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Abstract: In a weighted Killing warped product M}L X pR with warping metric (, )as+
p? dt, where the warping function p is a real positive function defined on M™ and
the weighted function f does not depend on the parameter t € R, we use equi-
variant bifurcation theory in order to establish sufficient conditions that allow us to
guarantee the existence of bifurcation instants, or the local rigidity for a family of
open sets {4}, whose boundaries 92, are hypersurfaces with constant weighted
mean curvature. For this, we analyze the number of negative eigenvalues of a certain
Schrodinger operator and study its evolution. Furthermore, we obtain a characteriza-
tion of a stable closed hypersurface z: X" —» M? X p R with constant weighted mean
curvature in terms of the first eigenvalue of the f-Laplacian of ™.
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1. Introduction and statements of the results

According to Barbosa and do Carmo in [5], and Barbosa, do Carmo,
and Eschenburg in [6], any closed hypersurface X" with constant mean

curvature (CMC) in a Riemannian manifold VA (n > 2) is a critical
point of the variational problem of minimizing the area functional for

. c s w5n+1
volume-preserving variations. Moreover, when M has constant sec-
tional curvature c, they also established that geodesic spheres are the
only stable critical points for this variational problem.

As observed in [2, 9, 10], the set of trial maps for the variational
problem should be a collection of embeddings of CMC hypersurfaces 3"
into ™. In order to detect solutions that are not isometrically congru-
ent, one should take into consideration the action of the diffeomorphism
group of X", acting by right composition in the space of embeddings,
and the action of the isometry group of MnH, acting by left compo-
sition on the space of embeddings. Note that the area and the volume
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functionals are invariant by the action of these two groups. The action
of the diffeomorphism group of ¥™ on any set of embeddings of CMC
hypersurfaces %™ into M s free, which suggests that one should
consider a quotient of the space of embeddings by this action. This
means that two embeddings of CMC hypersurfaces z;: ¥" — m
and zg: X" — mt will be considered equivalent if there exists a dif-
feomorphism ¢: X — 3" such that xo = x1 0 ¢. As to the left action of
the isometry group of M”H, this is not free; nevertheless, the group is
compact, and one can study a bifurcation problem for its critical orbits.
Thus, the variational problem described above provides us with a frame-
work where we can study the equivariant bifurcation (cf. [2, 10, 9, 28])
in a set of equivalence classes of embeddings of CMC hypersurfaces %™
into Mn+1.

In this context, Alias and Piccione in [2] studied the bifurcation of
CMC Clifford torus of the form 2™7: S/(r) x S"7J(y/1 —r2) — S"*! in
unit Euclidean sphere S"*!, where j € {1,...,n} and r € (0,1). More
precisely, they showed that the existence of two infinite sequences a::}i’j :
SI(ri) x S"7I(\/1—=7r2) — S"™ and 207 : ST(s;) x S"7I(y/1 - s7) —
S*+1 that are not isometrically congruent to the CMC Clifford torus,
and accumulating at some CMC Clifford torus, where {r;}i>3, {si}i>3 C
(0,1), are sequences of real numbers such that lim; ... 7r; = 1 and
lim;_, s; = 0. Furthermore, they also showed that for all other values of
r € (0, 1) the family of CMC Clifford torus z79 : §7(r)xS" =7 (v/1 — r2) —
St is locally Tigid, in the sense that any CMC embedding of S7(r) x
S"=I(v/1 — r2) into S which is sufficiently close to ™7 must be iso-
metrically congruent to an embedding of the CMC Clifford family. Later,
de Lima, de Lira, and Piccione ([16]) adapted the methods of [2] to ob-
tain bifurcation and local rigidity results for a family of CMC Clifford
torus in 3-dimensional Berger spheres S, with 7 > 0.

More recently, Koiso, Palmer, and Piccione ([23]) proved bifurcation
results for (compact portions of) nodoids in the 3-dimensional Euclidean
space R3, whose boundary consists of two fixed coaxial circles of the
same radius lying in parallel planes. Moreover, the same authors provide
in [24)] criteria for the existence of bifurcation branches of fixed boundary
CMC surfaces in R? and they discuss stability /instability issues for the
surfaces in bifurcating branches.

Meanwhile, Garcia-Martinez and Herrera in [20] deduced some bi-
furcation and local rigidity results for a certain family of CMC hyper-
surfaces in a class of Riemannnian warped products of the form (I x,
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M™, dt*> + p2(,)ar), namely, in product manifolds I x M™ endowed with
the warping metric dt? + p?(, ), where I C R is an open interval, p is a
real positive function defined on I, called warping function, and M™ is a
closed Riemannian manifold with Riemannian metric (, )y, called Rie-
mannian fiber. Such results are obtained considering some appropriate
hypotheses that depend of the behavior of the eigenvalues of Laplacian
operator on M™.

On the other hand, on a complete Riemannian manifold MnH, let us
remember that the classical Laplace operator A on M can be defined
as the differential operator associated to the standard Dirichlet form

Qu) = /7|Vu|2 dV, wueC>*(M)cC L*(dV),
M

where | | is the norm induced by the Riemannian metric (,) of Mnﬂ,
dV is the volume element on MnH, L?(dV') denotes the set of measur-
able functions w on M such that the Lebesgue integral (with respect
to dV') of |u|? exists and is finite, and C2°(M) is the set of all smooth
functions defined in 37" with compact support. Now, let f € C>°(M),
that will be referred as a weight function. If we replace the measure dV/
with the weighted measure do = e~/ dV in the definition of Q, we obtain
a new quadratic form Qy, and we will denote by Ay the elliptic opera-
tor on C2°(M) C L?(do) induced by Qy. In this sense, Ay arises as a
natural generalization of the Laplacian. It is clearly symmetric, positive,
and extends to a positive operator on L?(do). By Stokes’ theorem,

Ap(u) = Au— (Vu, V), ue ().

