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Abstract: In this paper we study the existence of uniform a priori estimates for

positive solutions to Navier problems of higher order Lane–Emden equations

(0.1) (−∆)mu(x) = up(x), x ∈ Ω,

for all large exponents p, where Ω ⊂ Rn is a star-shaped or strictly convex bounded

domain with C2m−2 boundary, n ≥ 4, and 2 ≤ m ≤ n
2

. Our results extend those of
previous authors for second order m = 1 to general higher order cases m ≥ 2.
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1. Introduction

In this paper we investigate the following higher order Lane–Emden
equations in a bounded domain with Navier boundary conditions:

(1.1)

{
(−∆)mu(x) = up(x), u(x) > 0, x ∈ Ω,

u(x) = (−∆)u(x) = · · · = (−∆)m−1u(x) ≡ 0, x ∈ ∂Ω,

where 1 < p < +∞, n ≥ 2, 1 ≤ m ≤ n
2 , and Ω ⊂ Rn is a bounded

domain with C2m−2 boundary ∂Ω. We assume the positive solutions u
belong to C2m(Ω) ∩ C2m−2(Ω).

The Lane–Emden equations of type (1.1) have numerous important
applications in conformal geometry and Sobolev inequalities. They also
model many phenomena in mathematical physics and in astrophysics
(see [3, 18]). We say equations (1.1) have critical order if m = n

2 and
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subcritical order if m < n
2 . The nonlinear term in (1.1) is called critical

if p = pc := n+2m
n−2m (:=∞ if m = n

2 ) and subcritical if 1 < p < pc.

When m = 1, Ambrosetti and Rabinowitz ([2]) derived the existence
of least energy positive solution to (1.1) for 1 < p < pc via variational
minimization methods. When m ≥ 2, a priori estimates and existence
results for positive solutions to (1.1) were derived by Sirakov in subcrit-
ical order cases [25]. For more literature on Liouville-type theorems, a
priori estimates and existence results for solutions to (1.1), please re-
fer to Chen, Fang, and Li [5], Dai, Peng, and Qin [6], Dai and Qin [7]
(for m < n

2 ), Chen, Dai, and Qin [4], Dai and Qin [8] (for m ≥ n
2 ).

In [7] (for m < n
2 ) and [8] (for m = n

2 ), besides Liouville-type theo-
rems, Dai and Qin established a priori estimates for classical solutions
to generalized higher order equations (possibly sign-changing solutions)
and existence of positive solutions to (1.1) for all p ∈ (1, pc). Moreover,
the positive solution u to (1.1) derived in [7, 8] satisfies

(1.2) ‖u‖L∞(Ω) ≥
( √

2n

diam Ω

) 2m
p−1

.

The lower bounds (1.2) on the L∞-norm of positive solutions u indicate

that if diam Ω <
√

2n, then the L∞-norm must blow up as p → 1+.
For more general results and references related to boundary value prob-
lems for poly-harmonic equations, please refer to the book of Gazzola,
Grunau, and Sweers [14].

1.1. The subcritical order cases 1 ≤ m < n
2
. We first consider the

subcritical order cases 1 ≤ m < n
2 . When m = 1, using what are now

known as Pohozaev identities (see also [12, 20, 21, 22]), Pohozaev ([20])
has shown that there are no positive solutions to (1.1) in the range
pc < p < +∞ provided Ω is star-shaped. Han ([16]) and Rey ([24])
proved that the L∞-norm of positive solutions of (1.1) with m = 1
blows up as p → pc

−. In addition, they have also obtained the precise
asymptotic behaviour for the least-energy solutions. Di ([11]) established
similar results as in [16, 24] for the bi-harmonic case m = 2 and strictly
convex domain Ω.

