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UNIQUENESS PROPERTY FOR 2-DIMENSIONAL

MINIMAL CONES IN R3

Xiangyu Liang

Abstract: In this article we treat two closely related problems: 1) the upper semi-

continuity property for Almgren minimal sets in regions with regular boundary; and

2) the uniqueness property for all the 2-dimensional minimal cones in R3.
Given an open set Ω ⊂ Rn, a closed set E ⊂ Ω is said to be Almgren minimal

of dimension d in Ω if it minimizes the d-Hausdorff measure among all its Lipschitz

deformations in Ω. We say that a d-dimensional minimal set E in an open set Ω
admits upper semi-continuity if, whenever {fn(E)}n is a sequence of deformations

of E in Ω that converges to a set F , then we have Hd(F ) ≥ lim supnHd(fn(E)).

This guarantees in particular that E minimizes the d-Hausdorff measure, not only
among all its deformations, but also among limits of its deformations.

As proved in [19], when several 2-dimensional minimal cones are all translational

and sliding stable, and admit the uniqueness property, then their almost orthogonal
union stays minimal. As a consequence, the uniqueness property obtained in the

present paper, together with the translational and sliding stability properties proved

in [18] and [20] permit us to use all known 2-dimensional minimal cones in Rn to
generate new families of minimal cones by taking their almost orthogonal unions.

The upper semi-continuity property is also helpful in various circumstances: when
we have to carry on arguments using Hausdorff limits and some properties do not

pass to the limit, the upper semi-continuity can serve as a link. As an example, it

plays a very important role throughout [19].
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1. Introduction

The notion of minimal sets in the sense of Almgren [2] and Reifen-
berg [25] (see David [6] and Liang [15] for other variants) is a way to
try to solve Plateau’s problem in the setting of sets. Plateau’s prob-
lem, as one of the main interests in geometric measure theory, aims at
understanding the existence, regularity, and local structure of physical
objects that minimize the area while spanning a given boundary, such
as soap films. The result of this article is closely linked to two important
aspects of this problem: the local behavior and the local uniqueness of
solutions. Here, the local uniqueness means that in a small ball with
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given Dirichlet value on the boundary of the ball, the solution to the
problem is unique.

It is known (cf. Almgren [2], David and Semmes [8]) that a d-di-
mensional minimal set E admits a unique tangent plane at almost every
point x. In this case the local structure around such a point is very clear:
the set E is locally a minimal surface (and hence a real analytic surface)
around the point, due to the famous regularity result of Allard [1].

So we are mostly interested in what happens around points that admit
no tangent plane, namely, the singular points.

In [6] David proved that the blow-up limits (“tangent objects”) of
d-dimensional minimal sets at a point are d-dimensional minimal cones
(minimal sets that are cones in the means time). Blow-up limits of a
set at a point reflect the asymptotic behavior of the set at infinitesimal
scales around this point. As a consequence, a first step to study the local
structures of minimal sets is to classify all possible types of singularities
– that is to say, minimal cones.

1.1. Local behavior and classification of singularities. The plan
for the list of d-dimensional minimal cones in Rn is very far from clear.
Even for d = 2, we know very little, except for the case in R3, where
J. Taylor ([26]) gave a complete classification in 1976, and the list was
in fact already known a century ago in other circumstances (see [12]
and [11]). They are, modulo isomorphism: a plane, a Y set (the union
of three half planes that meet along a straight line where they make
angles of 120◦), and a T set (the cone over the 1-skeleton of a regular
tetrahedron centered at the origin). See Figure 1.

A Y set A T set

Figure 1

Based on the above, a natural way to find new types of singularities
is by taking unions and products of known minimal cones.

Concerning unions, the minimality of the union of two orthogonal
minimal sets of dimension d can be obtained easily from a well known
geometric lemma (cf. for example Lemma 5.2 of [22]). Thus one suspects
that if the angle between two minimal sets is not far from orthogonal,
the union of them might also be minimal.
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In the case of planes, the author proved in [14] and [17] that the
almost orthogonal union of several d-dimensional planes is Almgren and
topologically minimal. When the number of planes is two, this is part of
Morgan’s conjecture in [23] on the angle condition under which a union
of two planes is minimal.

As for minimal cones other than unions of planes, since they are all
with non isolated singularities (after the structure Theorem 2.25), the
situation is much more complicated, as briefly stated in the introduction
of [19]. Up to now we are able to treat a big part of 2-dimensional cases:
in [19] we prove that the almost orthogonal union of several 2-dimen-
sional minimal cones (in any ambient dimension) is minimal, provided
that all these minimal cones satisfy the following properties: the trans-
lational and sliding stabilities and the local uniqueness property. (The
theorem is stated separately in the Almgren case and topological case
in [19].) Moreover, this union still satisfies the translational and sliding
stabilities, and the local uniqueness property. This enables us to con-
tinue obtaining infinitely many new families of minimal cones by taking
a finite number of iterations of almost orthogonal unions.

Here, the uniqueness property of a minimal cone is that in any ball B
containing the origin, it is the only minimal set with the given Dirichlet
value on ∂B. See Section 2 for the precise definitions. The translational
and sliding stabilities of a minimal cone will not be discussed in this
paper; see [19, 18, 20] for the precise definitions.

The above result of [19] makes good sense, because due to the fol-
lowing group of papers (of which the present paper is a part), almost all
known 2-dimensional minimal cones satisfy the above mentioned proper-
ties (i.e., the translational and sliding stabilities, and the local uniqueness
property):

• In the present paper we prove the uniqueness property in R3: all
2-dimensional minimal cones in R3 are topological and Almgren
unique (Theorems 5.1, 5.2, and 5.6).
• In [18] we treat the stability properties: all 2-dimensional mini-

mal cones in Rn (for any n ≥ 3) are translational stable, and all
2-dimensional minimal cones in R3 satisfy the sliding stability.
• For 2-dimensional minimal cones in Rn for n ≥ 3, by Theorem 10.1

and Remark 10.5 of [19], the almost orthogonal unions of several
planes in Rn are also topological sliding and Almgren sliding stable.
• Besides unions of planes, the only known 2-dimensional minimal

cone not contained in R3 is the set Y ×Y , the product of two 1-di-
mensional Y sets. The proof of its sliding stability and uniqueness
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property are much more involved, so we will treat it in a separate
paper [20].

After the results of the above papers, together with [19], we are able to
conclude that if we take a finite number of known 2-dimensional minimal
cones, their almost orthogonal union is minimal.

As a small remark, compared to the unions, the case of product is
much more mysterious. It is not known in general whether the product
of two non trivial minimal cones stays minimal. We even do not know
whether the product of a minimal cone with a line stays minimal. More-
over, if we consider the product of two concrete minimal cones (other
than planes) one by one, up to now the only known result is the mini-
mality of the product of two 1-dimensional Y sets (cf. [16]). Among all
singular minimal cones, 1-dimensional Y sets are of simplest structure,
but still, the proof of the minimality of their product is surprisingly hard.

1.2. About uniqueness of solutions. As mentioned before, we are
going to discuss the uniqueness property for 2-dimensional minimal cones
in R3. Roughly speaking, the local uniqueness property for a minimal
set is that in a small ball B, it is the unique minimal set with the given
Dirichlet value on ∂B. (For cones, we can forget about the word “local”.)

Another natural question about Plateau’s problem is the uniqueness
of solutions.

It is well known that solutions for Plateau’s problem are in general not
unique, even in codimension 1. The simplest example is the following.
Given the union of two parallel circles in R3, it can be the boundary
of at least three types of minimal sets: the union of two disks bounded
by the two circles respectively, the part of catenoid, and the third type
– a “catenoid” with a central disk. See Figure 2. They admit different
topologies and they all exist in soap film experiments.

A catenoid A catenoid with a central disk

Figure 2

On the other hand, we know that around a regular point x of a min-
imal set, the solution is locally unique, because the soap film is locally
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a minimal graph on a convex part of the tangent plane at x and the
uniqueness comes from calibrations for minimal graphs.

The advantage of considering local uniqueness is that we do not have
to worry about topology. One can then ask whether this local uniqueness
also holds for singular points. Since blow-up limits at singular points are
minimal cones, a first step is to study whether each minimal cone is the
unique solution, at least under a given topology.

Due to the lack of information on the structure for minimal cones
of dimension greater than or equal to 3, we are still far from a general
conclusion. However, from the very little information we have, we can
still give a positive answer for almost all known 2-dimensional minimal
cones. See the account in the last subsection.

1.3. Upper semi-continuity and the organization of the paper.
Besides the main results about uniqueness, an indispensable intermedi-
ate step in the discussion for the uniqueness property is the upper semi-
continuity property for minimal sets with reasonable boundary regularity
(Theorem 4.13). It consists of saying that in many cases, when its bound-
ary is not too wild, a minimal set minimizes also the measure in the class
of limits of deformations, which is much larger than the class of defor-
mations. This property is helpful in various circumstances. For example,
when we have to carry on arguments using Hausdorff limits and some
properties do not pass to the limit, the upper semi-continuity can serve
as a link. As an example, it plays a very important role throughout [19].

The organization of the rest of the article is the following.
In Section 2 we introduce basic definitions and preliminaries for min-

imal sets, and properties concerning 2-dimensional minimal cones.
The definitions of uniqueness and some related useful properties are

given in Section 3.
In Section 4 we prove the upper semi-continuity property for minimal

sets with relatively regular boundaries (Theorems 4.1, 4.11, and 4.13).
These theorems guarantee in particular that the definition of uniqueness
makes good sense for minimal cones and many other minimal sets. It is
also useful in many other circumstances; see [19] for example.

We prove topological and Almgren uniqueness for each 2-dimensional
minimal cone in R3 in Section 5.

Acknowledgements. This work is supported by China’s Recruitement
Program of Global Experts, School of Mathematics and Systems Science,
Beihang University, and National Natural Science Foundation of China
(Grant No. 11871090).
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2. Definitions and preliminaries

2.1. Some useful notation. [a, b] is the line segment with endpoints a
and b.−→
ab is the vector b− a.
Rab denotes the half line starting from the point a and passing

through b.
B(x, r) is the open ball with radius r and centered on x.
B̄(x, r) is the closed ball with radius r and center x.
For any (affine) subspace Q of Rn and x ∈ Q, r > 0, BQ(x, r) stands

for B(x, r) ∩Q, the open ball in Q.
For any subset E of Rn, E◦ denotes the interior of E, Ē denotes the

closure of E, and EC = Rn\E. And for any m ≤ n and any m-dimen-
sional dyadic cube Q in Rn, Q◦ denotes its m-dimensional interior.

For any subset E of Rn, χE denotes the characteristic function of E.
For any subset E of Rn and any r > 0, we call B(E, r) := {x ∈ Rn :

dist(x,E) < r} the r neighborhood of E.
Hd is the Hausdorff measure of dimension d.
dH(E,F ) = max{sup{d(y, F ) : y ∈ E}, sup{d(y,E) : y ∈ F}} is the

Hausdorff distance between two sets E and F .
For any subset K ⊂ Rn, the local Hausdorff distance in K dK between

two sets E, F is defined as dK(E,F ) = max{sup{d(y, F ) : y ∈ E ∩
K}, sup{d(y,E) : y ∈ F ∩K}}.

For any open subset U ⊂ Rn, let {En}n, F be closed sets in U , we say
that F is the Hausdorff limit of {En}n if for any compact subset K ⊂ U ,
limn dK(En, F ) = 0.
dx,r: the relative distance with respect to the ball B(x, r) is defined

by

dx,r(E,F ) =
1

r
max{sup{d(y, F ) : y ∈ E ∩B(x, r)},

sup{d(y,E) : y ∈ F ∩B(x, r)}}.
For any polyhedral complex S in Rn, let |S| denote the support of S,

that is, |S| =
⋃
σ∈S σ. And for any 0 ≤ m ≤ n, let Sm denote the set of

all m-faces in S. Then |Sm| is the m-skeleton of S.

Definition 2.1 (Hausdorff limit in an open set). Let U be an open
subset in Rn. Let {Ek}, E be relatively closed subsets of U . We say
that E is the Hausdorff limit of Ek in U if for all compact sets K ⊂ U ,
dK(Ek, E)→ 0. We also say that Ek converges to E under the Hausdorff
limit, and denote this by

Ek
U
⇀ E.
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Definition 2.2 (Approximate tangent plane, cf. [21, Definition 15.17]).
Let A ⊂ Rn, a ∈ Rn, and V an m-dimensional linear subspace of Rn.
We say that V is an m-dimensional approximate tangent plane for A
at a if θ∗m(A, a) > 0, and for all 0 < s < 1,

lim
r→0

r−mHm(A ∩B(a, r)\X(a, V, s)) = 0.

Here θ∗m = lim supr→0 r
−mHm(A∩B(a, r)) is the m-upper density of A

at a, and X(a, V, s) = {y ∈ Rn : d(x− a, V ) < s|x− a|}.

If E is a d-rectifiable set, denote by TxE the approximate tangent
plane (if it exists and is unique) of E at x.

Remark 2.3. We say that V is a true tangent plane of A at a if it is
tangent to A at a in the classical sense, that is, for any 0 < s < 1, there
exists r > 0, so that

A ∩B(a, r)\X(a, V, s) = ∅.

2.2. Basic definitions and notations about minimal sets. In the
next definitions, fix integers 0 < d < n. We first give a general definition
for minimal sets. Briefly, a minimal set is a closed set which minimizes
the Hausdorff measure among a certain class of competitors. Different
choices of classes of competitors give different kinds of minimal sets.

Definition 2.4 (Minimal sets). Let 0 < d < n be integers. Let U ⊂ Rn
be an open set. A relative closed set E ⊂ U is said to be minimal
of dimension d in U with respect to the competitor class F (which
contains E) if

(2.1) Hd(E ∩B) <∞ for every compact ball B ⊂ U
and

(2.2) Hd(E\F ) ≤ Hd(F\E)

for any competitor F ∈ F .

Definition 2.5 (Almgren competitor (Al competitor for short)). Let E
be relatively closed in an open subset U of Rn. An Almgren competitor
for E is a relatively closed set F ⊂ U that can be written as F = ϕ1(E),
where ϕt : U → U , t ∈ [0, 1], is a family of continuous mappings such
that

ϕ0(x) = x for x ∈ U ;(2.3)

the mapping (t, x)→ ϕt(x) of [0, 1]× U to U is continuous;(2.4)

ϕ1 is Lipschitz,(2.5)
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and if we set Wt = {x ∈ U ; ϕt(x) 6= x} and Ŵ =
⋃
t∈[0.1][Wt ∪ ϕt(Wt)],

then

(2.6) Ŵ is relatively compact in U.

Such a ϕ1 is called a deformation in U and F is also called a defor-
mation of E in U .

For future convenience, we also have the following more general defi-
nition:

Definition 2.6. Let U ⊂ Rn be an open set and let E ⊂ Rn be a closed
set (not necessarily contained in U). We say that E is minimal in U if
E∩U is minimal in U . A closed set F ⊂ Rn is called a deformation of E
in U if F = (E\U) ∪ ϕ1(E ∩ U), where ϕ1 is a deformation in U .

Now let E ⊂ Rn be closed and denote by F(E,U) the class of all
deformations of E in U as in Definition 2.6. We need to use Haus-
dorff limits of sequences in F(E,U). However, if we regard elements of
F(E,U) as sets in Rn and take the Hausdorff limit, the limit may have
positive measure on ∂U\E. In other words, sets in F(E,U) may con-
verge to the boundary. We do not like this. Hence we let F(E,U) be the
class of Hausdorff limits in Rn of sequences in F(E,U) that essentially
do not converge to the boundary. That is, we set

(2.7) F(E,U) = {F closed : ∃{Ek}k ⊂ F(E,U)

such that Ek
Rn
⇀ F and Hd(F ∩ ∂U\E) = 0}.

It is easy to see that both classes F(E,U) and F(E,U) are stable
with respect to Lipschitz deformations in U .

Definition 2.7 (Almgren minimal sets). Let 0 < d < n be integers, and
let U be an open set of Rn. An Almgren minimal set E in U is a minimal
set defined in Definition 2.4 while taking the competitor class F to be
the class of all Almgren competitors for E.

For our future arguments, we also have the following definition:

Definition 2.8. Let 0 < d < n be integers, let U be an open set of Rn.
A closed set E ⊂ Rn is said to be Almgren minimal in U if E ∩ U is
Almgren minimal in U .

Next, let us define another type of competitors and minimizers.
Let k ≤ n. Two subsets A and B of Rn are said to be k-essentially

disjoint if Hk(A ∩B) = 0.
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Let U be an open subset of Rn. Since it is a smooth n-manifold, it
admits smooth triangulations (cf. [27, Chapter IV, §14B, Theorem 12]).
As a result, the singular homology and the simplicial homology on U are
isomorphic.

For any smooth triangulation K of U and any k-simplicial G-chain Γ
of K, we call Γ a k-simplicial G-chain in U for short.

For any Euclidean k-sphere S ⊂ U , a k-simplicial G-chain Γ is said
to be induced by S if Γ =

∑m
i=1 σm, where σm are k-simplices in a

triangulation K of U and S is the k-essentially disjoint union of σi,
1 ≤ i ≤ m.