The triple (Mn+17<,>,d0) and the differential operator Ay defined

above and acting on C°°(M) will be called, respectively, the weighted
manifold associated with M and f, which we simply denote by M;H,
and the f-Laplacian. In this setting, we recall that a notion of curvature
for weighted manifolds goes back to Lichnerowicz [25, 26] and it was
later developed by Bakry and Emery in their seminal work [3], where
they introduced the following modified Ricci curvature Ric; = Ric +
Hess f, where Ric and Hess are the standard Ricci tensor and the Hessian

——n+1 . . . . .
on M }H_ , respectively. As is common in the current literature, we will
. . 4 . ——n+1
refer to this tensor as being the Bakry—Emery—Ricci tensor of M }H_ . We

note that the interplay between the geometry of " and the behavior
of the weighted function f is mostly taken into account by means of its
Bakry-Emery-Ricci tensor Ricy (cf. [29]).
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On the other hand, it is well known that Killing vector fields are
important objects which have been widely used in order to understand
the geometry of submanifolds and, more particularly, of hypersurfaces
immersed in Riemannian spaces. Into this branch, Alias, Dajczer, and
Ripoll ([1]) extended the classical Bernstein’s theorem [8] to the con-
text of complete minimal surfaces in Riemannian spaces of nonnegative
Ricci curvature carrying a Killing vector field. This was done under the
assumption that the sign of the angle function between a global Gauss
mapping and the Killing vector field remains unchanged along the sur-
face. Afterwards, Dajczer, Hinojosa, and de Lira ([15]) defined a no-
tion of Killing graph in a class of Riemannian manifolds endowed with
a Killing vector field and solved the corresponding Dirichlet problem
for prescribed mean curvature under hypothesis involving domain data
and the Ricci curvature of the ambient space. Later on, Dajczer and de
Lira ([13]) showed that an entire Killing graph of constant mean curva-
ture contained in a slab must be a totally geodesic slice, under certain
restrictions on the curvature of the ambient space. More recently, in [14]
these same authors revisited this thematic treating the case when the
entire Killing graph of constant mean curvature contained lies inside a
possible unbounded region.

Also recently, the second author, jointly with Cunha, de Lima, Li-
ma, Jr., and Medeiros ([12]), applied suitable maximum principles in
order to obtain Bernstein type properties concerning CMC hypersur-
faces X" immersed in a Killing warped product (M"™ x , R, (, ) + p* dt),
namely, in product manifolds M"™ x R endowed with the warping met-
ric (,)ar + p? dt, where M™ is a Riemannian manifold with Riemannian
tensor (,)as, called Riemannian base, and p is a real positive function
defined on M™, called warping function. To obtain these results, they as-
sumed that M™ satisfies certain constraints and that p is concave on M™.
Afterwards, in [17] the second author, jointly with Lima, Jr., Medeiros,
and Santos, obtained Liouville type results concerning hypersurfaces %"
immersed in a weighted Killing warped product M}} X, R, where the
weighted function f does not depend on the parameter ¢ € R. For this,
they assumed suitable boundedness on the BakrnymeryfRicci tensor
of the base M™. Furthermore, they also obtained rigidity results via
constraints on the height function of the hypersurface.

Proceeding with the picture described above, our purpose in this pa-
per is to study the notions of local rigidity, bifurcation instants, and
stability for a family of open sets {2}, of a weighted Killing warped
product M7 x, R whose boundaries 92, are closed hypersurfaces with
constant weighted mean curvature Hy(y) (in abbreviation, we say that
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09, is a closed Hy(v)-hypersurface), where ~ varies on a prescribed
interval I C R.

For this, in Section 2 we record some main facts about the hypersur-
faces immersed in M} x, R. Next, in Subsection 3.1, for each ., we
establish the variation X: (—€,€) x 0y — M} X, R (see (3.1)) of 99,
and we consider the variational problems:

(VP-1): Minimizing the weighted area functional Ay (see (3.5)) for all
variations of 081y that preserve the weighted volume of Q.

(VP-2): Minimizing the weighted area functional Ay (see (3.5)) for all
variations of 02, not necessarily weighted volume-preserving
variations of .

By an analysis of the first variation of the associated weighted Jacobi
functional
FYO = A+ A(y)Vy,  with A(y) € R

(see (3.6)), where Vy is the weighted volume functional (see (3.4)), we
obtain in Proposition 1 that the critical points of (VP-1) and (VP-2) are
the open sets ©, whose boundary 09, is a closed H¢(y)-hypersurface
with constant weighted mean curvature Hy(y) = A(7y)/n. For these criti-
cal points, in Proposition 2 we obtain the formula of the second variation
of .7:?(7).

Concerning the variational problem (VP-2), in Subsection 3.2 we use
the equivariant bifurcation theory (cf. [2, 10, 9, 28]) to establish our
notions of bifurcation instants and local rigidity in terms of the Morse
index of the weighted Jacobi operator Jy., (see (3.21)). Then, in Section 4
we get some results of local rigidity and bifurcation instants in M7 x, R
via the analysis the number of negative eigenvalues of Jy,,. Initially, we
establish the following result of local rigidity.

Theorem 1. Let {Qy},er be a family of open subsets of the weighted
Killing warped product M x ,R whose boundaries 0, are closed Hy(7y)-
hypersurfaces. If, for all v € I, the function

Qy(v) = Ricy (N}, NJ) — ;Hessp(Nv,Nw) —(N,,Y)? ;g ) + |4,

is constant on 0€), and the first nonzero eigenvalue u} (7) of the f-Lapla-

cian Ay, on 0Q, satisfies

(1.1) wi(y) = Qs(v) >0,

then {Qy}yer is locally rigid at each . In particular, such a family is
locally rigid if one of the following conditions holds:
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(a) Ricy (N3, N7) = Hess p(N7, N7) - (N, Y)? ip) - —|A,2;
(b) either

_ . i
Ric (V7. V7) S Hess p (V7. V3) (%, ¥ PP 240 <0 and ) 2 L,

or

Ricy (7. N3)— Hoss p (V5. N5)~ (%, Y2250 <0 and ) > |4,

In Theorem 1, Y is the Killing vector field defined on the weighted
Killing warped product M} x, R, p = |Y| > 0 is the warping function,
N, is the unit normal vector field on 0€2,, A ¢ represents the f-Laplacian
on MJ’}, Ric ¢ and Hess are the BakrnymeryfRicci tensor and the Hes-
sian operator on MY, | A|? stands for the square of the norm of the shape
operator A of 92, with respect to the orientation given by N, and NJ is
the orthogonal projection of N onto the tangent bundle of M™. These
notations will also be used in the statements of the next theorems.

