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ON THE GALOIS CORRESPONDENCE FOR HOPF

GALOIS STRUCTURES ARISING FROM FINITE

RADICAL ALGEBRAS AND ZAPPA–SZÉP PRODUCTS
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Abstract: Let L/K be a G-Galois extension of fields with an H-Hopf Galois struc-

ture of type N . We study the Galois correspondence ratio GC(G,N), which is the
proportion of intermediate fields E with K ⊆ E ⊆ L that are in the image of the

Galois correspondence for the H-Hopf Galois structure on L/K. The Galois corre-

spondence ratio for a Hopf Galois structure can be found by translating the problem
into counting certain subgroups of the corresponding skew brace. We look at skew

braces arising from finite radical algebras A and from Zappa–Szép products of finite

groups, and in particular when A3 = 0 or the Zappa–Szép product is a semidirect
product, in which cases the corresponding skew brace is a bi-skew brace, that is, a

set G with two group operations ◦ and ? in such a way that G is a skew brace with

either group structure acting as the additive group of the skew brace. We obtain the
Galois correspondence ratio for several examples. In particular, if (G, ◦, ?) is a bi-

skew brace of squarefree order 2m where (G, ◦) ∼= Z2m is cyclic and (G, ?) ∼= Dm is

dihedral, then for large m, GC(Z2m, Dm) is close to 1/2 while GC(Dm, Z2m) is
near 0.

2010 Mathematics Subject Classification: 12F10.

Key words: Galois correspondence, Hopf Galois extension, skew brace.

1. Introduction

In 1969 S. U. Chase and M. E. Sweedler ([5]) defined the notion of
an H-Hopf Galois structure on a finite extension of commutative rings.
The notion in particular applies to the case of a separable field exten-
sion L/K, where it extends the classical notion of a Galois extension,
the case where L/K is normal, G is the Galois group of L/K, and H is
the group ring KG.

Let L/K be a G-Galois extension of fields. Let H be a cocommutative
K-Hopf algebra that acts on L as an H-module algebra, and suppose L is
an H-Hopf Galois extension of K. Then, as shown in [16], L⊗KH = LN
for some regular subgroup N of Perm(G), where N is normalized by
the image λ(G) of the left regular representation λ : G → Perm(G). In
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turn, if N is a regular subgroup of Perm(G) normalized by λ(G), then
N yields by Galois descent a K-Hopf algebra H = L[N ]G which acts
on L/K making L/K a H-Hopf Galois extension. In this way there is a
bijection between Hopf Galois structures on the G-Galois extension L/K
and regular subgroups of Perm(G) normalized by λ(G).

Given an H-Hopf Galois structure on L/K, there is a Galois cor-
respondence, originally described by Chase and Sweedler [5], namely,
an injective correspondence from K-subHopf algebras of H to fields E
with K ⊂ E ⊂ L, by

H ′ 7→ LH′
= {x ∈ L | h′x = ε(h′)x for all h′ in H ′},

where ε : H → K is the counit map. But in contrast to classical Galois
theory, the Galois correspondence for a Hopf Galois extension can fail to
be surjective. The first set of examples where surjectivity fails is in [16]:
let N be the regular subgroup N = λ(G) of Perm(G). Then N is normal-
ized by itself, and the subgroups N ′ of N = λ(G) that are normalized
by λ(G) are the subgroups λ(G′) where G′ is a normal subgroup of G.
So if G is non-abelian and has non-normal subgroups, then surjectivity
fails. (The classical Galois structure on L/K given by the Galois group
corresponds to ρ(G), the image in Perm(G) of the right regular repre-
sentation of G in Perm(G), ρ(g)(h) = hg−1 for g, h in G: ρ(G), hence
every subgroup of ρ(G), is centralized, hence normalized by λ(G).)

But except for the Greither–Pareigis examples, very little was known
about the image of the Galois correspondence for an H-Hopf Galois
structure on a G-Galois extension L/K of fields until it was observed
in [11] that the K-subHopf algebras of H correspond bijectively to the
subgroups N ′ of N that are normalized by λ(G). Using that result, the
paper [6] examined the G-Galois extensions L/K, where G is an abelian
p-group of order pn and L/K has an H-Hopf Galois structure of type N ,
also an abelian p-group of order pn. If H has type N , then there is a reg-
ular embedding of G into Hol(N): call the image T . Then, that regular
subgroup T defines a commutative nilpotent ring structure A=(N,+, ·)
on the additive abelian group N so that the regular subgroup T , and
hence the Galois group G, is isomorphic to the adjoint group (A, ◦) of
the nilpotent ring A ([4], [15]). In that setting, for the Hopf Galois struc-
ture given by H, the image of the Galois correspondence is in bijective
correspondence with the ideals of A.

If Ae = 0 and e<p, hence G and N are elementary abelian p-groups,
upper and lower bounds on the proportion of subgroups of A that are
ideals were computed in [10], and it was shown, for example, that if 4 ≤
e < p, then the proportion of subgroups that are ideals is < .01.
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We note that the only known cases of a non-classical H-Hopf Galois
structure on a G-Galois field extension, where the Galois correspondence
for H is surjective, are for G a non-abelian Hamiltonian group (every
subgroup is normal), where H corresponds to λ(G), or for G cyclic of
odd prime power order and H any Hopf Galois structure ([6, Proposi-
tion 4.3]).

The remainder of the paper is organized as follows. Section 2 describes
the relationship between Hopf Galois structures and skew braces, and
Section 3 describes the Galois correspondence ratio in the skew brace
setting. Section 4 looks at that ratio for skew braces arising from radical
algebras, illustrated by a four-dimensional example A = A0

4,25. Section 5
introduces bi-skew braces and finds the Galois correspondence ratio for
the other skew brace structure for A, which exists because A3 = 0.
Section 6 looks at the Galois correspondence ratios arising from fixed
point free pairs of homomorphisms to a Zappa–Szép product of two
finite groups from the corresponding direct product, with an example.
Section 7 specializes to semi-direct products of groups, which yield bi-
skew braces, hence two Galois correspondence ratios. Section 8 looks at
examples where the order of G is squarefree and, in particular determines
the two highly divergent ratios for G a class of generalized dihedral
groups.

Acknowledgements. Many thanks to the referees for their numerous
helpful comments and corrections on previous versions of this paper.

2. Hopf Galois structures and skew braces

The concept of skew brace was first defined in [17] and the connec-
tion of skew braces with Hopf Galois structures was described in [22].
Following [22], in what follows, “skew brace” and “brace” will always
mean “skew left brace” and “left brace”, respectively.