Now for any Euclidean k-sphere S ⊂ U , the element represented by S
in the simplicial homology group H∆

k (U ;G) is the element represented
by any k-simplicial G-chain Γ induced by S.

Note that this definition is independent of the choice of smooth trian-
gulation K, since the singular homology on U and the simplicial homol-
ogy on K are isomorphic and the singular homology on U is independent
of the smooth triangulation.

Definition 2.9 (Topological competitors). Let G be an abelian group.
Let E be a relatively closed set in an open set U of Rn. We say that
a relatively closed set F is a G-topological competitor of dimension d
(d < n) of E in U if there exists an open convex set B such that B̄ ⊂ U
and

(i) F\B = E\B.
(ii) For all Euclidean (n−d−1)-sphere S ⊂ U\(B∪E), if S represents a

nonzero element in the simplicial homology groupH∆
n−d−1(U\E;G),

then it is also nonzero in H∆
n−d−1(U\F ;G).

We also say that F is a G-topological competitor of dimension d of E
with respect to B.

When G = Z, we usually omit Z, and say directly that F is topological
competitor of dimension d.

Remark 2.10. Since the singular homology and the simplicial homology
are isomorphic both on U\E and on U\F , in the above Definition 2.9,
it is equivalent to replace condition (ii) by

(ii’) For each Euclidean (n−d−1)-sphere S⊂U\(B∪E), if S represents a
nonzero element in the singular homology group Hn−d−1(U\E;G),
then it is also nonzero in Hn−d−1(U\F ;G).

Definition 2.4 gives the definition of G-topological minimizers of di-
mension d in an open set U when we take the competitor class to be the
class of G-topological competitors of dimension d of E.

The simplest example of a G-topological minimal set is a d-dimen-
sional plane in Rn.



12 X. Liang

Proposition 2.11 (cf. [15, Proposition 3.7 and Corollary 3.17]).

(i) Let E ⊂ Rn be closed. Then for any d < n and any open convex
set B, B′ such that B̄′ ⊂ B◦, every Almgren competitor of E in B′

is a G-topological competitor of E with respect to B of dimension d.
(ii) All G-topological minimal sets are Almgren minimal in Rn.

Remark 2.12. (1) One can see directly from the definition that we have
the following transitivity: given a relatively closed set E in an
open set U ⊂ Rn, a deformation of a deformation of E in U is a
deformation of E in U , and for any bounded convex open set B
so that B̄ ⊂ U , a G-topological competitor with respect to B of a
G-topological competitor of E with respect to B is a G-topological
competitor of E with respect to B of the same dimension.

(2) The class of G-topological competitors of dimension d for a set E
is closed under taking supersets. More precisely, given a relatively
closed set E in an open set U ⊂ Rn, if F is a G-topological com-
petitor of E of dimension d in U with respect to B, and F ⊂ F ′

where F ′ is relatively closed, then for any bounded convex open
set B′ so that B ⊂ B̄′ ⊂ U and such that F ′\B′ = E\B′, F is
a G-topological competitor of E of dimension d in U with respect
to B′. In fact, take any (n − d − 1)-sphere S ⊂ U\(B′ ∪ E), it is
contained in S ⊂ U\(B′ ∪F ), and since F is a G-topological com-
petitor of E of dimension d with respect to B, if S represents a
nonzero element in Hn−d−1(U\E,G), then it represents a nonzero
element in Hn−d−1(U\F,G), and thus it represents a nonzero ele-
ment in Hn−d−1(U\F ′, G) because F ⊂ F ′.

(3) The notion of (Almgren or G-topological) minimal sets does not
depend much on the ambient dimension. One can easily check that
E ⊂ U is d-dimensional Almgren minimal in U ⊂ Rn if and only if
E is Almgren minimal in U ×Rm ⊂ Rm+n for any integer m. The
case of G-topological minimality is proved in [15, Proposition 3.18].

Proposition 2.13 (Topological competitors pass to the limit). Let E
be a closed set in an open set U of Rn and let B′ be a open convex set
such that B̄′ ⊂ U . If {Fn} is a sequence of d-dimensional G-topological
competitors of E with respect to B′, and Fn converge to F in Hausdorff
distance, then for any open convex set B such that B̄′ ⊂ B ⊂ B̄ ⊂ U ,
F is a G-topological competitor of dimension d of E with respect to B.

Proof: Let us verify the two conditions in Definition 2.9.
Since Fj converge to F and Fj\B′ = E\B′, we have F\B̄′ = E\B̄′.

Since B̄′ ⊂ B, we know that (i) holds.
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Now take any (n − d − 1)-sphere S ⊂ U\(B ∪ E) that represents
a nonzero element in H∆

n−d−1(U\E;G). Since B′ ⊂ B, we know that
S ⊂ U\(B′ ∪E). We know that each Fj is a G-topological competitor of
dimension d for E with respect to B, hence S also represents a nonzero
element in H∆

n−d−1(U\Fj ;G).
For (ii), suppose it does not hold. That is, S represents a zero element

in H∆
n−d−1(U\F ;G). As a result, there exists a simplicial n−d-G-chain σ

in U\F , and a simplicial n − d − 1-G-chain S̃ induced by S such that

∂σ = S̃. Then the support |σ| of σ is compact in U\F . Since U\F
is open, there exists ε > 0 such that the ε-neighborhood B(|σ|, ε) ⊂
U\F . As a result, since Fj → F , we know that for j large enough,
Fj∩|σ| = ∅. Hence σ is also a simplicialG-chain in U\Fj for j large. Then

∂σ = S̃ implies that S represents a zero element in Hn−d−1(U\Fj ;G) for
j large. This contradicts the fact that S represents a nonzero element in
Hn−d−1(U\Fj ;G) for all j.

Hence (ii) holds.

Definition 2.14 (Reduced set). Let U ⊂ Rn be an open set. For every
closed subset E of U , denote by

(2.8) E∗ = {x ∈ E : Hd(E ∩B(x, r)) > 0 for all r > 0}

the closed support (in U) of the restriction of Hd to E. We say that E is
reduced if E = E∗.

It is easy to see that

(2.9) Hd(E\E∗) = 0.

In fact, we can cover E\E∗ by countably many balls Bj such thatHd(E∩
Bj) = 0.

Remark 2.15. It is not hard to see that if E is Almgren minimal (resp. G-
topologically minimal), then E∗ is also Almgren minimal (resp. G-topo-
logically minimal). As a result, it is enough to study reduced minimal
sets. An advantage of reduced minimal sets is that they are locally
Ahlfors regular (cf. Proposition 4.1 in [8]). Hence any approximate tan-
gent plane of them is a true tangent plane (as in Remark 2.3). Since
minimal sets are rectifiable (cf. [8, Theorem 2.11] for example), reduced
minimal sets admit true tangent d-planes almost everywhere.

If we regard two sets to be equivalent if they are equal modulo Hd-null
sets, then a reduced set is always considered to be a good (in the sense
of regularity) representative of its equivalence class.

In the rest of the article we only consider reduced sets.
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Remark 2.16. (1) One can see directly from the definition that we have
the following transitivity: given a relatively closed set E in an
open set U ⊂ Rn, a deformation of a deformation of E in U is a
deformation of E in U , and for any bounded convex open set B
so that B̄ ⊂ U , a G-topological competitor with respect to B of a
G-topological competitor of E with respect to B is a G-topological
competitor of E with respect to B of the same dimension.

(2) The class of G-topological competitors for a set E is closed under
taking supersets. More precisely, given a relatively closed set E
in an open set U ⊂ Rn, if F is a G-topological competitor of E
of dimension d in U with respect to B, and F ⊂ F ′ where F ′ is
relatively closed, then for any bounded convex open set B′ so that
B ⊂ B̄′ ⊂ U and such that F ′\B′ = E\B′, F is a G-topological
competitor of E of dimension d in U with respect to B′. In fact,
take any (n− d− 1)-sphere S ⊂ U\(B′ ∪E). Then it is contained
in S ⊂ U\(B′ ∪ F ), and since F is a G-topological competitor
of E of dimension d with respect to B, if S represents a nonzero
element in Hn−d−1(U\E,G), then it represents a nonzero element
in Hn−d−1(U\F,G), and thus it represents a nonzero element in
Hn−d−1(U\F ′, G) because F ⊂ F ′.

(3) The notion of Almgren or G-topological minimal sets does not
depend much on the ambient dimension. One can easily check that
E ⊂ U is d-dimensional Almgren minimal in U ⊂ Rn if and only if
E is Almgren minimal in U ×Rm ⊂ Rm+n for any integer m. The
case of G-topological minimality is proved in [15, Proposition 3.18].

2.3. Regularity results for minimal sets. We now begin to give
regularity results for minimal sets. They are in fact regularity results for
Almgren minimal sets, but they also hold for all G-topological minimiz-
ers, after Proposition 2.11. By Remark 2.15, from now on all minimal
sets are supposed to be reduced.

Definition 2.17 (Blow-up limit). Let U ⊂ Rn be an open set, let E be a
relatively closed set in U , and let x ∈ E. Denote by E(r, x) = r−1(E−x).
A set C is said to be a blow-up limit of E at x if there exists a sequence of
numbers rn, with limn→∞ rn = 0, such that the sequence of sets E(rn, x)
converges to C for the local Hausdorff distance in any compact set of Rn.

Remark 2.18. (1) A set E might have more than one blow-up limit at
a point x. However, it is not known yet whether this can happen
to minimal sets.

When a set E admits a unique blow-up limit at a point x ∈ E,
denote this blow-up limit by CxE.
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(2) Let Q ⊂ Rn be any subspace and denote by πQ the orthogonal
projection from Rn to Q. Then it is easy to see that if E ⊂ Rn,
x ∈ E, and C is any blow-up limit of E at x, then πQ(C) is
contained in a blow-up limit of πQ(E) at πQ(x).

Proposition 2.19 (c.f. [6, Proposition 7.31]). Let E be a reduced Alm-
gren minimal set in an open set U of Rn and let x ∈ E. Then every
blow-up limit of E at x is a reduced Almgren minimal cone F centered at
the origin, and Hd(F ∩B(0, 1)) = θ(x) := limr→0 r

−dHd(E ∩B(x, r)).

An Almgren minimal cone is just a cone which is also Almgren min-
imal. We will call them minimal cones throughout this paper, since we
will not talk about any other type of minimal cones.

Remark 2.20. (1) The existence of the density θ(x) is due to the mono-
tonicity of the density function θ(x, r) := r−dHd(E ∩ B(x, r)) at
any given point x for minimal sets. See for example [6, Proposi-
tion 5.16].

(2) After the above proposition, the set Θ(n, d) of all possible densities
for points in a d-dimension minimal set in Rn coincides with the
set of all possible densities for d-dimensional minimal cones in Rn.
When d = 2, this is a very small set. For example, we know that
π is the density for a plane, 3

2π is the density for a Y set, and for
any n and any other type of 2-dimensional minimal cone in Rn,
its density should be no less than some dT = dT (n) > 3

2π, by [6,
Lemma 14.12].

(3) Obviously, a cone in Rn is minimal if and only if it is minimal in the
unit ball, if and only if it is minimal in any open subset containing
the origin.

(4) For future convenience, we also set the following notation: let U ⊂
Rn be a open convex set containing the origin. A set C ⊂ U is
called a cone in U if it is the intersection of a cone with U .

We now state some regularity results on 2-dimensional Almgren min-
imal sets.

Definition 2.21 (Bi-Hölder ball for closed sets). Let E be a closed set
of Hausdorff dimension 2 in Rn. We say that B(0, 1) is a bi-Hölder ball
for E with constant τ ∈ (0, 1) if we can find a 2-dimensional minimal
cone Z in Rn centered at 0, and f : B(0, 2) → Rn with the following
properties:

(i) f(0) = 0 and |f(x)− x| ≤ τ for x ∈ B(0, 2);

(ii) (1−τ)|x−y|1+τ ≤ |f(x)−f(y)| ≤ (1+τ)|x−y|1−τ for x, y ∈ B(0, 2);
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(iii) B(0, 2− τ) ⊂ f(B(0, 2));

(iv) E ∩B(0, 2− τ) ⊂ f(Z ∩B(0, 2)) ⊂ E.

We also say that B(0, 1) is of type Z for E.
We say that B(x, r) is a bi-Hölder ball for E of type Z (with the same

parameters) when B(0, 1) is a bi-Hölder ball of type Z for r−1(E − x).

Theorem 2.22 (Bi-Hölder regularity for 2-dimensional Almgren mini-
mal sets, c.f. [6, Theorem 16.1]). Let U be an open set in Rn and E a
reduced Almgren minimal set in U . Then for each x0 ∈ E and every
choice of τ ∈ (0, 1), there is an r0 > 0 and a minimal cone Z such that
B(x0, r0) is a bi-Hölder ball of type Z for E with constant τ . Moreover,
Z is a blow-up limit of E at x.

Definition 2.23 (Point of type Z). (i) In the above theorem, we say
that x0 is a point of type Z (or Z point for short) of the minimal
set E. The set of all points of type Z in E is denoted by EZ .

(ii) In particular, we denote by EP the set of regular points of E and
EY the set of Y points of E. Any 2-dimensional minimal cone
other than planes and Y sets are called T type cone, and any point
which admits a T type cone as a blow-up is called a T type point.
Set ET = E\(EY ∪ EP ) the set of all T type points of E. Set
ES := E\EP the set of all singular points in E.

Remark 2.24. Again, since we might have more than one blow-up limit
for a minimal set E at a point x0 ∈ E, the point x0 might be of more than
one type (but all the blow-up limits at a point are bi-Hölder equivalent).
However, if one of the blow-up limits of E at x0 admits the “full length”
property (see Remark 2.26), then in fact E admits a unique blow-up
limit at the point x0. Moreover, we have the following C1,α-regularity
around the point x0.

Theorem 2.25 (C1,α-regularity for 2-dimensional minimal sets, c.f. [7,
Theorem 1.15]). Let E be a 2-dimensional reduced minimal set in the
open set U ⊂ Rn. Let x ∈ E be given. Suppose in addition that some
blow-up limit of E at x is a full length minimal cone (see Remark 2.26).
Then there is a unique blow-up limit X of E at x, and x+X is tangent
to E at x. In addition, there is a radius r0 > 0 such that, for 0 < r <
r0, there is a C1,α diffeomorphism (for some α > 0) Φ: B(0, 2r) →
Φ(B(0, 2r)) such that Φ(0) = x and |Φ(y) − x − y| ≤ 10−2r for y ∈
B(0, 2r) and E ∩B(x, r) = Φ(X) ∩B(x, r).

We can also ask that DΦ(0) = Id. We call B(x, r) a C1 ball for E of
type X.
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Remark 2.26 (Full length, union of two full length cones X1 ∪X2). We
are not going to give the precise definition of the full length property.
Instead, we just give some information here which is enough for the
proofs in this paper.

(1) The three types of 2-dimensional minimal cones in R3, i.e. the
planes, the Y sets, and the T sets, all verify the full length property
(cf. [7, Lemmas 14.4, 14.6, and 14.27]). Hence all 2-dimensional
minimal sets E in an open set U ⊂ R3 admits the local C1,α-
regularity at every point x ∈ E. But this was known from [26].

(2) Let n > 3. Note that the planes, the Y sets, and the T sets are
also minimal cones in Rn. Denote by C the set of all planes, Y sets,
and T sets in Rn. Let X =

⋃
1≤i≤nXi ∈ Rn be a minimal cone,

where Xi ∈ C, 1 ≤ i ≤ n, and for any i 6= j, Xi ∩Xj = {0}. Then
X also verifies the full length property (cf. [7, Remark 14.40]).

Theorem 2.27 (Structure of 2-dimensional minimal cones in Rn, cf. [6,
Proposition 14.1]). Let K be a reduced 2-dimensional minimal cone in Rn
and let X = K ∩ ∂B(0, 1). Then X is a finite union of great circles and
arcs of great circles Cj, j ∈ J . The Cj can only meet at their endpoints,
and each endpoint is a common endpoint of exactly three Cj, which meet
with 120◦ angles. In addition, the length of each Cj is at least η0, where
η0 > 0 depends only on the ambient dimension n.

An immediate corollary of the above theorem is the following:

Corollary 2.28. (i) If C is a minimal cone of dimension 2, then for
the set of regular points CP of C, each of its connected components
is a planar sector (the cone centered at 0 over an arc of great circle
centered at 0).

(ii) Let E be a 2-dimensional minimal set in U ⊂ Rn. Then ĒY = ES.
(iii) The set ES\EY is composed of isolated points.

As a consequence of the C1-regularity for regular points and Y points,
and Corollary 2.28, we have

Corollary 2.29. Let E be an 2-dimensional Almgren minimal set in an
open set U ⊂ Rn. Then

(i) The set EP is open in E.
(ii) The set EY is a countable union of C1 curves. The endpoints of

these curves are either in ET := ES\EY , or lie in ∂U .