In turn, the bifurcation instants of the family {€,},cr are established
in the following result.

Theorem 2. Let {Q4}, be a family of open subsets of the weighted
Killing warped product M x ,R whose boundaries 0, are closed Hy(7y)-
hypersurfaces. Suppose that, for all v € I, the function

Ay (p)
03

D * * 1 T * *
Qr(7) = Ricy (NI, N3) — ;Hessp(Nv,NW) —(N,,Y)? + 4,2
is constant on 0Q.,. If there are two values 1 and vz, with v1 < 72,
such that the eigenvalues ﬂ} (71) and ﬂ}(’}/g) of the weighted Jacobi op-
erators Jy.y, and Jf.~, (respectively) satisfy

(a) fip(11) # 0 and fif(72) # 0 for all j €{0,1,2,...},
(b) there exists jo € {0,1,2,...} such that (7° (1)) (713 (72)) < 0,

then there exists a bifurcation instant v. € (v1,72)-

Furthermore, in Section 4, when M™ is closed Riemannian manifold,
we give sufficient conditions for both the existence and nonexistence of
bifurcation instants of a certain family {Q,}, of open subsets of the
weighted Killing warped product M} x, R (see (4.2)) whose bound-
aries 01, are f-minimal hypersurfaces; namely, each 0€2, is a hypersur-
face with f-mean curvature equal to zero (cf. Corollaries 1 and 2).
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Finally, in Section 5 we study the notion of stability for a critical point
of the variational problem (VP-1). More precisely, we established a no-
tion of f-stability for a closed Hg-hypersurface X" immersed in M7 X, R
and, with the help of the f-Laplacian Ay of X" of a certain angle func-
tion © given in Proposition 3, we obtain the following characterization
for the f-stability:

Theorem 3. Let x: X" < M} x, R be a closed Hy-hypersurface im-
mersed into weighted Killing warped product M§ x, R. If

— 1 — A
p = Ricy(N*, N*) — ;Hessp(N*,N*) - @2# + A2
P

is constant, then x: X" — M} X, R is f-stable if and only if p is the
first eigenvalue of drift Laplacian Ay on X™.

2. Hypersurfaces in weighted Killing warped products

Unless stated otherwise, all manifold considered in this work will be
connected, while closed means compact without boundary. Throughout
this paper, we will consider an (n + 1)-dimensional Riemannian mani-

fold 77" (n > 2) endowed with a Killing vector field Y. Suppose that

the distribution of all vector fields of M """ that are orthogonal to Y
is of constant rank and integrable. Given an integral leaf M™ of that
distribution, let : [ x M — M """ be the flow generated by Y with
initial values in M™, where I is a maximal interval of definition. Without
loss of generality, in what follows we will consider I = R.

In this setting, our space M can be regarded as the Killing warped
product M™ x, R, that is, the product manifold M" x R endowed with
the warping metric

(2.1) (,) = (()ar) + (p o mp)?m (dt?),

where ), and mg denote the canonical projections from M™ x R onto
each factor, (,)as is the induced Riemannian metric on the base M",
dt? denotes the usual Riemannian metric in R, and p = |Y| > 0 is the
warping function. By C*°(M™ x, R) we mean the ring of real functions
of class C> on M™ x,R, and by X(M™ x,R) the C*°(M" x ,R)-module
of vector fields of class C*° on M" x,R. Let V and V be the Levi-Civita
connections of M"™ x, R and M", respectively.

Now, let (M™ x, R)¢ be a weighted Killing warped product, namely,
a Killing warped product M"™ x, R endowed with a weighted volume
form do=e~/dv, where f € C*(M" x ,R) is a real-valued function, called
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weighted function (or density function), and dv is the volume element
induced by the warping metric (,) defined in (2.1). For (M™ x,R)¢, the
BakrnymeryfRicci tensor ﬁf is defined by

(2.2) Ric; = Ric + Hess f,

where Ric and Hess are the Ricci tensor and the Hessian operator
in M"™ x, R, respectively.

Throughout this work, we will deal with hypersurfaces x: ¥ <
(M™x,R); immersed in a weighted Killing warped product (M™ x,R)¢
and which are two-sided. This condition means that there is a globally
defined unit normal vector field N. We let V denote the Levi-Civita
connection of X".

In this setting, let A denote the shape operator of X" with respect
to N, so that at each p € ¥, A restricts to a self-adjoint linear map

Ay T, =T,
v o= Apy = —V,N.

According to Gromov [21], the weighted mean curvature Hy, or simply
the f-mean curvature, of x: ¥™ — (M™ x,R)y is given by

(2.3) nHy =nH + (Vf,N),
where H denotes the standard mean curvature of z: X" — (M™ x,
R)s with respect to its orientation N. When required, if a hypersurface
x: X" — (M™ x,R)s has constant f-mean curvature Hy, then for short
we will say that z: 3" — (M™ x,R); is an Hy-hypersurface. Moreover,
we recall that z: " — (M™% ,R); is called f-minimal when its f-mean
curvature vanishes identically.
The f-divergence on X" is defined by
divy: X(X™) — C°(Z")
X Pdivi X =divX —(Vf, X),
where div(-) denotes the standard divergence on ¥". We define the drift
Laplacian of ¥™ by
Ap: C®(E") = C=(E")
u = Ap(u) =divy Vu = Au— (Vf, Vu),
where A is the standard Laplacian on ™. We will also refer to such an
operator as the f-Laplacian of ¥™.

(2.4)

Remark 1. We observe that the Killing vector field Y determines in M"™x ,
R a codimension one foliation by totally geodesic slices M™ x {t}, t € R,
with respect to orientation determined by Y. Moreover, assuming that
the weighted function f € C°°(M™ x, R) is invariant along the flow
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determined by Y, that is, (Vf,Y) = 0, from (2.3) we get that each
slice M™ x {t} is f-minimal.