Finite radical rings are skew braces, so it was natural to generalize
the description of the Galois correspondence ratio for radical rings in [6]
to the setting of skew braces. This was done in [7].

To see how this works, we first reexamine the description of a Hopf
Galois structure.

Let G be a finite group, and denote the operation on G by ◦. Let L/K
be a (G, ◦)-Galois extension of fields. If L is also an H-Hopf Galois exten-
sion of K, then L⊗KH = LN for some regular subgroup N of Perm(G),
where N is normalized by the image λ◦(G) of the left regular represen-
tation λ◦ : G→ Perm(G).
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Since N is a regular subgroup of Perm(G), the map b : N → G given
by n 7→ n(e) is a bijection. Then b defines an operation ? on G, as follows:
if b(n1) = g1, b(n2) = g2, we define

g1 ? g2 = b(n1n2).

Then N = λ?(G), the image of the left regular representation map λ?
corresponding to the operation ?. For setting b(n1) = g1, b(n2) = g2,
and g1 ? g2 = b(n1n2), then the action of N ⊂ Perm(G) on G is

n1(g2) = n1(n2(e)) = (n1n2)(e)

= b(n1n2) = g1 ? g2 = λ?(g1)(g2).

If N = λ?(G) in Perm(G) is normalized by λ◦(G), then λ◦(G) is
contained in Hol(G, ?), the normalizer of λ?(G) in Perm(G). This obser-
vation connects Hopf Galois structures with skew braces.

Definition 1. A skew brace is a finite set B with two operations, ? and
◦, so that (B, ?) is a group (the “additive group”), (B, ◦) is a group, and
the compatibility condition

a ◦ (b ? c) = (a ◦ b) ? a−1 ? (a ◦ c)

holds for all a, b, c in B. Here a−1 is the inverse of a in (B, ?). Denote
the inverse of a in (B, ◦) by a.

If B has two operations ? and ◦ and is a skew brace with (B, ?)
the additive group, then we write B = B(◦, ?) (i.e. the additive group
operation is on the right).

A brace is a skew brace with abelian additive group. Every brace
(A, ◦,+) with abelian circle group is a radical algebra (A,+, ·) [21],
where the algebra multiplication on A is defined by a · b = a ◦ b− a− b.

A set B with two group operations ◦ and ? has two left regular rep-
resentation maps:

λ? : B → Perm(B), λ?(b)(x) = b ? x,

λ◦ : B → Perm(B), λ◦(b)(x) = b ◦ x.

Then Guarnieri and Vendramin proved ([17, Proposition 1.9]):

Theorem 2.1. A set (B, ◦, ?) with two group operations is a skew brace
if and only if the group homomorphism λ◦ : (B, ◦)→ Perm(B) has image
in

Hol(B, ?) = λ?(B) Aut(B, ?) ⊂ Perm(B),

the normalizer in Perm(B) of λ?(G).
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Let L/K be a Galois extension with group G = (G, ◦). Let H be
a K-Hopf algebra giving a Hopf Galois structure of type N on L/K.
Using N to define the group structure (G, ?) on G and then identify-
ing N with (G, ?) as above, then λ◦(G) normalizes N = (G, ?), so λ◦ is
contained in Hol(G, ?). Thus (G, ◦, ?) is a skew brace.

Conversely, let (G, ◦, ?) be a skew brace. Let L/K be a Galois exten-
sion with Galois group (G, ◦). Then L/K has a Hopf Galois structure
of type (G, ?). For given the skew brace structure (G, ◦, ?) on the Ga-
lois group (G, ◦) of L/K, then λ◦(G) is contained in Hol(G, ?), and
so the subgroup N = λ?(G) ⊂ Perm(G) is normalized by λ◦(G). So
N corresponds by Galois descent to a Hopf Galois structure on L/K of
type (G, ?).

Remark 2.2. We note that the correspondence that connects regular
subgroups N of Perm(Γ) normalized by λ(Γ) and isomorphic to (G, ?) to
isomorphism types of skew braces (G, ◦, ?) with (G, ◦) ∼= Γ and (G, ?) ∼=
N is not bijective. We have (c.f. [20, Corollary 2.4]):

Proposition 2.3 (Byott, Nejabati Zenouz). Given an isomorphism type
(B, ◦, ?) of skew brace, the number of Hopf Galois structures on a Galois
extension L/K with Galois group isomorphic to (B, ◦) and skew brace
isomorphic to (B, ◦, ?) is

Aut(B, ◦)/Autsb(B, ◦, ?).
Here Autsb(B, ◦, ?) is the group of skew brace automorphisms of

(B, ◦, ?), that is, maps from B to B that are simultaneously group au-
tomorphisms of (B, ?) and of (B, ◦).

3. The Galois correspondence for skew braces

Given that an H-Hopf Galois structure on a G-Galois extension corre-
sponds to a skew brace (G, ◦, ?) so that G ∼= (G, ◦) and H has type (G, ?),
we can rephrase the question of identifying the K-sub-Hopf algebras
of H, and hence the question of counting the size of the image of the
Galois correspondence for H, into a question of identifying and counting
certain subgroups of the skew brace (G, ◦, ?). This was done in [7].

Let L/K be Galois with group (G, ◦) and H-Hopf Galois where H has
type (G, ?), so (G, ◦, ?) is a skew brace. We are interested in the Galois
correspondence ratio

GC((G, ◦), (G, ?))

=
|{E in the image of the Galois correspondence for H}|

|{E : K ⊂ E ⊂ L}|
.
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The numerator counts the λ◦(G)-invariant subgroups of λ?(G). Look-
ing at them in the skew brace setting, we have

Definition 2. Let (G, ◦, ?) be a skew brace. A subgroup (G′, ?) of (G, ?)
is ◦-stable if λ?(G′) is closed under conjugation in Perm(G) by λ◦(G).

This condition is equivalent to

For all g ∈ G, g′ ∈ G′, (g ◦ g′) ? g−1 = h′ is in G′.

Remark 3.1. Lemma 2.2 of [12] introduces the automorphism ρg of (G, ?)
defined by

ρg(g′) = (g ◦ g′) ? g−1.
So a ◦-stable subgroup G′ of G is a subgroup invariant under the action
of ρg for all g.

Section 5 of [19] recasts the Galois correspondence for a Hopf Galois
structure of type (G, ?) on a (G, ◦)-Galois extension by replacing the
skew brace (G, ◦, ?) by its opposite skew brace (G, ◦, ?′). Then a ◦-stable
subgroup G′ of G is what they call a quasi-ideal of the opposite brace.
A quasi-ideal G′ is an ideal of G if and only if G′ is a normal subgroup
of (G, ◦) ([17, Definition 2.1]).