Consider the following generalized higher order Navier problems:

(1.3)

{
(−∆)mu(x) = f(u(x)), u(x) ≥ 0, x ∈ Ω,

u(x) = (−∆)u(x) = · · · = (−∆)m−1u(x) ≡ 0, x ∈ ∂Ω,

where n ≥ 2, 1 ≤ m < n
2 , the function f : R+ → R+ is continuous,

and Ω ⊂ Rn is a bounded domain with C2m−2 boundary ∂Ω. Van
der Vorst ([27]) established Pohozaev-type identities for higher order
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Navier problems (1.3) (see Lemma 3.9 in [27]). As a consequence of
the Pohozaev-type identities, the author also deduced in [27] a Liouville
theorem for higher order Navier problems (1.3). Suppose that the func-

tion f satisfies n
∫ t

0
f(s) ds− n−2m

2 f(t)t ≤ 0 and Ω is star-shaped, then
the Navier problem (1.3) possesses no nontrivial nonnegative solutions
(see Theorem 3.10 in [27]). In particular, if we take f(t) := tp, then
Theorem 3.10 in [27] implies immediately that there are no nontrivial
nonnegative solutions for the Navier problem (1.1) in both the critical
and super-critical cases pc := n+2m

n−2m ≤ p < +∞ provided Ω is star-
shaped. Liouville-type results for fractional and higher order Hénon–
Hardy equations in balls with Dirichlet or Navier boundary conditions
have been established in [7] by developing the method of scaling spheres.
For Liouville theorems on higher order Dirichlet problems via Pohozaev-
type variational identities, please also refer to [12, 20, 21, 22].

Since Theorem 3.10 in [27] indicates that there are no positive solu-
tions to the Navier problem (1.1) in star-shaped domain Ω when p = pc,
we can infer from the existence of positive solutions for p < pc that
the L∞-norm of solutions to (1.1) in star-shaped domain Ω must blow
up as p → pc

−. Otherwise, one could derive a positive solution in the
critical case p = pc via compactness arguments. Therefore, we have the
following immediate corollary of Theorem 3.10 in [27].

Corollary 1.1. Assume Ω is a star-shaped domain with ∂Ω ∈ C2m−2.
Then any sequence of solutions {upk} to the Navier problem (1.1) with
p = pk → pc must blow up in L∞-norm, that is,

‖upk‖L∞(Ω) → +∞ as k →∞.

1.2. The critical order cases m = n
2

with n ≥ 2 even. Next, we
consider the critical order cases m = n

2 with n ≥ 2 even.
In contrast with the subcritical order cases, when n = 2 and m =

1, Ren and Wei ([23]) showed that the least-energy solutions of (1.1)
stay uniformly bounded as p → +∞. Subsequently, Kamburov and Sir-
akov ([19]) proved that positive solutions of (1.1) with m = 1 in a
2D smooth bounded domain Ω are uniformly bounded for all large ex-
ponents p0 ≤ p < +∞. For asymptotic description of positive solu-
tions to (1.1) in the case m = 1 and n = 2 as p → +∞, please refer
to [1, 9, 10].

In this paper, by using the methods from Kamburov and Sirakov [19]
of employing the Green’s representation formula, we will establish uni-
form a priori estimates for positive solutions to the critical order Navier
problem (1.1) (with general m = n

2 and n ≥ 4 even) for all large expo-

nents p in strictly convex domain Ω with Cn−2 boundary ∂Ω.
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We have the following uniform a priori estimates for the critical order
Navier problems (1.1).

Theorem 1.2. Assume n ≥ 4 is even, m = n
2 , Ω ⊂ Rn is a strictly

convex domain with ∂Ω ∈ Cn−2, and let p0 > 1. There exists a con-
stant C depending only on p0, n, and Ω such that for all p0 ≤ p < +∞,
any solution up ∈ Cn(Ω) ∩ Cn−2(Ω) to the critical order problem (1.1)
satisfies:

‖up‖L∞(Ω) ≤ C.

Remark 1.3. Under the strict convexity assumption on Ω, Theorem 1.2
extends the uniform a priori estimates derived in [19, 23] for the second
order case m = 1 and n = 2 to the general critical order cases m = n

2
and n ≥ 4 is even.