Remark 2. We observe that the following result is a consequence of a
Cheeger—Gromoll type splitting theorem due to G. Wei and W. Wylie
(cf. Theorem 6.1 of [29]; see also Theorem 1.1 of [19]): Let M‘?H be a
weighted Riemannian manifold that contains a line. If the Bakrny/’meryf
Ricci tensor of M;LH is nonnegative and the weighted function f is
bounded, then f must be constant along the line. Consequently, in any
weighted Killing warped product (M™ x ,R) y having nonnegative Bakry—
E,]meryfRicci tensor and with bounded weighted function f, we have that
f does not depend on the parameter of the flow associated to the Killing
vector field Y.

Motivated by Remarks 1 and 2, in this work we will consider Killing
warped products M™ x ,R endowed with a weighted function f does not
depend on the parameter ¢t € R, that is, (Vf,Y) = 0. For the sake of
simplicity, we will denote such an ambient space by

M}’ x, R.

3. The variational problem and the notion of bifurcation
instants

Let M be the space of open subsets 2 of My x,R with compact clo-

sure © and whose smooth compact boundary 9 is a closed, connected,
and orientable hypersurface. For any Q2 € M,

Vol;(©) and Area,(09)
will denote the f-volume and f-area of 2 and 0f2, respectively.
3.1. Description of the variational problem. If Q2 € M, the glob-

ally unit normal vector field defined on 92 will be denoted by N. For
Q € M, we define a variation of 99 as being the smooth mapping

X:(—€€) x 00— M7 x,R
(S’p) HX(S7p)’
satisfying the following two conditions:
(1) for all s € (—¢,€), the map

Xo: 00— MP x, R
p — Xs(p) = X(s,p)

(3.1)

(3.2)

is an immersion;



372 M. A. L. VELASQUEZ, H. F. DE Lima, A. F. A. RAMALHO

(2) X(0,p) = u(p) for all p € 9Q, where ¢: IQ < Q is the inclusion
map.

In this context, given Q € M and a variation X: (—e¢,€) x 9Q —
M} x, R of 9Q we adopt the notation 02, = X (0%). For values
of s small enough, 0f), is also a connected and oriented n-dimensional
smooth submanifold. Moreover, it bounds an open subset {2, whose clo-
sure is also compact. Thus, the variation X: (—e¢,€) x 9Q — My x, R
described above induces a variation of the open subset 2 denoted by 2,
which is also an element of M.

In all that follows, we let d(0§2,) denote the volume element of the
metric induced on 99 by X, and N, the unit normal vector field
along X ;. Moreover, we also consider in 0§25 the weighted volume form
given by dos, = e fd(0Q,). When s = 0 all these objects coincide with
ones defined in 99, respectively.

The variational field associated to the variation X : (—¢, €) x 02 —
M7 x,Ris the vector field %—fL:O. Letting

0X
(33) Us:<aS7Ns>a

we get
T
87X — uoN + (a‘X ) ,
s s=0 s s=0

where (-) T stands for tangential components.
The weighted volume functional associated to the variation X: (—e, €)X
o — M} x,Ris

Vi (—€,¢) > R
s = Vi(s) = Vol (Q) = / do,
Qs

(3.4)

and we say that X: (—e€) x 00 — M} x, R is weighted volume-
preserving of Q if Vy(s) = V;(0) for all s € (—e,¢).

The following result is well known and, in the context of weighted
manifolds, can be found in [11].

Lemma 1. IfQ € M and X: (—€,€) x 9Q — M} x, R is a variation
of 092, then

in(s) = / usdos for all s € (—¢,€),

where us s the function defined in (3.3). In particular, X : (—¢, €)x0Q —
M7 % ,R is weighted volume-preserving of Q if and only iffags usdog =0
for all s € (—¢,€).
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Remark 3. We observe that is not difficult to verify that Lemma 2.2 of [6]
still remains valid for the context of weighted Riemannian manifolds,
that is, if u € C°°(9Q) is such that [,,udo = 0, then there exists a
weighted volume-preserving variation X : (—e, €) x 9Q — M} x,R of 092

whose variational field is %—f ’s:O = uN.

The weighted area functional associated to the variation X is given
by

Ap: (—e,¢) = R

s = Ay = Areas(09;) = /69 dos.

(3.5)

Following the same steps of the proof of Lemma 3.2 of [11], it is not
difficult to see that we get the following

Lemma 2. IfQ € M and X: (—¢,€) x 9Q — M} x, R is a variation
of 092, then

iAf(s) = fn/ (Hy)susdos  for all s € (—¢,€),
dS 00,

where ugs s the function given in (3.3) and (Hy)s = Hy(s,-) denotes
the f-mean curvature of 0Qs with respect to the metric induced by the
immersion X, defined in (3.2).

In order to characterize open subsets 2 of M7 x, R whose boundaries
are closed hypersurfaces with constant f-mean curvature (possibly equal
to zero), we consider the variational problem (VP-1) described in Sec-
tion 1. The Lagrange multiplier method leads us then to the associated
weighted Jacobi functional

]:;‘: (—€,¢) > R

(3.6) 5 = .7-'12\(3) = Areas(0€2) + A Vol (Qs),

where A is a constant to be determined (eventually A\ can be zero, and
in this case, for ) € M, our variational problem reduces to minimizing
the functional Ay for all variations of 0€2).
As an immediate consequence of Lemmas 1 and 2 we get that the first
variation of F ]’c\ takes the following form
Y L ALy(s) = H A d
BT LT = LA ALV = [ {nlHp) A dow
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Thinking about making the best possible choice of \, let

1

H=—
Arear(09) Jaoq

be an integral mean of the f-mean curvature Hy on 0. We call the

attention to the fact that, in case Hy is constant, we have

(3.9) H = Hy,

and this notation will be used in what follows without further comments.

Therefore, if we choose A = nH, from (3.7) we arrive at

i Ms) = —n — HYu, do
T = n [ 10y = R do.

