

1≤s≤(n3)

O(s)

)
.

This, together with (4.2) and (4.3), implies

n3 = |X3|= |∆3|+ |W |+
∑

1≤s≤(n3)

|O(s)| > n+ 3n(n− 1) + 6

(
n

3

)
=n3,

which gives a contradiction. It follows that r is involutive, hence (X, r) is
a quantum binomial set. Now our result [18, Theorem 1.2] implies that
(X, r) is a solution of the YBE, and therefore, it is a symmetric set. The
converse implication follows again from [18, Theorem 1.2].

Lemma 4.9. Let (X, r) be a finite square-free nondegenerate quadratic
set and let S = S(X, r). Suppose (X, r) satisfies the cyclic conditions cl1
and cr1. The following conditions are equivalent:

(1) (X, r) is involutive.
(2) S satisfies the following conditions:

axx = byy holds in S, a, b, x, y ∈ X =⇒ a = b, x = y;

xxc = yyd holds in S, c, d, x, y ∈ X =⇒ c = d, x = y.
(4.4)

(3)

byy ∈ O(axx), a, b, x, y ∈ X =⇒ a = b, x = y;

yyd ∈ O(xxc), c, d, x, y ∈ X =⇒ c = d, x = y.
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Proof: The equivalence (2) ⇔ (3) is clear.

(1) ⇒ (2) Suppose (X, r) is involutive. Theorem 4.7 implies that, for
each a 6= x, the orbit O = O(axx) is of type (b) and O ∩ (X ×∆2) =
{axx}. In other words, there is no element of the shape byy 6= axx
such that byy ∈ O which gives the first implication in (4.4). Analogous
argument gives the second implication in (4.4).

(2) ⇒ (1) Conversely, assume that conditions (4.4) hold. We have to
show that r is involutive. By Fact 4.2 it will be enough to prove that
(X, r) satisfies condition lri, that is,

(4.5) (tx)t = x and t(xt) = x, ∀x, t ∈ X.

Let a, x ∈ X. We consider the elements of the D-orbit O(axx) in X3

and deduce the following equalities of elements in S = S(X, r):

a.xx = (ax)(ax)x

= (ax)(a
x

x)axx = (ax)(ax)(axx)

= (ax)(
ax(axx))((ax)

axx
)

= ((
ax(

ax(axx)))((ax)(
ax(axx))((ax)

(axx)
)

= b((ax)
axx

)((ax)
axx

) where b = (ax)((
ax)(axx))

= byy, where y = [(ax)](a
xx).

We have obtained that, for a 6= x the following equalities hold in S

axx = byy, where y = [(ax)](a
xx).

Now the first condition in (4.4) implies

y = [(ax)](a
xx) = x

and

ax = axx = (ax)xx = (a(xx))x,

x = [(ax)](a
xx) = [(a

(xx))x](a
xx) = (tx)t, where t = a(xx).

(4.6)

Suppose t, x ∈ X. By nondegeneracy there exists a1 ∈ X such that
t = ax1 and, similarly, there exists a ∈ X with ax = a1, hence t = axx for
some a ∈ X. Then (4.6) implies (tx)t = x. The second equality t(xt) = x
in (4.5) is proven by an analogous argument. Therefore (X, r) satisfies
condition lri.
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5. Square-free braided sets and the contrast between
the involutive and noninvolutive cases

Braided monoids were introduced and studied in [22]. For convenience
of the reader we recall basic definitions and results in Section 8. Recall
that if (X, r) is a braided set, then its monoid S(X, r) is a graded braided
M3-monoid. We denote it by (S, rS); see Definitions 8.1 and 8.2, in par-
ticular, S satisfies condition ML2. More details can be found in Section 8.

Notation 5.1. Let (X, r) be a nondegenerate quadratic set. Let a, x ∈
X and let m be a positive integer. We shall use the following notation

(xm)a := (Lmx )(a), a(x
m) := (Rmx )(a).

This formulae agree with the natural left and right actions of S upon
itself.

Remark 5.2. Suppose (X, r) is a quadratic set with cl1 and cr1. Then
the following equalities hold in X:

(5.1) a(x
m)

x = ax, x
(xm)a = xa,

for all a, x ∈ X and all positive integers m.

The formulae in (5.1) are easy to prove using induction on m.

Proposition 5.3. Let (X, r) be a square-free nondegenerate quadratic
set satisfying the cyclic conditions cl1 and cr1, and let S = S(X, r).
Then the following conditions hold:

(1) For every pair a, x ∈ X and every positive integer m the following
equalities hold in S:

(5.2) a · (xm) = ((ax)m) · (a(x
m)), (xm) · a = ((x

m)a)((xa)m).

(2) Assume that (X, r) is a braided set. Then the following are equali-
ties in the braided monoid S:

(5.3) a(xm) = (ax)m, (xm)a = (xa)m,

for all a, x ∈ X and all positive integers m.

(3) Suppose that (X, r) is a finite braided set, and let p be the least
common multiple of the orders of all actions Lx and Rx, x ∈ X,
so (xp)a = a = a(x

p), ∀a, x ∈ X. Then the following equalities hold
in S:

a · (xp) = a · ((ax)a)p, (xp) · a = (a(xa))p · a, ∀a, x ∈ X.(5.4)

(xp)(yp) = (yp)(xp), ∀x, y ∈ X.(5.5)
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Proof: (1) We shall use induction onm to prove the first equality in (5.2).

Clearly, form = 1, one has ax = ax·ax. Assume a·(xk) = ((ax)k)·(a(xk)),
∀1 ≤ k ≤ m, and all a, x ∈ X. Let a, x ∈ X. Then

a · (xm+1) = (a · xm)x=((ax)m) · [(a(x
m))x]=(ax)m · (a

(xm)

x) · (a(x
m))x

= (ax)m+1)(a(x
m+1)),

as claimed. For the last equality we have used (5.1).
This verifies the first equality in (5.2). An analogous argument verifies

the second equality in (5.2).

(2) Assume that (X, r) is a braided set. Then (X, r) satisfies cl1 and
cr1; see Proposition 4.4. We shall prove (5.3) using induction on m. The
base for induction is clear. Assume the formula is true for all k ≤ m−1,
where m ≥ 2 . We use the inductive assumption, ML2, and (5.1) to get

a(xm)=a((xm−1) · x)=(a(xm−1))·((a
(xm−1))x) = (ax)m−1)(ax) = (ax)m.

This proves the first equality in (5.3). Analogous argument verifies the
second equality in (5.3).

(3) Assume now that (X, r) is a finite braided set and p is the least
common multiple of the orders of all actions. We use successively M3,
(5.3), and M3 again to obtain

a · (xp)=a(xp) · (a(x
p))=(ax)p · a=(((

ax)p)a) · ((ax)p)a = a · ((ax)a)p.

This gives the first equality in (5.4). An analogous argument proves the
second equality in (5.4). The equality (5.5) is straightforward.

Proposition 5.4. Let (X, r) be a square-free nondegenerate braided set
of finite order |X| = n, let S = S(X, r) = (S, rS) be the associated
braided monoid, and let A = A(k, X, r). Let p be the least common mul-
tiple of the orders of all actions Lx and Rx, x ∈ X. The following
conditions are equivalent:

(1) The equality axp = ayp in S, for a, x, y ∈ X, implies x = y.
(2) The equality (xp)a = (yp)a in S, for a, x, y ∈ X, implies x = y.
(3) The monoid S is cancellative.
(4) The quadratic algebra A has Gelfand–Kirillov dimension GK dimA=

n.
(5) The solution (X, r) is involutive, that is, (X, r) is a symmetric set.

In this case S(X, r) is embedded in the braided group G(X, r)=(G, rG).
Moreover, both (S, rS) and (G, rG) are also (nondegenerate) involutive
solutions.
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Proof: The implications (3) ⇒ (1), (2), are clear.

(1) ⇒ (2) Assume (xp)a = (yp)a, where a, x, y ∈ X. Then we use (5.2)
to obtain

(xp)a = a(xa)p, (yp)a = a(ya)p.

It follows that a(xa)p = a(ya)p, so by our assumption (1), xa = ya.
Hence, by nondegeneracy, x = y. The implication (2) ⇒ (1) is proven
analogously.

(1) ⇒ (5) Suppose condition (1) holds (hence (2) is also true). Proposi-
tion 5.3 implies the following equalities in S:

a · (xp) = a · ((ax)a)p, (xp) · a = (a(xa))p · a, ∀a, x ∈ X.
It follows from (1) that

x = ((ax)a), x = (a(xa)), ∀a, x ∈ X.
Therefore the braided set (X, r) satisfies condition lri. By Fact 4.2(2),
(X, r) is involutive, so (X, r) is a nondegenerate symmetric set.

(5) ⇒ (3) It is known (see [12]) that if (X, r) is a nondegenerate sym-
metric set, then its monoid S(X, r) is embedded in the group G(X, r),
and therefore S is left and right cancellative.

The implication (5) ⇒ (4) is known; see [18, Theorem 1.2] or [24].

(4) ⇒ (1) Suppose A has Gelfand–Kirillov dimension GK dimA = n.
Assume, on the contrary, that condition (1) is not satisfied. Then there
exist three elements a, x, y ∈ X, a 6= x, y such that

axp = ayp, x 6= y.

This implies that axMp = ayMp, for all positive integers M , hence
GK dimA < n, a contradiction.

The following result shows the close relations between various alge-
braic and combinatorial properties of a finite square-free solution (X, r),
the YB-algebra A = A(k, X, r), and its braided monoid S = S(X, r).
Each of these conditions describes the contrast between a square-free
symmetric set and a square-free noninvolutive braided set.

Theorem 5.5. Let (X, r) be a square-free nondegenerate braided set of
order |X| = n. Let S = S(X, r) be its braided monoid, let A = A(k, X, r)
be its graded k-algebra over a field k, and let A! be the Koszul dual algebra
of A. The following conditions are equivalent:

(1) The solution (X, r) is involutive, that is, (X, r) is a symmetric set.
(2) (X, r) satisfies lri.
(3) The Hilbert series of A is HA(z) = 1

(1−z)n .

(4) The quadratic algebra A is Koszul.
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(5) There exists an enumeration of X such that the set of quadratic
relations R(r) is a Gröbner basis, that is, A is a PBW algebra.

(6) A is a binomial skew polynomial ring (in the sense of [14]) with
respect to an enumeration of X.

(7) dimkA2 =
(
n+1
2

)
.

(8) dimkA3 =
(
n+2
3

)
.

(9) dimkA
!
3 =

(
n
3

)
.

(10) The algebra A has Gelfand–Kirillov dimension GK dimA = n.
(This means that the integer-valued function i 7→dimkAi is bounded
by a polynomial in i of degree n.)