Remark 1.4. Being essentially different from the second order case m = 1
and n = 2, the information and estimates on −∆u play a crucial role in
the proof of Theorem 1.2; please see Lemma 2.1 and 2.3. More precisely,
we proved in Lemma 2.3 the following crucial property:

(1.4) max
Ω

(−∆)ku ∼
[maxΩ u]

2k
n p+(1− 2k

n )

p1− 2k
n

for any k = 1, . . . , n2 − 1. In particular, from the proof of Lemma 2.3
(more precisely, see (2.34)), one has the following pointwise estimates at
the maximum x0 of u in Ω:

(1.5) C ′′k
(u(x0))

2k
n p+(1− 2k

n )

p1− 2k
n

≤ (−∆)ku(x0) ≤ C ′k
(u(x0))

2k
n p+(1− 2k

n )

p1− 2k
n

for any k = 1, . . . , n2 − 1. For related pointwise inequality in Rn, we refer
to Fazly, Wei, and Xu [13].

2. Proof of Theorem 1.2

In this section we will prove Theorem 1.2 by using the methods from
Kamburov and Sirakov [19] of employing the Green’s representation for-
mula.

In the following, we will use C to denote a general positive constant
that may depend on n, p0, and Ω, and whose value may differ from line
to line. In all the proof, we assume p ≥ p0.

For n ≥ 4 even and m = n
2 , assume u = up is a positive solution

to the critical order Navier problem (1.1). By the maximum principle,
we inductively have (−∆)kup > 0 in Ω for any k = 0, 1, . . . , n2 − 1.
Furthermore, we can prove the following lemma.
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Lemma 2.1. Assume n ≥ 4 is even, m = n
2 , Ω is a strictly convex

domain with ∂Ω ∈ Cn−2, and let p0 > 1. There exist positive constants δ
depending only on Ω, and C depending only on n, p0, and Ω such that

(i) The maximum of the solution u = up in Ω is attained in Ωδ :=
{x ∈ Ω | dist(x, ∂Ω) ≥ δ}. Moreover, the maximum of (−∆)kup
(k = 1, . . . , n2 − 1) in Ω is attained in Ωδ.

(ii) For every p ≥ p0, the solution u = up satisfies the uniform bound:∫
Ω

up(x) dx ≤ C.

Proof: (i) By using the method of moving planes in a local way, we can
get (see Lemma 4.1 in Troy [26], or p. 21 in [4]) that, for any x0 ∈ ∂Ω,
there exists a δ0 > 0 depending only on x0 and Ω such that u(x) is
monotone increasing along the inner normal direction in the region

(2.1) Σδ0 := {x ∈ Ω | 0 ≤ (x− x0) · ν0 ≤ δ0},

where ν0 denotes the unit inner normal vector at the point x0. Since
∂Ω is Cn−2, there exists a small enough 0 < r0 <

δ0
8 depending only

on x0 and Ω such that, for any x ∈ Br0(x0) ∩ ∂Ω, u(x) is monotone
increasing along the inner normal direction at x in the region

(2.2) Σx :=

{
z ∈ Ω | 0 ≤ (z − x) · νx ≤

3

4
δ0

}
,

where νx denotes the unit inner normal vector at the point x (νx0 := ν0).
Since x0 ∈ ∂Ω is arbitrary and ∂Ω is compact, we can cover ∂Ω by finitely
many balls {Brk(xk)}Kk=0 with centers {xk}Kk=0 ⊂ ∂Ω (K depends only
on Ω). For each xk ∈ ∂Ω, choose δk depending only on xk and Ω in a
similar way as δ0. Let δ := 3

4 min{δ0, δ1, . . . , δK} depending only on Ω.
Then it is clear that for any x ∈ ∂Ω,

(2.3) u(x+ sνx) is monotone increasing with respect to s ∈ [0, δ],

and hence property (i) for u = up follows from (2.3) immediately.
Moreover, it is also clear from the procedure of moving planes (see

Troy [26], or pp. 18–21 in [4]) that (−∆)kup (k = 1, . . . , n2 − 1) are also
monotone increasing along the inner normal directions in the boundary

layer Ω \ Ωδ, and hence the maximum of (−∆)kup (k = 1, . . . , n2 − 1)

in Ω can (only) be attained in Ωδ.
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(ii) Let 0 < λ1 < λ2 ≤ · · · ≤ λk ≤ · · · be eigenvalues for −∆ in Ω
with Dirichlet boundary condition. Then, one can easily verify that, for
every k = 1, 2, . . . , λk is the eigenvalue for (−∆)

n
2 in Ω with Navier

boundary condition if and only if λk = (λk)
n
2 . Let φ > 0 be the eigen-

function (without loss of generality, we may assume ‖φ‖L∞(Ω) = 1) cor-

responding to the first eigenvalue λ1 for −∆ with Dirichlet boundary
condition. It follows that φ is also the eigenfunction corresponding to
the first eigenvalue λ1 for (−∆)

n
2 with Navier boundary condition, i.e.,

(2.4)

{
(−∆)

n
2 φ(x) = λ1φ(x) in Ω,

φ(x) = (−∆)φ(x) = · · · = (−∆)
n
2−1φ(x) = 0 on ∂Ω.