(3.8) Hydo

(3.10)

In particular,
d —
(3.11) —.7-"}\(0) = —n/ {H; — H}up do.
ds o0
Now, from (3.11) and following the same ideas of Proposition 2.7 of [5]
we can establish the following result.

Proposition 1. Let Q € M. The following statements are equivalent:
(a) 09 is a closed Hy-hypersurface with constant f-mean curvature Hy
equal to Hy = \/n;
(b) for all weighted volume-preserving variations X : (—e, e) x 9Q —
M7? x, R of 0Q, we have 4 A;(0) = 0;
(c) for all variations X: (—¢,€) x O — M} x, R of 9Q, we have
LF0)=0.

Hence, from Proposition 1 we have that the critical points of (VP-1)
are open subsets  of M} x, R whose boundary 92 is a closed H y-hy-
persurface with constant second mean curvature H s equal to

(3.12) Hy =2,

n
with A € R. On the other hand, if we change (VP-1) to (VP-2) (see
Section 1), from Proposition 1 we obtain that the respective critical
points of (VP-2) coincide with the same critical points of the initial
variational problem (VP-1).

Remark 4. If A = 0, we observe that the two variational problems (VP-2)
and (VP-1) coincide, in which case the respective critical points are
open subsets €2 of M} x, R whose boundary 9} are closed f-minimal
hypersurfaces. Furthermore, from (3.6) we can observe that }"J‘? coincides
with the weighted area functional A and, for each 2 € M, this whole
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situation comes down to the variational problem of minimizing Ay for
all variations of 9 (not necessarily for those that preserve the weighted
volume of 2).

Remark 5. As observed in [20], our approach is valid for the follow-
ing more general configuration. Assume that M is the space of open
subsets 2 C M} x, R whose boundary 0f is the union of two disjoint
sets 02 = X7 U X5. We will assume that one of them, say X7, is a fixed
set so that the variations considered of 092 only affect ¥%. Under this
assumption, the critical points of (VP-1) or (VP-2) will be open sub-
sets  such that their boundaries are the union of a (fixed) set X7 and

a closed H-hypersurface X% with constant f-mean curvature Hy given
by (3.12).

For such a critical point (for either of the two variational problems
described above), the formula for the second variation of F ;‘ is given in
the following result.

Proposition 2. Let 2 € M be an open subset of M} X ,R whose bound-
ary 08 is a compact H ¢-hypersurface with constant f-mean curvature H
given by (3.12). Then the second variation j—;f;‘(O) of the weighted Ja-
cobi functional ]-"}‘ is given by

for any w € C*(09), where Jp: C>®(0) — C>*(0N) is the weighted
Jacobi operator given by

— 1— Y
(3.14) jf:Af+Ricf(N*,N*)—;Hessp(N*,N*) (N,Y)? p( )+|A|2

Here, Y is the Killing vector field on M}‘ x, R, p=1Y| >0, N is the
unit normal vector field on O0S, Af and Af represent the f Laplacians
on 02 and M} ¥, respectively, Ric ¢ and Hess are the Bakry- Emery Ricci
tensor and the Hessian operator on M}L, |A|? represents the square of the
norm of the shape operator A of OS) with respect to the orientation given
by N, and N* is the orthogonal projection of N on the tangent bundle
of M™. With respect to the functions on 02 to be evaluated in %}'}\(0)
for a critical point of (VP-1), they have to be considered according to
Remark 3, that is, smooth functions on 02 whose integral mean is zero;
and, on the other hand, any smooth function on 0 can be evaluated

in %]‘-’\(0) for a critical point of (VP-2).
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Proof: Initially, for any variation X: (—€,¢€) x 9Q — M7 x, R of 9
we consider the function ug € C*°(91) defined in (3.3). Since Hy is
constant, from (3.10) and (3.9) we have that

T O)w) ==

) Ug do
o0 s=0

7n/ (Hf’H)a(usts)
9O \~—— 88
0

s=0

Reasoning as in the proof of equation (3.5) of [11], we obtain

% :Af(uo)—l—{mf(N,N)—&-|A2|}u0.
s=0
Hence,
(3.15) T3P0 ) = = [ {18 (u0) +{Fies (V. ) + |4}y do-

On the other hand, denoting by N* and N+ the orthogonal projec-
tions of N over the tangent and normal bundles of M™, respectively, and
taking into account that f is invariant along the flow determined by Y,
from [27, Proposition 7.35] we obtain

Hess f(N,N) = (VyVf,N)
= (VNVf,N* + N*)

(3.16) :ﬁe\;s/sf(N*,N*)—&-%(%f,%PHNHZ

— Hess f(N*, N*) + %m VPV (N, Y.

Moreover, from [27, Corollary 7.43] we get

p p
Now, from equations (3.16) and (3.17), we have
(3.18) Ricy (N, N) = Ric (N*, N*)— - Hows (", N*)— (v, > 2212)
p p
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Therefore, from equations (3.18) and (3.15) we obtain
2

(3.19) 2T == [ u07;(u0) do
S o0

where J; is given in (3.14).

Now, for any u € C*°(09), considering variations X : (—¢,€) x 02 —
M7 %, R of 9§ whose variational field is %‘t:o = uN, we obtain that
the last expression (3.19) is also valid for every u € C*°(09). Taking
into account the set of functions on 0f) that are admissible for a critical
point of (VP-2), we conclude that all the arguments stated above are
valid to provide the formula of the second variation of F }‘ for critical
points of (VP-2).

For those critical points of (VP-1), if X: (—¢,€) x 9 — M} x,Ris a
variation of 92 which preserve the weighted volume of 2, then for ug €
C>°(9Q) defined in (3.3), we have from Lemma 1 that [, uodV = 0
and, in addition, the expression (3.19) is valid for such ug. Finally, for
any function u € C*>°(9Q) such that [, udV = 0, from Remark 3 we
get a variation X: (—¢,€) x 0 — M7 x, R of 9Q which preserves the

weighted volume of € such that the variational field is %—)ﬂ o = ulv,
and it follows immediately that (3.19) is retrieved for such a w. O

We conclude this subsection by noting that the weighted Jacobi oper-
ator Jr given in (3.14) belongs to a class of differential operators which
are usually referred to as Schrodinger operators, that is, operators of
the form A + ¢, where A is the standard Laplacian on 992 and ¢ is any
continuous function on 92 (see, for instance, [18]). In particular, we can
highlight that the behavior of the eigenvalues of Jy is well known, and
this behavior will play an important role in obtaining the main results
of this work.

