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Abstract: This paper aims to study solvable-by-finite and locally solvable maximal
subgroups of an almost subnormal subgroup of the general skew linear group GLn(D)

over a division ring D. It turns out that in the case where D is non-commutative, if

such maximal subgroups exist, then either it is abelian or [D : F ] <∞. Also, if F is
an infinite field and n ≥ 5, then every locally solvable maximal subgroup of a normal

subgroup of GLn(F ) is abelian.
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1. Introduction and statements of main results

The question of the existence of maximal subgroups in a division ring
is difficult and it has not been settled completely (see [1], [3], [12]). De-
spite this, various aspects of maximal subgroups in division rings have
been studied substantially by many authors. Let D be a division ring
and D∗ = D\{0} its multiplicative group. In [5] it was shown that ev-
ery nilpotent maximal subgroup of D∗ is abelian. In [23] this result was
extended to nilpotent maximal subgroups of a subnormal subgroup G
of D∗. However, we do not have an analogous result if the word “nilpo-
tent” is substituted by “solvable”. In fact, the set C∗ ∪ C∗j is a non-
abelian metabelian maximal subgroup of the multiplicative group H∗ of
the division ring of real quaternions H (see [1]). More generally, it was
shown that if a subnormal subgroup G of D∗ contains a non-abelian
solvable maximal subgroup, then D must be a cyclic algebra of prime
degree over the center of D (see [9] or [6]). Recently, we have obtained
parallel results in [15] for locally nilpotent and locally solvable maximal
subgroups of an almost subnormal subgroup of D∗.
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Continuing in this direction, we devote Section 2 of the present paper
to examining solvable-by-finite maximal subgroups of an almost sub-
normal subgroup of the general skew linear group GLn(D), for an in-
teger n ≥ 1. Solvable-by-finite skew linear groups were also considered
by several authors before (see [11, Section 2], [23], [32]). In Section 2,
among other corollaries, we prove the following theorem.

Theorem 1.1. Let D be a non-commutative division ring with cen-
ter F which contains at least five elements, and G an almost subnormal
subgroup of GLn(D) with n ≥ 1. If M is a non-abelian solvable-by-
finite maximal subgroup of G, then [D : F ] <∞. Furthermore, we have
F [M ] = Mn(D), and there exists a maximal subfield K of Mn(D) con-
taining F such that K∗ ∩G is the Fitting subgroup of M , K/F is a Ga-
lois extension, NGLn(D)(K

∗) ∩G = M , K∗ ∩GEM , and M/K∗ ∩G ∼=
Gal(K/F ) is a finite simple group of order n

√
[D : F ].

Section 3 is about studying locally solvable maximal subgroups of an
almost subnormal subgroup of GLn(D). As we have mentioned above,
the case n = 1 has been investigated subsequently in [15]. Therefore,
we shall focus on the remaining case n ≥ 2 only. In [3], it was pointed
out that if D is a non-commutative division ring and n ≥ 2, then ev-
ery solvable maximal subgroup of GLn(D) is abelian. In [14] and [6],
this result was generalized to solvable maximal subgroups of a normal
subgroup of GLn(D). To the best of our knowledge, the latest results
regarding locally solvable maximal subgroups of GLn(D) were obtained
in [22]. Indeed, it was shown in Theorem 1.6 of [22] that if D is an
infinite division ring and n ≥ 2, then every locally nilpotent maximal
subgroup of GLn(D) is abelian. Also, a similar result for locally solv-
able maximal subgroups was presented in [22, Theorem 1.5] under some
additional conditions. Here, we generalize these results to the case of
locally solvable maximal subgroups of a normal subgroup of GLn(D).
More precisely, we prove in Section 3 the following result.

Theorem 1.2. Let D be a non-commutative division ring with cen-
ter F which contains at least five elements, and G a normal subgroup
of GLn(D) with n ≥ 2. If M is a locally solvable maximal subgroup of G,
then M is abelian.

Let us return to the linear case; that is, to the case when D = F is a
field. It is worth noting that the two conditions “local solvability” and
“solvability” are equivalent in this case. For an infinite field F and n < 5,
the work [3] demonstrates that GLn(F ) always contains non-abelian
solvable maximal subgroups. Furthermore, in [3] all solvable maximal
subgroups of GL2(F ) for an arbitrary field F have been determined
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completely. At the end of Section 3 we show that if n ≥ 5 and F is
infinite, then every solvable maximal subgroup of a normal subgroup
of GLn(F ) is abelian.

Theorem 1.3. Let F be an infinite field, and G a normal subgroup
of GLn(F ) with n ≥ 5. If M is a solvable maximal subgroup of G, then
M is abelian.