Then, since∫
Ω

upφdx=

∫
(−∆)

n
2 uφ dx=λ1

∫
Ω

uφ dx ≤ λ1

(∫
Ω

upφdx

)1
p
(∫

Ω

φdx

) 1
p′

,

we obtain, as in Lemma 3.2 in p. 22 of [4],

(2.5)

∫
Ω

up(x)φ(x) dx ≤ λp
′

1

∫
Ω

φ(x) dx ≤ λp
′

1 |Ω|.

Thus, for any p ≥ p0, we have the following uniform bound:

(2.6)

∫
Ω

up(x)φ(x) dx ≤ C(n, p0,Ω).

Let x ∈ ∂Ω. Since Ω is at least C1, there exists a small εx > 0 and a
neighborhood Vx of x in ∂Ω such that

Wx := {y + σνx | y ∈ Vx, 0 < σ < εx} ⊂ Ω.

Let

W ′x :=

{
y + σνx | y ∈ Vx,

εx
2
< σ < εx

}
⊂ Ω.

Since x ∈ ∂Ω is arbitrary and ∂Ω is compact, we can find a finite sub-

set {xk}Kk=0 of ∂Ω (K depends only on Ω) such that ∂Ω ⊂
⋃K
k=0 Vxk .

Considering the boundary layer Ωδ̄ := {x ∈ Ω | dist(x, ∂Ω) ≤ δ̄} we see
that, if δ̄ > 0 is small enough,

(2.7) Ωδ̄ ⊂
K⋃
k=0

Wxk ,

K⋃
k=0

W ′xk ⊂ Ω \ Ωδ̄.

From the procedure of moving planes (see Lemma 4.1 in Troy [26], or
pp. 18–21 in [4]), for all y ∈ Vxk , σ 7→ u(y+σνxk) is monotone increasing
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on (0, εxk). Thus, using the definitions of Wxk , W ′xk , and the second
inclusion in (2.7), there exists a C0 ≥ 2 depending only on Ω such that

(2.8)

∫
W
xk

up(x) dx ≤ C0

∫
W ′
xk

up(x) dx ≤ C0

∫
Ω\Ωδ̄

up(x) dx.

As a consequence, using the first inclusion in (2.7),

∫
Ω

up(x) dx ≤
K∑
k=0

∫
W
xk

up(x) dx+

∫
Ω\Ωδ̄

up(x) dx

≤ [C0(K + 1) + 1]

∫
Ω\Ωδ̄

up(x) dx.

(2.9)

Combining with the uniform bound (2.6), we arrive at∫
Ω

up(x) dx ≤ [C0(K + 1) + 1] max
x∈Ω\Ωδ̄

1

φ(x)

∫
Ω\Ωδ̄

φup(x) dx

≤ C(n, p0,Ω),

(2.10)

which proves property (ii). This completes our proof of Lemma 2.1.

From now on, we will denote the solution up by u for the sake of
simplicity.

Let

(2.11) M := max
Ω

u = ‖u‖L∞(Ω).

We aim to prove that there exists a constant C > 0 depending only
on n, p0, and Ω, such that M ≤ C for any p ≥ p0. We may assume that

M > max{2n, 2
2n
p0−1 } hereafter, or else we are done.