3.2. The notion of bifurcation instants for Hs-hypersurfaces
in MJ’J Xp R. In what follows, we consider the one-parameter fam-
ily {€2,}, of open subsets in weighted Killing warped product M} x, R
such that the boundary of each €2, denoted by 051,, is a closed H ¢ (y)-hy-
persurface with constant f-mean curvature Hy (7), where v varies on a
prescribed interval I C R. In this context, as a consequence of our study
of Subsection 3.1, we have that each €2, is a critical point of a certain
variational problem of type (VP-2). More specifically, each . is a critical
point for the one-parameter family of weighted Jacobi functionals

I>y— ‘7_—}\(7) = .Af + /\(’Y)Vf

defined in (3.6), where
A(y) = nHg(7).
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Moreover, from Proposition 2, associated with each closed Ha(7y)-hy-

persurface 02, we have that the second variation %f;‘(w (0) of .7-'?(7)
is given by

d A
(3.20) 00w == [ udpwae
for any u € C*°(0Q2,), where
Ty = Ay + ﬁigf(]\f:7 NY)

(3.21) 1 — A
- ;Hessp(N:,Nf;) —(N,,Y)? ;gp)

+ A, 2

is the weighted Jacobi operator on d€),. Here, Ay,, and Af are the
f-Laplacians on 0€2., and My, respectively, Ricy and Hess are the Bakry—

E,]meryfRicci tensor and the Hessian operator in MJ’Z, A, is the shape
operator of 91, with respect to normal vector field N,, and N is the
orthogonal projection of IV, on the tangent bundle of M™.

With respect to our family {2}, of critical points of (VP-2), we
need to adopt some notions and results that correspond to equivariant
bifurcation theory for geometric variational problems. For more details
on this subject, we recommend the references [2], [10], [9], and [28].

Let us first recall that two elements €2, and €, of {Q,},cr are said
to be isometrically congruent when there is an isometry 3 of M} x,
R that carries the image of z1: 9§, — M} X, R onto the image of
xo: 08y, — M} x, R (cf. Subsection 1.2 of [2]), where 21 and x5 are
the immersions of 92, and 92, into M} %, R, respectively, i.e., if there
exists a diffeomorphism ¢: 0§2,, — 012, and an isometry 1 of Mg x,R
such that the following diagram commutes:

00, — = M7 x,R

% |

6972 ?M}l XPR'

Taking into account the studies reported in [9], 7 € I is said to be a bifur-
cation instant for the family {Q } ¢ if there exists a sequence {7, }nen C
I and a sequence {2, }nen C {Q },er such that
(a) lim v, =7,
oo ~ ~
(b) nl;rréoxn = 7, where z,,: 0, <= M} x,Rand z: Q5 — M} x, R
are the immersions of €2, and ()3 into M7 %, R, respectively, and
(c) for all n € N, z,, is not isometrically congruent to z.
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Furthermore, according to the ideas set out in [10], if ¥ € I is not a
bifurcation instant, the family {Q},cr is said to be locally rigid at 7.
One of the classical criteria to determine when a instant 7 € I is of
bifurcation is related with the so-called Morse index associated with the
variational problem in question (see, for instance, [2] and [9]). Following
this philosophy, we define the Morse index of €2, which will be denoted

by Ind f(]:;\(v)’ 2,), as the dimension of the maximal subspace where the
second variation %}'?m (0) of the weighted Jacobi functional .7-"}\(7) is

negative definite. Equivalently, Indy (]—';‘(7), 2,) is the number of nega-
tive eigenvalues (counted with multiplicity) of the weighted Jacobi op-
erator Jy,, given in (3.21). With our notations, a real number [i(7)
is an eigenvalue of Jy. if and only if Jy.,(u) + fi(y)u = 0 for some
function u € C°°(99Q,). Moreover, using the same arguments of Propo-
sition 2.7 of [2] we obtain that Indf(}';‘m, ) is finite on I C R. Intu-

itively, Ind (]-';‘(7), (2,) measures the number of independent directions
in which the Hy(y)-hypersurface 0, fails to minimize the weighted area
functional Ay defined in (3.5).

Essentially, a variation of Indy (]—"JZ\(W), 1,) along the interval I C R
will indicate the existence of a bifurcation instant. More precisely, under
suitable Fredholmness assumptions (cf. [2] and [9]), we have that if there

are y1,7v2 € I with 71 < 72 such that the second variation %:2]-';‘(”)(0)

of the weighted Jacobi functional .7:;‘('“ ) s nonsingular (namely, the

eigenvalues of the weighted Jacobi operator J.,, are nonzero) for j €
{1,2}, and

(3.22) Ind(F;0,Q.,) # Indg (F}72, ),

then {Q},cr admits a bifurcation instant at some 7, € (y1,72). On the
other hand, according to [10], using the Implicit Function Theorem we

obtain that if j—;}";‘ﬁ)(O) is nonsingular for some 7y € I, then the fam-
ily {2, }er is locally rigid at 7. In particular, when Indy (]_—}\(v)’ Q,)=0
for all v € I, {2 }er does not have bifurcation instants.

Remark 6. We observe that the change in the Morse index of a family
of hypersurfaces given by condition (3.22) is not sufficient to guarantee
the bifurcation of the family {Q-},c;. Indeed, considering the standard
context, the family of CMC spherical caps, starting with a pole and
terminating with the entire sphere has a change in the Morse index
from 0 to 1 at the hemisphere, but there is no bifurcation (for more
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details, see [4]). Hence, our assumption that %;;(7.7) (0) is nonsingular
for j € {1,2} is a necessary condition to reach at the bifurcation.