We also have a similar quantified version of the C1,α-regularity (cf.
[6, Corollary 12.25]). In particular, we can use the distance between
a minimal set and a P or a Y cone to control the constants of the
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C1,α parametrization. As a direct corollary, we have the following neigh-
borhood deformation retract property for regular and Y points:

Corollary 2.30. There exists ε2 = ε2(n) > 0 such that the following
holds: let E be an 2-dimensional Almgren minimal set in an open set U ⊂
Rn. Then

(i) For any x∈EP and any codimension 1 submanifold M ⊂ U which
contains x, such that M is transversal to the tangent plane TxE+x,
if r > 0 satisfies that dx,r(E, x+TxE) < ε2, then H1(B(x, r)∩M ∩
E) < ∞, and B(x, r) ∩M ∩ E is a Lipschitz deformation retract
of B(x, r) ∩M .

(ii) For any x ∈ EY and any codimension 1 submanifold M ⊂ U which
contains x, such that M is transversal to the tangent cone CxE+x
and its spine, if r > 0 satisfies that dx,r(E, x + CxE) < ε2, then
H1(B(x, r) ∩M ∩ E) < ∞, and B(x, r) ∩M ∩ E is a Lipschitz
deformation retract of B(x, r) ∩M .

As for the regularity for minimal sets of higher dimensions, we know
much less. But for points which admit a tangent plane (i.e. some blow-up
limit on the point is a plane), we still have the C1-regularity.

Theorem 2.31 (cf. [14, Proposition 6.4]). For 2 ≤ d < n < ∞, there
exists ε1 = ε1(n, d) > 0 such that if E is a d-dimensional reduced minimal
set in an open set U ⊂ Rn, with B(0, 2) ⊂ U and 0 ∈ E. Then if E
is ε1 near a d-plane P in B(0, 1), then E coincides with the graph of a
C1 map f : P → P⊥ in B

(
0, 3

4

)
. Moreover, ||∇f ||∞ < 1.

Remark 2.32. (1) This proposition is a direct corollary of Allard’s fa-
mous regularity theorem for stationary varifolds. See [1].

(2) After this proposition, a blow-up limit of a reduced minimal set E
at a point x ∈ E is a plane if and only if the plane is the unique
approximate tangent plane of E at x.

After Remark 2.32, for any reduced minimal set E of dimension d, and
for any x ∈ E at which an approximate tangent d-plane exists (which is
true for a.e. x ∈ E), TxE also denotes the tangent plane of E at x and
the blow-up limit of E at x.

3. Uniqueness: definitions and properties

Definition 3.1. Let U ⊂ Rn be a bounded open set. Let C ⊂ Rn be a
reduced set so that C ∩ U is d-dimensional Almgren minimal in U . We
say that
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(i) C is Almgren unique in U if Hd(C ∩ Ū) = infF∈F(C,U)H
d(F ∩ Ū)

and

(3.1) ∀ reduced set E ∈ F(C,U), Hd(E ∩ Ū) = inf
F∈F(C,U)

Hd(F ∩ Ū)

⇒ E = C (or, equivalently, E ∩ Ū = C ∩ Ū).

(ii) C is G-topologically unique in U if C ∩U is d-dimensional G-topo-
logical minimal in U , and

(3.2) For any reduced d-dimensional G-topological competitor E

of C ∩ U in U, Hd(E) = Hd(C ∩ U) implies E = C ∩ U.

(iii) We say that a d-dimensional Almgren minimal set C in Rn is Alm-
gren (resp. G-topologically) unique if it is Almgren (resp. G-topo-
logically) unique in every bounded open set U ⊂ Rn.

When G = Z, we usually omit Z, and say directly topologically
unique.

For minimal cones, we immediately have:

Proposition 3.2 (Unique minimal cones). Let K be a d-dimensional
Almgren minimal cone in Rn. Then it is Almgren (resp. G-topologically)
unique if and only if it is Almgren (resp. G-topologically) unique in some
bounded open convex set U that contains the origin.

Proof: By definition, the only if part is trivial. So let us prove the con-
verse.

Suppose that K is a d-dimensional Almgren minimal cone in Rn and is
Almgren (resp. G-topologically) unique in a bounded convex open set U
that contains the origin. Then since K is a cone centered at the origin,
K is Almgren (resp. G-topologically) unique in rU for all r > 0. Now,
for any other bounded open set U ′, there exists r such that U ′ ⊂ rU ,
hence K is Almgren (resp. G-topologically) unique in U ′.

Let us make some important remarks:
Remark 3.3. (1) Note that for an arbitrary d-dimensional reduced

set C ⊂ Rn which is Almgren minimal in U , by definition, C only
minimizes the measure in the class F(C,U). Hence we do not nec-
essarily have that

(3.3) Hd(C ∩ Ū) = inf
F∈F(C,U)

Hd(F ∩ Ū).

On the other hand, by Theorem 4.13, this holds if U is a convex
open set and C ∩ ∂U is relatively regular.
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(2) Unlike the definition of Almgren uniqueness, in the definition for
topological uniqueness we do not consider limits of G-topological
competitors.

(3) As a corollary of the above term (1) and Proposition 3.2, we know
that if K is a d-dimensional minimal cone in Rn, then (3.3) holds
automatically.

(4) The condition Hd(E ∩ Ū) = infF∈F(C,U)H
d(F ∩ Ū) in (3.1) al-

ready implies that E is itself Almgren minimal in U , because
the class F(C,U) is stable under deformations in U and hence
F(E,U) ⊂ F(C,U) (cf. Remark 2.16). Also notice that Hd(E ∩
Ū) = infF∈F(C,U)H

d(F ∩ Ū) is equivalent to the condition Hd(E∩
Ū) ≤ infF∈F(C,U)H

d(F ∩ Ū) since E ∈ F(C,U).

(5) Similarly, when U is a convex open set, since the condition Hd(E∩
U) = Hd(C ∩U) in (3.2) implies that E minimizes measure among
all d-dimensional G-topological competitors of C in U , and all d-di-
mensional G-topological competitors of E in U are d-dimensional
G-topological competitors of C in U (cf. Remark 2.16), we have
that E is G-topological minimal of dimension d in U .

(6) If C is an Almgren unique minimal set in U , V ⊂ U is an open set,
then C is also Almgren unique minimal in V .

Proposition 3.4 (Independence of ambient dimension). Let K ⊂ Rm
be a d-dimensional Almgren minimal cone in Rm. If K is Almgren
(resp. G-topologically) unique, then for all n ≥ m, K is also Almgren
(resp. G-topologically) unique in Rn while regarded as a subset of Rn in
the natural sense.

Proof: Fix any n ≥ m. Write Rn = Rm × Rn−m and suppose, without
loss of generality, that K is contained in Rm × {0}.

Suppose that K is Almgren unique in Rm. We want to prove that
K is Almgren unique in Rn. Let Bn denote the unit ball in Rn. Then
by Proposition 3.2, it is enough to prove that K ∩Bn is Almgren unique
in Bn. So let F ∈ F(K,Bn) be reduced, such that

(3.4) Hd(F ∩ B̄n) = inf
E∈F(K,Bn)

Hd(E ∩ B̄n).

By Remark 3.3 (5), condition (3.4) implies that F is Almgren minimal
in Bn. As a result, by the convex hull property of minimal sets, a reduced
minimal set must be contained in the convex hull of its boundary, hence
we know that F must be included in the convex hull of F ∩ ∂Bn =
K ∩ ∂Bn = K ∩ ∂Bm ⊂ B̄m.
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As a result, F ∈ F(K,Bm). Since F(K,Bm) ⊂ F(K,Bn), hence

(3.5) inf
E∈F(K,Bn)

Hd(E ∩ B̄n) ≤ inf
E∈F(K,Bm)

Hd(E ∩ B̄m).

Combined with (3.4), we obtain

(3.6) Hd(F ∩ B̄m) = Hd(F ∩ B̄n) ≤ inf
E∈F(K,Bm)

Hd(E ∩ B̄m).

By (3.6), and the Almgren uniqueness of K in Rm, we know that F
must be K ∩Bm = K ∩Bn.

The proof for the case of G-topological uniqueness is similar and we
leave it to the reader.

The next proposition shows that for relatively regular d-dimensional
minimal cones, G-topological uniqueness implies Almgren uniqueness:

Proposition 3.5. Let K ⊂ Rn be a G-topologically unique minimal cone
of dimension d. Then it is also Almgren unique of dimension d.

Proof: Let K be a G-topologically unique minimal cone of dimension d
in Rn. By Proposition 3.2, it is enough to prove that K is Almgren
unique of dimension d in the unit ball B = B(0, 1).

Let F ∈ F(K,B) be reduced such that

(3.7) Hd(F ∩ B̄) = inf
E∈F(K,B)

Hd(E ∩ B̄).

Note that by Propositions 2.11 and 2.13, we know that F is a G-topo-
logical competitor of dimension d for K in Rn with respect to 2B. Since
K is topologically minimal of dimension d,

(3.8) Hd(F ∩ 2B) ≥ Hd(K ∩ 2B).

Note that F\B̄ = K\B̄, hence

(3.9) Hd(F ∩ B̄) ≥ Hd(K ∩ B̄).

But K ∈ F(K,B). Combined with (3.7), we get

(3.10) Hd(F ∩ B̄) ≥ Hd(K ∩ B̄) ≥ inf
E∈F(K,B)

Hd(E ∩ B̄) = Hd(F ∩ B̄),

hence

(3.11) Hd(F ∩ B̄) = Hd(K ∩ B̄).

Again because F\B̄ = K\B̄, we get that

(3.12) Hd(F ∩ 2B) = Hd(K ∩ 2B).

Now since K is a G-topologically unique minimal cone of dimension d,
it is topologically unique of dimension d in 2B. Since F is a G-topological
competitor of dimension d for K in Rn with respect to 2B, (3.12) implies
that F = K.
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4. Upper semi-continuity

In this section we prove the upper semi-continuity property for min-
imal sets with reasonable boundary regularity. This consists of saying
that in many cases, when its boundary is not too wild, a minimal set
minimizes also the measure in the class of limits of deformations. This
serves as an indispensable part in the definition of uniqueness, as we
have already seen in the last section (Remark 3.3). This property also
plays a very important role in [19].

For each k ∈ N, let ∆k denote the family of (closed) dyadic cubes of
side-length 2−k. For j ≤ n, let ∆k,j denote the set of all j-dimensional
faces of elements in ∆k. For each cube Q, denote by ∆j(Q) the set of
all j-faces of Q. Set |∆k,j | =

⋃
σ∈∆k,j

σ the j-skeleton of ∆k.

Theorem 4.1. Let 0 < d < n, let U ⊂ Rn be a bounded convex open set,
and E be a closed set with finite d-Hausdorff measure such that E ⊂ Ū .
Let C denote the convex hull of E. Suppose that

(4.1) C ∩ ∂U = E ∩ ∂U
and

(4.2) E ∩ ∂U ⊂ |∆k0,d−1| for some k0 ∈ N,
where Q0 denotes the unit cube [0, 1]n. Then

(i) infF∈F(E,U)H
d(F ) = infF∈F(E,U)Hd(F ).

(ii) If E is a d-dimensional minimal set in U , then

(4.3) Hd(E) = inf
F∈F(E,U)

Hd(F ).

Proof of Theorem 4.1: (i) Since F(E,U) ⊂ F(E,U), we have automati-
cally infF∈F(E,U)H

d(F ) ≤ infF∈F(E,U)Hd(F ). So let us prove the con-
verse.

Set ∂E = E ∩ ∂U .
Now we need the following theorem.

Theorem 4.2 (Existence of minimal sets; c.f. [10, Théorème. 6.1.7]).
Let U ⊂ Rn be an open set, 0 < d < n, and let F be a class of non-
empty sets relatively closed in U and satisfying (2.1), which is stable by
deformations in U . Suppose that

(4.4) inf
F∈F
Hd(F ) <∞.

Then there exists M > 0 (depending only on d and n), a sequence (Fk)
of elements of F, and a set E of dimension d relatively closed in U that
verifies (2.1) such that:
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(i) For all compact subsets K of U ,

(4.5) lim
k→∞

dH(Fk ∩K,E ∩K) = 0.

(ii) For all open sets V such that V̄ is relatively compact in U , there
exists k0 ∈ N such that for all k > k0,

(4.6) Fk is (M,+∞)-quasiminimal in V.

(See [8] for a precise definition.)
(iii) Hd(E) ≤ infF∈FH

d(F ).
(iv) E is minimal in U .

Remark 4.3. Note that in general, the local Hausdorff distance dK(E,F )
between two sets E and F are not the same as dH(E ∩K,F ∩K), but
it is easy to see that for any compact set K, and any two sets E and F ,
dK(E,F ) ≤ dH(E ∩K,F ∩K). In particular, (i) implies that

(4.7) Fk
U
⇀ E.

We get back to the proof of Theorem 4.1.
Since U is bounded, there exists R > 0 so that Ū ⊂ B(0, R). Set

V = B(0, R)\∂E. Then V is an open set that contains U and Ū\∂E ⊂ V .

Proposition 4.4. Let n, d, E, U , and C be as in the statement of
Theorem 4.1, so that (4.1) holds. Let V be as defined above. Then there
exists {Gk}k∈N ∈ F(E,U) and G0 ∈ F(E,U) such that the following
holds:

(i) G0 is minimal in V , G0 ⊂ C, and G0 ∩ ∂U = C ∩ ∂U = ∂E;
(ii) limk→∞ dH(Gk, G0) = 0;
(iii) Hd(G0) ≤ infF∈F(E,U)H

d(F ).

Proof: Let F = {F ∈ F(E, V ) : F satisfy (2.1)}. Then F is stable by
deformations in V .

We apply Theorem 4.2 to the class F and get a sequence Fk ∈ F and
a set F0 such that F0 is minimal in V , with

(4.8) Fk
V
⇀ F0

and

(4.9) Hd(F0) ≤ inf
F∈F
Hd(F ).

Since Hd(∂E) = 0 and V = B(0, R)\∂E, we may suppose ∂E ⊂ F0.
Otherwise, we just replace F0 by F0 ∪ ∂E and still satisfies all the above
properties.
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Note that each Fk belongs to F(E, V ), hence for each k there exists

a sequence {F jk}j ⊂ F(E, V ) so that F jk
Rn
⇀ Fk. Note that B̄(0, 2R) is a

compact subset in Rn. Hence we have

(4.10) dB̄(0,2R)(F
j
k , Fk)→ 0, j →∞.

But the Fk and F jk are subsets of B̄(0, R), hence dH(F jk , Fk) → 0,
j → ∞. Thus, modulo extracting a subsequence, we may suppose that

dH(F jk , Fk) < 1
j , ∀j, k. As a result, since Fk

V
⇀ F0, we know that F kk

V
⇀ F0

as well.
Now let πC denote the nearest point projection from Rn to C. Then

πC is 1-Lipschitz (cf. [4, Proposition 5.3]). Set G0 = πC(F0). Then G0 ⊂
C and

(4.11) Hd(G0) = Hd(πC(F0)) ≤ Hd(F0).

We would like to construct the sequence Gk from F kk , so that Gk
U
⇀

G0.
Since F kk is a deformation of E in V , by definition of deformations

in V , there exists a deformation ϕk in V such that F kk = ϕk(E).
For each k, let δk ∈

(
0, 1

k diamC
)

be such that ϕk = id on B(∂E, δk).

This is possible because ∂E ⊂ ∂V and ϕk is a deformation in V .
Let Dk denote the convex hull of C\B(∂E, δk). Then we know that

C ⊂ B̄(C\B(∂E, δk), δk), and hence Dk ⊂ C ⊂ B̄(Dk, δk) for all k ∈ N.
We also have that Dk is a compact subset of U . In fact, since E ⊂ Ū

and E ∩ ∂U = ∂E, we have d(E\B(∂E, δk), ∂U) > 0. Since U is convex,
the map d(·, ∂U) : Ū → R is convex. Hence d(E\B(∂E, δk), ∂U) > 0
implies that d(Dk, ∂U) > 0.

Let πk be the nearest point projection to the convex set Dk. Then πk
is 1-Lipschitz (cf. [4, Proposition 5.3]).

Let us prove that

(4.12) sup
x∈V
|πk(x)− πC(x)| ≤ 4Rδk.

Take any x ∈ V and let y = πC(x). Then since C is convex, we know
that

(4.13) 〈z − y, x− y〉 ≤ 0, ∀z ∈ C.

Now let z = πk(x). Then z ∈ Dk ⊂ C. Since Dk ⊂ C ⊂ B̄(Dk, δk), we
have d(x,C) ≤ d(x,Dk) ≤ d(x,C) + δk, that is,

(4.14) |y − x| ≤ |z − x| ≤ |y − x|+ δk.
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By the cosine formula and (4.13), we know that

|z − x|2 = |x− y|2 + |z − y|2 − 2〈z − y, x− y〉|x− y||z − y|
≥ |x− y|2 + |z − y|2,

(4.15)

hence

|z − y|2 ≤ |z − x|2 − |x− y|2

= (|z − x|+ |x− y|)(|z − x| − |x− y|) ≤ 4Rδk,
(4.16)

because x, y, z ∈ V ⊂ B(0, R).
Now we define ψk : E → (E ∩B(∂E, δk)) ∪Dk:

(4.17) ψk(x) =

®
x, x ∈ E ∩ B̄(∂E, δk),

πk ◦ ϕk(x), x ∈ E\B(∂E, δk).