We observed in Proposition 4.1 of [7] that a ◦-stable subgroup of
(G, ◦, ?) is a subgroup of both (G, ◦) and (G, ?).

Thus, if L/K is a (G, ◦)-Galois extension and an H-Galois extension
where the H structure corresponds to a skew brace structure (G, ◦, ?)
on G, so that H has type (G, ?), then the Galois correspondence ratio
becomes

GC((G, ◦), (G, ?)) =
|{◦-stable subgroups of (G, ?)}|
|{subgroups of (G, ◦)}|

.

4. Radical algebras and the Galois correspondence for
corresponding Hopf Galois structures

A ring A = (A,+, ·) (without unit) is a radical ring if the operation

a ◦ b = a+ b+ a · b
for all a, b in A makes (A, ◦) into a group with identity 0. If A is a
finite ring, then A is Artinian (has descending chain condition on left
(or right) ideals), so A is nilpotent (every element of A is nilpotent);
c.f. Section 1.2 of [18].

Conversely, a nilpotent ring A is a radical ring. That means, if we
define the operation ◦ on A by

a ◦ b = a+ b+ ab,
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then (A, ◦) is a group. Associativity is clear, the identity is 0, and the
inverse of a in (A, ◦), denoted by a, is

a = −a+ a2 − a3 + · · · ,
a finite sum because A is nilpotent. (The circle group of A is isomorphic
(by a 7→ −a) to what is sometimes called the adjoint group of A.)

A radical ring A is a brace (A, ◦,+), as was first observed in [21], and
hence is a skew brace.

Let (A,+, ·) be a finite radical ring, and let a ◦ b = a+ b+ a · b. In [7]
we observed:

Proposition 4.1. If (A, ◦,+) is the skew brace arising from a radical
ring A, then the ◦-stable subgroups of (A,+) are the left ideals of the
ring A.

For the reader’s convenience, here is a proof.

Proof: Suppose (G′,+) is a ◦-stable subgroup of (A,+). Then for all g
in A, g′ in G′, there is some h′ in G′ so that g◦g′ = h′+g or, equivalently,

g + g′ + gg′ = h′ + g

gg′ = h′ − g′ in G′.

So G′ is closed under left multiplication by elements of A, hence is a left
ideal of A.

Conversely, if G′ is a left ideal of A, then for all g′ in G′, g in A, gg′ is
in G′, so gg′ + g′ = h′ is in G′. So

g ◦ g′ = g + g′ + gg′ = h′ + g,

the condition that (G′,+) is a ◦-stable subgroup of (A,+).

Thus if A is a finite radical ring and L/K is a Galois extension with
Galois group (A, ◦) with a Hopf Galois structure with H of type (A,+),
then the Galois correspondence ratio for H acting on L/K is

GC((A, ◦), (A, ?)) =
|{left ideals of A}|
|{subgroups of (A, ◦)|

.

In [7] we illustrated this result by looking at two non-commutative
nilpotent Fp-algebras of dimension 3 of [13]. Here is a four-dimensional
example.

Example 4.2. We look at De Graaf’s Fp-algebra A0
4,21 with an Fp-basis

consisting of elements a, b, c, d with multiplication given by a2 = c, ab =
d, and all other products of basis elements = 0 (see [13]). Assume p > 2.
Then an Fp-subspace J of A is a left ideal of A if and only if aJ ⊂ J .
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So if J is a left ideal of A and r = r1a + r2b + r3c + r4d is in J , then
ar = r1c+ r2d is also in J .

A 4 × 4 row-reduced echelon matrix in M4(Fp) with pivots (leading
ones) in columns c1, . . . , cr will be called a matrix of form

(
c1 . . . cr

)
.

Every non-zero subspace of F4
p is generated by the non-zero rows of a

unique row-reduced echelon matrix.
From that viewpoint, we find that the non-zero left ideals of A corre-

spond to all echelon matrices of forms (3), (4), (34), (24), (134), (234),
(1234) = I, and also matrices of form (13) with two parameters r and s:
the non-zero rows of such a echelon matrix form the matrix(

1 r 0 s
0 0 1 r

)
.

Counting the number of parameters for each form gives

p+ 1 + 1 + p+ p+ 1 + 1 + p2 = p2 + 3p+ 4

non-zero left ideals of A.
Suppose L/K is a Galois extension with Galois group (A, ◦) and has

a H-Hopf Galois structure of type (A,+) corresponding to the skew
brace (A, ◦,+). Then the Galois correspondence ratio for the H-Hopf
Galois structure is

GC((G, ◦), (G,+)) =
|{left ideals of A}|
|{subgroups of (A, ◦)}|

.

Including the zero ideal, the numerator is p2 + 3p+ 5.
To find the denominator, the number of subgroups of (A, ◦), is a bit

more challenging.
Now A is the Fp-algebra with Fp-basis {a, b, c, d}, where a2 = c, ab =

d, and all other products = 0. For x, y in A, define x ◦ y = x+ y + xy.
Since p > 2, (A, ◦) is a group of exponent p, for given any r, s, t, u in Fp,
ra · ra = r2c, ra · sb = rsd, so one sees easily by induction that

(ra+sb+tc+ud)◦m =mra+msb+

(
mt+

(
m
2

))
r2c+

(
mu+

(
m
2

))
rsd

for all m ≥ 1.
Since (〈b, c, d〉, ◦) = (〈b, c, d〉,+), there are 2p2 + 2p + 4 subgroups of

〈b, c, d〉.
Then we must count the subgroups of (A, ◦) that contain an element

of the form α = ra+ sb+ tc+wd with r 6= 0. By the formula above, we
can assume r = 1. Thus we have p3 cyclic subgroups of order p. We need
also to count non-cyclic subgroups G′ that are not contained in 〈b, c, d〉.
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Let w1, w2, . . . , denote elements of 〈c, d〉. Any subgroup of (A, ◦) that
contains α1 = a+ sb+ w1 also contains

α−11 = −a− sb− w1 + c+ sd,

where α1 ◦ α−11 = 0.
Let G′ = 〈α1, α2〉, where

α1 = a+ sb+ w1 and α2 = a+ s′b+ w2.

First suppose s′ 6= s. Then G′ contains

α−11 ◦ α2 = (s′ − s)b+ w3.