In this paper we will study the local rigidity and the bifurcation in-
stants of {0, },cr by analyzing the spectrum of Jy,, for all v € I. Essen-
tially, we will determine the number of negative eigenvalues for each ~y
(counting its multiplicity) and we will study the evolution of such a
number.

4. Local rigidity and bifurcation instants in M}‘ Xp R

Our first result given in Theorem 1 provides some simple sufficient
conditions to get the local rigidity of the family {2, },er of critical points
of the variational problem (VP-2) described in Subsection 3.2.

Proof of Theorem 1: Since Qf(7) is constant, from (3.21) we have that
the eigenfunctions of the weighted Jacobi operator [J., will coincide
with the eigenfunctions of f-Laplacian Ay.,. More specifically, if u is
an eigenfunction of Ay, associated with an eigenvalue pi7(7y), then w is
eigenfunction of Jy,, with eigenvalue

pi(y) = () = Qs (7).

Moreover, by the spectral theorem we know that all the eigenvalues
of Ay., are given by a sequence {M?@ () ;':"8 satisfying
, o
0=pG(y) <p(y) < <phly) <pfHy) <o

repeated according to their multiplicity, and
li I (y) =
jm g (v) = +o0

see, for instance, Section 1 of [30]). So, all the eigenvalues ﬁj- ) of Jr.
f fiy
have the following form
1) () =uh(7) — Qs(v) forevery j € {0,1,2,...}.
f !
So, from (1.1) and (4.1) we obtain

() = 15 (1) Qs () = pp(v)~Qs(7) > 0 for every j € {0,1,2,... }.

Hence, the second variation %}'}\(7) (0) given in (3.20) is nonsingular for

all v € I and, therefore, the family {2, },¢; is locally rigid at each v €
I O

In Theorem 2 we obtain a criterion that guarantees the existence of
bifurcation instants of the family {Q},er.
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Proof of Theorem 2: Initially, from (3.21) and (3.20) we note that the
condition about Qf(7) and hypothesis (a) assure us that the second vari-
ation %}'}\m)(O) of the weighted Jacobi functional .7-';‘(’” ) is nonsingu-
lar for j € {1,2}. On the other hand, we observe that hypothesis (b)
assures us that the eigenvalue of the weighted Jacobi operator which
corresponds to j = jo admits a change of the sign between v, and ~,.
Moreover, as the eigenvalues of the one-parameter family of weighted Ja-
cobi functionals are ordered, we can ensure that the number of negative
eigenvalues between y; and 5 has changed. Therefore,

Ind;(F}7,Q,,) # Ind g (F;07, Q,,)
and the result follows. O

When M™ is closed, the weighted Killing warped product My %,
R naturally admits a family of open subsets that can be realized as
critical points of the weighted area functional Ay defined in (3.5). To
visualize this, for t1,t2 € R with ¢; < t, we consider the family of open
subsets {2 }ye (s, ,1,) given by

(42) Q.y =M" x (tl,’y), S (tl,tg],
whose boundary 9€2, of each (1, is formed by the disjoint union
00, =X UX3(y)

of a fixed set X7 = M™ x {t1} and other set X5 (y) = M™ x {v}. From
Remark 1 we have that each X5 (y), v € (¢1,t2], is an f-minimal to-
tally geodesic closed hypersurface. So, since the variations of 992, only
affect X% (7), from Remarks 4 and 5 we conclude that each element of
the family Q¢ 4,) is a critical point of Ay. For these critical points,
noting that d; is the vector field on M7 %, R that determines the orienta-
tion of each ¥%5(v), v € (t1, t2], we have that the second variation of the
weighted Jacobi functional F? = A; and the weighted Jacobi operator
on each 99, given by the expressions (3.20) and (3.21), are reduced to

d2

Ao =- [ wdra(wdo

and 1
359 (0) = A () = By (p)

for any u € C>°(X5 (7)), respectively, where Ay, represents the f-Lapla-
cian on X4 (%), ﬁf is the f-Laplacian on M7, p = |Y[ >0, and Y is the
Killing vector field that determines the foliation on M7 x, R by totally
geodesic closed slices M™ x {t}, t € R. In addition, if p is an eigenfunction
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of A f, with associated eigenvalue ¢, we have that Jy., can be written
simply as
Iy = Dpy +c.

In this scenario, we observe that the arguments of the proofs of The-
orems 1 and 2 are valid, and even more, the statements can be refined
in the sense that we now ask as hypotheses a certain behavior of the
spectrum of the drift Laplacian A 7 of the closed manifold M7}

Corollary 1. Let M™ be an n-dimensional closed Riemannian manifold
and, for t1,ta € R with t1 < ta, let Qe 4, be the family of open
subsets of the weighted Killing warped product M x, R given by (4.2).
Let ﬁf be the f-Laplacian on M} . If p is an eigenfunction of ﬁf (with
associated eigenvalue c) and the first nonzero eigenvalue u}(’y) of the
f-Laplacian Ay, on ¥a(y) = M™ x {v}, v € (t1,12], satisfies

ny(y) > ¢,
then {Qy }yet,,15) 8 locally Tigid at each v € (t1,t2].

Proof: Initially, it is immediate to note that the function Qz(v) of The-
orem 1 reduces to the nonnegative constant ¢. Then, as in the steps of
the proof of Theorem 1, we make an analysis of the eigenvalues of Jy.,
that contribute to Ind¢(Ay, Q) and the result follows. O

Remark 7. Considering once more the behavior of the eigenvalues of the
f-Laplacian Ay, on an arbitrary closed weighted manifold My, from
Corollary 1 we obtain the following consequence: The family of open
subsets of the weighted product M} x R given by (4.2) is always locally
rigid at each vy € (1, t2].