By definition, ψk is Lipschitz both on E∩B̄(∂E, δk) and E\B(∂E, δk).
On their intersection E∩∂B(∂E, δk), by definition we know that ϕk(x) =
x, and since E ∩ ∂B(∂E, δk) ⊂ C ∩ ∂B(∂E, δk) ⊂ Dk, we know that

(4.18) πk ◦ ϕk(x) = πk(x) = x,

hence ψk is well defined and Lipschitz.
Set εk = d(Dk, ∂U). Let Ck = B̄

(
Dk,

1
2εk
)
. Then Ck is a compact

convex subset of U , and we set ψk(x) = x for x ∈ U\Ck, and then
extend ψk to a Lipschitz map U → U . Then Wk := {x ∈ U : ψk(x) 6= x}
is compact in U , and hence ψk(Wk) ∪Wk is compact. Therefore, ψk is
a deformation in U .

We claim that

(4.19) dH(πk(F kk ), ψk(E)) < 2δk.

Let us first prove

(4.20) ψk(E) ⊂ B(πk(F kk ), 2δk).

Take any y ∈ ψk(E). Then there exists x ∈ E so that y = ψk(x). By
definition, if x ∈ E\B(∂E, δk), then y = πk ◦ ϕk(x) ∈ πk(F kk ), because
ϕk(E) = F kk ; if x ∈ E ∩ B(∂E, δk), then ψ(x) = x, and hence ψ(x) ⊂
B(∂E, δk). But note that ∂E ⊂ F kk and ∂E ⊂ B̄(Dk, δk), hence ∂E ⊂
B̄(πk(∂E), δk) ⊂ B̄(πk(F kk ), δk). As a result, ψ(x) ∈ B(πk(F kk ), 2δk).
Altogether we have (4.20).

Next, we prove that

(4.21) πk(F kk ) ⊂ B(ψk(E), 2δk).

Take any y ∈ πk(F kk ). Then there exists x ∈ E so that y = πk ◦ ϕk(x).
By definition, if x ∈ E\B(∂E, δk), then y = πk ◦ ϕk(x) = ψk(x), and
hence y ∈ ψk(E); if x ∈ E ∩ B(∂E, δk), then y = πk ◦ ϕk(x) = πk(x).
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Since d(πk(x), ∂E) ≤ d(πk(x), x) + d(x, ∂E) ≤ δk + δk = 2δk, we know
that y ∈ B(∂E, 2δk) ⊂ B(ψk(E), 2δk). Altogether we have (4.21). And
(4.20) and (4.21) yield Claim (4.19).

By (4.12), we know that

(4.22) dH(πk(F kk ), πC(F kk )) < 4Rδk.

Combined with (4.19), we get

(4.23) dH(ψk(E), πC(F kk )) < (4R+ 2)δk,

and hence

(4.24) lim
k→∞

dH(ψk(E), πC(F kk )) = 0.

Set Gk = ψk(E) ∈ F(E,U). Then, since F kk
V
⇀ F0, we know that

πC(F kk )
V
⇀ πC(F0)=G0. By (4.24) we have ψk(E)

V
⇀ G0, that is, Gk

V
⇀

G0.
Let us now prove (ii). Fix any ε > 0. Let K = Ū\B(∂E, ε). Then K

is a compact subset of V . So there exists k0 > 0 so that for each k > k0,
dK(Gk, G0) < ε.

Now for any x ∈ Gk\B(∂E, ε), since dK(Gk, G0) < ε and Gk ⊂ K,
we get x ∈ B(G0, ε); for x ∈ Gk ∩ B(∂E, ε), since ∂E ⊂ G0, we have
again x ∈ B(G0, ε). Hence Gk ⊂ B(G0, ε). By symmetry we have also
G0 ⊂ B(Gk, ε). Hence dH(Gk, G0) < ε for any k > k0.

The above holds for any ε > 0, hence we have (ii).
Note that G0 ⊂ C, and hence G0 ∩ ∂U\∂E = ∅. By (4.11), we know

that (2.1) holds for G0. Since Gk ∈ F(E,U), by (ii) and the definition
of F(E,U), we have G0 ∈ F(E,U).

Let us now prove (i) and (iii). We already know that G0 ⊂ C, so let
us prove that G0 is minimal in U . In fact, (4.9) yields

(4.25) Hd(F0) ≤ inf
F∈F(E,V )

Hd(F ),

because for any set E ∈ F(E, V )\F, E must have infinite Hd measure,
and hence Hd(E) > Hd(F0).

As a result, by (4.11), we know that Hd(G0) ≤ infF∈F(E,V )H
d(F ) ≤

infF∈F(E,U)H
d(F ), which yields (iii). But we know that F(E, V ) is sta-

ble under deformations in V and G0 ∈ F(E,U) ⊂ F(E, V ), hence G0 is
minimal in V . Finally, we know that ∂E ⊂ F0 and ∂E ⊂ C, hence
∂E = πC(∂E) ⊂ πC(F0) = G0. On the other hand, since G0 ⊂ C, we
have G0 ∩ ∂U ⊂ C ∩ ∂U = ∂E. Hence G0 ∩ ∂U = ∂E = C ∩ ∂U . Thus
we get all claims in (i).
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Our idea of proving Theorem 4.1 is that, when Gk is sufficiently close
to G0, by the local regularity of the minimal set G0, we can deform a big
part of Gk to G0. Note that the local regularity is for a reduced minimal
set, so we will need that the closed support G∗k is sufficiently close to G∗0
as well. Hence we need the following.

Definition 4.5. Let 0 < d < n. Let F ⊂ Rn be closed, let W ⊂ Rn be
an open set. Set

(4.26) F∗d (F,W ) = {H closed: ∃M ∈ F(F,W ) and N ⊂W

with Hd(N) = 0 such that M = H ∪N}.

It is easy to see from the definition that F∗d (F,W ) is stable under
Lipschitz deformations in W and

(4.27) inf
K∈F∗

d
(F,W )

Hd(K) = inf
K∈Fd(F,W )

Hd(K).

Proposition 4.6. Let n, d, E, U , and C be as in the statement of
Theorem 4.1, so that (4.1) holds. Let V be as above. Then there exists
{Ek}k∈N ∈ F∗d (E,U) and a closed set E0 ⊂ Ū such that the following
holds:

(i) E0 ∩ ∂U = ∂E and E0 ⊂ C;

(ii) E0 ∩ U = E0 ∩ V is a reduced minimal set in V and Hd(E0) ≤
infF∈F(E,U)H

d(F );

(iii) Ek ⊂ B(E0, 2
−k).

Proof: Let G0 and Gk be as obtained in Proposition 4.4. We set E0 =
G∗0∪∂G0. Then G∗0 ⊂ E0 ⊂ G0 ⊂ C, and (i) and (ii) hold directly for E0.

The idea of constructing Ek is roughly the following: we fix a small
neighborhood of E0, say W , and look at the part Gk\W . Note that
G0\W is compact and the measure of G0\W is zero, hence we can use a
Federer–Fleming projection ψ to project G0\W to a union of (d−1)-faces
of dyadic cubes and a part in W . Then ψ(Gk)\W will be very close to
this union of (d−1)-faces, and hence we can use a deformation retract to
map this part to this union of (d−1)-faces. And after this deformation the
closed support of the image of Gk will be contained in ψ(Gk)\W , which
is contained in B(E0, 2

−k). Then we set Ek to be the closed support
of ψ(Gk).

So let us do it more precisely. Fix any k.
Let A1 = G0∩B(E0, 2

−k−5) and A2 = G0\B(E0, 2
−k−5). Then G0 is

the disjoint union of A1 and A2, and Hd(A2) = 0.
Let l ∈ N be such that 2l > max{10,

√
n}, and d(A2, ∂U) > 2−l.
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Set

(4.28) S = {Q ∈ ∆k+4l : Q ⊂ U, Q ∩ B̄(E0, 2
−k−2l) = ∅}.

Then the support |S| of S satisfies that

(4.29) |S| ∩B(E0, 2
−k−2l) = ∅ and d(|S|, ∂U) > 0.

Also by definition, since d(A2, ∂U)>2−l and d(A2, E0)≥2−k−5 > 2−k−l,
we have

(4.30) A2 ⊂ |S|◦ and d(A2, ∂|S|) > 2−k−2l,

and hence

(4.31) B(A2, 2
−k−2l) ⊂ |S|◦.

By definition of A2, we know that

(4.32) Hd(A2) = 0.

Since |S| ⊂ U , hence we can find a Federer–Fleming projection ψ : U →
U so that the following holds:

ψ(x) = x for x ∈ U\|S|◦;(4.33)

ψ(x) = x for x ∈ Sd−1,(4.34)

where Sd−1 denotes the union of (d− 1)-faces of S;

ψ(A2) ⊂ Sd−1 ∪ ∂|S|;(4.35)

ψ(Q) ⊂ Q for every Q ∈ S.(4.36)

Note that the set {x ∈ U : ψ(x) 6= x} ⊂ |S| and |S| is compact, hence
ψ is a deformation in U . Moreover, (4.36) implies that

(4.37) |ψ(x)− x| ≤
√
n2−k−4l < 2−k−3l.

By (4.30) and (4.37), we get

(4.38) d(ψ(A2), |S|C) > 2−k−3l,

and hence by (4.35),

(4.39) ψ(A2) ⊂ Sd−1.

Let L ≥ 1 denote the Lipschitz constant of ψ.
Now modulo taking a subsequence, we suppose that

Gk ⊂ B(G0, L
−12−k−5l).

Then

(4.40) Gk ⊂ B(A1, L
−12−k−5l) ∪B(A2, L

−12−k−5l).
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Since ψ is L-Lipschitz, we have

(4.41) ψ(Gk)⊂B(ψ(G0), 2−k−5l)⊂B(ψ(A1), 2−k−5l)∪B(ψ(A2), 2−k−5l).

By (4.39), we have

(4.42) ψ(Gk) ∩B(ψ(A2), 2−k−5l) ⊂ B(Sd−1, 2
−k−5l)

and

(4.43) d(ψ(Gk) ∩B(ψ(A2), 2−k−5l), |S|C) > 2−k−4l.

Let T = {Q ∈ S : Q ∩ B(ψ(A1), 2−k−5l) = ∅}. Then |T | ∩ B(ψ(A1),
2−k−5l) = ∅, and by (4.41) and (4.42) we have

(4.44) ψ(Gk) ∩ |T | ⊂ ψ(Gk) ∩B(ψ(A2), 2−k−5l) ⊂ B(Sd−1, 2
−k−5l).

Now we will define a map from |T | to |T | that deforms ψ(Gk)∩|T | to
Sd−1∪∂|T |. The idea will be the same as the Federer–Fleming projection.
So we need the following lemma:

Lemma 4.7. Let d− 1 < m. Let Q be an m-dimensional cube of side-
length l(Q). For 1 ≤ k ≤ m, let Qk denote the union of its k-faces. Then
there exists a Lipschitz map ϕQ : Q→ Q such that

ϕQ

Å
B

Å
Qd−1,

1

10
l(Q)

ã
∩Q
ã
⊂
Å
B

Å
Qd−1,

1

10
l(Q)

ã
∩Qm−1

ã
,(4.45)

ϕQ

Å
B

Å
∂Q,

1

10
l(Q)

ã
∩Q
ã
⊂ ∂Q,(4.46)

ϕQ|∂Q = id .(4.47)

Proof: For x ∈ Rm, we write its coordinates as x = (x1, . . . , xm).
Fix any d− 1 < m. Let us first look at the cube Q = [−1, 1]m ⊂ Rm.

It is a cube of dimension m, with side-length 2.
Let o be the origin and let f : Q\{o} → ∂Q be the radial projection,

that is, for any x ∈ Q\{o}, let δx = min1≤i≤m d(xi, {−1, 1}), and then

(4.48) f(x) =
x

1− δx
.

Now suppose that x ∈ B
(
Qd−1,

1
5

)
∩ Q. Then there exists a (d −

1)-face σ of Q so that x ∈ B
(
σ, 1

5

)
. Without loss of generality, suppose

σ = [−1, 1]d−1×{1, . . . , 1} = {y ∈ Q : yd = yd+1 = · · · = ym = 1}. Then
for any point y ∈ Q,

(4.49) d(y, σ) =

Ã
m∑
i=d

(1− yi)2.
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Thus, for the point x, we have

(4.50) d(f(x), σ) = d

Å
x

1− δx
, σ

ã
=

Ã
m∑
i=d

Å
1− xi

1− δx

ã2

.

Since 1− δx ≤ 1, we have

(4.51) d(f(x), σ) ≤

Ã
m∑
i=d

(1− xi)2 ≤ d(x, σ) <
1

5
.

As a result, we know that

(4.52) f

Å
B

Å
Qd−1,

1

5

ã
∩Q
ã
⊂ B

Å
Qd−1,

1

5

ã
∩Qm−1.

Now we set ϕQ : Q→ Q:

(4.53) ϕQ(x) =


f(x), d(x, ∂Q) ≤ 1

5 ,

(1− t)f(x) + tx, d(x, ∂Q) = 1
5 + t

5 , t ∈ [0, 1],

x, d(x, ∂Q) ≥ 2
5 .

Then ϕQ satisfy (4.45), (4.46), and (4.47).
Now for a general cube Q′, let ψ : Q → Q′ be an isometry, then it is

enough to set ϕQ′ = ψ ◦ ϕQ ◦ ψ−1.

Let us now construct the aforementioned Lipschitz map from |T |
to |T | that deforms ψ(Gk)∩|T | to Sd−1∪∂|T |. We will recurrently define
a sequence of maps ϕm : |Tm| ∪ ∂|T | → |Tm−1| ∪ ∂|T | for d ≤ m ≤ n, so
that

ϕm(Q) ⊂ Q, ∀Q ∈ Tm,(4.54)

ϕm(x) = x, ∀x ∈ ∂|T | ∪ |Td−1|,(4.55)

and

(4.56) ϕm(x)∈Qd−1∪∂|T |, ∀x∈Q∩B
Å
Td−1,

1

10
2−k−4l

ã
, ∀Q∈Tm.

Let us first define ϕd. Take any x ∈ |Td| ∪ ∂|T |. Set ϕd(x) = x if x ∈
∂|T |. Otherwise, there exists Q ∈ Td so that Q◦ ∩ |Td| = ∅, and set
x = ϕQ(x), where ϕQ is the one obtained in Lemma 4.7. Then by (4.47),
ϕd is well defined.

Now suppose that ϕm−1 is already defined and satisfies (4.54)–(4.56)
replacing m by m− 1. Let us define ϕm.

Take any x ∈ |Tm|∪∂|T |. Set ϕm(x) = x if x ∈ ∂|T |. For any Q ∈ Tm
so that Q◦ ∩ ∂|T | = ∅, we first define fQ(x) = ϕm−1 ◦ ϕQ(x) ∀x ∈[
B
(
∂Q, 1

10 l(Q)
)
∩Q
]
∪∂|T |, where ϕQ is the one obtained in Lemma 4.7.
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Note that ϕm−1 and ϕQ are both the identity on ∂|T | ∩Q, hence fQ is
well defined. Also by definition of ϕQ, for each Q it is easy to see that
ϕQ = ϕQ′ for any Q,Q′ ∈ Tm so that Q ∩Q′ 6= ∅. Hence fQ = fQ′ .

Then we extend fQ to a map from Q → Q. And set ϕm(x) = fQ(x)
for x ∈ Q and for all Q ∈ Tm.

Let us verify that ϕm is well defined and satisfies (4.54)–(4.56).
Take any Q1, Q2 ∈ Tm and let x ∈ Q1 ∩ Q2. Then x ∈ ∂Q1 ∩ ∂Q2.

By definition of ϕQ, we know that ϕQ1
(x) = ϕQ2

(x) = x, and hence
fQ1

(x) = ϕm−1 ◦ ϕQ1
(x) = ϕm−1 ◦ ϕQ1

(x) = fQ2
(x). Hence ϕm is well

defined.
Since fQ(Q) ⊂ Q, we have (4.54).
To check (4.55), we know that fQ|∂|T | = id by definition. For x ∈

|Td−1|, let Q ∈ T be such that x ∈ Qd−1. Then by definition, ϕm(x) =
ϕm−1 ◦ ϕQ(x). But ϕQ(x) = x for x ∈ ∂Q, and ϕm−1(x) = x for x ∈
|Td−1| by hypothesis of induction, hence ϕm(x) = x. Thus we get (4.55).

Finally, to verify (4.56), take any Q ∈ Tm and any x ∈ Q ∩ B(
Td−1,

1
102−k−4l

)
. By definition, we know that ϕm(x) = fQ(x) = ϕm−1 ◦

ϕQ(x). By Lemma 4.7, x ∈ Q∩B
(
Td−1,

1
102−k−4l

)
implies that ϕQ(x) ∈

∂Q ∩ B
(
Td−1,

1
102−k−4l

)
. Hence by hypothesis of induction for m − 1

in (4.56), we have that ϕm−1(ϕQ(x)) ∈ Qd−1 ∪ ∂|T |.
By induction, we get that ϕm satisfies (4.54)–(4.56), d ≤ m ≤ n.
Now we set ϕ : U → U :

(4.57) ϕ(x) =

®
ϕn(x), x ∈ |T |,
x, x ∈ U\|T |.