Now the ◦-subgroup 〈b, c, d〉 of (A, ◦) is isomorphic to F3
p, so if (s′−s)b+

w3 is in G′ and s−s′ 6= 0, then G′ contains b+w4, with inverse −b−w4,
so contains

(−s′b− w5) ◦ α2 = (−s′b− w5) + a+ s′b+ w2 = a+ w6,

with ◦-inverse −a−w6 + c. So G′ contains a+w6 and b+w4. But then
G′ contains

(−b− w4) ◦ (a+ w6) ◦ (b+ w4) ◦ (−a− w6 + c)

= (a− b− w4 + w6) ◦ (−a+ b+ w4 − w6 + c)

= c− c+ d = d.

So if G′ = 〈α1, α2〉, then

G′ = 〈a+ sc, b+ tc, d〉

for s, t in Fp. There are p2 such groups.
If s− s′ = 0, then G′ = 〈a+ sb+ tc+ ud, t′c+ u′d〉 for some t, t′, u,

u′ in Fp. If t′ 6= 0, then G′ = 〈a+ sb+u′′d, c+u′′′d〉 for s, u′′, u′′′ in Fp,
so there are p3 groups of that form. If t′ = 0, then G′ = 〈a+ sb+ tc, d〉,
so there are p2 groups of that form.

Adjoining c to any of the groups of the last two forms yields p groups
of the form G′ = 〈a+ sb, c, d〉.

Including G′ = G, we have 2p3 + 4p2 + 3p+ 5 subgroups of (G, ◦).
Thus the Galois correspondence ratio is

GC((G, ◦), (G,+)) =
p2 + 3p+ 5

2p3 + 4p2 + 3p+ 5
.

For large p this is near 1/2p.
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5. Bi-skew braces

Definition 3. A bi-skew brace is a finite set B with two operations,
? and ◦, so that (B, ?) is a group, (B, ◦) is a group, and B is a skew
brace with either group acting as the additive group: that is, the two
compatibility conditions

a ◦ (b ? c) = (a ◦ b) ? a−1 ? (a ◦ c)

and

a ? (b ◦ c) = (a ? b) ◦ a ◦ (a ? c)

hold for all a, b, c in B.

In Proposition 4.1 of [8] we showed that radical algebras A with
A3 = 0 yield bi-skew braces. That means that with ◦ defined as before,
(A,+, ◦) is a skew brace. Thus if L′/K ′ is a Galois extension with Ga-
lois group (A,+), then L′/K ′ has a Hopf Galois structure of type (A, ◦)
coming from the skew brace structure (A,+, ◦) on A. The image of the
Galois correspondence for that Hopf Galois structure is then in bijective
correspondence with the set of +-stable subgroups of (A, ◦).

A subgroup J of (A, ◦) is a +-stable subgroup if for all g in A and h
in J , there is some h′ in J so that

g + h = h′ ◦ g.

Let g, h be arbitrary elements of J and note that J is closed under ◦.
Then J is also closed under +, hence is a subgroup of (A,+). Since
h′ ◦ g = h′g+h′+ g, an alternative version of +-stability is that for all g
in A, h in J , there is h′ in J so that

g + h = h′ ◦ g = h′ + g + h′g,

or h = h′ + h′g.
We show:

Proposition 5.1. Let (A,+, ◦) be the skew brace arising from the finite
radical ring (A,+, ·) with A3 = 0. Then the +-stable subgroups of (A, ◦)
are the right ideals of the ring A.

Proof: Let J be a right ideal of the radical ring A: then J is closed
under addition and scalar multiplication on the right. We show that J is
+-stable. Given h in J , g in G, let h′ = h − hg. Then h′ is in J since
J is a right ideal, and since A3 = 0,

h′g = (h− hg)g = hg = h− h′.

So J is +-stable.
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Conversely, if J is +-stable, then J is an additive subgroup of A, and
for all h in J , g in A, there is some h′ in J so that h′g = h − h′. Since
A3 = 0, 0 = h′gg = hg − h′g, so hg = h′g = h− h′. Thus for all h in J ,
g in G, hg is in J , and so J is a right ideal of the radical ring A.

Thus for a G = (A,+)-Galois extension L′/K ′ with an H ′-Hopf Galois
structure of type (A, ◦), the Galois correspondence ratio is

GC((A.+), (A, ◦)) =
|{right ideals of A}|
|{subgroups of (A,+)|

.

Example 5.2. One motivation for this paper was to see if there might
be any relationship between the Galois correspondence ratios for the two
skew braces associated to a bi-skew brace.

So we look again at De Graaf’s example A0
4,21 with an Fp-basis con-

sisting of elements a, b, c, d with multiplication given by a2 = c, ab = d,
and all other products of basis elements = 0 (see [13]). Then an Fp-sub-
space J of A is a right ideal of A if and only if Ja ⊂ J and Jb ⊂ J ,
hence if J is a right ideal of A and r = r1a + r2b + r3c + r4d is in J ,
then ra = r1c and rb = r1d are in J . Thus the non-zero right ideals of A
correspond to all echelon matrices of forms (2), (3), (4), (23), (24), (34),
(134), (234), (1234). Counting the number of parameters for each form
gives

p2 + p+ 1 + p2 + p+ 1 + p+ 1 + 1 = 2p2 + 3p+ 4

non-zero right ideals of A.
To determine the proportions of intermediate fields that are in the

image of the Galois correspondence for the Hopf Galois structures cor-
responding to the skew brace (A,+, ◦), we also need the numbers of
subgroups of (A,+). But since (A,+) ∼= F4

p, the number of subgroups

of (A,+) is equal to the number of subspaces of F4
p, namely p4 + 3p3 +

4p2 + 3p+ 5.
Thus if L′/K ′ is a (A,+)-Galois extension with an H ′-Hopf Galois

structure of type (A, ◦), then the proportion of subgroups of (A,+) that
are in the image of the Galois correspondence forH is

GC((A,+), (A, ◦)) =
|{+-stable subgroups of (A, ◦)}|
|{subgroups of (A,+)}|

=
|{right ideals of A}|
|{subgroups of (A,+)}|

=
2p2 + 3p+ 5

p4 + 3p3 + 4p2 + 3p+ 5
.

For large p this is near 2/p2.
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The two Hopf Galois extensions related by the bi-skew brace arising
from the radical algebra A with A3 = 0 have Galois correspondence
ratios that behave like 1/2p and 2/p2 for large primes p.

6. Zappa–Szép products and the Galois correspondence
for corresponding Hopf Galois structures

A finite group G with identity e and subgroups GL and GR is an
internal Zappa–Szép product if G = GLGR and GL ∩ GR = e. Other
terminology: two subgroups GL and GR of a finite group are complemen-
tary if |GL| · |GR| = |G| and GL ∩GR = e ([2, Section 7]), or G admits
an exact factorization through the subgroups GL and GR ([22, Exam-
ple 3.6]). Thus every element g of G can be uniquely written as g = gLgR
for gL in GL, gR in GR.