Thinking similarly, from Theorem 2 we obtain the following result.
Corollary 2. Let M™ be an n-dimensional closed Riemannian manifold
and, forty,ty € R withty < ta, let ey, +,) be the family of open subsets
of the weighted Killing warped product M} x ,R given by (4.2). Let Ay be

the f-Laplacian on M} . If p is an eigenfunction of ﬁf (with associated
eigenvalue c) and if there are two values 1,72 € (t1,t2], with 1 < 72,
such that the eigenvalues [i}(v1) and [i}(v2) of the Jacobi operators Jy.,
and Jy.y, (respectively) satisfy

(a) ﬁjf(’yl) #0 and ﬁgp(fyg) #0 forallj €{0,1,2,...}, and
(b) there exists jo € {0,1,2,...} such that (ﬁ;‘) (71))(/7;” (72)) <0,

then there exists a bifurcation instant v« € (71, 72).
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5. Stability of Hp-hypersurfaces in M}‘ Xp R

It is important to remark that, for all calculations in Section 3, there is
no real dependence on the open set {2 € M but on the hypersurface 9).
In fact, in the literature it is more common to work in terms of hyper-
surfaces (for instance, see [5, 6] for the classical context, and [11, 22]
for the weighted context). In this scenario, M becomes the space of all
closed orientable hypersurfaces of M x, R.

In this last section we study the notion of stability associated with
problem (VP-1) described in Section 3 for this new set M. We begin
this study by recalling that if z: ¥" < M} x, R is such a hypersurface,
then the weighted volume and weighted area associated with a variation
X:(—€,€) x X" — M} x, R are given by

Vi (—e,6) > R
s o Vy(s) = Volp (37 x [0,s]) = / X*(d7)
27 x[0,s]
and
Ap: (—e,e) = R

s > Ap(s) = Areas (X (X7)) = /n dos,

respectively. Furthermore, the variational problem of minimizing the
functional Ay for all variations of x: X" — M} x, R that preserve the
weighted volume V¢ is addressed by the study of the weighted Jacobi
functional
Fri(—€,€) >R
s = Fy(s) = Ap(s) + nH Vy(s),

where H is the constant defined in (3.8), and their respective critical
points are the closed Hy-hypersurfaces of My %, R. For these critical
points, the stability of the corresponding variational problem is given by
the second variation
d2
EFOw == [ g,
where Jy: C®(X") — C™(X") is the weighted Jacobi operator given
in (3.14). The above discussion motivates the following notion of stability.
We say that a closed Hy-hypersurface z: ¥" < M} x, R is f-stable
if 2
—Af(0) >0
ds2 f( ) =

for all weighted volume-preserving variations X : ¥" x (—e€,€) = M} x,R
of x: X" — M}L X, R.
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Remark 8. Let x: X" < M} x, R be a closed H-hypersurface as de-
scribed in the last definition above. We consider the set

(5.1) g—{uGC’“(E”):/nudo—O}.

Just as in [5], we can establish the following criterion of f-stability: a
hypersurface z: £" < M7 x,R is f-stable if and only if j—;}"f (0)(u) >0
for all u € G.

In what follows, associated with a hypersurface z: ¥ < M} X, R we
will consider a particular smooth function, namely, the angle function

O:3X" 3R
p = O(p) = (N(p),Y (),

where N is the normal vector field on " that determines its orientation
and Y is the Killing vector field on M}‘ x, R. In this setting, we get
the following key lemma, which provides sufficient conditions to obtain
a eigenfunction of the drift Laplacian Ay on X". Let us denote by Vv, V,
and V the Levi-Civita connections of My x,R, X" and M™, respectively.

(5.2)

Proposition 3. Let x: X" < Mg x,R be a hypersurface immersed into
weighted Killing warped product M} x,R. If © € C*°(X) is the function
defined in (5.2), then

— 1 — A
AsO + {Ricf(N*,N*) - ;Hessp(N*,N*) - @225”) + |A2} e

- 7nYT(Hf)7

where we are using the same notations of Proposition 2. In addition, if
X" is closed and both Hy and

= ey (8, ") = ess V", %) = @250 . L
are constants, then u is an eigenvalue of Ay on X" with eigenfunction ©.
Proof: Firstly, from (2.3) we note that
—nY ' (H) ==Y "(nHy - (Vf,N))
=—nY(Hf)+Y " (VfN)
=—nY ' (Hy) + Hess f(Y,N)
— ©Hess f(N,N) — (AY T V).

(5.3)
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Moreover, with a straightforward computation we can show that
VO =AY T — (VyY)T
and, since f is invariant along the flow determined by Y, we get
(VO,Vf) = —<AYT (VnY)', V)
—(AYT,Vf) = (VnY. V)
—(AY T V) + (Y,VNV])
—(AY T,V f) 4 Hess f(Y, N).

(5.4)

Taking into account equations (5.3) and (5.4) we get

(5.5) —nY " (H) = -nY T (H;) — OHess f(N,N) + (VO, V).

On the other hand, from Proposition 2.12 of [6] we have
(5.6) AO = —nY T (H) — O(Ric(N, N) + |A]%).

Therefore, from (2.2), (2.4), (3.18), (5.6), and (5.5) we obtain the
result. O

Our stability result stated in Theorem 3 gives us a characterization
of f-stable H-hypersurfaces in M} X, R through the first eigenvalue
of the drift Laplacian A, which extends a classic result of Barbosa, do
Carmo, and Eschenburg (see Proposition 2.13 of [6]).

Proof of Theorem 3: Since p is constant, Proposition 3 guarantees that
p is in the spectrum of the drift Laplacian Ay. So, let p; be the first
eigenvalue of Ay on X". If 1 = 1y, then the variational characterization
of A1 (see, for instance, Section 1 of [7]) gives

—/ ulf(u)do
= min =

ueg\{0} / W2 do ’

where G is defined in (5.1). Then, from (3.13) and (3.14) we obtain
a2
ds?
for any u € G and, according to Remark 8, z: X" — My x,Ris f-stable.
Now suppose that z: X" — M¢ x, R is f-stable, which according
to Remark 8 is equivalent to %ff(O)(u) > 0 for all u € G. Let u

FrO)w) = [ {=ubw) =}y do > (a0 [ war=o.

n
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be an eigenfunction associated to the first eigenvalue p; of the drift
Laplacian Ay on X". Consequently, by (3.13) and (3.14) we get

2
0< ST O = —p) [ o

Therefore, since pup < p, we must have g = p. O
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