(11) If axp = ayp holds in S, a, x, y ∈ X, where p is the least common
multiple of the orders of all actions Lx and Rx, x ∈ X, then x = y.

(12) The monoid S satisfies conditions (4.4).
(13) The monoid S is cancellative.
(14) A is a domain.

Each of these conditions implies that A is an Artin–Schelter regular al-
gebra of global dimension n.

Proof: Note first that (X, r) satisfies cl1 and cr1, by Proposition 4.4.
Moreover, |F(X, r)| = n. It is known that a finite square-free nonde-
generate symmetric set (X, r) satisfies all conditions (2) through (14) in
the theorem, so (1) implies all conditions (2) through (14). These im-
plications have been published in various works of the author, but one
can find them all in [18, Theorem 1.2]. The remaining implications with
references to the corresponding results are listed below:

(1)⇐⇒ (2) : Fact 4.2
(1)⇐⇒ (3) : Theorem 3.16
(6) =⇒ (5) =⇒ (4) : Clear, see Section 2
(4) =⇒ (1) : Proposition 3.12
(7) =⇒ (1) : Proposition 3.10, part (2)
(8)⇐⇒ (9) : Easy to prove,

we leave it to the reader
(9) =⇒ (1) : Proposition 4.8
(10)⇐⇒ (11)⇐⇒ (13)⇐⇒ (1) : Proposition 5.4
(12) =⇒ (1) : by Lemma 4.9
(14) =⇒ (13) : Clear
(1) =⇒ (14) : see [24].

Artin–Schelter regular algebras were introduced and first studied in [2].
The study of Artin–Schelter regular algebras, their classification, and
finding new classes of such algebras is one of the basic problems in non-
commutative geometry.
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Corollary 5.6 (Characterization of noninvolutive square-free braided
sets). Let (X, r) be a square-free nondegenerate braided set of order |X| =
n and denote S(X, r), A = A(k, X, r), and A! as in Theorem 5.5. Sup-
pose r2 6= idX×X . Then the following conditions hold:

(1) (X, r) does not satisfy condition lri.

(2) The algebra A is not Koszul.

(3) The set of quadratic relations R(r) is not a Gröbner basis with
respect to any enumeration of X.

(4) A is not a binomial skew polynomial ring with respect to any enu-
meration of X.

(5) 2n− 1 ≤ dimkA2 ≤
(
n+1
2

)
− 1.

(6) dimkA3 <
(
n+2
3

)
.

(7) 0 ≤ dimkA
!
3 <

(
n
3

)
and A!

3 = 0, whenever dimkA2 = 2n− 1.

(8) GK dimA < n.

(9) Suppose p is the least common multiple of the orders of all ac-
tions Lx and Rx, x ∈ X. Then there exist pairwise distinct ele-
ments a, x, y ∈ X such that axp = ayp holds in S.

(10) There exist x, y ∈ X such that x 6= y, and xp = yp holds in the
group G(X, r).

(11) There exist a, b, x, y ∈ X such that x 6= y, x 6= a, y 6= b, and the
equality axx = byy holds in S.

(12) The monoid S=S(X, r) is not cancellative. In particular, S(X, r) is
not embedded in the group G(X, r).

(13) The algebra A is not a domain.

Remark 5.7. The lower bound 2|X| − 1 ≤ dimkA2 is exact, whenever
|X| = p, p is a prime number. More precisely, a Dihedral quandle (X, .)
of prime order |X| = p satisfies condition M; see Lemma 6.16.

6. Square-free braided sets (X, r) satisfying the
minimality condition

6.1. Square-free 2-cancellative quadratic sets (X, r) with min-
imality condition.

Definition 6.1. We say that a finite quadratic set (X, r) satisfies the
minimality condition M if

(6.1) M : dimkA2 = 2|X| − 1.

Example 6.2. Every square-free self distributive solution (X, r), corre-
sponding to a dihedral quandle of prime order |X| = p > 2, satisfies the
minimality condition M; see Corollary 6.18.
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Let (X, r) be a square-free nondegenerate quadratic set of order |X| =
n. Assume that (X, r) is 2-cancellative. Let S = S(X, r) be its graded
monoid, let A = A(k, X, r) be its graded k-algebra over a field k, and let
A! be the Koszul dual algebra. Consider the action ofD3(r) = gr〈r12, r23〉
on X3. The following useful remarks are straightforward.

Remark 6.3. The following are equivalent:

(1) Each D3(r)-orbit in X3 contains a word of the type xxy, x, y ∈ X
(and ztt, z, t ∈ X).

(2) A!
3 = 0.

Remark 6.4. Let (X, r) be a square-free nondegenerate quadratic set
of order |X| = n. Assume that (X, r) is 2-cancellative. Suppose O is a
nontrivial r-orbit in X2 of order |O| = n. Then

(1) For every x ∈ X there exists y ∈ X such that xy ∈ O.
(2) For every y ∈ X there exists x ∈ X such that xy ∈ O.

Proposition 6.5. Let (X, r) be a square-free nondegenerate quadratic
set of order |X| = n, say X = {x1, . . . , xn}. Write S = S(X, r), A =
A(k, X, r), and A! as before (e.g. Theorem 5.5). Assume that (X, r) is
2-cancellative. Let Oi, 1 ≤ i ≤ q, be the set of all nontrivial r-orbits
in X2 (these are exactly the square-free r-orbits in X2).

(1) The following three conditions are equivalent:
(a) (X, r) satisfies the minimality condition M; see (6.1).
(b) Each nontrivial orbit Oi has order |Oi| = n.
(c) The algebra A has a finite presentation A ∼= k〈X〉/(R0), where

R0 is a set of exactly (n − 1)2 quadratic square-free binomial
relations:

(6.2) R0 = {xinyin − x1xi, xin−1yin−1 − x1xi, . . . , xi2yi2 − x1xi |
2 ≤ i ≤ n},

where xij 6= yij, 1 ≤ i, j ≤ n, and the following two conditions
hold for every 2 ≤ i ≤ n:

(c1) xinyin > xin−1yin−1 > · · · > xi2yi2 > xi1yi1 = x1xi;
(c2) there are equalities of sets

{xij | 2 ≤ j ≤ n} = X \ {x1}, {yij | 2 ≤ j ≤ n} = X \ {xi}.

In this case, after a possible re-enumeration of the orbits, one
has

Oi = O(x1xi)

= {x1xi := xi1yi1 < xi2yi2< · · ·<xin−1yin−1 < xinyin}, 2 ≤ i ≤ n.
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(2) Moreover, each of conditions (1)(a), (1)(b), (1)(c) implies that
(a) A!

3 = 0, and in particular X3 does not contain square-free
D3(r)-orbits.

(b) GK dimA ≤ 2.

Proof: Recall first that for an arbitrary quadratic set (X, r) the number
of distinct words of length 2 in S is exactly the number of D2(r)-orbits
in X2, so one has

dimA2 = |S2| = ](D2-orbits in X2).

(1)(a) ⇔ (b) Suppose the minimality condition (6.1) holds. Then X2

splits into exactly 2n− 1 orbits. More precisely, there are n one element
orbits, which are the elements of the diagonal ∆2 and n− 1 square-free
orbit Oi, 1 ≤ i ≤ n− 1. Due to 2-cancellativity one has |Oi| ≤ n. At the
same time one has:

n2 − n =

∣∣∣∣ ⋃
1≤i≤n−1

Oi
∣∣∣∣ =

∑
1≤i≤n−1

|Oi| ≤ n(n− 1).

Therefore |Oi| = n, for all 1 ≤ i ≤ n− 1.
Conversely, suppose each nontrivial orbit O has length n, and let q be

the number of square-free orbits O. There are exactly (n− 1)n square-
free words in X2, each one contained in some O, so n(n− 1) = nq, and
therefore q = n − 1. Thus, the total number of disjoint orbits in X2 is
n+ (n− 1) = 2n− 1. It follows that |S2| = 2n− 1 and dimkA2 = |S2| =
2n− 1, so the minimality condition M holds.

(b)⇒ (c) Suppose each nontrivial D2(r)-orbit Oi in X2 has order |Oi| =
n, 1 ≤ i ≤ n− 1. It follows from Remark 6.4 that for each 1 ≤ i ≤ n− 1
there exists a unique x ∈ X such that x1x ∈ Oi. We re-enumerate the
orbits (if necessary), so that x1xi ∈ Oi. Let 1 ≤ i ≤ n − 1. We order
lexicographically the n (distinct) words in Oi:

Oi = {xinyin > xin−1yin−1 > · · · > xi2yi2 > xi1yi1 =: x1xi}.
Each two monomials in Oi, considered as elements of S, are equal. This
information is encoded by the set Ri of exactly n − 1 reduced relations
determined by Oi:

Ri : xinyin = x1xi; xin−1yin−1 = x1xi; . . . , xi2yi2 = x1xi.

As discussed in Section 3 the set of defining relations <(r) is equivalent
to the set of reduced relations

R =
⋃
i

Ri
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and the corresponding “algebra-type” relations are exactly the n(n −
1) reduced relations R0 given in (6.2). It follows from the properties of
the orbits Oi that the relations in R0 satisfy all additional conditions in
part (c).

(c) ⇒ (b) The set of relations R0 splits into n − 1 disjoint subsets Ri,
1 ≤ i ≤ n− 1. Note that the properties of the relations given in part (c)
imply that (X, r) is 2-cancellative. It is clear that a relation a = b ∈ Ri

implies that a, b belong to the same orbit O in X2. We denote this orbit
by Oi (one has x1xi ∈ Oi). One can also read off from the properties
of Ri that Oi has exactly n-elements. Note that the sets <0(r) and R0

generate the same two-sided ideal I of k〈I〉, so we get A ∼= k〈X〉/(R0).
It follows from the theory of Gröbner bases that the ideal I has unique
reduced Gröbner basis GR(I) (w.r.t ≤). Moreover, R0 is a proper subset
of GR(I) (we assume n ≥ 3) and all additional elements of GR(I) \ R0

are homogeneous polynomials of degree ≥ 3. Therefore, the set of normal
monomials of length 2:

N2 = {x1x2, x1x3, . . . , x1xn} ∪ {xixi | 1 ≤ i ≤ n}

projects to a k-basis of A2
∼= kS2, so this again implies dimkA2 = 2n−1.

(2) Suppose (X, r) satisfies the minimality condition M. It follows from
the argument in part (1) that the normal basis N of A satisfies

N ⊆ {xα1x
β
i | 2 ≤ i ≤ n, α ≥ 0, β ≥ 0}.

This implies that GK dimA ≤ 2.
We shall prove that A!