The motivation of the obtained results is [1, Conjecture 1], which
states that the general skew linear group GLn(D) contains no solvable
maximal subgroups if D is non-commutative and n ≥ 2 or if D is com-
mutative and n ≥ 5. Additionally, we refer the reader to [3] and [6] for
a full discussion of this conjecture. In view of the obtained results, this
conjecture is reduced to the case of abelian maximal subgroups, which
is exactly Conjecture 2 of [1].

Let R be a ring, S a subring of R, and G a subgroup of R∗ normaliz-
ing S such that R = S[G]. Suppose that N = G∩S is a normal subgroup
of G and R =

⊕
t∈T tS, where T is some (and hence any) transversal T

of N to G. Then, we say that R is a crossed product of S by G/N
(see [31] or [25, 1.4]). Let K/F be a cyclic extension of fields with the
Galois group generated by an automorphism σ of order s = dimF K.
Fixing a non-zero element a ∈ F and a symbol x, we let

C = K · 1⊕K · x⊕ · · · ⊕K · xs−1,
and multiply elements in C by using the distributive law and the two
rules

xs = a, x · b = σ(b)x,

for any b ∈ K. Then C is an F -algebra and is called the cyclic algebra
associated with (K/F, σ) and a ∈ F\{0} (see [16, p. 218]).

Throughout this paper, we denote by D a division ring with cen-
ter F and by D∗ the multiplicative group of D. For a positive integer n,
the symbol Mn(D) stands for the matrix ring of degree n over D. We
identify F with F In via the ring isomorphism a 7→ aIn, where In is the
identity matrix of degree n. If S is a subset of Mn(D), then F [S] denotes
the subring of Mn(D) generated by the set S ∪ F . Also, if S is a subset
of D, then F (S) is the division subring of D generated by S ∪F . Recall
that a division ring D is locally finite if for every finite subset S of D,
the division subring F (S) is a finite-dimensional vector space over F . If
A is a ring or a group, then Z(A) denotes the center of A.

Let V = Dn = {(d1, d2, . . . , dn) | di ∈ D}. If G is a subgroup
of GLn(D), then V may be viewed as a D-G bimodule. Recall that a sub-
group G of GLn(D) is irreducible (resp. reducible, completely reducible)
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if V is irreducible (resp. reducible, completely reducible) as a D-G bi-
module. If F [G] = Mn(D), then G is absolutely irreducible over D. An
irreducible subgroup G is imprimitive if there exists an integer m ≥ 2
such that V =

⊕m
i=1 Vi as left D-modules and for any g ∈ G the map-

ping Vi → Vig is a permutation of the set {V1, . . . , Vm}. IfG is irreducible
and not imprimitive, then G is primitive.

2. Solvable-by-finite maximal subgroups

Let us recall the notion of an almost subnormal subgroup. Let G be a
group and H a subgroup of G. Following Hartley [10], we say that H is
an almost subnormal subgroup of G if there is a finite chain of subgroups

H = H0 ≤ H1 ≤ · · · ≤ Hr = G,

such that either [Hi+1 : Hi] is finite or Hi is normal in Hi+1 for 1 ≤ i ≤
r−1. It is clear that if H is a subnormal subgroup of G, then it is almost
subnormal. Let D be a division ring and n an integer number. It was
shown in [20, Theorem 3.3] that if n ≥ 2 and D is infinite, then every al-
most subnormal subgroup of GLn(D) is normal. On the other hand, this
result does not hold in the case n = 1; that is, the case GL1(D) = D∗.
There are examples of division rings which contain almost subnormal
subgroups that are not subnormal (see [2] and [20]). In addition, it is
surprising that every non-central almost subnormal subgroup of D∗ al-
ways contains a non-central subnormal subgroup. This fact allows us to
extend naturally a lot of results for subnormal subgroups to those of
almost subnormal subgroups. This interesting result was obtained previ-
ously in [8] by using certain properties of graphs. In this paper we give
an alternative proof for this fact without using graphs (Proposition 2.2).
For this purpose, we need the following lemma which may be adopted
from [26, Lemma 4].

Lemma 2.1. Let D be a division ring, and N a non-central subnormal
subgroup of D∗. If G is a non-central subgroup of D∗, which is invariant
under N , that is x−1Gx ⊆ G for all x ∈ N , then G ∩N is non-central.

Proposition 2.2. Let D be a division ring with center F . Then, ev-
ery non-central almost subnormal subgroup of D∗ contains a non-central
subnormal subgroup.