We first rescale u so that Ω ⊆ B 1
4
(0). Indeed, let R := R(Ω) > 1 be

the smallest radius such that Ω ⊆ BR
4

(0). Then uR(x) := R
n
p−1u(Rx) is

a nonnegative solution of Navier problem (1.1) in R−1Ω ⊆ B 1
4
(0) and

we only need to consider uR instead. By Lemma 2.1, the maximum M is

attained at some point x0 ∈ Ωδ := {x ∈ Ω | dist(x, ∂Ω) ≥ δ}. Without

loss of generality, translating Ω if necessary, we may assume 0 ∈ Ωδ and
x0 = 0, that is, u(0) = M . Note that after this translation, we have

Ω ⊆ B 1
2
(0).
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For arbitrarily given x ∈ Ωδ, let

(2.12)

G(x, y) :=

∫
Ω

(∫
Ω

(
· · ·
(∫

Ω

(∫
Ω

G2(x, z1)G2(z1, z2) dz1

)
G2(z2, z3) dz2

)
· · ·
)

×G2(z
n
2−2, z

n
2−1) dz

n
2−2

)
G2(z

n
2−1, y) dz

n
2−1

be the Green’s function for (−∆)
n
2 with pole at x (for more details on

Green’s functions for poly-harmonic operators, please see [14]), where
G2(x, y) is the Green’s function for −∆ with Dirichlet boundary condi-
tion in Ω. Then, we have

(2.13)

{
(−∆)

n
2 G(x, y) = δ(x− y), y∈Ω,

G(x, y)=(−∆)G(x, y) = · · · = (−∆)
n
2−1G(x, y)=0, y∈∂Ω,

where ∆ is the Laplace operator with respect to the variable y at fixed x.
Consequently, we can rewrite the Green’s function G(x, y) as:

(2.14) G(x, y) = Cn ln

(
1

|x− y|

)
− h(x, y) ∀ y ∈ Ω,

where the n
2 -harmonic function h satisfies

(2.15)

{
(−∆)

n
2 h(x, y) = 0, y∈Ω,

(−∆)kh(x, y)=(−∆)k
(
Cn ln 1

|x−y|
)
, k=0, 1, . . . , n2−1, y∈∂Ω.

Here, again x ∈ Ωδ is arbitrarily fixed, h and (−∆)kh are treated as
functions of y only. In (2.15), all the boundary data are positive. Indeed,

(−∆)k
(
Cn ln 1

|x−y|
)

=
Cn,k
|x−y|2k , where the Cn,k are positive constants.

Since δ ≤ |x− y| ≤ 1 for all y ∈ ∂Ω, we have

C ≤ (−∆)
n
2−1h(x, y) = (−∆)

n
2−1

(
Cn ln

1

|x− y|

)
=

C

|x− y|n−2
≤ C

δn−2

(2.16)

for any y ∈ ∂Ω, and hence the maximum principle implies

(2.17) C ≤ (−∆)
n
2−1h(x, y) ≤ C

δn−2
∀ y ∈ Ω.
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On the boundary ∂Ω we also have

C ≤ (−∆)
n
2−2h(x, y) = (−∆)

n
2−2

(
Cn ln

1

|x− y|

)
=

C

|x− y|n−4
≤ C

δn−4

(2.18)

for all y ∈ ∂Ω. It follows from (2.17), (2.18), and the maximum principle
that

(2.19) C ≤ (−∆)
n
2−2h(x, y) ≤ C

δn−4
+

C

δn−2
≤ C

δn−2
∀ y ∈ Ω.

Continuing in this way, we finally get

(2.20) 0 ≤ h(x, y) ≤ C ln
1

δ
+

C

δn−2
=: C ∀ y ∈ Ω.

In conclusion, we have arrived at the following estimates: for any given

x ∈ Ωδ and k = 0, . . . , n2 − 1, there exist constants C ′k, C
′′
k ≥ 0 such that

(2.21) C ′k ≤ (−∆)kh(x, y) ≤ C ′′k ∀ y ∈ Ω.

We have the following lemma on uniform bound of the solution u = up.

Lemma 2.2. Assume n ≥ 4 is even, m = n
2 , Ω is strictly convex, and

let p0 > 1. For every x ∈ Ωδ and p ≥ p0, the solution u = up satisfies
the uniform bound:

1

M

∫
Ω

ln

(
1

|x− y|

)
up(y) dy ≤ C,

where M is defined by (2.11).