3 = 0. By Remark 6.3 it will be enough to
show that each D3(r)-orbit in X3 contains a word of the type xxy,
x, y ∈ X (and ztt, z, t ∈ X). Let a, b, c ∈ X. Without loss of generality,
we may assume that a 6= b and b 6= c. Clearly, bc ∈ O(bc) ⊂ X2,
and by Remark 6.4 the (square-free) orbit O(bc) contains an element of
the shape at, t ∈ X, thus bc = at is an equality in S2, so abc = aat
holds in S3. This implies that the D3-orbit O(abc) in X3 contains the
monomial aat. It follows then that there are no square-free orbits in X3,
hence A!

3 = 0.

Let (X, r) be a quadratic set. A subset Y ⊂X is r-invariant if r(x, y) ∈
Y ×Y , ∀x, y ∈ Y . In this case the restriction (Y, rY ), where rY := r|Y×Y
is a quadratic set. A quadratic set (X, r) is decomposable if X = Y ∪Z is
a decomposition into nonempty disjoint r-invariant subsets. Clearly, if
|Y | ≥ 2, then the restriction (Y, rY ) inherits from (X, r) properties like
nondegeneracy, 2-cancellativity, or being square-free.
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Definition 6.6. We call a quadratic set (X, r) (left) self distributive, or
SD for short, if it satisfies

SD : r(x, y) = (xy, x), ∀x, y ∈ X.

Lemma 6.7. Suppose (X, r) is a finite square-free nondegenerate qua-
dratic set which is 2-cancellative and satisfies the minimality condi-
tion M. Let |X| = n ≥ 3. Then (X, r) is indecomposable. Moreover,
if (X, r) is a self distributive quadratic set, then for every x ∈ X the
permutation Lx has exactly one fixed point, so

Lx(x) = x, Lx(y) 6= y, ∀x, y ∈ X, y 6= x.

Proof: By Proposition 6.5 (X, r) satisfies the minimality conditions iff
the set of square-free words of length 2, X2 \∆2, splits into n−1 disjoint
D2-orbits Oi, 1 ≤ i ≤ n−1, each of which contains n distinct monomials.

We shall prove first that (X, r) is indecomposable. Suppose X = Y ∪Z
is a decomposition into nonempty disjoint r-invariant subsets, say |Y | =
k ≥ 2, |Z| = s ≥ 1, k+s = n. The restriction (Y, rY ) is a nondegenerate,
square-free, and 2-cancellative quadratic set of order k < n. Let x, y ∈ Y ,
x 6= y, then the D2-orbit O(xy) in X2 is contained entirely in Y 2, and
by the 2-cancellativity of (Y, rY ), |O(xy)| ≤ k < n. At the same time
O(xy) is a D2-orbit in X2, so O(xy) = Oi for some 1 ≤ i ≤ n − 1, and
by Proposition 6.5 |O(xy)| = |Oi| = n, a contradiction.

Suppose now that (X, r) is a self distributive quadratic set with mini-
mality condition. Let x, y ∈ X, x 6= y. If we assume that Lx(y) = y, then
r(xy) = yx and r2(xy) = r(yx) = yxy, hence (due to 2-cancellativity)
yx = x. It follows that O(xy) = {xy, yx}, so |O(xy)| = 2 < n, in contra-
diction with Proposition 6.5.

It follows from Corollary 6.18 that every square-free self distribu-
tive solution (X, r), corresponding to a dihedral quandle of prime order
|X| = p > 2, satisfies the minimality condition M. We do not know ex-
amples where (X, r) is a nondegenerate, square-free, and 2-cancellative
quadratic set of order n ≥ 3 which satisfies the minimality condition M,
but (X, r) is not a solution of the YBE.

Example 6.24 gives a square-free braided set (X, r) which is indecom-
posable (and injective), but does not satisfy the minimality condition M.

Lemma 6.8. Suppose (X, r) is a square-free self distributive quadratic
set of finite order |X| ≤ 5. If (X, r) is 2-cancellative and satisfies the
minimality condition M, then (X, r) is a braided set.
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More precisely, (up to isomorphism) either

(1) (X, r) is the quadratic set corresponding to the dihedral quandle of
order 3, or

(2) (X, r) is the quadratic set corresponding to the dihedral quandle of
order 5.

Sketch of the proof: Our assumptions imply that (X, r) is nondegener-
ate and Lx(y) 6= y, ∀x, y ∈ X, x 6= y; see Lemma 6.7. The state-
ment is straightforward for |X| = 3. If |X| = 4, then, ∀x ∈ X, the
map Lx = (y1 y2 y3) is a cycle of length 3. Then a single r-orbit of
length 4 determines each map Lx uniquely, which in turn determines r
and all r-orbits in X2 uniquely. A combinatorial argument shows that
a 2-cancellative square-free quadratic set (X, r) with |X| = 4 and the
minimality condition does not exist. Assume |X| = 5. Then each map Lx
is either of the shape (a) Lx = (y1 y2 y3 y4), a cycle of length 4, where
yi 6= x, 1 ≤ i ≤ 4, or (b) Lx = (y1 y2)(y3 y4), a product of disjoint trans-
positions where yi 6= x, 1 ≤ i ≤ 4. Using a combinatorial argument one
shows that if some Lx = (y1 y2 y3 y4), then (X, r) is not 2-cancellative. It
follows that only case (b) is possible. Then using an argument similar
to the proof of Proposition 6.21 one shows that (X, r) is a braided set
isomorphic to the dihedral quandle of order 5.

6.2. Some basics on indecomposable injective racks.

Lemma 6.9. Suppose (X, r) is an SD quadratic set.

(1) If (X, r) is 2-cancellative, then
(a) (X, r) is nondegenerate.
(b) xx = x, ∀x ∈ X, so (X, r) is square-free.
(c) yx = x⇔ xy = y, x, y ∈ X.

(2) (X, r) is involutive iff (X, r) is the trivial solution.
(3) (X, r) is a braided set iff the condition laut holds:

laut(x, y, z) : x(yz) =
xy(xz), ∀x, y, z ∈ X.

Self distributive braided sets are closely related to racks. We recall
some basics on racks; see [1].

Definition 6.10 ([1]). A rack is a pair (X, .), where X is a nonempty
set and . : X ×X → X is a map (a binary operation on X) such that

(R1) The map ϕi : X → X, x 7→ i . x is bijective for all i ∈ X, and
(R2) i . (j . k) = (i . j) . (i . k).

A quandle is a rack which also satisfies i . i = i, for all i ∈ X.
A crossed set is a quandle such that j . i = i, whenever i . j = j.
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Remark 6.11. Suppose (X, r) is an SD quadratic set. Define . : X ×
X → X as x . y := xy. It is clear that (X, .) is a rack iff (X, r) is a
nondegenerate braided set. Moreover, (X, r) is a square-free braided set
iff (X, .) is a quandle.

Conversely, every rack (X, .) defines canonically a nondegenerate SD
braided set (X, r), where r(x, y) = (x . y, y). Moreover (X, r) is square-
free iff (X, .) is a quandle. It follows from Lemma 6.9 that every
rack (X, r) which is 2-cancellative is a quandle. Moreover (X, r) is a
crossed set.

To simplify notation and terminology, a self distributive nondegener-
ate braided set (X, r) will be referred to as a rack and if, in addition,
(X, r) is square-free, it will be also referred to as a quandle. Under this
convention we shall keep our usual notation and shall write “xy”, instead
of “x . y”. In this case there is an equality of maps:

ϕx = Lx, ∀x ∈ X.
The inner group Inn(X) of a rack X is the subgroup of Sym(X)

generated by all permutations Lx, x ∈ X. A rack (X, r) is faithful if the
map X → Inn(X), x 7→ Lx is injective. In fact, X is indecomposable if
and only if Inn(X) acts transitively on X.

Example 6.12 (Dihedral quandles). Let n be a positive integer. Over
the ring Z/nZ of integers mod n define x. y = 2x− y. This is a quandle
known as the dihedral quandle of order n. This is an Alexander quandle;
see for example [33]. If we assume that n is odd, we can identify the
elements of this quandle with the conjugacy class of involutions of Dn,
the dihedral group of order 2n. Classification of Alexander quandles of
prime order p can be found for example in [33]. These are particular cases
of affine racks. Let X be an abelian group and let g be an automorphism
of X. Then x . y = (1− g)(x) + g(y) is a rack, an affine rack over X.

The following results are extracted from [25].

Fact 6.13. Suppose (X, r) is a finite SD braided set, and assume that
the corresponding rack (X, .) is indecomposable. Then

(1) (X, .) is faithful iff it is injective; see [25, Lemma 2.10].
Clearly, in this case the solution (X, r) is also injective.

(2) Suppose X = {x1, . . . , xn}. Then all permutations Li, i ∈ X, have
the same order m. Moreover, the equalities xmi = xmj hold in GX
for all 1 ≤ i, j ≤ n; see [25, Lemma 2.18].

(3) For all x ∈ X the permutation Lx has exactly 1 + k2 fixed points,
where k2 is the number of elements j ∈ X such that O(1, j) has
2 elements; see [25, Lemma 2.25.3].
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Remark 6.14. Suppose that (X, r) is an indecomposable quandle of or-
der |X| ≥ 3, and every nontrivial r-orbit O ⊂ X2 has order 3 ≤ |O| ≤
|X|. Then

(1) For every x ∈X the permutation Lx has a unique fixed point,
namely x.

(2) Moreover, if L2
x = id, ∀x ∈ X, then X has odd order |X| = 2k+ 1.

In this case Lx is a product of k disjoint transpositions.

6.3. Quandles with minimality condition M.

Corollary 6.15. Suppose (X, r) is a 2-cancellative SD braided set of
finite order n = |X| ≥ 3, and assume that L2

x = id ∀x ∈ X.
If (X, r) satisfies the minimality condition M (hence X is indecom-

posable), then

(1) X has odd order n = 2k + 1, and
(2) each Lx, x ∈ X, is a product of k disjoint transpositions.

The following result is well known to experts.

Lemma 6.16. If (X,r) is a dihedral quandle of prime order |X| = p,
then each nontrivial r-orbit O in X2 has length exactly p.

Proof: Let x, y ∈ X, x 6= y. Then, by definition, r(x, y) = (2x − y, x).
One proves by induction that

rk(x, y) = ((k + 1)x− ky, kx− (k − 1)y).

But all maps rk are bijections and (k+1)x−ky = x if and only if k = 0,
mod p, which implies that the r-orbit O(x, y) in X2 has size p.

Recall that the dihedral quandles and the Alexander quandles are
well known for decades. A classification of Alexander quandles of prime
order p can be found for example in [33]. The particular proof of Lem-
ma 6.16 was kindly provided to us by Leandro Vendramin.