Note that ϕn(x) = x for x ∈ ∂|T |. Hence ϕ is well defined, and is a
Lipschitz deformation in U .

Now set Hk = ϕ ◦ ψ(Gk). Then Hk ∈ F(E,U). Set Ek = H∗k . Then
Ek ∈ F∗d (E,U). Let us now verify (iii) of Proposition 4.6.

By (4.44), ψ(Gk) ∩ |T | ⊂ B(Sd−1, 2
−k−5l) ∩ |T | ⊂ B(Td−1, 2

−k−5l)
and ϕ||T | = ϕn||T |, hence by (4.56), we obtain

(4.58) ϕ ◦ ψ(Gk ∩ |T |) ⊂ |Td−1| ∪ ∂|T |.

As a result, we have

(4.59) Hd(ϕ ◦ ψ(Gk ∩ |T |) ∩ |T |◦) = Hd(ϕ ◦ ψ(Gk ∩ |T |)\∂|T |) = 0.

Since

(4.60) Hk = ϕ ◦ ψ(Gk) = [ϕ ◦ ψ(Gk ∩ |T |)] ∪ [ϕ ◦ (ψ(Gk)\|T |◦)],

by (4.58) and (4.59), we get

(4.61) Ek = H∗k ⊂ [ϕ ◦ ψ(Gk ∩ |T |) ∩ ∂|T |] ∪ [ϕ ◦ (ψ(Gk)\|T |◦)].
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Let us look at ϕ◦ψ(Gk∩|T |)∩∂|T |. Take any y ∈ ϕ◦ψ(Gk∩|T |)∩∂|T |,
then there exists x ∈ Gk so that y = ϕ ◦ ψ(x). But by definition of ϕ
and ψ, we have

||y − x|| ≤ ||ϕ ◦ ψ(x)− ψ(x)||+ ||ψ(x)− x||

≤
√
n2−k−4l +

√
n2−k−4l < 2−k−2l.

(4.62)

Since y ∈ ∂|T |, we get x ∈ B(∂|T |, 2−k−2l). Now by definition of T
and S, we know that for any z ∈ ∂|T |, d(z, ∂U ∪ B̄(E0, 2

−k−2l) ∪
B(ψ(A1), 2−k−5l)) < 2−k−2l. Hence

(4.63) d(x, ∂U ∪ B̄(E0, 2
−k−2l) ∪B(ψ(A1), 2−k−5l))

< 2−k−2l + 2−k−2l < 2−k−l.

So there are three cases:
If d(x, ∂U)<2−k−l, by definition of l, we have x 6∈ B(A2, 2

−k−5), and
by (4.40) we see that x ∈ B(A1, 2

−k−5l), and thus by (4.62) and the
definition of A1,

y ∈ B(A1, 2
−k−5l + 2−k−2l) ⊂ B(E0, 2

−k−5l + 2−k−l + 2−k−2l)

⊂ B(E0, 2
−k).

(4.64)

If d(x, B̄(E0, 2
−k−2l)) < 2−k−l, then by (4.62)

y ∈ B(B̄(E0, 2
−k−2l), 2−k−l + 2−k−2l)

⊂ B(E0, 2
−k−2l + 2−k−l + 2−k−2l)

⊂ B(E0, 2
−k).

(4.65)

If d(x,B(ψ(A1), 2−k−5l)) < 2−k−l, by definition of ψ and A1, we know
that ψ(A1) ⊂ B(A1, 2

−k−4l) ⊂ B(E0, 2
−k−l + 2−k−4l), and hence

x ∈ B(B(ψ(A1), 2−k−5l), 2−k−l)

⊂ B(ψ(A1), 2−k−5l + 2−k−l)

⊂ B(E0, 2
−k−l + 2−k−4l + 2−k−5l + 2−k−l).

(4.66)

Thus by (4.62), we have again

y∈B(x, 2−k−2l)⊂B(E0, 2
−k−l+2−k−4l+2−k−5l+2−k−l+2−k−2l)

⊂B(E0, 2
−k).

(4.67)

Altogether, we have

(4.68) ϕ ◦ ψ(Gk ∩ |T |) ∩ ∂|T | ⊂ B(E0, 2
−k).

Now for the set ϕ(ψ(Gk)\|T |◦), take any y ∈ ϕ(ψ(Gk)\|T |◦). Again
there exists x ∈ Gk so that y = ϕ ◦ ψ(x), and (4.62) holds. Note that
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ψ(x) 6∈ |T |◦, by definition of ϕ, ψ(x) = ϕ(ψ(x)) = y. Thus y 6∈ |T |◦. By
definition of T , we know that

(4.69) d(y, ∂U ∪ B̄(E0, 2
−k−2l) ∪B(ψ(A1), 2−k−5l)) < 2−k−2l,

and hence x satisfies again (4.63), and the exact argument as above gives
that

(4.70) y ∈ B(E0, 2
−k).

Hence

(4.71) ϕ(ψ(Gk)\|T |◦) ⊂ B(E0, 2
−k).

Combined with (4.61) and (4.68), we have

(4.72) Ek ⊂ B(E0, 2
−k).

This completes the proof of Proposition 4.6.

Now let us fix the set E0 and the sequence {Ek}k as obtained in
Proposition 4.6. We want to prove that, when Ek is sufficiently close
to E0, we can deform Ek into the union of E0 and a set of very small
measure, so that the measure after the deformation can be arbitrarily
close to Hd(E0) = infF∈F(E,U)Hd(F ), which yields (i) of Theorem 4.1.

The construction of such a deformation is similar to the construction
in [5]. By minimality of E0, around each regular point x of E0 there is
a neighborhood retract to E0 in some ball centered at x with a uniform
Lipschitz constant. We use a finite number of such balls to cover a big
part of E0 and the measure of E0 which is not covered is very small.
When Ek is close enough to E0, a big part of Ek is contained in the
union of these balls, so we can deform Ek onto E0 in each of these
balls, and then extend this deformation to the whole space with the
same Lipschitz constant. Outside these balls, since each Ek is very close
to E0, we expect that measures of Ek are comparable to the measure
of E0, and so the measures of the image of Ek outside the above balls
are still small.

But in our case there is no reason why the measures of Ek should be
uniformly comparable to that of E0 at small scales. This issue results
in more works. In other words, we have to first deform {Ek} into a new
sequence {E′k} whose local measures can be controlled by that of E0 and
they are still very close to E0 for k large.

Now let us give more details:
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Set

(4.73) Q′k := {Q ∈ ∆k : Q ∩ E0 6= ∅}
and

(4.74) Qk = {Q ∈ ∆k : ∃Q′ ∈ Q′k such that Q ∩Q′ 6= ∅},
that is, Q′k is the family of elements in ∆k that are neighbors of E0, and
we get Qk by adding another layer of cubes in ∆k to Qk. Let |Qk| =⋃
Q∈Qk Q be the union of elements in Qk, and for each j ≤ n, let Qk,j be

the set of all j-faces of elements in Qk, and let Sk,j =
⋃
σ∈Qk,j σ denote

the j-skeleton of Qk.
Set ∂E0 = E0 ∩ ∂U , which is equal to ∂E by Proposition 4.6, and set

(4.75) Rk :={Q∈∆k : ∃Q′∈∆k such that Q′∩∂E0 6=∅ and Q∩Q′ 6=∅}.
Let |Rk| =

⋃
Q∈Rk Q, and for each j ≤ n, let Rk,j be the set of all j-faces

of elements in Rk, and let Tk,j =
⋃
σ∈Rk,j σ denote the j-skeleton of Rk.

It is easy to see that

(4.76) Q′k ⊂ Qk and Rk ⊂ Qk,
and hence

(4.77) |Rk| ⊂ |Qk|, Rk,j ⊂ Qk,j , and Tk,j ⊂ Sk,j for all j ≤ n.
Let us first give some properties for the sets Sk,d and Tk,d, where d is

the dimension of E0.

Proposition 4.8. Let E, U , and C be as in the statement of Theo-
rem 4.1, so that (4.1) holds, and so that E∩∂U is of finite (d−1)-Haus-
dorff measure. Let E0 and {Ek}k be as obtained in Proposition 4.6. Let
Q′k, Qk, Qk,j, Sk,j, Rk, Tk,j be as defined above. Then

(i) limk→∞Hd(Tk,d)→ 0.
(ii) There exists M > 0 which depends only on n and d such that for

each k > k0, and each Q ∈ Qk and Q◦ ∩ |Rk−2| = ∅, we have

(4.78) Hd(Sk,d ∩Q) < MHd(E0 ∩ V (Q)),

where V (Q) denotes the union of cubes that touch some cube that
touches Q, that is:

(4.79) V (Q) := ∪{Q′ ∈ ∆k : there exists Q′′ ∈ ∆k

such that Q′′ ∩Q 6= ∅ and Q′′ ∩Q′ 6= ∅}.

Proof: (i) Since ∂E0 = ∂E is of finite (d − 1)-Hausdorff measure, we
apply [9, Theorem 3.2.39] and get

(4.80) Md−1(∂E0) = Hd−1(∂E0) <∞,
where Md−1 stands for the (d− 1)-dimensional Minkowski content.
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By definition of Minkowski content, we know that

(4.81) lim
r→0+

Hn(B(∂E0, r))

rn−d+1
<∞,

and hence, when k is large, we have

(4.82) Hn(B(∂E0, 2
−k)) < C02−k(n−d+1).

We know that |Rk| ⊂ B(∂E0, 2
−k+3). Hence for k large,

Hn(|Rk|) ≤ Hn(B(∂E0, 2
−k+3))

< C02(−k+3)(n−d+1) = C12−k(n−d+1).
(4.83)

On the other hand,

(4.84) Hd(Tk,d) =
∑

σ∈Rk,d

Hd(σ) ≤
∑
Q∈Rk

∑
σ∈∆d(Q)

Hd(σ).

Now for each Q ∈ Rk, we know that
∑
σ∈∆d(Q)Hd(σ) = αn,d2

−kd,
where αn,d is the d-Hausdorff measure of the d-skeleton of a unit cube,
which is a constant that depends only on n and d. As a result, by (4.84),

(4.85) Hd(Tk,d) ≤
∑
Q∈Rk

αn,d2
−kd = αn,d2

−kd]Rk,

where ]Rk is the number of cubes in Rk.
Meanwhile, since the Hn measure of each cube in Rk is 2−kn we have,

for k large,

(4.86) ]Rk =
Hn(|Rk|)

2−kn
≤ C12−k(n−d+1)

2−kn
= C12kd−k,

where the second inequality is by (4.83). Combined with (4.85), we get

(4.87) Hd(Tk,d) ≤ αn,d2−kd × C12kd−k = C1αn,d2
−k → 0, as k →∞,

which yields (i).

(ii) Fix any Q ∈ Qk. By definition, there exists Q′ ∈ ∆k such that
Q′ ∩ E0 6= ∅ and Q ∩ Q′ 6= ∅. Take y ∈ Q′ ∩ E0. Then by definition
of V (Q), B(y, 2−k) ⊂ V (Q). On the other hand, since Q◦ ∩ |Rk−2| = ∅,
we know that d(Q′, ∂E0) > 2−k+2. In particular, d(y, ∂E0) > 2 × 2−k,
which means B(y, 2×2−k) ⊂ V (V is as defined before Proposition 4.4).
Since E0 is a reduced minimal set in V , by Ahlfors regularity for reduced
minimal sets (cf. [8, Proposition 4.1]),

(4.88) C−1
2 2−kd ≤ Hd(E0 ∩B(y, 2−k)) ≤ C22−kd,
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where C2 is a constant that depends only on n and d. As a result, we
have

Hd(Sk,d ∩Q) = α(n, d)2−kd ≤ C2α(n, d)Hd(E0 ∩B(y, 2−k))

≤ C2α(n, d)Hd(E0 ∩ V (Q)).
(4.89)

Next, let us construct the new sequence.

Proposition 4.9. Let E, U , and C be as in the statement of Theo-
rem 4.1, so that (4.1) and (4.2) hold. Let E0 and {Ek}k be obtained as
in Proposition 4.6. Let Sk,j be as defined above. Then for each ε > 0,
there exist a sequence of deformations fk in Rn and uk > 0 such that

Hd(Ek ∩B(∂E0, uk)) < ε,(4.90)

fk = id in B(∂E0, uk),(4.91)

fk(Ek) ⊂ B(E0,
√
n2−k+1),(4.92)

and for k large,

(4.93) Hd(fk(Ek)\Sk,d) < ε.

Proof: Fix any k > k0. Let Q′k, Qk, Qk,j , Rk, Tk,j be as defined above.
Since Ek ⊂ B(E0, 2

−k), Ek ⊂ |Qk|. And we know that Ek is contained
in a deformation of E, hence Ek has finite d-Hausdorff measure. As a
result, by a standard Federer–Fleming argument (cf. Section 4.2 of [9],
or Section 3 of [8]), there exists a Lipschitz map ϕk : |Qk| → |Qk| (the
Lipschitz constant Lk depends on k and Lk ≥ 1) such that

ϕk(Q) ⊂ Q, ∀Q ∈ Qk,(4.94)

ϕk(Ek) ⊂ Sk,d,(4.95)

||ϕk(x)− x|| ≤
√
n2−k,(4.96)

and

(4.97) ϕk(x) = x, ∀x ∈ Sk,d.
In particular, we have ϕk(Ek) ⊂ Sk,d.
We will modify ϕk to fk so that fk satisfies (4.91).
Fix ε > 0. Let µ = HdbEk , then µ is a finite measure. In particular,

we have

lim
r→0

µ(B(∂E0, r)) = µ(∂E0) = Hd(Ek ∩ ∂E0)

≤ Hd(∂E0) = Hd(∂E) = 0,
(4.98)

because ∂E0 = ∂E.
Take uk>0 such that µ(B(∂E0, 2uk))<(3Lk+2)−dε, that is, Hd(Ek∩

B(∂E0, 2uk)) < (3Lk + 2)−dε. Also, take R > 1 so that E0 ⊂ B(0, R).
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For any x ∈ B(0, R), set

(4.99) tx =


0, x ∈ B(∂E0, uk),

d(x,∂E0)
uk

− 1, x ∈ B(∂E0, 2uk)\B(∂E0, uk),

1, x ∈ B(0, R)\B(∂E0, 2uk),

and set fk(x) = (1− tx)x+ txϕk(x).
Then fk : B(0, R) → Rn is 2Lk + 1-Lipschitz. In fact, for any x, y,

suppose that d(x, ∂E0) ≥ d(y, ∂E0). Then we get

||fk(x)− fk(y)||
= ||[(1− tx)x+ txϕk(x)]− [(1− ty)y + tyϕk(y)]||
= ||(1− tx)(x− y) + tx(ϕk(x)− ϕk(y)) + (tx − ty)(ϕk(y)− y)||
≤ ||(1− tx)(x− y)||+ ||tx(ϕk(x)− ϕk(y))||+ ||(tx − ty)(ϕk(y)− y)||
≤ (1− tx)||x− y||+ (tx)Lk||x− y||+ ||(tx − ty)(ϕk(y)− y)||
≤ Lk||x− y||+ ||(tx − ty)(ϕk(y)− y)||.

(4.100)

To estimate the second term, when d(y, ∂E0) ≥ 2uk, we know that
tx = ty = 1, and this term vanishes. So suppose that d(y, ∂E0) < 2uk.
Let z ∈ ∂E0 be such that d(y, ∂E0) = d(z, y). Then we have

(4.101) ϕk(y)− y = ϕk(y)− ϕk(z) + ϕk(z)− y.

Since ∂E0 ⊂ Tk,d, we know that ϕk is identity on ∂E0, and hence ϕk(z) =
z. Therefore

||ϕk(y)− y|| = ||ϕk(y)− ϕk(z) + (z − y)|| ≤ (1 + Lk)||z − y||
= (1 + Lk)d(y, ∂E0) ≤ 2(1 + Lk)uk.

(4.102)

On the other hand, since d(x, ∂E0) ≥ d(y, ∂E0), we have tx ≥ ty, and
hence

0 ≤ tx − ty ≤
Å
d(x, ∂E0)

uk
− 1

ã
−
Å
d(y, ∂E0)

uk
− 1

ã
=

1

uk
[d(x, ∂E0)− d(y, ∂E0)],

(4.103)

hence

(4.104) ||tx − ty|| ≤
1

uk
||d(x, ∂E0)− d(y, ∂E0)|| ≤ 1

uk
||x− y||.
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Combine (4.102) and (4.104) to obtain

||(tx − ty)(ϕk(y)− y)|| ≤ 1

uk
||x− y|| × 2(1 + Lk)uk

≤ 2(1 + Lk)||x− y||.
(4.105)

Together with (4.100), we get

(4.106) ||fk(x)− fk(y)|| ≤ (3Lk + 2)||x− y||.
We extend fk to a (3Lk + 2)-Lipschitz map in Rn, so that fk = id

outside a compact set. Then fk is a deformation in Rn.
By definition, for x ∈ Ek we know that

(4.107) ||f(x)−x|| = ||(1−tx)x+txϕk(x)−x|| ≤ ||ϕk(x)−x|| ≤
√
n2−k,

where the last inequality is by (4.96). Hence

fk(Ek) ⊂ B(Ek,
√
n2−k) ⊂ B(E0,

√
n2−k+1),

which yields (4.92).
Moreover, by definition of fk, fk(Ek\B(∂E0, 2uk)) ⊂ Sk,d, and hence

Hd(fk(Ek)\Sk,d) ≤ Hd(fk(Ek ∩B(∂E0, 2uk)))

≤ (3Lk + 2)dHd(Ek ∩B(∂E0, 2uk)) < ε,
(4.108)

which gives (4.93).