Proof: By (ii) in Lemma 2.1, (2.21), and Green’s representation formula

we have, for any x ∈ Ωδ and p ≥ p0,

M ≥ u(x) =

∫
Ω

G(x, y)up(y) dy

= Cn

∫
Ω

ln

(
1

|x− y|

)
up(y) dy −

∫
Ω

h(x, y)up(y) dy

≥ Cn
∫

Ω

ln

(
1

|x− y|

)
up(y) dy − C

∫
Ω

up(y) dy

≥ Cn
∫

Ω

ln

(
1

|x− y|

)
up(y) dy − C.

(2.22)
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As a consequence, we immediately get that

(2.23)
1

M

∫
Ω

ln

(
1

|x− y|

)
up(y) dy ≤ M + C

MC
≤ C.

This finishes our proof of Lemma 2.2.

Let Mk := maxΩ(−∆)ku = ‖(−∆)ku‖L∞(Ω) for k = 1, . . . , n2 − 1. By

Lemma 2.1, the maximum Mk can (only) be attained at some point xk ∈
Ωδ := {x ∈ Ω | dist(x, ∂Ω) ≥ δ}, that is, (−∆)ku(xk) = Mk.

We have the following lemma which is crucial in our proof.

Lemma 2.3. Assume n ≥ 4 is even, m = n
2 , Ω is strictly convex, and

let p0 > 1. For every k = 1, . . . , n2 − 1 and p ≥ p0, we have the following
precise bound:

(2.24) C ′′k
M

2k
n p+(1− 2k

n )

p1− 2k
n

≤Mk ≤ C ′k
M

2k
n p+(1− 2k

n )

p1− 2k
n

.

Moreover, we have, for any p ≥ p0,

(2.25) 0 ≤M − u(x) ≤ C

p
M ∀ |x| ≤ δ

n
√
pM

p−1
n

.

Proof: Since Mk = (−∆)ku(xk) and xk ∈ Ωδ, by Green’s representation
formula and (2.21), we have

Mk = (−∆)ku(xk)

= Ck

∫
Ω

1

|xk − y|2k
up(y) dy −

∫
Ω

(−∆)kh(xk, y)up(y) dy

≤ Ck
∫

Ω

1

|xk − y|2k
up(y) dy.

(2.26)

Note that Bδ(xk) ⊆ Ω. For every p ≥ p0,∫
|xk−y|≤ δ

p
1
n M

p−1
n

1

|xk − y|2k
up(y) dy

≤Mp

∫
|xk−y|≤ δ

p
1
n M

p−1
n

1

|xk − y|2k
dy

≤ Ck
Mp

p1− 2k
n M (1− 2k

n )(p−1)
= Ck

M
2k
n p+(1− 2k

n )

p1− 2k
n

(2.27)
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and, by (ii) in Lemma 2.1,∫
Ω∩{|xk−y|≥ p

1
2k
− 1
n δ

M
p
n

+( 1
2k
− 1
n

)
}

1

|xk − y|2k
up(y) dy

≤
(
M

p
n+( 1

2k−
1
n )

p
1
2k−

1
n δ

)2k ∫
Ω

up(y) dy

≤ Ck
M

2k
n p+(1− 2k

n )

p1− 2k
n

.

(2.28)

In the case 1

p
1
nM

p−1
n

< p
1
2k
− 1
n

M
p
n

+( 1
2k
− 1
n

)
, we can also deduce from Lemma 2.2

that, for every p ≥ p0,∫
δ

p
1
n M

p−1
n

≤|xk−y|≤ p
1
2k
− 1
n δ

M
p
n

+( 1
2k
− 1
n

)

1

|xk − y|2k
up(y) dy

≤
[

1

M

∫
Ω

ln

(
1

|xk − y|

)
up(y) dy

]
M(

δ

p
1
nM

p−1
n

)2k
ln
(
M

p
n

+( 1
2k
− 1
n

)

p
1
2k
− 1
n δ

)
≤ Ck

M1+ 2k
n (p−1)p

2k
n(

p
n + 1

2k −
1
n

)
lnM

≤ Ck
M

2k
n p+(1− 2k

n )

p1− 2k
n

,

(2.29)

where in the last line we have used M > max{2n, 2
2n
p0−1 }. In order to de-

rive the penultimate inequality in (2.29), we have also used the following
inequality: (

1

2k
− 1

n

)
ln p <

(
1

2k
− 1

n

)
ln 2 · p < ln 2

2
p

<
p

2n
lnM <

1

2

(
p

n
+

1

2k
− 1

n

)
lnM.