Definition 6.17. If (X, r) is a dihedral quandle of prime order |X| = p,
it is called an Alexander quandle. It can be identified with the set of
reflections of a regular p-gon (elements of the dihedral group D2p).

Corollary 6.18. Suppose that (X, r) is a square-free SD solution, cor-
responding to a dihedral quandle of order |X| = p > 2, where p is a
prime number. Then (X, r) satisfies the minimality condition M.

6.4. Concrete examples of quandles. We have applied our results
on square-free solutions (X, r) to find various examples as solutions on
the following natural problem.
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Problem 6.19. Consider the following data: (a) A set X of odd car-
dinality n = 2k + 1; (b) a cyclic permutation r0 ∈ Sym(X2 \ ∆2) of
order n

O : a1b1 −→r0 a2b2 −→r0 · · · −→r0 anbn −→r0 a1b1,

where ai 6= bi, 1 ≤ i ≤ n, ai 6= aj , bi 6= bj , whenever i 6= j, 1 ≤ i, j ≤ n.
Find an extension r : X × X → X × X of r0 (equivalently, find all

maps Lx, x ∈ X, explicitly), so that

(1) (X, r) is a 2-cancellative square-free SD quadratic set (we do not
assume (X, r) is a solution);

(2) L2
x = id, ∀x ∈ X.

Analyze the quadratic set obtained. In particular, decide (a) whether
this data determines an SD solution of the YBE? (b) If moreover, n
is a prime number and the quadratic set (X, r) satisfies the minimality
condition M, does this imply that (X, r) is a braided set?

Remark 6.20. In earlier versions of this paper Problem 6.19 was posed
for the case when (X, r) is a 2-cancellative square-free self distributive
braided set, with L2

x = id; see [20, Problem 6.4.1]. Under the strong as-
sumption that (X, r) is an SD braided set this problem has been solved
in [9, Proposition 6.2]. It is interesting and more difficult to consider
Problem 6.19 in its present version; see also Problem 9.3 in Subsec-
tion 9.1.

We give some concrete examples. The first illustrates a solution of
Problem 6.19 on a quadratic set (X, r) of order 5.

Proposition 6.21. Let X be a set of order |X| = 5. To simplify notation
we set X = {1, 2, 3, 4, 5} as it is often used for racks. Suppose (X, r) is
a quadratic SD set, so r(x, y) = (xy, x), x, y ∈ X, and L2

x = id, ∀x ∈ X.
Suppose 〈r〉 has an orbit of length 5, say:

(6.3) O(12) : 54 −→r 35 −→r 23 −→r 12 −→r 41 −→r 54.

Then the following conditions hold:

(1) The orbit (6.3) determines the maps Li, i ∈ X (and r) uniquely,
so that (X, r) is a nondegenerate 2-cancellative quadratic set with
minimality condition. In this case the left actions are:

(6.4)
L1 = (2 4)(3 5), L2 = (1 3)(4 5), L3 = (2 5)(1 4),
L4 = (1 5)(2 3), L5 = (3 4)(1 2).

X2 splits into four r-orbits of length 5: O(1 i), 2 ≤ i ≤ 5, and
five one-element orbits for the elements of the diagonal ∆2.



Noninvolutive YBE 785

(2) Consider the degree-lexicographic ordering ≤ on 〈X〉, induced by
the ordering 1 < 2 < 3 < 4 < 5 on X. The set of defining rela-
tions <(r) reduces (and is equivalent) to the following set of sixteen
quadratic relations:

(6.5)

R = {54 = 12 41 = 12 35 = 12 23 = 12
53 = 14 45 = 14 32 = 14 21 = 14
52 = 15 43 = 15 31 = 15 24 = 15
51 = 13 42 = 13 34 = 13 25 = 13}.

(3) Moreover, (X, r) is a braided set isomorphic to the dihedral quandle
of order 5. The solution (X, r) is also injective.

(4) Let A = A(k, X, r) = k〈X; R〉 ∼= k〈X〉/(I) be the associated qua-
dratic algebra graded by length. The ideal I is generated by the set

R0 = {u− v | u = v ∈ R} ⊂ k〈X〉.
It is not difficult to find that the reduced Gröbner basis GB(R0)
contains four additional relations:

GB(R0) = R0 ∪ {155− 122, 144− 122, 133− 122, 1222− 1112}.
It follows that A is standard finitely presented.

(5) A is left and right Noetherian.
(6) GK dimA = 1; A!

3 = 0.
(7) The monoid S is not cancellative, S satisfies the relations (6.5)

and the following relations derived from the Gröbner basis GB(R0)

155 = 122, 144 = 122, 133 = 122, 1222 = 1112.

(8) The group G(X, r) satisfies the relations (6.5) which (only in the
group case) give rise to the following new relations in G:

55 = 44 = 33 = 22 = 11.

We have deduced these relations straightforwardly from the Gröbner
basis (without using the theory of racks). Of course, they agree with
Fact 6.13.

Sketch of the proof: Our assumption L2
x = id, ∀x ∈ X, and (6.3) imply

that the permutations Li, 1 ≤ i ≤ 5, are products of disjoint cycles of
the shape

L1 = (2 4)σ1, L2 = (1 3)σ2, L3 = (2 5)σ3,
L4 = (1 5)σ4, L5 = (3 4)σ5,

where for each 1 ≤ i ≤ 5, σi is either a transposition, or σi = idX .
However, we assume that (X, r) satisfies the minimality condition and
therefore by Lemma 6.7, Lx(x) = x, Lx(y) 6= y, ∀x, y ∈ X, y 6= x.
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Therefore the maps Lx, x ∈ X, are uniquely determined and satisfy (6.4).
It is not difficult to check that (X, r) is a braided set, isomorphic to the
dihedral quandle of order 5. One uses routine techniques of computation
with Gröbner bases to verify the remaining properties of (X, r) listed
above.

Corollary 6.22. Suppose (X, r) is a 2-cancellative SD quadratic set
of order |X| = 5 and L2

x = id, ∀x ∈ X. The following conditions are
equivalent:

(1) Lx(y) 6= y, ∀x, y ∈ X, x 6= y.
(2) (X, r) satisfies the minimality condition.
(3) (X, r) is a braided set.
(4) (X, r) is isomorphic to the dihedral quandle of order 5.

Example 6.23. Suppose (X, r) is an SD quadratic set of order 9. As-
sume that (Lx)2 = 1, ∀x ∈ X, and that the map r has a concrete orbit
of order 9, say:

(6.6)
O(98) : 98 −→r 79 −→r 67 −→r 56 −→r 45

−→r 34 −→r 23 −→r 12 −→r 81 −→r 98.

Then the orbit (6.6) determines the permutations Lx, x ∈ X, uniquely,
so that (X, r) is a nondegenerate 2-cancellative braided set with L2

x = 1,
x ∈ X. More precisely,

(1) (X, r) is a braided set iff the left actions satisfy

L9 = (1 6)(2 5)(3 4)(7 8), L8 = (1 9)(2 7)(3 6)(4 5),
L7 = (1 4)(2 3)(5 8)(6 9), L6 = (1 2)(3 8)(4 9)(5 7),
L5 = (1 8)(2 9)(3 7)(4 6), L4 = (1 7)(2 6)(3 5)(8 9),
L3 = (1 5)(2 4)(6 8)(9 7), L2 = (1 3)(4 8)(6 7)(5 9),
L1 = (2 8)(3 9)(5 6)(4 7).

(2) In this case the nontrivial r-orbits of X2 are:

O(12), O(13), O(15), O(16), O(18), O(19) six orbits of order 9,
O(14), O(41), O(36), O(63), O(29), O(92) six orbits of order 3.

Moreover, (X, r) decomposes as a union of three r-invariant subsets

X = X1 ∪X2 ∪X3, X1 = {1, 4, 7}, X2 = {3, 6, 8}, X3 = {2, 5, 9},

and r induces maps

X1 ×X2 −→ X3 ×X1 −→ X2 ×X3 −→ X1 ×X2.

Each (Xi, ri), 1 ≤ i ≤ 3, is an SD solution whose quandle is iso-
morphic to the dihedral quandle of order 3.
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Next we give an example of an indecomposable square-free so-
lution (X, r) of order |X| = 4 which fails to satisfy the minimality con-
dition M.

Example 6.24. Suppose (X, r) is a square-free quadratic SD set of
order |X| = 4, so r(x, y) = (xy, x). We again simplify notation setting
X = {1, 2, 3, 4}. Suppose L4 is not involutive and 〈r〉 has an orbit of
length 3, say:

(6.7) O(24) : 43 −→r 24 −→r 32 −→r 43.

The orbit (6.7) determines the maps Li, i ∈ X (and r) uniquely, so
that (X, r) is a 2-cancellative solution. More precisely,

(1) (X, r) is a braided set iff the left actions are:

L1 = (2 3 4), L2 = (1 4 3),
L3 = (1 2 4), L4 = (1 3 2).

(2) In this case X2 has four r-orbits of length 3 (it is easy to write
them explicitly), and four one-element orbits for the elements
of diag(X2).

(3) We consider the degree-lexicographic ordering≤ on 〈X〉 induced by
the ordering 1 < 2 < 3 < 4 on X. The set of defining relations <(r)
reduces (and is equivalent) to the following set of eight quadratic
relations:

(6.8)
R = {43 = 24 32 = 24 42 = 14 21 = 14

41 = 13 34 = 13 31 = 12 23 = 12}.
(4) Let A = A(k, X, r) = k〈X; R〉 ∼= k〈X〉/(I) be the associated qua-

dratic algebra graded by length. The ideal I is generated by the
set

R0 = {u− v | u = v ∈ R} ⊂ k〈X〉.
It is not difficult to show that the reduced Gröbner basis GB(R0)
contains four additional relations:

GB(R0) = R0 ∪ {244− 133, 224− 122, 1444− 1222, 1333− 1222}.
It follows that A is standard finitely presented.

(5) The set N of normal (mod I) monomials, which projects to a k-
basis of A satisfies:

N ⊃ X ∪ {12, 13, 14, 24} ∪ {112, 113, 114, 122, 124, 133, 144}

∪ {1k2m, k ≥ 1, m ≥ 3} ∪ {xk | x ∈ X, k ≥ 2}.

(6) dimkA2 = 8 > 2|X| − 1.
(7) GK dimA = 2.
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(8) (X, r) is indecomposable and injective, but (X, r) does not satisfy
the minimality condition M.

(9) The monoid S satisfies the relations (6.8) and also the following
relations derived from the Gröbner basis

244 = 133, 224 = 122, 1444 = 1222, 1333 = 1222.