Now for k large, we will deform a big part of Ek to E0:

Proposition 4.10. Let E, U , and C be as in the statement of Theo-
rem 4.1, so that (4.1) and (4.2) hold. Let E0 and {Ek}k be obtained as
in Proposition 4.6. Then for k large, for each ε > 0, there exist sk > 0
and a deformation hk in U such that hk = id in B(∂E0, sk) and

(4.109) Hd(hk(Ek)) < Hd(E0) + ε.

Proof: Since E0 is a reduced and minimal in V = B(0, R)\∂E0, the set
of regular points E0P of E0 is of full measure: Hd(E0\E0P ) = 0. By
the C1-regularity (Theorem 2.25) for regular points, for each x ∈ E0P ,
there exists rx > 0 with B(x, 2rx) ⊂ U such that for all r < rx, there
is a Lipschitz deformation retraction ϕx,r from B̄(x, r) → E0 ∩ B̄(x, r),
with Lipschitz constant no more than 2, and such that |ϕx,r(y) − y| ≤
2 dist(y,E0). Note that Hd(E0\E0P ) = 0.

We apply the Vitali covering theorem (cf. for example [21, Theo-
rem 2.8]) to the family B := {B̄(x, r) : x ∈ E0P , r < rx}, the mea-
sure µ = Hd|E0P

, and get that for any fixed ε > 0, there exist a finite set
of points {xj}1≤j≤m ⊂ E0P and rj ∈ (0, rxj ) such that the balls B̄(xj , rj)
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are disjoint, B(xj , 2rj) ∩ ∂E0 = ∅, and Hd
(
E0P \

⋃m
j=1 B̄(xj , rj)

)
<

ε
3M×2d+1×7n

. Take tj < rj so thatHd
(
E0P \

⋃m
j=1B(xj , tj)

)
< ε

4M×2d×7n
.

Let r=minjrj and t=minj(rj−tj). Set W=
{
x : d

(
x,
(⋃m

j=1B(xj ,rj)
)
∪

E0

)
> t
}
∪ B(∂E0, r). Then d

(
W,
(⋃m

j=1B(xj , rj)
))
≥ t. Define a Lips-

chitz map g :
(⋃m

j=1B(xj , rj)
)
∪W → Rn by g(x) = ϕxj ,rj (x) when x ∈

B(xj , rj) and g(x)=x for x ∈W . Then g is 2-Lipschitz in each B(xj , rj)
and in W , and for any x ∈

⋃m
j=1B(xj , rj), we have

(4.110) |g(x)− x| ≤ 2 dist(x,E0).

For each k such that
√
n2−k+2 < t/2, we claim that the restriction

of g to
[
fk(Ek) ∩

(⋃m
j=1B(xj , rj)

)]
∪ W is 2-Lipschitz, where fk and

uk are obtained as in Proposition 4.9 with respect to ε
4×2d

. So take

x, y ∈
[
fk(Ek) ∩

(⋃m
j=1B(xj , rj)

)]
∪W . We know that g is 2-Lipschitz

in each B(xj , rj) and in W , hence the rest of the argument deals with
the case when x, y do not belong to the same B(xj , rj) or W .

If x, y belong to two differentB(xj , rj)∩fk(Ek), we know that |x−y| ≥
t. Then by (4.110), we have

|g(x)− g(y)| ≤ |g(x)− x|+ |x− y|+ |g(y)− y|
≤ 2d(x,E0) + 2d(y,E0) + |x− y|.

(4.111)

But k is such that
√
n2−k+2<t/2, and x, y∈fk(Ek)⊂B(E0,

√
n2−k+1)⊂

B
(
E0,

t
4

)
, hence

(4.112) |g(x)− g(y)| ≤ t+ |x− y| ≤ 2|x− y|,

because |x− y| ≥ t.
If x ∈W and y ∈ B(xj , rj)∩fk(Ek) for some j, then we have similarly

|g(x)− g(y)| = |x− g(y)| ≤ |x− y|+ |y − g(y)|
≤ |x− y|+ 2d(y,E0) ≤ |x− y|+ t/2 ≤ 2|x− y|,

(4.113)

because d(y,E0) < t
4 and |x− y| ≥ t.

Hence g is 2-Lipschitz on
[
fk(Ek)∩

(⋃m
j=1B(xj , rj)

)]
∪W . So we can

extend it to a 2-Lipschitz map gk from Rn to Rn.
We would like to control the measure ofHd

(
fk(Ek)\

(⋃m
j=1B(xj , rj)

))
.

Since the major part of fk(Ek) is included in Sk,d, let us first estimate
Hd
(
Sk,d\

(⋃m
j=1B(xj , rj)

))
.

Take any Q ∈ Qk and Q◦ ∩ |Rk−2| = ∅. Then by Proposition 4.8 (ii),
we know that for k > k0,

(4.114) Hd(Sk,d ∩Q) ≤MHd(E0 ∩ V (Q)).
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Now if k is such that 3×
√
n2−k < t, for each Q such that

Q\
(⋃m

j=1B(xj , rj)
)
6= ∅, we know that d

(
Q,
(⋃m

j=1B(xj , tj)
))
> t −√

n2−k, and hence d
(
V (Q),

(⋃m
j=1B(xj , tj)

))
> t−3×

√
n2−k > 0, that

is V (Q) ∩
(⋃m

j=1B(xj , tj)
)

= ∅. Hence we have

Hd
(
Sk,d\

(
|Rk−2| ∪

(
m⋃
j=1

B(xj , rj)

)))

≤
∑ß

Hd(Sk,d ∩Q) : Q ∈ Qk, Q◦ ∩ |Rk−2| = ∅,

and Q\
Å m⋃
j=1

B(xj , rj)

ã
6= ∅
™

≤
∑ß

MHd(E0∩V (Q)) : Q∈Qk and V (Q)∩
Å m⋃
j=1

B(xj , tj)

ã
=∅
™

= M

∫
E0

∑ß
χV (Q) : Q∈Qk and V (Q)∩

Å m⋃
j=1

B(xj , tj)

ã
= ∅
™
dHd

≤M
∫
E0\(

⋃m

j=1
B(xj ,tj))

ï∑
Q∈Qk

χV (Q)

ò
dHd.

(4.115)

Note that
∑
Q∈Qk χV (Q) ≤

∑
Q∈∆k

χV (Q) ≤ 7n, hence

Hd
Å
Sk,d\

Å
|Rk−2| ∪

Å m⋃
j=1

B(xj , rj)

ããã
≤M

∫
E0\(

⋃m

j=1
B(xj ,tj))

∑
Q∈Qk

χV (Q)

≤ 7nM

∫
E0\(

⋃m

j=1
B(xj ,tj))

dHd=7nMHd
Å
E0\
Å m⋃
j=1

B(xj , tj)

ãã
< 7nM × ε

4M × 2d × 7n
=

ε

4× 2d
.

(4.116)

Next let us estimate Hd(Sk,d ∩ |Rk−2|). For each Q ∈ ∆k−2, we know
that

(4.117) Hd(Sk,d ∩Q) = 4n−dHd(Sk−2,d ∩Q),
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hence

Hd(Sk,d∩|Rk−2|)≤
∑

Q∈Rk−2

Hd(Sk,d ∩Q)

= 4n−d
∑

Q∈Rk−2

Hd(Sk−2,d∩Q)≤C34n−dHd(Tk−2,d),
(4.118)

where C3 = C3(n, d) is the number of cubes Q ∈ ∆k that share a same
d-face. This is a constant that only depends on n and d.

By Proposition 4.8 (i), we know that for k large, Hd(Sk,d ∩ |Rk−2|) <
ε

4×2d
.

Recall that uk is such that

(4.119) Hd(fk(Ek)\Sk,d) <
ε

4× 2d
,

hence for k large, we have

Hd(gk(fk(Ek))) ≤ Hd(gk(Sk,d)) +Hd(gk(fk(Ek)\Sk,d))

≤ Hd
Å
gk

Å
Sk,d ∩

Å m⋃
j=1

B(xj , rj)

ããã
+Hd(gk(Sk,d ∩ |Rk−2|))

+Hd
Å
gk

Å
Sk,d\

Å
|Rk−2|∪

Å m⋃
j=1

B(xj , rj)

ãããã
+Hd(gk(fk(Ek)\Sk,d))

≤ Hd(E0)+2d
ï
Hd(Sk,d ∩ |Rk−2|)

+Hd
Å
Sk,d\

Å
|Rk−2|∪

Å m⋃
j=1

B(xj , rj)

ããã
+Hd(fk(Ek)\Sk,d)

ò
≤ Hd(E0) + 2d

Å
ε

4× 2d
+

ε

4× 2d
+

ε

4× 2d

ã
= Hd(E0) +

3

4
ε.

(4.120)

Note that gk ◦ fk is the identity map in the neighborhood B(∂E0, sk)
of ∂E0, with sk = min{uk, r}. But gk ◦ fk might even not be a deforma-
tion in Rn\∂E0, because the image of gk ◦ fk might touch ∂E0.

We still have to modify this sequence gk ◦ fk(Ek) to a sequence of
deformations of Ek in U .

For this purpose, let Dk denote the convex hull of Ek\B(∂E0, sk).
Then Dk is a compact subset of U . In fact, since Ek ⊂ Ū and Ek ∩
∂U = ∂E0, we have d(Ek\B(∂E0, sk), ∂U) > 0. Since U is convex,
the map d(·, ∂U) : Ū → R is convex. Hence d(Ek\B(∂E0, sk), ∂U) > 0
implies that d(Dk, ∂U) > 0.
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Let πk be the nearest point projection to the convex set Dk. Then
πk is 1-Lipschitz (cf. [4, Proposition 5.3]). We define hk : Ek → (Ek ∩
B(∂E0, sk)) ∪Dk by

(4.121) hk(x) =

®
x, x ∈ Ek ∩ B̄(∂E0, sk),

πk ◦ gk ◦ fk(x), x ∈ Ek\B(∂E0, sk).

Note that by definition, hk is Lipschitz both on Ek ∩ B̄(∂E0, sk) and
Ek\B(∂E0, sk). On their intersection Ek∩∂B(∂E0, sk), by definition we
know that gk ◦ fk(x) = x, and since Ek ∩ ∂B(∂E0, sk) ⊂ Dk, we know
that

(4.122) πk ◦ gk ◦ fk(x) = πk(x) = x,

hence hk is well defined and Lipschitz.
Set δk = d(Dk, ∂U). Let Ck = B̄

(
Dk,

1
2δk
)
. Then Ck is a compact

convex subset of U .
Then we set hk(x) = x for x ∈ U\Ck and then extend hk to a Lipschitz

map U → U . Then Wk := {x ∈ U : hk(x) 6= x} is compact in U , and
hence hk(Wk) ∪Wk is compact. Therefore, hk is a deformation in U .

Moreover, we know that

Hd(hk(Ek)) ≤ Hd(hk(Ek\B(∂E0, sk))) +Hd(hk(Ek ∩B(∂E0, sk)))

= Hd(πk ◦ g ◦ fk(Ek\B(∂E0, sk))) +Hd(Ek ∩B(∂E0, sk))

≤ Hd(gk ◦ fk(Ek\B(∂E0, sk))) +Hd(Ek ∩B(∂E0, uk))

≤ Hd(gk ◦ fk(Ek)) +
ε

4× 2d

≤ Hd(E0) +
3

4
ε+

ε

4× 2d
< Hd(E0) + ε.

(4.123)

Now after Proposition 4.10, for any ε > 0, take k large and hk as
obtained in Proposition 4.10 such that (4.109) holds. Then since Ek ∈
F∗d (E,U), so does hk(Ek). Since ε is arbitrary, we have

(4.124) inf
F∈F∗

d
(E,U)

Hd(F ) ≤ Hd(E0) ≤ inf
F∈F(E,U)

Hd(F ).

Then by (4.27), we have

(4.125) inf
F∈F(E,U)

Hd(F ) ≤ inf
F∈F(E,U)

Hd(F ).

On the other hand, since F(E,U) ⊂ F(E,U), we have that (i) of Theo-
rem 4.1 follows directly. And (ii) is a direct corollary of (i).
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Theorem 4.11. Let U ⊂ Rn be a bounded convex open set and E be a
reduced closed set with finite d-Hausdorff measure such that E ⊂ Ū . Let
C denote the convex hull of E. Suppose that (4.1) holds and

(4.126) there exists a bi-Lipschitz map ψ : Rn → Rn

such that ψ−1(E ∩ ∂U) ⊂ |∆k,d−1| for some k ∈ N,

where Q0 denotes the unit cube [0, 1]n. Then

(i) infF∈F(E,U)H
d(F ) = infF∈F(E,U)Hd(F ).

(ii) If E is a d-dimensional minimal set in U , then

(4.127) Hd(E) = inf
F∈F(E,U)

Hd(F ).

Remark 4.12. (1) We will see in Theorem 4.13 that condition (4.1) is
not needed.

(2) Condition (4.126) can be relaxed, with essentially the same proof,
but with more technical details. Here we only give proof under this hy-
potheses, which is enough for purpose of use.

Proof of Theorem 4.11: Note that in the proof of Theorem 4.1, we only
used condition (4.1) before Proposition 4.8. Hence we can obtain the
sequence {Ek} ⊂ F∗d (E,U) and E0 ⊂ Ū such that (i)–(iii) in Proposi-
tion 4.6 hold.

Set

(4.128) Q′k := {Q ∈ ∆k : Q ∩ ψ−1(E0) 6= ∅}
and

(4.129) Qk = {Q ∈ ∆k : ∃Q′ ∈ Q′k such that Q ∩Q′ 6= ∅}.
Let |Qk| =

⋃
Q∈Qk Q, and for each j ≤ n, let Qk,j be the set of all j-faces

of elements in Qk, and let Sk,j =
⋃
σ∈Qk,j σ denote the j-skeleton of Qk.

Set

(4.130) Rk := {Q ∈ ∆k : Q ∩ ψ−1(E0 ∩ U) 6= ∅}.
Let |Rk| =

⋃
Q∈Rk Q, and for each j ≤ n, let Rk,j be the set of all j-faces

of elements in Rk, and let Tk,j =
⋃
σ∈Rk,j σ denote the j-skeleton of Rk.

Then by the same argument as in Proposition 4.8 (which only used
the hypothesis that E ∩ ∂U is of finite (d − 1)-Hausdorff measure, and
this is also guaranteed by (4.126)), we get that

(4.131) lim
k→∞

Hd(Tk,d) = 0

and there exists M > 0 which depends only on n and d such that, for
each k > k0, and each Q ∈ Qk such that Q◦ ∩ |Rk−2| = ∅,
(4.132) Hd(Sk,d ∩Q) < MHd(ψ−1(E0) ∩ V (Q)).
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Now the same argument as in Proposition 4.9 gives that, for each ε >
0, there exist a sequence of deformations fk in Rn and uk > 0 such that

Hd(ψ−1(Ek ∩B(∂E0, uk))) < ε,(4.133)

fk = id in ψ−1(B(∂E0, uk)),(4.134)

fk(ψ−1(Ek)) ⊂ ψ−1(B(E0,
√
n2−k+1)),(4.135)

and for k large,

(4.136) Hd(fk(ψ−1(Ek))\Sk,d) < ε.

We apply ψ to (4.132)–(4.136) and get that, for each ε > 0, and for
k large, we have

(4.137) for each Q ∈ Qk such that Q◦ ∩ |Rk−2| = ∅,

Hd(ψ(Sk,d ∩Q)) < M ′Hd(E0 ∩ ψ(V (Q))),

where M only depends on n, d, and the Lipschitz constant L of ψ; and
there exist deformations f ′k = ψ ◦ fk in Rn and uk > 0 such that

Hd(Ek ∩B(∂E0, uk)) < ε,(4.138)

f ′k = id in B(∂E0, uk),(4.139)

f ′k(Ek) ⊂ B(E0, L
√
n2−k+1),(4.140)

and

(4.141) Hd(f ′k(Ek)\ψ(Sk,d)) < ε.

Then by exactly the same operation as in Proposition 4.10, we deform
the major part of f ′k(Ek) to E0 by a map gk, so that Hd(gk ◦ f ′k(Ek)) ≤
Hd(E0) + Cε, where C only depends on the Lipschitz constant L of ψ.
Then we similarly define the deformation hk in U as in (4.121) replac-
ing fk by f ′k. Then we get the same conclusion as in Proposition 4.10.
And thus Theorem 4.11 is proved.

Finally we will get rid of condition (4.1).