Denote the group operation on G by ·, usually omitted.
In general, for groups Γ, G of the same finite order, a fixed point free

pair of homomorphisms from Γ to G yields a Hopf Galois structure of
type G on a Γ-Galois extension of fields or, equivalently, a skew brace
structure (G, ◦, ·) on the additive group G = (G, ·), where (G, ◦) ∼= Γ. In
the Hopf Galois setting the method was first used for Γ = G in [9] and
in general in [3]; c.f. Remark 7.2 of [2]. In the skew brace setting the
construction is noted without details in Example 3.6 of [22].

Here is how it works for Zappa–Szép products.
Given a Zappa–Szép product G = GL · GR, there is a pair of ho-

momorphisms βL and βR : GL × GR → G given by βL(gL, gR) = gL,
βR(gL, gR) = gR. Since GL ∩ GR = {e}, (βL, βR) is a fixed point free
pair of homomorphisms from GL×GR to G: βL(gL, gR) = βR(gL, gR) if
and only if gL = gR = e.

Using the left and right regular representations: λ, ρ : G → Perm(G)
given by λ(g)(x) = gx, ρ(g)(x) = xg−1 for g, x in G, the fixed point free
pair (βL, βR) yields a regular embedding

β : GL ×GR → λ(G) o Inn(G, ·) ⊂ Hol(G, ·)

defined for x in G by

β(gL, gR)(x) = λ(βL(gL, gR)ρ(βR(gL, gR)(x)

= λ(gL)ρ(gR)(x)

= gLxg
−1
R

= gLg
−1
R gRxg

−1
R

= λ(gLg
−1
R )C(gR)(x) ⊂ λ(G) · Inn(G, ·),
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where C(g) in Inn(G, ·) is conjugation by g. The regular embedding
β : GL ×GR → Hol(G, ·) yields a bijection b : GL ×GR → G by

b(gL, gR) = β(gL, gR)(e) = gLeg
−1
R = gLg

−1
R .

Then b defines a new group operation ◦ on G from the direct product
operation on GL ×GR by

b(gL, gR) ◦ b(hL, hR) = b((gL, gR)(hL, hR)) = b(gLhL, gRhR),

that is,

gLg
−1
R ◦ hLh

−1
R = (gLhL)(gRhR)−1 = (gLhL)(h−1R g−1R ) = gL(hLh

−1
R )g−1R ,

or more concisely, gLg
−1
R ◦ h = gLhg

−1
R . Thus b : GL × GR → (G, ◦)

is an isomorphism, β : GL × GR → Hol(G, ·) becomes the left regular
embedding λ◦ : (G, ◦) → Hol(G, ·), and the circle operation on G =
GLGR makes G into a skew brace by Theorem 2.1.

Suppose L/K is a Galois extension with Galois group (G, ◦) ∼= GL ×
GR. Since (G, ◦, ·) is a skew brace, L/K has a Hopf Galois structure by
a K-Hopf algebra H of type (G, ·) = GLGR. Then the image of the Ga-
lois correspondence for H corresponds to the λ◦(G)-invariant subgroups
of (G, ·), and from Section 3 above, these are the ◦-stable subgroups
of (G, ·), namely, the subgroups G′ of (G, ·) with the property that for
all h in G′, g in G, the element (g ◦ h) · g−1 is in G′.

Proposition 6.1. Let (G, ◦, ·) be the skew brace where (G, ·) ∼= GLGR, a
Zappa–Szép product and let ◦ be the direct product operation on G given
by g ◦ x = gLxg

−1
R for g = gLg

−1
R in G. Then a subgroup G′ of (G, ·) is

◦-stable if and only if G′ is normalized by GL.

Proof: G′ is a ◦-stable subgroup of (G, ·) ∼= GLGR if and only if for all x
in G′, g in G, (g ◦ x) · g−1 is in G′, and

(g ◦ x) · g−1 = (gLxg
−1
R ) · (gRg−1L ) = gLxg

−1
L .

Example 6.2. Let (G, ·) = A5 = C5 · A4 where C5 = 〈(1, 2, 3, 4, 5)〉
and A4 = Perm({1, 2, 3, 4}) is the stabilizer of 5 (c.f. [2, Example 7.4]).
Let σ = (1, 2, 3, 4, 5). A subgroup G′ of A5 is ◦-stable if and only if G′

is normalized by GL. Three obvious ◦-stable subgroups are {(1)}, C5,
and A5.

Claim: there is exactly one other ◦-stable subgroup.
Since σ−1(a1, . . . , ar)σ = (a1 + 1, . . . , ar + 1), any non-trivial sub-

group G′ of A5 that is normalized by σ is transitive, so has order a
multiple of 5. Since A5 has no proper subgroups of order > 12, G′ must
have order 5 or 10, and has a characteristic subgroup H of order 5, nor-
malized by σ. Thus H = 〈σ〉 and G′ = 〈σ, ρ〉 where ρ has order 2 and
ρσρ−1 = σ−1. (We can choose ρ = (1, 2)(3, 5).)
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So there are four ◦-stable subgroups of A5. If L/K is a Galois ex-
tension with Galois group G = C5 × A4 with a Hopf Galois structure
by H of type A5 corresponding to the skew brace defined by the fixed
point free pair of homomorphisms from G to A5 as above, then of the
intermediate fields E with K ⊆ E ⊆ L, exactly four are in the image of
the Galois correspondence for H.

How many intermediate subfields are there? How many subgroups are
there of C5 × A4? Since (|C5|, |A4|) = (12, 5) = 1, the answer is: twice
the number of subgroups of A4, hence 2 · 10 = 20 subgroups of C5 ×A4.
(See [14, p. 112], for the lattice diagram of subgroups of A4.) So the
proportion of intermediate subfields of L/K that are in the image of the
Galois correspondence for H is

GC((G, ◦), (G, ·)) =
|{◦-stable subgroups of A5}|
|{subgroups of C5 ×A4|

=
4

20
.

7. Semi-direct products

One set of examples of Zappa–Szép products are semidirect products
of groups.

Let G = GL o GR be a semidirect product of two finite groups GL

and GR, where GL is normal in G and the action of GR on GL is by
conjugation.

Denote the group operation in G by ·, which we will often omit. Thus
for x, y in G, xy = x · y.