In particular S is 3-cancellative, but S is not cancellative.
(10) The group G(X, r) satisfies the relations (6.8) which (only in the

group case) give rise to the following new relations in G: 444 =
333 = 222 = 111.

7. A class of special extensions

Remark 7.1. Let (X, r) be a quadratic set. A permutation τ ∈ Sym(X)
is an automorphism of (X, r) (or an r-automorphism for short) if (τ ×
τ) ◦ r = r ◦ (τ × τ). The group of r-automorphisms of (X, r) is denoted
by Aut(X, r).

In the hypothesis of the following theorem (X, rX), (Y, rY ) are most
general disjoint braided sets. No restrictions like nondegeneracy or 2-can-
cellativeness are imposed.

Theorem 7.2. Let (X, rX) and (Y, rY ) be disjoint braided sets and let
Z = X ∪ Y . Suppose σ ∈ Sym(X), σ 6= 1, τ ∈ Sym(Y ), τ 6= 1. Define a
bijective map r : Z × Z → Z × Z as follows

r(y, x) := (σ(x), τ(y)); r(x, y) := (τ(y), σ(x)), ∀x ∈ X, y ∈ Y.
r(x1, x2) := rX(x1, x2), ∀x1, x2 ∈ X,
r(y1, y2) := rY (y1, y2), ∀y1, y2 ∈ Y.

Then (Z, r) is a quadratic set which satisfies the following conditions:

(1) (Z, r) is nondegenerate iff both (X, rX) and (Y, rY ) are nondegen-
erate.

(2) (Z, r) is 2-cancellative iff
(a) both (X, rX) and (Y, rY ) are 2-cancellative, and
(b) the maps σ and τ (considered as permutations) are products

of disjoint cycles of the same length q. Clearly, in this case
|σ| = |τ | = q.

(3) Suppose conditions (2) are satisfied. For each pair x ∈ X, y ∈ Y ,
consider the r-orbit O(xy) = {rk(xy) | k ≥ 0} in Z2.
(a) If q is even, q = 2m, then |O(xy)| = q. In this case the order |r|

of the map r is the least common multiple of the three orders,
lcm(|rX |, |rY |, q).
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(b) If q is odd, q = 2m + 1, then |O(xy)| = 2q. In this case the
order |r| of r is the least common multiple lcm(|rX |, |rY |, 2q).

(4) The quadratic set (Z, r) is a regular extension of (X, rX) and
(Y, rY ), in the sense of [22] if and only if σ2 = τ2 = 1. More-
over, (Z, r) is involutive iff

(a) σ2 = τ2 = 1, and

(b) (X, rX) and (Y, rY ) are involutive.

(5) (Z, r) obeys the YBE if and only if the following conditions hold:

(a) σ ∈ Aut(X, rX) and τ ∈ Aut(Y, rY ).

(b) The left and the right actions satisfy the following conditions.

(7.1)
Lσ2(x) = Lx, Rσ2(x) = Rx hold in (X, rX), ∀x ∈ X,
Lτ2(y) = Ly, Rτ2(y) = Ry hold in (Y, rY ), ∀y ∈ Y.

In this case (Z, r) = (X, rX)\∗(Y, rY ) is a generalized strong twisted
union of X and Y ; see Definition 8.8.

Proof: Parts (1), (2), (3), and (4) are easy, and we leave their proof
to the reader. We shall prove part (5). Assume (Z, r) obeys the YBE.
We shall prove conditions (a) and (b). Consider diagram (7.2), where
α ∈ Y , y, z ∈ X. This diagram contains elements of the orbit of the
monomial αyz ∈ Z3 under the action of the group D3(r). All monomials
occurring in this orbit are equal elements of S

(7.2)

αyz r(αy)z = (αyαy)z = σ(y)τ(α)z

αr(yz) = α(yzyz) (σ(y))r(τ(α)z)=(σ(y))(σ(z))τ2(α)

r(α(yz))yz = σ(yz)τ(α)yz (σ(y)σ(z))(σ(y)σ(z))τ2(α)

σ(yz)σ(yz)τ2(α)

r12

r23 r23

r12 r12

r23

Therefore,

r12r23r12(αyz) = r23r12r23(αyz), ∀α ∈ Y, y, z ∈ X,

⇐⇒ (σ × σ) ◦ rX(yz) = rX ◦ (σ × σ)(yz), ∀y, z ∈ X,

⇐⇒ σ ∈ Aut(X, rX).
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Similarly, a diagram starting with an arbitrary monomial of the
shape xαβ, where x ∈ X, α, β ∈ Y , shows that

r12r23r12(xαβ) = r23r12r23(xαβ), ∀x ∈ X, α, β ∈ Y,

⇐⇒ (τ × τ) ◦ rY (αβ) = rY ◦ (τ × τ)(αβ), ∀α, β ∈ Y,

⇐⇒ τ ∈ Aut(Y, rY ).

We have proven (a). Next we shall prove (7.1). Consider the following
diagram:

xαy τ(α)σ(x)y

xσ(y)τ(α) τ(α)(σ(x)y)(σ(x)y)

xσ(y)xσ(y)τ(α) σ((σ(x)y))τ2(α)(σ(x)y)

xσ(y)τ2(α)σ(xσ(y))

r12

r23 r23

r12 r12

r23

The following implication holds:

(7.3)
r12r23r12(xαy)=r23r12r23(xαy), ∀x, y∈X, α∈Y,

⇐⇒σ((σ(x)y))=x(σ(y)) and σ(x(σ(y)))=σ(x)y, ∀x, y∈X.
But σ ∈ Aut(X, rX), so it follows from (7.3) that

x(σ(y)) = σ((σ(x)y)) = σ(σ(x))σ(y) = (σ2(x))(σ(y)), ∀x, y ∈ X.
The map σ : X → X is bijective, hence

(σ2(x))z = xz, ∀x, z ∈ X,
which is equivalent to

Lσ2(x) = Lx holds in (X, rX), ∀x ∈ X.
Similarly, the equalities

(σ(x))(σ
2(y)) = σ(xσ(y)) = (σ(x))y, ∀x, y ∈ X,

are equivalent to

Rσ2(y) = Ry holds in (X, rX), ∀y ∈ X.
This proves the first two equalities in (7.1). An analogous argument
proves the remaining equalities in (7.1). We have shown that if (Z, r)
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obeys the YBE, then conditions (a) and (b) hold. Conversely, assume
that conditions (a) and (b) are satisfied. The above discussion implies
easily that (Z, r) is a solution of the YBE. This proves part (5).

It is clear that our construction gives a particular case of a generalized
strong twisted union (Z, r) = (X, rX) \∗ (Y, rY ); see Definition 8.8.

One may apply the results of Theorem 8.13 and get more information
on the braided monoid S(Z, r) and the braided group G(Z, r).

To construct concrete extensions via automorphisms, and also for
some kind of classification of this type of extensions, it may be prac-
tical to use results from [10].

Clearly, if (X, r) is a trivial solution, then Aut(X, r) = Sym(X) and
for every σ ∈ Sym(X) there is an equality Lσ2(x) = Lx = idX . Hence
we have at our disposal an easy method to construct nondegenerate
2-cancellative square-free braided sets (Z, r), Z = X ∪ Y , where the
order of the map r may vary as 2 ≤ |r| ≤ |Z|.

Corollary 7.3. Let (X, rX) and (Y, rY ) be disjoint trivial symmetric
sets. Suppose that |X| = m, |Y | = n, and that m ≤ n. Let Z = X ∪
Y . Suppose σ∈Sym(X), τ ∈Sym(Y ). Define r : Z×Z → Z×Z as follows

r(x1, x2) := rX(x1, x2) = (x2, x1), ∀x1, x2 ∈ X,
r(y1, y2) := rY (y1, y2) = (y2, y1), ∀y1, y2 ∈ Y,

r(x, y) := (τ(y), σ(x)), r(y, x) := (σ(x), τ(y)), ∀x ∈ X, y ∈ Y.
(1) (Z, r) is a nondegenerate square-free braided set.
(2) Moreover, (Z, r) is 2-cancellative iff the permutations σ and τ are

products of disjoint cycles of the same length q ≤ m. In particular,
|σ| = |τ | = q. In this case, either
(a) q is even and |r| = q, or
(b) q is odd and |r| = 2q.

Example 7.4. Let X = {x1, x2, x3}, Y = {y1, y2, y3} be disjoint sets
and let (X, rX), (Y, rY ) be trivial solutions. Set σ = (x1 x2 x3) ∈
Sym(X), τ=(y1 y2 y3) ∈ Sym(Y ). Define r : Z × Z → Z × Z as follows

r(y, x) = (σ(x), τ(y)), r(x, y) = (τ(y), σ(x)), ∀x ∈ X, y ∈ Y ;

r(xi, xj) = (xj , xi), r(yi, yj) = (yj , yi), 1 ≤ i, j ≤ 3.

Then (Z, r) is a nondegenerate square-free braided set of order |Z| = 6
and Z = X \∗ Y . We also have that (Z, r) is 2-cancellative and the
order of r is |r| = 6 = |Z|. The algebra A = A(k, Z, r) satisfies dimA2 =
2
(
3+1
2

)
+3 = 15. A more detailed computation shows that the associated

graded algebra A does not have a finite Gröbner basis with respect to
any ordering of Z.
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8. The braided monoid S(X, r) and extensions of
solutions

8.1. The braided monoid S(X, r) of a braided set (X, r). In [22]
we introduced the notion of a braided monoid analogously to the term
braided group in the sense of [40, 29]. We recall some definitions and
results from [22].

To each braided set (X, r) with S = S(X, r) we associate a matched
pair (S, S) with left and right actions uniquely determined by r, which
defines a unique braided monoid (S, rS) associated with (X, r). This is
not a surprise given the analogous results for the groupG(X, r) (see [29]),
but our approach is necessarily different. In fact we first construct the
matched pair of monoids which is a self-contained result and then con-
sider the map rS : S × S → S × S; see [22, Theorem 3.6]. We prove
(see [22, Theorem 3.14]) that rS is bijective and obeys the YBE (as
would be true in the group case). Moreover, we show that (S, rS) is a
graded braided monoid.

The reader should be aware that due to the possible lack of cancel-
lation in S the proofs of our results for monoids are difficult and nec-
essarily involve different computations and combinatorial arguments. In
general, the results can not be extracted from the already known results
for the group case. Nevertheless, the monoid case is the one naturally
arising in this context. Both the monoid S(X, r) and the quadratic alge-
bra A = A(k, X, r) over a field k are of particular interest. The theory
of general braided monoids (S, rS) gives interesting classes of braided
objects. However it seems that the approach to these is different and
more difficult from the approach to braided groups (equivalently, skew
braces). We recall some basic definitions.