(2.30)

Combining (2.26), (2.27), (2.28), and (2.29), we get

(2.31) Mk = (−∆)ku(xk) ≤ C ′k
M

2k
n p+(1− 2k

n )

p1− 2k
n

.
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Since Bδ(0) ⊆ Ω and u(0) = M , by (2.31) with k = 1 and applying the
inhomogeneous Harnack inequality (see Theorems 9.20 and 9.22 in [15]
or Theorem 4.17 in [17]), we get

(2.32) 0 ≤ u(0)− u(x) ≤ CM1r
2 ≤ CM

2
np+(1− 2

n )

p1− 2
n

r2 ∀x ∈ Br(0)

and for all r ∈
[
0, δ4
]
. Indeed, since B4r(0) ⊆ Ω, by Theorem 9.22 in [15],

there exists a q depending only on n such that(
1

|B2r(0)|

∫
B2r(0)

(u(0)− u(x))q dx

) 1
q

≤ C
(

inf
x∈B2r(0)

(u(0)− u(x)) + r‖∆u‖Ln(B2r(0))

)
.

Combining this with Theorem 9.20 in [15], we deduce that

sup
x∈Br(0)

(u(0)− u(x))

≤ C

((
1

|B2r(0)|

∫
B2r(0)

(u(0)− u(x))q dx

) 1
q

+ r‖∆u‖Ln(B2r(0))

)

≤ C
(

inf
x∈B2r(0)

(u(0)− u(x)) + r‖∆u‖Ln(B2r(0))

)
,

which yields (2.32) immediately.
The inequality (2.32) implies, for any p ≥ p0,

(2.33) 0 ≤M − u(x) ≤ C

p
M ∀ |x| ≤ δ

n
√
pM

p−1
n

.

Combining (ii) in Lemma 2.1, Green’s representation formula, (2.21),
and (2.33) we obtain, for any p ≥ p0,

Mk ≥ (−∆)ku(0)=Ck

∫
Ω

1

|y|2k
up(y) dy −

∫
Ω

(−∆)kh(0, y)up(y) dy

≥ Ck
∫
|x|≤ δ

p
1
n M

p−1
n

1

|x|2k

(
1− C

p

)p
Mp dx− C̃k

≥ CkMp

∫ δ

p
1
n M

p−1
n

0

rn−1−2k dr − C̃k

≥ C ′′k
M

2k
n p+(1− 2k

n )

p1− 2k
n

.

(2.34)

This concludes our proof of Lemma 2.3.
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Since 0 ∈ Ωδ, the combination od Lemma 2.2 and Lemma 2.3 yields
that, for any p ≥ p0,

C ≥ 1

M

∫
|x|≤ δ

M
p−1
n p

1
n

ln

(
1

|x|

)(
1− C

p

)p
Mp dx

≥ CMp−1

∫ δ

M
p−1
n p

1
n

0

ln

(
1

r

)
rn−1 dr

≥ CMp−1

Mp−1p
ln

(
M

p−1
n p

1
n

δ

)
≥ C lnM,

(2.35)

which implies immediately the desired uniform a priori estimate:

(2.36) M ≤ eC .
This concludes our proof of Theorem 1.2.
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(2018). arXiv:1808.06609.
[5] W. Chen, Y. Fang, and C. Li, Super poly-harmonic property of solutions

for Navier boundary problems on a half space, J. Funct. Anal. 265(8) (2013),

1522–1555. DOI: 10.1016/j.jfa.2013.06.010.
[6] W. Dai, S. Peng, and G. Qin, Liouville type theorems, a priori estimates and

existence of solutions for non-critical higher order Lane–Emden–Hardy equa-

tions, Preprint 2018. arXiv:1808.10771.
[7] W. Dai and G. Qin, Liouville type theorems for fractional and higher order
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Sorbonne Paris Nord, 93430 - Villetaneuse, France

E-mail address: duyckaer@math.univ-paris13.fr
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