Theorem 4.13 (Upper semi-continuity). Let U ⊂ Rn be a bounded con-
vex open set and E be a closed set in Ū with finite d-Hausdorff measure.
Let C denote the convex hull of E. Suppose that (4.126) holds. Then

(i) infF∈F(E,U)H
d(F ) = infF∈F(E,U)Hd(F ).

(ii) If E is a d-dimensional minimal set in U . Then

(4.142) Hd(E) = inf
F∈F(E,U)

Hd(F ).
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Proof: In case that U is strictly convex, then (4.1) holds directly, hence
(4.126) is enough for getting conclusions (i) and (ii) of Theorem 4.11.

Now if U is not strictly convex, modulo translation, we can suppose
that 0 ∈ U .

Set p : Rn → [0,∞) be the Minkowski functional of U : p(x) = inf
{
r >

0 : rx ∈ U
}

. Then p is convex; p(λx) = λp(x), ∀λ > 0, ∀x ∈ Rn; U = {x ∈
Rn : p(x) < 1}; and there exists M1 > 0 so that p(x) ≤M1|x|, ∀x ∈ Rn
(cf. [4, Lemma 1.2]). Since U is bounded, there exists M2 ∈ (0,M1) so
that p(x) ≥M2|x|, ∀x ∈ Rn.

Let us prove that p is M1-Lipschitz. That is

(4.143) |p(x)− p(y)| < M1|x− y|, ∀x, y ∈ Rn.

For any x, y ∈ Rn, if p(x) = p(y), then (4.143) holds directly. Other-
wise, suppose without loss of generality that p(x) > p(y). Set z = x− y.
Then since p is convex and homogenous, we know that

(4.144)
|p(x)− p(y)|
|x− y|

=
p(x)− p(y)

|x− y|
=
p(y + z)− p(y)

|z|
≤ p(z)

|z|
≤M1

which again gives (4.143).
Now for any ε > 0, set pε(x) = p(x)+ε|x|. Let Uε = {x ∈ Rn : pε(x) <

1}. Note that Ūε is strictly convex. Indeed, for any x, y ∈ ∂Uε, we have
pε(x) = pε(y) = 1, and for any α ∈ (0, 1), we have

(4.145) pε(αx+ (1− α)y) = p(αx+ (1− α)y) + ε|αx+ (1− α)y|.

Since p is convex, p(αx+ (1− α)y) ≤ αp(x) + (1− α)p(y); and since | · |
is strictly convex, we have |αx+ (1− α)y| < α|x|+ (1− α)|y|. Hence

pε(αx+ (1− α)y) < αp(x) + (1− α)p(y) + ε(α|x|+ (1− α)|y|)
= αpε(x) + (1− α)pε(y).

(4.146)

As a result, Uε is strictly convex, 0 ⊂ Uε ⊂ U , and pε is the Minkowski
functional of Uε.

Let fε : Ū → Ūε: fε(x) = x p(x)
pε(x) . Then we know that

(4.147) pε(f(x)) = pε

Å
x
p(x)

pε(x)

ã
=

p(x)

pε(x)
pε(x) = p(x).

Hence fε is a bijection.
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Let us estimate the bi-Lipschitz constant of fε. Take any x, y ∈ Ū ,
we have

|fε(x)− fε(y)| =
∣∣∣∣x p(x)

pε(x)
− y p(y)

pε(y)

∣∣∣∣
=

∣∣∣∣ p(x)

pε(x)
(x− y) + y

Å
p(x)

pε(x)
− p(y)

pε(y)

ã∣∣∣∣.(4.148)

Note that

(4.149)
p(x)

pε(x)
∈
ï

1

1 + εM1
,

1

1 + εM2

ò
⇒ 1

1 + εM1
|x− y| ≤ p(x)

pε(x)
|x− y| ≤ 1

1 + εM2
|x− y|,

and

|y|
∣∣∣∣ p(x)

pε(x)
− p(y)

pε(y)

∣∣∣∣ = |y|
∣∣∣∣ p(x)

p(x) + ε|x|
− p(y)

p(y) + ε|y|

∣∣∣∣
= |y|

∣∣∣∣p(x)(p(y) + ε|y|)− p(y)(p(x) + ε|x|)
(p(x) + ε|x|)(p(y) + ε|y|)

∣∣∣∣
= ε|y| |p(x)|y| − p(y)|x||

(p(x) + ε|x|)(p(y) + ε|y|)

≤ ε
ï |y|p(x)||y| − |x||

(p(x) + ε|x|)(p(y) + ε|y|)

+
|y||x||p(x)− p(y)|

(p(x) + ε|x|)(p(y) + ε|y|)

ò
= ε

ï |y|
p(y) + ε|y|

p(x)

p(x) + ε|x|
||y| − |x||

+
|y|

p(y) + ε|y|
|x|

p(x) + ε|x|
|p(x)− p(y)|

ò
≤ ε
ï |y|
p(y)
|y − x|+ |y|

p(y)

|x|
p(x)
|p(x)− p(y)|

ò
≤ ε
ï

1

M2
|y − x|+

Å
1

M2

ã2

M1|x− y|
ò

= ε

ï
M1 +M2

M2
2

ò
|x− y|.

(4.150)
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(4.148), (4.149), and (4.150) giveï
1

1+εM1
− ε
ï
M1+M2

M2
2

òò
|x− y|≤ |fε(x)− fε(y)|

≤
ï

1

1+εM2
+ε

ï
M1+M2

M2
2

òò
|x−y|.

(4.151)

Hence we have that fε is Lε-bi-Lipschitz, with Lε → 1 as ε→ 0. As a
result we have

(4.152) F(fε(E), Uε) = {fε(F ) : F ∈ F(E,U)} and

F(fε(E), Uε) = {fε(F ) : F ∈ F(E,U)}.
Since Uε is strictly convex, we can apply Theorem 4.11 to the open

set Uε and the set fε(E), and get

(4.153) inf
F∈F(fε(E),Uε)

Hd(F ) = inf
F∈F(fε(E),Uε)

Hd(F ),

hence by (4.152),

(4.154) inf
F∈F(E,U)

Hd(fε(F )) = inf
F∈F(E,U)

Hd(fε(F )).

Note that for each F ⊂ U , since limε→0 L(ε) = 1, we have

(4.155) Hd(F ) = lim
ε→0
Hd(fε(F )),

hence (4.154) gives conclusion (i) of Theorem 4.13. Then conclusion (ii)
follows directly.

5. Uniqueness properties for 2-dimensional minimal
cones in R3

In this section we prove the topological and Almgren uniqueness for
all 2-dimensional minimal cones in R3. Hence in the following text, Alm-
gren and G-topological uniqueness refer to Almgren and G-topological
uniqueness of dimension 2.

5.1. Planes.

Theorem 5.1. A 2-dimensional linear plane P is Almgren and G-topo-
logically unique in Rn for all n ≥ 3 and all abelian group G.

Proof: Let P ⊂ Rn be a 2-dimensional plane containing the origin. By
Propositions 3.2 and 3.4, to prove that P is Almgren and G-topologically
unique, it is enough to prove that P is G-topologically unique in the unit
ball B.
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Suppose that E is a reduced G-topological competitor of dimension 2
for P in B, so that

(5.1) H2(E ∩B) = H2(P ∩B).

By Remark 3.3 (5), we know that E is G-topological and hence Almgren
minimal in B. By the convex hull property for Almgren minimal sets,
E ∩ B is contained in the convex hull of E ∩ ∂B = P ∩ ∂B, which is
P ∩ B. Hence E ∩ B ⊂ P ∩ B. Then since both P and E are reduced
sets, (5.1) gives that E = P . Hence P is G-topologically unique, and
hence Almgren unique.

5.2. The Y sets.

Theorem 5.2. Any 2-dimensional Y set is Almgren and G-topologically
unique in Rn for all n ≥ 3 and all abelian groups G.

Proof: By Propositions 3.4 and 3.5, it is enough to prove that Y sets are
G-topologically unique in R3.

So let Y be a 2-dimensional Y set in R3. Modulo changing the co-
ordinate system, we can suppose that the spine of Y is the vertical
line Z = {(x, y, z) ∈ R3 : x = y = 0}, and that the intersection of Y
with the horizontal plane Q := {z = 0} is the union Y1 of the three

half lines R0ai , 1 ≤ i ≤ 3, where a1 = (1, 0), a2 =
(
− 1

2 ,
√

3
2

)
, and

a3 =
(
− 1

2 ,−
√

3
2

)
under the coordinate in Q.

We regard Q and Z as subspaces of R3, and write R3 = Q× Z.
Then Y = Y1 × Z.
By Proposition 3.2, it is enough to prove that Y is G-topologically

unique in the cylinder D := BQ(0, 1)× (−1, 1).
For t ∈ (−1, 1), let ati = (ai, t) ∈ Q× (−1, 1).
Let f : R3 → R be given by f(x, y, z) = z. For any set F ⊂ R3, and

each t ∈ R, set Ft = f−1{t} ∩ F the slice of F at level t.

Let ātia
t
j denote the open minor arc of circle of ∂BQ(0, 1)×{t} = ∂Dt

between ati and atj , 1 ≤ i 6= j ≤ 3. Then these arcs belong to R3\D.

Since ātia
t
j , 1 ≤ i < j ≤ 3, lie in three different connected compo-

nents of R3\Y , for any 2-dimensional G-topological competitor F of Y
with respect to D, they also lie in three different connected components
of R3\F . In particular, they belong to three different connected compo-
nents of D̄t\Ft.

Lemma 5.3. If F is a G-topological competitor for Y of dimension 2
with respect to D, then for each t ∈ (−1, 1), Ft∩Dt must connect the three
points in Yt ∩ ∂Dt = {ati, 1 ≤ i ≤ 3}, i.e. the three points ati, 1 ≤ i ≤ 3
lie in the same connected component of (Ft ∩Dt) ∪ {ati, 1 ≤ i ≤ 3}.
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Proof: Take any t ∈ [−1, 1].
Suppose that the three points ati, 1 ≤ i ≤ 3, do not belong to the same

connected component of (Ft∩Dt)∪{ati, 1 ≤ i ≤ 3}. Suppose for example
that the connected component of (Ft ∩Dt)∪{ati, 1 ≤ i ≤ 3} contains at1
but does not contain at2 and at3. Then there exist two relatively closed
subsets C1 and C2 of (Ft ∩Dt) ∪ {ati, 1 ≤ i ≤ 3}, so that C1 ∩ C2 = ∅,
C1 ∪C2 = (Ft ∩Dt)∪ {ati, 1 ≤ i ≤ 3}, and at1 ∈ C1, at2, a

t
3 ∈ C2 (cf. [24,

§37, Ex. 4]). Since (Ft ∩ Dt) ∪ {ati, 1 ≤ i ≤ 3} is compact, so are C1

and C2. Hence there exists a curve γ : [0, 1]→ D̄t with γ(0), γ(1) ∈ ∂Dt,
which separates C1 and C2. That is, im γ ⊂ D̄t\((Ft ∩ Dt) ∪ {ati, 1 ≤
i ≤ 3}), and the sets C1 and {at2, at3} belong to different connected
components of D̄t\ im γ.

As a consequence, there exist t2, t3 ∈ [0, 1] such that γ(tj) belong to

the open minor arc of circle āt1a
t
j of ∂Dt between at1, atj , j = 2, 3. As a

result, bj := γ(tj) belong to different connected components of R3
t\Yt,

and hence they belong to different connected components of R3\Y , since
Y = Yt × R.

Since Y is a cone, bj 6∈ Y , we have the segment [bj , 2bj ] ⊂ R3\Y . Note
that (bj , 2bj ] ⊂ R3\D̄ and Y \D̄ = F\D̄, hence (bj , 2bj ] ⊂ R3\F . Since
bj ∈ D̄t\Ft, we know that bj ∈ R3\F as well, hence [bj , 2bj ] ⊂ R3\F .

Let β denote the curve [2b2, b2]∪γ([t2, t3])∪ [b3, 2b3]. Then β ⊂ R3\F ,
and it connects 2b2 and 2b3. Hence the two points 2b2 and 2b3 belong to
the same connected component of R3\F .

On the other hand, we know that bj , j = 2, 3, belong to different
connected components of R3\Y . Since [bj , 2bj ] ⊂ R3\Y , j = 2, 3, we have
that 2bj , j = 2, 3, belong to different connected components of R3\Y .
This contradicts the fact that F is a G-topological competitor for Y of
codimension 1 (which, by Remark 3.2 of [15], corresponds to Mumford–
Shah competitors, as defined in [6, Section 19]).

Proposition 5.4. Let E ⊂ B̄Q(0, 1) be a closed set with finite H1 mea-
sure such that E ∩ ∂BQ(0, 1) = {a1, a2, a3}, and ai, 1 ≤ i ≤ 3, belong to
the same connected component of E. Then

(5.2) H1(E) ≥ H1(Y1 ∩ B̄Q(0, 1)),

and equality holds if and only if E = Y1∩ B̄Q(0, 1) modulo a H1-null set.

Proof: Let B denote B̄Q(0, 1) for short. Let E be as in the statement.
Let F0 be the connected component of E that contains {a1, a2, a3}. Then
H1(F0) ≤ H1(E).
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If H1(E) =∞, then it is automatically true. Otherwise, it is enough
to prove that, for any ε > 0,

(5.3) H1(F0) ≥ H1(Y1 ∩ B̄Q(0, 1)) =
3∑
i=1

H1([o, ai])− ε.

Note that, for this purpose, it is enough to look at ε ∈ (0, ||a1 − a2||).
So fix ε ∈ (0, ||a1 − a2||). Let F = {γ ⊂ F0 : γ is connected and

closed, and {a1, a2} ⊂ γ}, and let γ12 ⊂ F be such that H1(γ12) <
infγ∈F H1(γ) + ε

2 .
Next, we will find a connected set γ3 such that a3 ∈ γ3, γ3 ∪ γ12 is

connected, and γ3 ∩ γ12 is a single point.
If a3 ∈ γ12, we just set γ3 = {a3}. Otherwise, let γ′ = F0\γ12. Then

γ′ ∪ γ12 is connected and a3 ∈ γ′. Let γ4 be the connected component
of γ′ that contains a3. Then we claim that γ4 ∪ γ12 is connected. In
fact, if γ4 = γ′, then it is clear. Otherwise, suppose that γ4 ∪ γ12 is
not connected. Then, since both γ4 and γ12 are connected, they are the
two connected components of γ4∪γ12, and hence there exist two disjoint
open sets U1 and U2 of R3 such that γ4 ⊂ U1 and γ12 ⊂ U2. Similarly,
since γ4 is a connected component of γ′, there exist two disjoint open
sets U3 and U4 of R3 such that γ4 ⊂ U3 and γ′\γ4 ⊂ U4. Then let
U = U1 ∩U2 and V = U3 ∪U4. Then U and V are disjoint, and γ4 ⊂ U ,
F0\γ4 = γ12∪γ′\γ4 ⊂ V . This contradicts the fact that F0 is connected.

Hence γ4 ∪ γ12 is connected. As a result, γ̄4 ∩ γ12 6= ∅, because γ12

and γ̄4 are both closed and their union is connected.
Take p ∈ γ̄4 ∩ γ. Let γ3 = γ4 ∪ {p}. Then γ3 is connected, contains

a3, and γ3 ∩ γ12 = {p}. As a result, H1(γ3) ≥ H1([p, a3]).
Let γ = γ12 ∪ γ3. Then γ ⊂ F0, and thus

(5.4) H1(F0) ≥ H1(γ) = H1(γ12) +H1(γ3) ≥ H1(γ12) +H1([p, a3]).

Recall that γ12 ⊂ F is such that H1(γ12) < infγ∈F H1(γ) + ε
2 , where

F = {γ ⊂ F0 : γ is connected and closed, and {a1, a2} ⊂ γ}. Since
ε < ||a1 − a2||, we know that at least one of a1, a2 is in γ12\B

(
p, ε2

)
.

But p ∈ γ12, which is connected, hence γ12 ∩ B
(
p, ε2

)
connects p to

the boundary ∂B
(
p, ε2

)
. As a result H1

(
γ12 ∩ B

(
p, ε2

))
≥ ε

2 , and thus

H1
(
γ12\B

(
p, ε2

))
< infγ∈F H1(γ). Hence by definition of F , the closed

set γ12\B
(
p, ε2

)
does not contain any element in F .

Recall that at least one of a1, a2 is in γ12\B
(
p, ε2

)
. Without loss

of generality we suppose a1 ∈ γ12\B
(
p, ε2

)
. Let γ1 be the connected

component of γ12\B
(
p, ε2

)
that contains a1. Since γ12 is closed, γ1 is

also closed. Since γ1 is a closed connected subset of γ12\B
(
p, ε2

)
which

does not contain any element in F , and a1 ∈ γ1, by definition we get
a2 6∈ γ1. In particular, γ12\γ1 6= ∅.
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We claim that γ1 ∩ ∂B
(
p, ε2

)
6= ∅. Otherwise, let U1 = B

(
p, ε2

)
, U2 =

B̄
(
p, ε2

)C
, then Ui, i = 1, 2, are disjoint open sets, and γ1 ⊂ U2. On the

other hand, since γ1 is a connected component of γ12\B
(
p, ε2

)
, there exist

disjoint open sets V1 and V2 such that γ1⊂V1 and
(
γ12\B

(
p, ε2

))
\γ1⊂V2

(
(
γ12\B

(
p, ε2

))
\γ1 might be empty, but it does not matter). Then we

have γ1 ⊂ V1 ∩U1 and γ12\γ1 ⊂
[(
γ12\B

(
p, ε2

))
\γ1

]
∪
[
γ12 ∩B

(
p, ε2

)]
⊂

V2 ∪ U2. But we already know that a2 ∈ γ12\γ1 6= ∅, hence the above
contradicts the fact that γ12 is connected.