Definition 8.1 ([22]). The pair (S, T ) is a matched pair of monoids if
T acts from the left on S by ( )• and S acts on T from the right by •( )

and these two actions obey

ML0 : a1 = 1, 1u = u, MR0 : 1u = 1, a1 = a,

ML1 : (ab)u = a(bu), MR1 : a(uv) = (au)v,

ML2 : a(u.v) = (au)(a
u

v), MR2 : (a.b)u = (a
bu)(bu),

for all a, b ∈ T , u, v ∈ S.

Definition 8.2 ([22]). An M3-monoid is a monoid S forming part of a
matched pair (S, S) for which the actions are such that

M3 : uvuv = uv
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holds in S for all u, v ∈ S. We define the associated map rS : S × S →
S×S by rS(u, v) = (uv, uv). A braided monoid is an M3-monoid S where
rS is bijective and obeys the YBE.

Fact 8.3 ([22, Theorems 3.6 and 3.14]). Let (X, r) be a braided set and
S = S(X, r) the associated monoid. Then

(1) The left and the right actions ( )• : X×X → X and •( ) : X×X →
X defined via r can be extended in a unique way to a left and a
right action

( )• : S × S −→ S and •( ) : S × S −→ S,

which make S a strong graded M3-monoid. In particular, (S, rS) is
a set-theoretic solution of the YBE. The associated bijective map rS
restricts to r.

(2) Moreover, the following conditions hold:
(a) (S, rS) is a graded braided monoid, that is, the actions agree

with the grading of S: |au| = |u| = |ua|, for all a, u ∈ S.
(b) (S, rS) is a nondegenerate solution of the YBE iff (X, r) is

nondegenerate.
(c) (S, rS) is involutive iff (X, r) is involutive.

Suppose (X, r) is a noninvolutive solution. The set X is always em-
bedded in the braided monoid (S, rS). Moreover, in contrast with the
group G(X, r), the monoid S preserves more detailed information about
the solution (X, r). In particular, there is an equality u = v in S if and
only if |u| = |v| = m and u and v are in the same Dm(r)-orbit in Xm. In
general, this is not true in G(X, r), where a great portion of information
about (X, r) is lost.

Corollary 8.4. Suppose (X, r) is a self distributive braided set, S =
S(X, r), and G = G(X, r). Then

(1) The braided monoid (S, rS) is a self distributive solution.
(2) The braided group (G, rG) is self distributive.

8.2. General extensions of braided sets.

Definition 8.5. Let (X, rX) and (Y, rY ) be disjoint quadratic sets. Let
(Z, r) be a set with a bijection r : Z × Z → Z × Z. We say that (Z, r)
is a (general) extension of (X, rX), (Y, rY ) if Z = X ∪ Y as sets and
r extends the maps rX and rY , i.e. r|X2 = rX and r|Y 2 = rY . Clearly,
in this case X, Y are r-invariant subsets of Z. We have that (Z, r) is a
YB-extension of (X, rX) and (Y, rY ) if r obeys the YBE.
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Remark 8.6. In the assumption of the above definition, suppose (Z, r)
is a nondegenerate extension of (X, rX), (Y, rY ). Then the equalities
r(x, y) = (xy, xy), r(y, x) = (yx, yx) and the nondegeneracy of r, rX , rY
imply that

yx, xy ∈ X and xy, yx ∈ Y, for all x ∈ X, y ∈ Y.

Therefore, r induces bijective maps

ρ : Y ×X −→ X × Y and σ : X × Y −→ Y ×X,

and left and right “actions”

Y • : Y ×X −→ X, •X : Y ×X −→ Y, projected from ρ,(8.1)

X• : X × Y −→ Y, •Y : X × Y −→ X, projected from σ.(8.2)

Clearly, the 4-tuple of maps (rX , rY , ρ, σ) uniquely determine the ex-
tension r. The map r is also uniquely determined by rX , rY , and the
maps (8.1), (8.2).

We call the actions (8.1) and (8.2) projected from r|Y×X and r|X×Y
the associated ground actions.

Lemma 8.7. Suppose (Z, r) is a nondegenerate braided set which splits
as a disjoint union Z = X ∪ Y of two r-invariant subsets X and Y .
Denote by (X, r1) and (Y, r2) the induced sub-solutions. The following
conditions hold:

(1) The assignment α → α• = Lα|X extends to a left action of the
associated monoid SY on X and induces a left action of GY on X.
The assignment α → •α = Rα|X extends to a right action of the
associated monoid SY on X and induces a right action of GY on X.

(2) The assignment x → x• = Lx|Y extends to a left action of the
associated monoid SX on Y and induces a left action of GX on Y .
The assignment x → •x = Rx|Y extends to a right action of the
associated monoid SX on Y and induces a right action of SX on Y .

(3) Moreover, if the braided set (Z, r) is injective (that is, the natural
map Z → GZ is an embedding), then each of the assignments
in part (1) extends to an action of GY on X, and each of the
assignments in part (2) extends to an action of GX on Y .

Recall that in [22] a (general) extension (Z, r) of (X, rX), (Y, rY ) is
called a regular extension of (X, rX) and (Y, rY ) if r is bijective, and the
restrictions r|Y×X and r|X×Y satisfy

(r ◦ r)|Y×X = id|Y×X , (r ◦ r)|X×Y = id|X×Y ,
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but r is not necessarily involutive on X ×X, neither on Y ×Y . Regular
extensions of arbitrary braided sets were introduced and studied in [22],
where the theory of matched pairs of monoids was applied to character-
ize regular extensions and their monoids. A regular extension (Z, r) of
two involutive solutions is also involutive. The extensions constructed in
Section 7 are not regular.

In this paper we have a particular interest in noninvolutive nonde-
generate braided sets (Z, r), and it is natural to search for methods
proposing constructions of new solutions using already known braided
sets. We have shown in Section 7 (see Theorem 7.2) that one can con-
struct new noninvolutive solutions (Z, r) with a prescribed orders |Z|
and |r| using general (nonregular) extensions of well-known involutive
solutions. So it is natural to study general extensions (Z, r), possibly
not regular (in the sense of [22]). In notation and assumptions as above,
let (Z, r) be a nondegenerate braided set which is an extension of the dis-
joint braided sets (X, rX), (Y, rY ). Denote S = S(X, rX), T = S(Y, rY ),
U = S(Z, r). It follows from Fact 8.3 that U = S(Z, r) has the struc-
ture of a graded braided monoid (U, rU ) with a braiding operator rU
extending r. Moreover, (U, rU ) is an extension of the disjoint braided
monoids (S, rS) and (T, rT ), and one can apply the theory of matched
pairs of monoids to give more detailed description of the behaviour of
the matched pairs (S, T ), (T, S), (U,U), etc, in the spirit of the results
in [22]. We propose an explicit construction: generalized strong twisted
unions of braided sets.

8.3. Generalized strong twisted unions of nondegenerate
braided sets. Theorem 7.2 gives a method to construct a new type
of extensions of braided sets. The properties of these extensions moti-
vate our Definition 8.8 of generalized strong twisted unions of solutions
which is a generalization of the notion of a strong twisted union of solu-
tions; see [22, Definition 5.1]. According the old definition, the notion of
a strong twisted union is restricted only to regular extensions. Note that
a strong twisted union (Z, r) of solutions (X, rX) and (Y, rY ) does not
necessarily obey the YBE, but if (Z, r) = X \ Y is (a regular) extension
of symmetric sets and obeys the YBE, then (Z, r) is also a symmetric
set (r2 = 1).

In our new setting, if (X, rX) and (Y, rY ) are symmetric (or braided)
sets with |X| > 2, |Y | > 2, we construct extensions (Z, r) which are
braided sets (satisfy the YBE), but the solution r may have order > 2;
see for example Section 7 and the results therein.
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Definition 8.8. Suppose (X, rX) and (Y, rY ) are disjoint quadratic sets.
We call an extension (Z, r) a generalized strong twisted union of (X, rX)
and (Y, rY ), and write Z = X \∗ Y , if the ground actions satisfy

(8.3)
stu1 : α

y

x = αx, stu2 : x
yα = xα,

stu3 : x
β

α = xα, stu4 : α
βx = αx,

for all x, y ∈ X, α, β ∈ Y .
We define a generalized strong twisted union of more than two qua-

dratic sets analogously to [21, Definition 3.5]. Let (Z, r) be a nonde-
generate quadratic set of arbitrary cardinality, let Xi, i ∈ I, be a set
of pairwise disjoint r-invariant proper subsets of Z, where I is a set
of indices, |I| ≥ 2. We say that (Z, r) is a generalized strong twisted
union of Xi, i ∈ I, and write Z = \∗i∈IXi, if Z =

⋃
i∈I Xi and for each

pair i, j ∈ I, i 6= j, the r-invariant subset Xij = Xi ∪Xj is a generalized
strong twisted union, Xij = Xi \

∗Xj . In the particular case when I is a
finite set, say I = {1 ≤ i ≤ m}, we write X = X1 \

∗ X2 \
∗ · · · \∗ Xm.

Lemma 8.9. Suppose (X, r) is an SD nondegenerate braided set, i.e.
r(x, y) = (xy, x), ∀x, y ∈ X (so (X, .) is a rack). If (X, r) decomposes
as a union of disjoint r-invariant subsets X =

⋃
1≤i≤mXi, then X is

a generalized strong twisted union of racks, X = X1 \
∗ X2 \

∗ · · · \∗ Xm,
where for 1 ≤ i ≤ m, (Xi, ri) is the corresponding subsolution.

Lemma 8.10. Let (Z, r) be a nondegenerate quadratic set which splits
as a disjoint union Z = X∪Y of its r-invariant subsets (X, rX), (Y, rY ),
so Z is an extension of X and Y . Suppose x, y ∈ X, α ∈ Y . Each two
of the following conditions imply the third:

(1) l1(α, y, x) : α(yx) =
αy(α

y

x),

(2) laut(α, y, x) : α(yx) =
αy(αx),

(3) stu1(α, y, x) : αyx = αx.

Let (Z, r) be a nondegenerate braided set which splits as a disjoint
union Z = X ∪ Y of two r-invariant subsets X and Y , and let GZ =
G(Z, r). Denote by (X, rX) and (Y, rY ) the induced subsolutions. Due
to the nondegeneracy of r, each of the sets X and Y is invariant under
the left action of GZ on Z. Similarly, X and Y are invariant under the
right action of GZ on Z. (We call such sets G-invariant.) Let α ∈ Y and
let Lα be the corresponding left action on Z. Denote by Lα|X , α ∈ Y ,
the restriction of Lα on X. The restrictions Rα|X , Lx|Y , and Rx|Y are
defined analogously for x ∈ X and α ∈ Y .
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Proposition 8.11. Suppose (Z, r) is a nondegenerate braided set which
splits as a disjoint union Z = X∪Y of two r-invariant subsets X and Y .
Denote by (X, r1) and (Y, r2) the induced subsolutions. The following
conditions hold.