An element of G has a unique decomposition as x = xLx
−1
R for xL

in GL, xR in GR. In the semidirect product, an element yR of GR acts
on xL in GL by conjugation:

y−1R xL = (y−1R xLyR)y−1R .

Then

xy = xLx
−1
R yLy

−1
R

= xL(x−1R yLxR)x−1R y−1R .

Along with the given group operation on G we also have the direct
product operation ◦ on G, as follows:

x ◦ y = xLx
−1
R ◦ yLy

−1
R

= xLyLy
−1
R x−1R

= xLyx
−1
R .
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Proposition 7.1. (G, ◦, ·) is a bi-skew brace.

This was proved in [8].
So suppose L′/K ′ is a Galois extension with Galois group (G, ·)=GLo

GR. Since (G, ·, ◦) is a skew brace, L′/K ′ has a Hopf Galois structure by
a K ′-Hopf algebra H ′ of type (G, ◦) ∼= GL×GR. Then the image of the
Galois correspondence for H ′ corresponds to the λ·(G)-invariant sub-
groups of (G, ◦), and these are the ·-stable subgroups of (G, ◦), namely,
the subgroups G′ of (G, ◦) with the property that for all x in G′, g in G,
the element (g · x) ◦ g is in G′.

Proposition 7.2. Let (G, ◦, ·) be the bi-skew brace where (G, ·) ∼= GL o
GR, a semidirect product where GR acts on GL by conjugation, and let
◦ be the direct product operation on G given by g ◦ x = gLxg

−1
R for

g = gLg
−1
R in G. Then a subgroup G′ of (G, ◦) is ·-stable if and only if

for every x = xLx
−1
R in G′ and all g in G, gxLg

−1x−1R is in G′.

Proof: A subgroup G′ of (G, ◦) is ·-stable if and only if for all x in G′,
g in G, the element (g · x) ◦ g is in G′. Note that if g = gLg

−1
R , then

g = g−1L gR. So for g, x, y in G,

(g · x) ◦ g = gLg
−1
R xLx

−1
R ◦ g

= (gLg
−1
R xLgR)(g−1R x−1R ) ◦ g

= (gLg
−1
R xLgR)g(g−1R x−1R )

= (gLg
−1
R xLgR)(g−1L gR)(g−1R x−1R )

= (gLg
−1
R )xL(gRg

−1
L )(gRg

−1
R )x−1R

= gxLg
−1x−1R .

The remainder of the paper is devoted to examples. In the examples,
the circle operation ◦ is +, the usual addition of modular arithmetic.

Example 7.3. Let (G,+) = GL×GR = Z9×Z6, the direct product with
the usual operation, (r, s) + (r′, s′) = (r + r′, s + s′), and identify (r, s)
with r ·2s in (G, ·) = Z9o2U9

∼= Hol(C9). So (r, s) ·(r′, s′) = (r+2sr′, s+
s′).

We wish to find the +-stable subgroups of (G, ·) and the ·-stable
subgroups of (G,+). Since a +-stable subgroup of (G, ·) is a subgroup
of (G,+), and a ·-stable subgroup of (G,+) is a subgroup of (G, ·), all
subgroups of interest are subgroups of the abelian group (G,+). So we
begin by finding the subgroups of the direct product (G,+), and then
see which are +-stable and which are ·-stable.



156 L. N. Childs

We find that there are twenty subgroups of (G,+) = Z9×Z6: sixteen
are cyclic groups, with generators:

generator order generator order
(0,0) 1 (0,3) 2
(1,0) 9 (1,3) 18
(3,0) 3 (3,3) 6
(0,2) 3 (0,1) 6
(1,2) 9 (1,5) 18
(3,2) 3 (3,5) 6
(1,4) 9 (1,1) 18
(3,4) 3 (3,1) 6

The non-cyclic subgroups of (G,+) are

〈(3, 0), (0, 2)〉+ = 〈(3, 0), (0, 2)〉· of order 9,

〈(3, 0), (0, 1)〉+ = 〈(3, 0), (0, 1)〉· of order 18,

〈(1, 0), (0, 2)〉+ = 〈(1, 0), (0, 2)〉· of order 27,

G = 〈(1, 0), (0, 1)〉+ = 〈(1, 0), (0, 1)〉· of order 54.

All are subgroups of (G, ·).
A subgroup G′ of (G,+) is ·-stable if for all (r, s) in G′ and (t,−u)

in G,

(t,−u)−1(r, 0)(t,−u)(0, s)

is in G′. Since (−2ut, u)(t,−u) = (−2ut + 2ut, u + (−u)) = (0, 0), we
have that

(t,−u)−1(r, 0)(t,−u)(0, s) = (−2ut, u)(r, 0)(t,−u)(0, s)

= (−2ut+ 2ur, u)(t,−u)(0, s)

= (−2ut+ 2ur + 2ut, u− u)(0, s)

= (2ur, 0)(0, s)

= (2ur, s)

is in G′. Setting u = 1 implies that (2r, s) is in G′. Since G′ is a subgroup
of (G,+), therefore

(2r, s)− (r, s) = (r, 0)

is in G′. Thus:
A subgroup G′ of (G, ·) is ·-stable if and only if for all (r, s) in G′,

(r, 0) is in G′.
Using this criterion, we find that the four non-cyclic subgroups of (G,+)

are ·-stable, and also the cyclic groups with generators

(0, 0), (1, 0), (3, 0), (0, 1), (0, 2), (0, 3), (3, 3), and (1, 3),

the last two because 10(1, 3) = (1, 0) and 4(3, 3) = (3, 0). Thus there are
twelve ·-stable subgroups of (G,+).
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There are thirty-two subgroups of (G, ·) = Z9 oZ6, as follows: There
are twenty-six cyclic subgroups: 〈0, 0〉 of order 1; 〈r, 3〉 of order 2 for 0 ≤
r < 9; 〈0, 2〉, 〈3, 0〉, 〈3, 2〉, 〈3, 4〉 of order 3; 〈r, 1〉 of order 6 for 0 ≤ r < 9;
and 〈1, 2s〉 of order 9 for 0 ≤ s < 3. There are six non-cyclic subgroups,
〈(a, 0), (0, b)〉 for a = 1, 3 and b = 1, 2, 3.

So if L/K is G-Galois with G ∼= Z9 o Z6
∼= (G, ·), then for the Hopf

Galois structure on L/K corresponding to (G,+) ∼= Z9 × Z6, the ratio

GC((G, ·), (G,+)) =
|{·-stable subgroups of (G,+)}|

|{subgroups of (G, ·)}|
=

12

32
.