Thus γ1 ∩ ∂B
(
p, ε2

)
6= ∅. Let p1 ∈ γ1 ∩ ∂B

(
p, ε2

)
, then [p, p1] ∪ γ1 is

a connected set that contains p and a1. As a result, H1([p, p1] ∪ γ1) ≥
H1([p, a1]), and hence

(5.5) H1(γ1) ≥ H1([p, a1])−H1([p, p1]) = H1([p, a1])− ε

2
.

For a2, we have two cases:
If a2 ∈ γ12\B

(
p, ε2

)
as well, set γ2 be the connected component of

γ12\B
(
p, ε2

)
that contains a2. Then γ1 ∩ γ2 = ∅ and the exact same

argument as above gives

(5.6) H1(γ2) ≥ H1([p, a2])− ε

2
.

If a2 ∈ γ12∩B
(
p, ε2

)
, then let γ2 = γ12∩B

(
p, ε2

)
6= ∅. Then γ1∩γ2 = ∅,

and (5.6) holds automatically, because H1([p, a2])− ε
2 < 0.

Now in both cases, γi, i = 1, 2, are disjoint parts of γ12, and (5.5) and
(5.6) hold. Hence we have

(5.7) H1(γ12) ≥ H1(γ1) +H1(γ2) ≥ H1([p, a1]) +H1([p, a2])− ε.

Combined with (5.4), this yields

(5.8) H1(F0) ≥
3∑
i=1

H1([p, ai])− ε.

Obviously, the point p belongs to B. And it is well known that the
quantity

∑3
i=1H1([p, ai]) attains its minimum if and only if p is the

Fermat point of the triangle ∆a1a2a3 , which is just the origin 0. In this
case,

(5.9)
3∑
i=1

H1([0, ai]) = H1(Y1 ∩ B̄).
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Together with (5.8) we have

H1(E) ≥ H1(F0) ≥
3∑
i=1

H1([p, ai])− ε

≥
3∑
i=1

H1([0, ai])− ε = H1(Y1 ∩ B̄)− ε,

(5.10)

where the third inequality only holds when p = 0. Since this is true
for arbitrary ε ∈ (0, ||a1 − a2||), we have that (5.2) holds, and we have
equality if and only if p = 0. This leads to the conclusion of Proposi-
tion 5.4.

Now let us return to the proof of Theorem 5.2. Let F be a reduced
G-topological competitor of dimension 2 of Y with respect to D such
that

(5.11) H2(F ∩D) = H2(Y ∩D),

we would like to show that F = Y .
By Lemma 5.3, we know that Ft connects the three points ati, 1 ≤ i ≤

3. Then Proposition 5.4 tells that

(5.12) H1(Ft ∩Dt) ≥ H1(Yt ∩Dt).

We apply the coarea formula (cf. [9, 3.2.22]) to the Lipschitz func-
tion f and the set F ∩D, and get

(5.13) H2(F ∩D) ≥
∫ 1

−1

H1(Ft ∩Dt) ≥
∫ 1

−1

H1(Yt ∩Dt) = H2(Y ∩D).

Then (5.11) tells us that

(5.14) H1(Ft ∩Dt) = H1(Yt ∩Dt) for a.e. t ∈ (0, 1),

and hence

(5.15) Ft ∩Dt = Yt ∩Dt for a.e. t ∈ (0, 1)

by Proposition 5.4. Hence we know that F ∩D = Y ∩D modulo H2-null
sets. But F is reduced, hence F ∩D = Y ∩D. Hence Y is G-topologically
unique in D, and thus Y is G-topologically unique in R3 (by Proposi-
tion 3.2), and therefore also in Rn (by Proposition 3.4).

By Proposition 3.5, Y sets are also Almgren unique in Rn.

Remark 5.5. It is also possible to prove Theorem 5.2 by paired cali-
bration (cf. [13] and [3]). In fact, we will use this method to prove the
uniqueness for T sets in R3 in the next subsection, and interested readers
can easily find a similar proof for Y sets. The proof in this section is
more elementary in some sense, mainly using elementary geometry.
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5.3. The T sets.

Theorem 5.6. Any 2-dimensional T set is Almgren and (Z-)topologi-
cally unique in Rn for all n ≥ 3.

Proof: By Propositions 3.4 and 3.5, it is enough to prove that T sets are
topologically unique in R3.

Let T be a T set centered at the origin in R3. That is, T is the cone
over the 1-skeleton of a regular tetrahedron C centered at the origin and
inscribed in the closed unit ball B.

By Proposition 3.2, to prove that T is topologically unique in R3, it
is enough to prove that T is topologically unique in B. So suppose that
E is a reduced topological competitor of dimension 2 for T in B such
that

(5.16) H2(E ∩B) = H2(T ∩B).

By Remark 3.3 (5), we know that E is minimal, and thus is rectifiable.
Hence for almost all x ∈ E, the tangent plane TxE exists.

As mentioned in the last subsection, our proof will profit from the
paired calibration, so let use first give necessary details.

Denote by ai, 1 ≤ i ≤ 4, the four singular points of T ∩ ∂B. Let Ωi,
1 ≤ i ≤ 4, be the four equivalent connected spherical regions of ∂B\T ,
Ωi being on the opposite of ai.

Since E is a topological competitor for T in B, we know that ∂B\E =

∂B\T =
⋃4
i=1 Ωi, and the four Ωi live in different connected components

of B\E.
For 1 ≤ i ≤ 4, let Ci be the connected component of B\E that con-

tains Ωi. Let Ei = ∂Ci\∂B = ∂Ci\Ωi. Then we know that the four Ci,
1 ≤ i ≤ 4, are disjoint and Ei ⊂ E. Also note that Ei ∩ Ωi ⊂ E ∩ ∂B =
T ∩ ∂B is of H2 measure zero, hence we have the essentially disjoint
unions

(5.17) ∂Ci = Ei ∪ Ωi, 1 ≤ i ≤ 4.

Since Ci are disjoint regions in R3, we know that for almost all x ∈ E,
they belong to at most two of the Ei’s. So for i 6= j, let Eij = Ei ∩ Ej .
Let Ei0 denote Ei\

(⋃
j 6=iEi

)
, the set of points x that belong only to Ei.

Let F =
⋃

1≤i≤4Ei ⊂ E ∩B, then we have the disjoint union

(5.18) F =

ï ⋃
1≤i≤4

Ei0

ò
∪
ï ⋃

1≤i<j≤4

Eij

ò
.

For points x ∈ ∂Ci, let ni(x) denote the normal vector pointing into
the region Ci. Note that since ∂Ci ⊂ E ∪ ∂B, it is rectifiable, and hence



54 X. Liang

ni(x) is well defined for H2-a.e. x ∈ ∂Ci. Moreover, for i 6= j, we have
ni(x) = −nj(x) for H2-a.e. x ∈ Eij .

Now by Stoke’s formula, we have, for 1 ≤ i ≤ 4,

0 =

∫
∂Ci

〈ai, ni(x)〉 dH2(x)

=

∫
Ei

〈ai, ni(x)〉 dH2(x) +

∫
Ωi

〈ai, ni(x)〉 dH2(x),

(5.19)

and hence

(5.20)

∫
Ei

〈−ai, ni(x)〉 dH2(x) =

∫
Ωi

〈ai, ni(x)〉 dH2(x) = H2(πi(Ωi)),

where πi is the orthogonal projection from R3 to the plane orthogonal
to ai, 1 ≤ i ≤ 4. We sum over i, and get

(5.21)
∑

1≤i≤4

∫
Ei

〈−ai, ni(x)〉 dH2(x) =
∑

1≤i≤4

H2(πi(Ωi)).

For the left-hand-side, by the disjoint union (5.18), we have

∑
1≤i≤4

∫
Ei

〈−ai, ni(x)〉 dH2(x)

=
∑

1≤i≤4

ï∫
Ei0

〈−ai, ni(x)〉 dH2(x) +

Å∑
i6=j

∫
Eij

〈−ai, ni(x)〉 dH2(x)

ãò
=
∑

1≤i≤4

∫
Ei0

〈−ai, ni(x)〉 dH2(x)

+
∑

1≤i<j≤4

∫
Eij

(〈−ai, ni(x)〉+ 〈−aj , nj(x)〉) dH2(x)

=
∑

1≤i≤4

∫
Ei0

〈−ai, ni(x)〉 dH2(x) +
∑

1≤i<j≤4

∫
Eij

〈nj(x), ai − aj〉 dH2(x)

≤
∑

1≤i≤4

∫
Ei0

||ai|| dH2(x) +
∑

1≤i<j≤4

∫
Eij

||ai − aj || dH2(x)

=
∑

1≤i≤4

|ai|H2(Ei0) +
∑

1≤i<j≤4

||ai − aj ||H2(Eij).

(5.22)
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Note that ||aj || = 1, 1 ≤ j ≤ 4, and ||ai − aj || = 2
√

2√
3

, hence

4∑
j=1

∫
Ej

〈−ai, ni(x)〉 dH2(x)≤
∑

1≤i≤4

H2(Ei0) +
∑

1≤i<j≤4

2
√

2√
3
H2(Eij)

≤ 2
√

2√
3

ï ∑
1≤i≤4

H2(Ei0)+
∑

1≤i<j≤4

H2(Eij)

ò
=

2
√

2√
3
H2(F ) ≤ 2

√
2√
3
H2(E ∩B),

(5.23)

where the second last equality is again because of the disjoint union (5.18).
As a result, we have

(5.24) H2(E ∩B) ≥
√

3

2
√

2

∑
1≤i≤4

H2(πi(Ωi)).

On the other hand, either by chasing the condition of equality for the
inequalities of (5.22) and (5.23) (since T is a topological competitor of
dimension 2 for itself), or by a direct calculation, it is easy to see that

(5.25) H2(T ∩B) =

√
3

2
√

2

∑
1≤i≤4

H2(πi(Ωi)).

By hypothesis (5.16), we know that for the set E, equality in (5.24)
holds, and hence all the inequalities in (5.22) and (5.23) are equalities,
which implies, in particular, that

(5.26)

For almost all x ∈ Eij , we have TxEij ⊥ vi − vj .
Denote by Pij the plane perpendicular to vi − vj .

Then for almost all x ∈ Eij , we have TxE = TxEij = Pij ;

For all j, H2(Ej0) = 0;(5.27)

H2

Å
E ∩B\

4⋃
j=1

Ej

ã
= 0.(5.28)

Now since E is minimal, if x ∈ EP ∩B◦ is a regular point of E, then
by Theorem 2.25, there exists r = r(x) > 0 such that in B(x, r), E is the
graph of a C1 function from TxE to TxE

⊥. Hence for all y ∈ E∩B(x, r),
the tangent plane TyE exists, and the map f : E∩B(x, r)→ G(3, 2) : y 7→
TyE is continuous. But by (5.26), we have only six choices (which are
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isolated points in G(3, 2)) for TyE, hence f is constant, and TyE = TxE
for all y ∈ E ∩B(x, r). As a result,

(5.29) E ∩B(x, r) = (TxE + x) ∩B(x, r)

is a disk parallel to one of the Pij .
Still by the C1-regularity Theorem 2.25, the set EP ∩B◦ is a C1 man-

ifold, and is open in E. Thus we deduce that

(5.30) Each connected component of EP ∩B◦ is part of a plane

that is parallel to one of the Pij .

Let us look at EY . First, EY 6= ∅: otherwise, by Corollary 2.28 (ii),
E ∩ B◦ = EP ∩ B◦, and hence is a union of planes. But E ∩ ∂B does
not coincide with any union of planes.

Take any x ∈ EY , then by the C1-regularity around Y points (Theo-
rem 2.25 and Remark 2.26), there exists r=r(x) > 0 such that in B(x, r),
E is the image of a C1 diffeomorphism ϕ of a Y set Y , and Y is tangent
to E at x. Denote by LY the spine of Y and by Ri, 1 ≤ i ≤ 3, the
three open half planes of Y . Then ϕ(Ri), 1 ≤ i ≤ 3, are connected sub-
sets EP , hence each of them is a part of a plane parallel to one of the Pij ,
1 ≤ i < j ≤ 4. As a consequence, ϕ(LY ) ∩ B(x, r) is an open segment
passing through x and parallel to one of the spines Dj , 1 ≤ j ≤ 4, of T .
Here Dj is the intersection of the three Pij , i 6= j.

As a result, EY ∩ B◦ is a union of open segments I1, I2, . . . , each of
which is parallel to one of the Dj , 1 ≤ j ≤ 4, and every endpoint is
either a point on the boundary ∂B, or a point of type T. Moreover,

(5.31) For each x ∈ EY such that TxEY = Dj , there exists r > 0

such that, in B(x, r), E is a Y set whose spine is x+Dj .

Next, since we are in dimension 3, the only other possible type of
singular point is of type T. So we are going to discuss two cases: when
there exists a T point, or there are no T points.

Case 1: There exists a point x ∈ ET .

Lemma 5.7. If there exists a point x ∈ ET , then T ∩B◦ = E.

Proof: By the same argument as above, and by Theorem 2.25 and Re-
mark 2.26, the unique blow-up limit CxE of E at x must be the set T ,
and there exists r > 0 such that in B(x, r), E coincides with T + x. As
a result, for each segment Ii, at least one of its endpoints is in the unit
sphere, because two parallel T sets cannot be connected by a Y segment.
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Hence all the segments Ii touch the boundary ∂B. That is,

(5.32) Li\{{x} ∪ ∂B) ⊂ EY .
Denote by Li, 1 ≤ i ≤ 4, the four spines of T+x. Then Li∩B◦ ⊂ EY ,

because Li ∩ B(x, r) is part of some Ij ⊂ EY , which already has an
endpoint x that does not belong to ∂B, hence the other endpoint must
lie in ∂B, which yields Ij = Li ∩B◦.

Now we take a one parameter family of open balls Bs with radii r ≤
s ≤ 1, with Br = B(x, r), B1 = B◦, such that

(i) Bs $ Bs′ for all s < s′;
(ii)

⋂
1>t>sBt = B̄s and

⋃
t<sBt = Bs for all r ≤ s ≤ 1.

Set R = inf{s > r, (T + x) ∩Bs 6= E}. We claim that R = 1.
Suppose this is not true. By definition of Bs, we know that the four

spines and the six faces of T + x are never tangent to ∂Bs for any r <
s < 1. Then we know that ∂BR∩(T+x) ⊂ EP ∪EY . In fact, if y belongs
to one of the Li, then by (5.32), y ∈ Li∩∂Bs ⊂ EY . Otherwise, suppose
y does not lie in the four Li, 1 ≤ i ≤ 4. Then y belongs to x + Pij for
some i 6= j. As a result, for any t > 0 small, we know that E ∩B(y, t) ∩
BR = (x+Pij)∩B(y, t)∩BR. Note that the set (x+Pij)∩B(y, t)∩BR
is almost a half disk when t is sufficiently small, hence in particular
E ∩B(y, t) cannot coincide with a Y set or a T set, and thus y ∈ EP .

If y ∈ EP , then y ∈ x+Pij for some i 6= j. Then TyE = Pij . By (5.30),
and the fact that R < 1, there exists ry > 0 such that B(y, ry) ⊂ B◦

and E ∩B(y, ry) = (Pij + y) ∩B(y, ry). In other words,

(5.33) there exists ry>0 such that E coincides with T +x in B(y, ry).

If y is a Y point, then it lies in one of the Li. By the same argument
as above, using (5.31), we also have (5.33).

Thus (5.33) holds for all y ∈ ∂BR ∩ (T + x). Since ∂BR ∩ (T + x) is
compact, we get an r > 0 such that E∩B(BR, r) = (T+x)∩B(BR, r). By
the continuous condition (ii) for the family Bs, there exists R′ ∈ (R, 1)
such that BR′ ⊂ B(BR, r). As a consequence, E ∩BR′=(T + x) ∩BR′ .
This contradicts the definition of R.

Hence R = 1, and by definition of R, we have (T +x)∩B◦ = E ∩B◦.
Since E ∩ ∂B = T ∩ ∂B and E is closed and reduced, x must be the
origin. Thus we get the conclusion of Lemma 5.7.

Case 2: ET = ∅. In this case, the same kind of argument as in Lemma 5.7
gives the following:

Lemma 5.8. Let x be a Y point in E and TxEY = Dj. Denote by Yj
the Y set whose spine is Dj and whose three half planes lie in Pij, i 6= j.
Then (Yj + x) ∩B = E.
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But this is impossible, because E ∩ ∂B = T ∩ ∂B, which does not
contain (Yj + x) ∩ ∂B for any x and j.

Hence we have E ∩ B̄ = T ∩ B̄, and thus T is topologically unique
in B. We thus get Theorem 5.6.
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