(1) Lα|X ∈ Aut(X, r1) if and only if

α(yx) =
αy(αx) and α(xy) = (αx)(

αy), ∀x, y ∈ X.

(2) Rα|X ∈ Aut(X, r1) if and only if

(yx)
α

= (yα)(xα) and (xy)
α

= (xα)(y
α), ∀x, y ∈ X.

(3) The following implications hold

(8.4)

stu1 : α
y

x=αx, ∀α∈Y, x, y∈X ⇐⇒ Lα|X ∈Aut(X, r1), ∀α∈Y,
stu2 : x

yα=xα, ∀α∈Y, x, y∈X ⇐⇒ Rα|X ∈Aut(X, r1), ∀α∈Y,
stu3 : x

β

α=xα, ∀x∈X, α, β∈Y ⇐⇒ Lx|Y ∈Aut(Y, r2), ∀x∈X,
stu4 : α

βx=αx, ∀x∈X, α, β∈Y ⇐⇒ Rx|Y ∈Aut(Y, r2), ∀x∈X.

Proof: (1) By definition, Lα|X ∈ Aut(X, rX) iff

(Lα|X × Lα|X) ◦ r = r ◦ (Lα|X × Lα|X),

so part (1) follows straightforwardly from the equalities in X2 given
below:

(Lα|X × Lα|X ◦ r)(x, y) = (α(xy), α(xy)),

r ◦ (Lα|X × Lα|X)(x, y) = (
αx(αy), (αx)(

αy)), α ∈ Y, x, y ∈ X.

Part (2) is analogous.

(3) We shall prove the first implication

(8.5) stu1 : α
y

x=αx, ∀α∈Y, x, y ∈ X ⇐⇒ Lα|X ∈Aut(X, r1), ∀α∈Y.

Recall first that the braided set (Z, r) satisfies conditions l1, lr3; see
Remark 2.2.

stu1⇒ Lα|X ∈ Aut(X, r1). Assume stu1 holds in Z. This is condition (3)
of Lemma 8.10. Note that (Z, r) satisfies l1, and therefore condition (1)
in Lemma 8.10 is also satisfied. Hence, by Lemma 8.10 the remaining
condition (2) also holds. This gives

α(yx) =
αy(αx), ∀α ∈ Y, x, y ∈ X.

We shall prove

(8.6) α(xy) = (αx)(
αy), ∀α ∈ Y, x, y ∈ X.
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We use lr3 and stu1 to deduce the following equalities:

(αx)
(α
x
y)

= (α
xy)(xy) : by lr3,

(α
xy)(xy) = α(xy) : by stu1,

(αx)
(α
x
y)

= (αx)
(αy)

: by stu1,

which imply (8.6). Hence Lα|X ∈ Aut(X, r1), ∀α ∈ Y .

Lα|X ∈ Aut(X, r1) ⇒ stu1. Suppose Lα|X ∈ Aut(X, r1), so by part (1)
of our proposition

α(yx) =
αy(αx), ∀x, y ∈ X,

which is exactly condition (2) of Lemma 8.10. Condition (1) of Lem-
ma 8.10 holds (this is l1), and therefore the remaining condition (3) of
Lemma 8.10 is also satisfied, but this is exactly stu1. We have proven
the equivalence (8.5). An analogous argument proves the remaining three
equivalences in (8.4).

Lemma 8.7 and Proposition 8.11 imply straightforwardly the follow-
ing.

Corollary 8.12. Suppose (Z, r) is a nondegenerate injective braided set
which splits as a disjoint union Z = X ∪ Y of its r-invariant subsets X
and Y . Let (X, r1) and (Y, r2) be the induced subsolutions (so (X, r1)
and (Y, r2) are also injective). Then (Z, r) = X \∗ Y is a generalized
strong twisted union if and only if the following four conditions hold:

(1) The assignment x 7→ Lx|Y extends to a group homomorphism

LX|Y : GX −→ Aut(Y, rY ).

(2) The assignment x→ Rx|Y extends to a group homomorphism

RX|Y : GX −→ Aut(Y, rY ).

(3) The assignment α→ Lα|X extends to a group homomorphism

LY |X : GY −→ Aut(X, r).

(4) The assignment α→ Rα|X extends to a group homomorphism

RY |X : GY −→ Aut(X, r).

Theorem 8.13. Suppose (Z, r) is a nondegenerate 2-cancellative braided
set which splits as a generalized strong twisted union Z = X \∗ Y of its
r-invariant subsets X and Y . Let (X, rX) and (Y, rY ) be the induced sub-
solutions, S = S(X, rX), T = S(Y, rY ), U = S(Z, r) in usual notation.
Let (S, rS), (T, rT ), (U, rU ) be the corresponding braided monoids; see
Fact 8.3. Then the following conditions hold:
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(1) The braided monoid (U, rU ) has a canonical structure of a gener-
alized strong twisted union

(U, rU ) = (S, rS) \∗ (T, rT ),

extending the ground actions of the generalized strong twisted union
Z = X \∗ Y .

(2) Let (GZ , rGZ ) be the associated braided group. Suppose furthermore
that (Z, r) is injective, so X and Y are also embedded in GZ , and
let G1 and G2 be the subgroups of GZ generated by X and Y ,
respectively. Then G1 and G2 are rGZ -invariant and the braided
group (GZ , rGZ ) has a canonical structure of a generalized strong
twisted union

(GZ , rGZ ) = (G1, r1) \∗ (G2, r2),

where r1 is the restriction of rGZ on G1×G1 and r2 is the restric-
tion of rGZ on G2 ×G2.

Proof: (1) It follows from Fact 8.3 that U = S(Z, rZ) has the structure
of a graded braided monoid (U, rU ) with a braiding operator rU extend-
ing r. Moreover (U, rU ) is a (general) extension of the disjoint braided
monoids (S, rS) and (T, rT ). We have to show that the four stu condi-
tions are satisfied; see (8.3). We shall use induction on lengths of words
to prove

(8.7) stu1 : uba = ua, ∀u ∈ T, a, b ∈ S.

Step 1: First we prove (8.7) for all a ∈ S, b = y ∈ X, u = α ∈ Y by
induction on the length |a| of a. Condition stu1 on Z gives the base for
the induction. Assume (8.7) is true for all u ∈ Y , b ∈ X, and all a ∈ S
with |a| ≤ n. Suppose a ∈ S, |a| = n+ 1, u = α ∈ Y , b = y ∈ X. Then
a = tc, where c ∈ S, |c| = n, t ∈ X, and the following equalities hold
in U :

(8.8)

αya = αy (tc) = (α
y

t)(α
y)tc : by ML2

= (αt)(α
y)c : by stu1 and IH

= (αt)(αc) : by stu1 and IH,

where IH is the inductive assumption. Also:

(8.9)
αa = α(tc) = (αt)(α

t)c : by ML2
= (αt)(αc) : by stu1 and IH.

Equalities (8.8) and (8.9) imply αya = αa, and therefore

(8.10) αya = αa, ∀a ∈ S, ∀y ∈ X, α ∈ Y.
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Step 2: We use induction on the length |u| of u ∈ T to prove

(8.11) uya = ua, ∀a ∈ S, u ∈ T, y ∈ X.
Condition (8.10) gives the base for the induction. Assume (8.11) holds

for all a ∈ S, y ∈ X, and all u ∈ T with |u| ≤ n. Let a ∈ S, y ∈ X,
and u ∈ T , |u| = n + 1. Then u = αv, v ∈ T , |v| = n, α ∈ Y , and the
following equalities hold in U :

uya = (αv)ya = (α
vy)(vy)a : by MR2

= (α
vy)((v

y)a)
= α(va) : by stu1 and IH
= (αv)a = ua.

This proves (8.11).

Step 3: Finally, we prove (8.7) for all a, b ∈ S, u ∈ T , by induction on
the length |b| of b. The base of the induction is given by (8.11). Assume
(8.7) holds for all b ∈ S with |b| ≤ n. Let b = cy, c ∈ S, |c| = n, y ∈ X.
We have:

uba = (ucy)a = (uc)ya
= (uc)a : since uc ∈ T and by IH
= ua : by IH.

The remaining stu conditions (see (8.3)) are proven by a similar argu-
ment. We have proven part (1).

Each of the parts (1) and (2) should be proved separately, although
we use similar arguments since, in general, the braided monoids U , S,
and T are not embedded in the corresponding braided groups.

Sketch of proof of (2): Note that every element a ∈ G can be presented
as a monomial

(8.12) a = ζ1ζ2 · · · ζn, ζi ∈ Z ∪ Z−1.
By convention we consider a reduced form of a, that is, a presenta-
tion (8.12) with minimal length n. Bearing this in mind, we prove (8.3)
in GZ using an argument similar to our argument for monoids, but at
each step we use induction on the length n of the reduced form of the
corresponding words a, u, b.

Corollary 8.14. Retaining the notation of Theorem 8.13, suppose (Z, r)
is a 2-cancellative SD braided set (that is, (X, .) is a rack), which de-
composes as a union of disjoint r-invariant subsets Z = X ∪ Y . Then Z
is a generalized strong twisted union of racks Z = X \∗ Y . Moreover,
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(1) The braided monoids (U, rU ), (S, rS), (T, rT ) are self distributive
and U is a generalized strong twisted union

(U, rU ) = (S, rS) \∗ (T, rT ).

(2) Let (GZ , rGZ ) be the associated braided group and suppose (Z, r) is
injective, so X and Y are also embedded in GZ . Let G1 and G2 be
the subgroups of GZ generated by X and Y , respectively. Then G1

and G2 are rGZ -invariant and the braided group (GZ , rGZ ) has a
canonical structure of a generalized strong twisted union

(GZ , rGZ ) = (G1, r1) \∗ (G2, r2),

where r1 is the restriction of rGZ on G1×G1 and r2 is the restric-
tion of rGZ on G2 ×G2.

8.4.“Local”conditions sufficient for a generalized strong twisted
unions of nondegenerate braided sets to be also a braided set.

Definition 8.15 ([22]). Given a quadratic set (X, r) we extend the
actions x• and •x on X to left and right actions on X × X as follows.
For x, y, z ∈ X we define:

x(y, z) := (xy, x
y

z) and (x, y)z := (x
yz, yz).