Now we look at +-stable subgroups of (G, ·).
A subgroup G′ of (G, ·) is +-stable if G′ is a subgroup of both (G,+)

and (G, ·) and (c.f. Proposition 6.1) is normalized by GL in (G, ·), that
is, (−t, 0)(r, s)(t, 0) is in G′ for all t and all (r, s) in G′. Now

(−t, 0)(r, s)(t, 0) = (−t+ r, s)(t, 0)

= (−t+ r + 2st, s)

= ((2s − 1)t+ r, s).

Since G′ is a group under +, G′ contains

((2s − 1)t+ r, s)− (r, s) = ((2s − 1)t, 0).

Setting t = 1, we have:

Proposition 7.4. A subgroup G′ of (G, ·) is +-stable if and only if G′ is
a subgroup of (G,+) and for all (r, s) in G′, (2s − 1, 0) is in G′.

Thus, if s = 1, then (1, 0) is in G′; if s = 2, then (3, 0) is in G′; if
s = 3, then (7, 0), hence (1, 0) is in G′; if s = 4, then (15, 0), hence
(3, 0) is in G′; and if s = 5, then (31, 0), hence (1, 0) is in G′ .

Among the cyclic subgroups of (G, ·), those with generators (0, 0),
(1, 0), and (3, 0) are clearly +-stable, and also those with generators (1, 2)
and (1, 4) since they are also subgroups of (G,+) and 3(1, 2) = (3, 0) =
3(1, 4). But the conditions fail for all other cyclic subgroups of (G, ·).

The conditions also hold for the non-cyclic subgroups

〈(1, 0), (0, 3)〉, 〈(3, 0), (0, 2)〉, 〈(1, 0), (0, 2)〉, and G,

but not for H = 〈(3, 0), (0, 1)〉 or 〈(3, 0), (0, 3)〉 because (1, 0) is not in H.
Thus there are nine +-stable subgroups of (G, ·). There are twenty sub-

groups of (G,+). So if L′/K ′ is G-Galois with G ∼= Z9 × Z6
∼= (G,+),

then for the H ′-Hopf Galois structure corresponding to (G, ·) ∼= Z9oZ6,
the ratio

GC((G,+), (G, ·)) =
|+-stable subgroups of (G, ·)|
|subgroups of (G,+)|

=
9

20
.
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8. Groups of squarefree order

Hopf Galois structures on groups of squarefree order were studied
in [1], whose results included showing that if the field extension L/K
has a Galois group G cyclic of squarefree order mn, then L/K has a
Hopf Galois structure of type N for every group N of order mn: each
such group N must be a semidirect product of cyclic groups.

We look at some of those examples.
Let (G,+) = Zm × Zn under componentwise addition, where m and

n > 1 are coprime and squarefree and n divides φ(m). Then (G,+) is
cyclic of order mn, and every element of G may be written as (r, s) =
(r, 0) + (0, s) for r modulo m, s modulo n. Also, 〈(r, s)〉 contains (r, 0)
and (0, s) because m and n are coprime.

The subgroups of (G,+) are generated by (r, s) where r divides m
and s divides n, so there are d(m)d(n) subgroups of (G,+), where d(m)
is the number of divisors of m. If m is a product of g distinct primes,
and n is a product of h distinct primes, then d(m) = 2g, d(n) = 2h.
Hence the number of subgroups of (G,+) is 2g+h.

Let b have order n in Um, the group of units modulo m. Form the
semidirect product (G, ·) = Zm ob Zn with the operation

(r, s) · (r′, s′) = (r + bsr′, s+ s′).

Then (G,+, ·) is a bi-skew brace.
We observe that every subgroup of (G,+) is also a subgroup of (G, ·).

For let G′ = 〈(r, s)〉 = 〈(r, 0), (0, s)〉 be a subgroup of (G,+). For ele-
ments (cr, ds), (er, fs) of G′,

(cr, ds) · (er, fs) = (cr + bdser, (d+ f)s) = ((c+ bds)r, (d+ f)s),

which is in 〈(r, 0), (0, s)〉.
Since the +-stable subgroups and the ·-stable subgroups of (G,+, ·)

are subgroups of both (G,+) and (G, ·), we may search for each from
among the subgroups 〈(r, s)〉 of the cyclic group (G,+), where r di-
vides m and s divides n.

We first find the ·-stable subgroups of (G,+).

Proposition 8.1. Let (G,+) = Zm × Zn
∼= Zmn with (m,n) = 1, and

(G, ·) = Zm ob Zn with b of order n modulo m. Then every subgroup
of (G,+) is ·-stable.

Proof: By Proposition 7.2, a subgroup G′ of (G,+) is ·-stable if and only
if for all (x, y) in G′ and all g in G, (g · x · g−1, y) is in G′ (where g−1 is
the · inverse of G).
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Let (a,−h) be in G, then (a,−h)−1 = (−bha, h). So for (x, y) =
(x, 0) + (0, y) in G′,

(−bha, h)(x, 0)(a,−h) + (0, y) = (−bha+ bhx, h)(a,−h) + (0, y)

= (−bha+ bhx+ bha, 0) + (0, y)

= (bhx, 0) + (0, y).

This is in G′ because (bhx, 0) and (0, y) are in G′.
Thus every subgroup of (G,+) is ·-stable.

It follows that for a Galois extension L/K with Galois group isomor-
phic to (G, ·) ∼= Zm oZn with a Hopf Galois extension of type (G,+) ∼=
Zmn corresponding to the skew brace (G, ·,+), the proportion of interme-
diate subfields of L/K that are in the image of the Galois correspondence
for the Hopf Galois structure on L/K is

GC((G, ·), (G,+)) =
|{subgroups of Zmn}|
|{subgroups of Zm o Zn}|

.

Now we look at the +-stable subgroups of (G, ·).
A subgroup 〈(r, 0), (0, s)〉 of (G, ·) = Zm o Zn is +-stable if and only

if (bs − 1, 0) is in 〈(r, 0)〉, if and only if r divides bs − 1.
Now m = p1 · · · pg and n = q1 · · · qh, products of distinct primes. So if

r = pi1 · · · pik and b has order ni modulo pi, then (bs − 1, 0) is in 〈(r, 0)〉
if and only if the least common multiple [ni1 , . . . , nik ] divides s.

Example 8.2. Consider (G,+) = Zpq
∼= Zp × Zq where q is a prime

divisor of p−1. Let b have order q modulo p−1 and let (G, ·) = ZpobZq

with operation

(r1, s1)(r2, s2) = (r1 + bs1r2, s1 + s2).