The map r is called, respectively, left and right invariant if

l2 : r(x(y, z)) = x(r(y, z)), r2 : r((x, y)z) = (r(x, y))
z

hold for all x, y, z ∈ Z.

Conditions l2 and r2 give a more compact way to express l1, r1, lr3,
since the following implications hold:

l2⇐⇒ l1, lr3; r2⇐⇒ r1, lr3.

Remark 8.16 ([22]). Let (X, r) be a quadratic set. Then the following
three conditions are equivalent:

(a) (X, r) is a braided set.
(b) (X, r) satisfies l1 and r2.
(c) (X, r) satisfies r1 and l2.

Notation 8.17 ([22]). When we study extensions it is convenient to
have a “local” notation for some of our conditions, in which the specific
elements for which the condition is being imposed will be explicitly in-
dicated in lexicographical order of first appearance. Thus for example
l1(x, y, z) means the condition as written in Remark 2.2 for the specific
elements x, y, z. Similarly r2(x, y, z) has the same meaning for the
elements x, y, z exactly as appearing as in Definition 8.15.
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In this section we consider triples in the set Z3 such as, for example

l1(x, α, y) : x(αy) =
xα(x

α

y), α, x, y ∈ Z.

Finally, we use this notation to specify the restrictions of any of our
conditions to subsets of interest. For example

l1(X,Y,X) := {l1(x, α, y), ∀x, y ∈ X, α ∈ Y }.
r2(X,Y,X) := (r(x, α))y = r((x, α)

y
), ∀x, y ∈ X, α ∈ Y.

The following result gives a necessary and sufficient condition so
that a (general) quadratic set which is a generalized strong twisted
union (Z, r) = (X, r1) \∗ (Y, r2) of two disjoint braided sets is also a
braided set.

Proposition 8.18. Suppose a nondegenerate and injective quadratic
set (Z, r) is a generalized strong twisted union of two disjoint 2-can-
cellative braided sets (X, rX) and (Y, rY ). Then (Z, r) obeys the YBE iff
the following hold:

(1) Conditions (1) through (4) in Corollary 8.12 are satisfied.
(2) The actions satisfy the following four mixed conditions

(8.13) l1(X,Y,X), r2(X,Y,X), l1(Y,X, Y ), r2(Y,X, Y ).

Proof: The proof is routine and an experienced reader may skip it.
Assume (Z, r) obeys the YBE. Then, by Remark 8.16, conditions l1

and r2 (and r1 and l2) are satisfied for any triple (a, b, c) ∈ Z3. In partic-
ular, the mixed conditions (8.13) hold, which proves (2). By assumption
the braided set (Z, r) is a strong twisted union Z = X \∗ Y , so the
hypothesis of Corollary 8.12 is satisfied, which implies (1).

Assume now that (1) and (2) are satisfied. We have to show that
(Z, r) is a braided set. Recall that the YB-diagram starting with the
triple (a, b, c) ∈ Z3 shows that

r12r23r12(a, b, c)=r23r12r23(a, b, c)⇐⇒ r1(a, b, c), l2(a, b, c)
⇐⇒ l1(a, b, c), r2(a, b, c),

∀a, b, c∈Z.

There is nothing to prove if (a, b, c) ∈ X3, or (a, b, c) ∈ Y 3, since by
hypothesis (X, rX) and (Y, rY ) are braided sets.

Our argument uses the presentation of the set Z3 \ (X3 ∪ Y 3) as a
union of six disjoint subsets

Z3 \ (X3 ∪ Y 3) = (X ×X × Y ) ∪ (Y ×X ×X) ∪ (X × Y × Y )

∪ (Y × Y ×X) ∪ (X × Y ×X) ∪ (Y ×X × Y ).
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Clearly, (Z, r) obeys the YBE iff each of the sets on the right-hand side
of the above equality satisfies simultaneously the mixed conditions l1
and r2 (or equivalently, r1 and l2). Analyzing with details each of the
corresponding six cases we note that condition (1) implies

(a) l1(X,X, Y ) and r2(X,X, Y );
(b) l1(Y,X,X) and r2(Y,X,X);
(c) l1(X,Y, Y ) and r2(X,Y,X);
(d) l1(Y, Y,X) and r2(Y, Y,X).

(In fact (1) encodes exactly these eight (mixed) conditions.)
Condition (2) gives the missing mixed conditions (8.13) not encoded

in (1).

9. Questions

9.1. Some open questions.

Question 9.1. Let (X, r) be a square-free nondegenerate quadratic set
of finite order |X| = n. Suppose its associated algebra A = A(k, X, r) is
a PBW algebra. (We know that these assumptions imply that r2 = 1
and (X, r) is 2-cancellative; see Section 3.)

(1) Is it true that the algebra A has polynomial growth?

An equivalent question is:

(2) Is it true that the algebra A has finite global dimension?

This is so for |X| = 3; see Lemma 3.14.
For each n ≥ 3 an affirmative answer of (1) or (2) would imply that

(X, r) is a solution of the YBE, and all conditions (1) through (8) in
Theorem 3.16 are satisfied. A counterexample would also be interesting.

Question 9.2. Suppose (X, r) is a square-free 2-cancellative quadratic
set of finite order |X| ≥ 3.

(1) Is it true that, if (X, r) is self distributive and satisfies the mini-
mality condition dimA2 = 2|X| − 1, then (X, r) is a braided set?

Our assumptions imply that (X, r) is nondegenerate and Lx(y) 6=
y, ∀x, y ∈ X, x 6= y; see Lemma 6.7.

(2) In particular, is it true that if (X, r) is a self distributive quadratic
set of prime order |X| = p and satisfies the minimality condi-
tion dimA2 = 2|X| − 1, then L2

x = idX , ∀x ∈ X?
(3) What can be said about a (general) square-free 2-cancellative qua-

dratic set (X, r) if its Koszul dual algebra satisfies A!
3 = 0? In

particular, study the braided sets (X, r) for which A!
3 = 0.
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It follows from Corollary 6.22 and Lemma 6.8 that the answers to (1)
and (2) are affirmative whenever 3 ≤ |X| ≤ 5. In this case (up to isomor-
phism) there are two SD quadratic sets with 2-cancellation and satisfying
the minimality condition, namely:

(a) (X, r) is the quadratic set corresponding to the dihedral quandle
of order 3, and

(b) (X, r) is the quadratic set corresponding to the dihedral quandle
of order 5.

Clearly, each of those is a braided set.

Problem 9.3. Consider the following data: (a) A set X of odd car-
dinality n = 2k + 1; (b) a cyclic permutation r0 ∈ Sym(X2 \ ∆2) of
order n

O : a1b1 −→r0 a2b2 −→r0 · · · −→r0 anbn −→r0 a1b1,

where ai 6= bi, 1 ≤ i ≤ n, ai 6= aj , bi 6= bj , whenever i 6= j, 1 ≤ i, j ≤ n.
Find an extension r : X × X → X × X of r0 (equivalently, find all

maps Lx, x ∈ X, explicitly), so that

(1) (X, r) is a 2-cancellative square-free SD quadratic set (we do not
assume that (X, r) is a solution);

(2) L2
x = id, ∀x ∈ X.

Analyze the obtained quadratic set. In particular, decide (a) whether
this data determines an SD solution of the YBE and (b) if moreover, n =
p is a prime number and the quadratic set (X, r) satisfies the minimality
condition M, whether this implies that (X, r) is a braided set.

9.2. Questions posed in a previous version of this work which
have been recently answered. Various questions on braided sets
posed in [20] were recently answered in [9]. We give an account of some
of our previous questions.

Question 9.4 ([20, Question 5.8]). (1) For which integers n this lower
bound is attainable, that is, there exists a braided set (X, r), |X| =
n, satisfying the minimality condition M?

(2) Classify the square-free solutions (X, r) satisfying the minimality
condition M.

A complete answer is given in [9].

Conjecture 9.5 ([20, Conjecture 5.10]). Let (X, r) be an arbitrary finite
nondegenerate braided set with 2-cancellation. Then the monoid S(X, r)
is cancellative if and only if r is involutive.

Theorem 5.5 of [20] (which is Theorem 5.5 of the current paper) con-
firms this conjecture in the case when (X, r) is an arbitrary square-free
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nondegenerate braided set of order |X| = n. It was shown in [27, The-
orem 4.5] that the conjecture is true for arbitrary finite nondegenerate
set-theoretic solution (X, r) of the Yang–Baxter equation.

Questions 9.6 ([20, Questions 6.3.1]). The following questions refer to
finite square-free solutions (X, r) which are 2-cancellative.

(1) Is it true that if a dihedral quandle (X, r) satisfies the minimality
condition M, then its order |X| is a prime number? - Confirmed
in [9].

(2) Suppose (X, r) is an indecomposable quandle such that the cor-
responding solution (X, r) satisfies the minimality condition M.
Does this imply that the quandle (X, r) is simple? - Yes, see [9].

(3) Which of the known simple quandles satisfy the minimality condi-
tion M? - Answer: the dihedral quandles of prime order p; see [9].

(4) Study general square-free noninvolutive, braided sets (X, r) which
are not self distributive. - This is an ongoing project.

Our results in Section 7 (see Theorem 7.2) and Corollary 7.3 give
a method for constructions of new noninvolutive solutions (Z, r)
with prescribed orders |Z| and |r|. In this case (Z, r) is a general-
ized strong twisted union Z = X \∗ Y of involutive (or noninvolu-
tive) disjoint solutions (X, rX), (Y, rY ).

(5) Classify the square-free noninvolutive, braided sets (X, r) whose
quadratic algebra satisfy GK dimA(k,X, r) = 1. Some answers are
given in [9, Example 5.1].

(6) Classify the square-free, noninvolutive braided sets of small orders.
In particular, classify the square-free, noninvolutive, and not SD
braided sets (X, r) of small order.

(7) Find examples of indecomposable (not SD) finite square-free solu-
tions.

(8) Find examples of indecomposable (not SD) square-free solutions
which satisfy the minimality condition M.

A complete classification of (general) square-free nondegener-
ate solutions (X, r) satisfying the minimality condition M is given
by Cedó, Jespers, and Okniński; see [9, Theorem 5.5 and Corol-
lary 5.6]. The classification is made in terms of the so called derived
solution (X, r′).

Remark 9.7. We have shown that if (X, r) is a finite nondegenerate
square-free braided set, where r is not involutive, then the monoid S =
S(X, r) is not cancellative (even if (X, r) is 2-cancellative). This gives a
negative answer to Open Question 3.24 in [22]: Is it true that if (X, r)
is a 2-cancellative braided set, then the associated monoid S(X, r) is
cancellative?
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