Then (G,+) has four subgroups, generated by (1, 0), (0, 1), (1, 1), and
(0, 0), of orders p, q, pq, and 1, respectively. A subgroup G′ = 〈(r, s)〉
of (G, ·) is +-stable if and only if it is a subgroup of (G,+) and bs ≡
1 (mod r). The only subgroup of (G,+) that is not +-stable is (0, 1),
because b− 1 is not in 〈0〉 ⊂ Zp. So for a (G,+)-Galois extension L/K
with an H-Hopf Galois extension of type (G, ·), the ratio

GC((G,+), (G, ·)) =
|{+-stable subgroups of (G, ·)}|
|{subgroups of (G,+)}|

=
3

4
.

Every subgroup of (G,+) is ·-stable. A computation shows that the
number of subgroups of (G, ·) is p+ 3: the p cyclic subgroups of order q
generated by (r, 1) for r = 0, . . . , p−1, together with the group generated
by (1, 0), of order p, and the two trivial groups, {0} and G. So for
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a (G, ·)-Galois extension L′/K ′ with an H ′-Hopf Galois extension of
type (G,+), the ratio

GC((G, ·), (G,+)) =
|{·-stable subgroups of (G,+)}|

|{subgroups of (G, ·)}|
=

4

p+ 3
.

Example 8.3. Now let (G,+) = Zmn where m = p1 · · · pg, and n =
q1 · · · qg, all pairwise distinct primes, where for i = 1, . . . , g, qi divides
pi−1. Let b have order qi modulo pi for all i, so b has order n modulo m.
Then

Proposition 8.4. With m, n, b chosen as above,

(G,+) = Zm × Zn
∼= Zp1q1 × · · · × Zpgqg ,

(G, ·) = Zm ob Zn
∼= Zp1 ob Zq1 × · · · × Zpg ob Zqg ,

and every subgroup of (G,+), resp. (G, ·), is a direct product of its pro-
jections onto the corresponding subgroups.

The decomposition of (G,+) is obvious; that of (G, ·) is a routine
induction argument from the case g = 2, which in turn follows because
the order of b modulo p1p2 is the product of the coprime orders of b
modulo p1 and modulo p2. The statements about subgroups follow from
Goursat’s Lemma and the fact that the direct factors have coprime order
(or by a Chinese Remainder Theorem argument).

Thus the ratios of Proposition 8.2 multiply to yield

Corollary 8.5. With (G,+) and (G, ·) as above,

GC((G, ·), (G,+)) =
|{·-stable subgroups of (G,+)}|
|{subgroups of (G, ·)}|

=
4g

(p1 + 3)(p2 + 3) · · · (pg + 3)
,

and

GC((G,+), (G, ·)) =
|{+-stable subgroups of (G, ·)}|
|{subgroups of (G,+)}|

=

(
3

4

)g

.

Both ratios go to zero for large g.

For a final example, we look at a generalization of the dihedral
group Dm where m is odd and squarefree.

Example 8.6. Let m = p1 · · · pg, a product of distinct primes, and let
n = q1 · · · qh where q1, . . . , qh are distinct primes that divide p − 1 for
every prime p dividing m. (The dihedral case is h = 1, n = 2.) Let b have
order n modulo pi for every i. Let (G,+) = Zm × Zn

∼= Zmn, (G, ·) =
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Zm ob Zn. Then the subgroups of (G,+) all have the form 〈(r, s)〉 =
〈(r, 0), (0, s)〉 where r divides m, s divides n.

Since every +-stable subgroup G′ of (G, ·) is a subgroup of (G,+),
we can assume G′ = 〈(r, s)〉 where r divides m, s divides n. Now G′ is
+-stable if and only if bs − 1 is in 〈r〉. We have two cases:

Case 1: r = 1 and bs − 1 is in 〈1〉 for all s.

Case 2: 1 < r and r divides m. Then some pi divides r, so b has order n
modulo pi. Then bs ≡ 1 (mod r) if and only if s ≡ 0 (mod n).

Thus 〈(r, s)〉 is +-stable for r = 1 and all s, or for r 6= 1 and s = n.
Since we may assume that r divides m, s divides n, then the number
of (r, s) in Case 1 is 2h, and the number of (r, s) in Case 2 is 2g − 1. So
the number of +-stable subgroups of G is 2h + 2g − 1.

The number of subgroups of (G,+) is 2h · 2g. So the ratio

GC((G,+), (G, ·)) =
|{+-stable subgroups of (G, ·)}|
|{subgroups of (G,+)}|

=
2h + 2g − 1

2h+g
.

On the other hand, by Proposition 8.1, every subgroup of (G,+) is
·-stable, so the ratio

GC((G, ·), (G,+)) =
|{·-stable subgroups of (G,+)}|

|{subgroups of (G, ·)}|

=
|{subgroups of (G,+)}|
|{subgroups of (G, ·)}|

.

Since Zm o Zn is metabelian, every subgroup of (G, ·) = Zm o Zn

has the form H oK where H < Zm, K < Zn. If K = (0) then we are
counting the 2g subgroups of Zm. For each s dividing n and r divid-
ing m there are r subgroups of order (m/r)(n/s) of the form 〈(r, 1), (t, s)〉
for 0 ≤ t < r. The total number of subgroups of (G, ·) is then

2g +
∑

s|n, s6=n

∑
r|m

r = 2g + (2h − 1)
∑
r|m

r = 2g + (2h − 1)σ(m),

where σ(m), the sum of the divisors of m = p1 · . . . · pg, is

σ(m) =

g∏
i=1

(1 + pi).

Thus

GC((G, ·), (G,+)) =
2h+g

2g + (2h − 1)σ(m)
.
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Since σ(m) ≥ 3g,

GC((G, ·), (G,+)) ≤ 2

(
2

3

)g

,

which is close to 0 for large g.
In particular, for Zn = Z2, the dihedral case with m odd and square-

free, the ratio

GC((G, ·)), (G,+)) = GC(Dm,Z2m) ≤ 2

(
2

3

)g

goes to 0 with g, while

GC((G,+)), (G, ·)) = GC(Z2m, Dm) =
2g + 1

2g+1
>

1

2

for all g.
Responding to the question raised in Example 5.2, this example shows

that given a bi-skew brace (G, ·,+) with (G, ·) ∼= Dm and (G,+) ∼= Z2m

for highly composite squarefree odd m, the ratios describing the images
of the Galois correspondences for the Hopf Galois structures of type Z2m,
resp. Dm, on Galois extensions with Galois group Dm, resp. Z2m, corre-
sponding to the bi-skew brace could hardly be more dissimilar.
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Primera versió rebuda el 5 de setembre de 2019,
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