Proof: If G is a non-central almost subnormal subgroup of D∗, then by
definition, there exists a finite chain of subgroups

G = G0 ≤ G1 ≤ · · · ≤ Gn = D∗,

for which either [Gi+1 : Gi] is finite or Gi EGi+1. We will prove that G
contains a non-central subnormal subgroup by induction on n.
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Step 1. To prove the proposition when n = 1. Assume that [D∗ : G] is
finite. If we set N = CoreD∗(G) =

⋂
x∈D∗ x−1Gx, then N is a normal

subgroup of finite index in D∗. It is clear that D∗ is radical over N .
We assert that N is not contained in F . Assume by contradiction that
N ⊆ F . We divide our situation into two cases:

Case 1.1. F is finite. Since F is finite, so is N . Additionally, we have
that D∗ is radical over N , from which it follows that every element
of D∗ is periodic. According to [13, Theorem 8], we conclude that D is
commutative, a contradiction.

Case 1.2. F is infinite. If we set s = [D∗ : N ], then for any a, b ∈ D∗ we
have as, bs ∈ N ⊆ F . This implies that a−sb−sasbs = 1 for any a, b ∈ D∗.
In other words, D∗ satisfies the non-trivial group identity x−sy−sxsys =
1. In view of [21, Theorem 2.2], we obtain that D is commutative, a
contradiction.

Step 2. To prove the proposition when n > 1. It follows by the induction
hypothesis that G1 possesses a non-central subnormal subgroup N of D∗

with a subnormal series N = N0 EN1 E · · ·ENm = D∗. There are two
possible cases:

Case 2.1. G = G0EG1. In this case, we have N ∩GEN ∩G1 = N ; recall
that N ⊆ G1. Since G is invariant under G1, it is also invariant under N .
It follows from Lemma 2.1 that N ∩ G is non-central. Consequently,
N ∩G is a non-central subnormal subgroup of D∗ contained in G, with
the subnormal series

N ∩GEN = N0 EN1 E · · ·ENm = D∗.

Case 2.2. [G1 : G] <∞. If C = CoreG1
(G), then C is a normal subgroup

of finite index in G1 contained in G. We claim that C is non-central.
Indeed, assume on the contrary that C ⊆ F . If F is finite, then C is
a finite group. This yields that G1 is also finite, and so is N . It follows
from [13, Theorem 8] that N is central, a contradiction. In the remaining
case where F is infinite, if C ⊆ F , then G1 is a non-central almost sub-
normal subgroup of D∗ satisfying the identity x−ky−kxkyk = 1, where
k = [G1 : C], which contrasts with [20, Theorem 2.2]. Therefore C is
non-central, as claimed. By the same arguments used in Case 2.1, we
conclude that C ∩N is a non-central subnormal subgroup of D∗.

Corollary 2.3. Let D be a division ring with center F , and G be a
non-central almost subnormal subgroup of D∗. If K is a division subring
of D normalized by G, then either K ⊆ F or K = D.
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Proof: By Proposition 2.2, G contains a non-central subnormal sub-
group N , which also normalizes K. The result follows immediately from
[26, Theorem 1].

Lemma 2.4. Let D be a division ring with center F , and G an almost
subnormal subgroup of D∗. If G is (locally solvable)-by-finite, then G⊆F .

Proof: Let A be a locally solvable normal subgroup of finite index in G.
Since A is an almost subnormal subgroup of D∗, it follows from [15]
that A ⊆ F . This implies that G/Z(G) is finite and, by Schur’s theorem
([21, Lemma 1.4, p. 115]), we conclude that G′ is finite. This means that
G′ is a finite almost subnormal subgroup of D∗. If G′ is non-central, then
by Proposition 2.2, G′ contains a non-central finite subnormal subgroup
of D∗, which contradicts [13, Theorem 8]. Hence, G′ ⊆ F , which means
that G is solvable. Therefore, the result follows from [15].

Lemma 2.5. Let D be a division ring with center F , and G an almost
subnormal subgroup of D∗. Assume that M is a non-abelian solvable-
by-finite maximal subgroup of G. If A is a normal subgroup of M , then
either A is abelian or F (A) = D.

Proof: The condition AEM implies immediately that F (A) is normal-
ized by M and so M ⊆ ND∗(F (A)∗) ∩G ⊆ G. By virtue of maximality
of M , we have either ND∗(F (A)∗)∩G = M or ND∗(F (A)∗)∩G = G. If
the former case occurs, then F (A)∗ ∩G is contained in M , which shows
that A is normal in F (A)∗∩G. Consequently, A is an almost subnormal
subgroup of F (A)∗ contained in M . Since M is solvable-by-finite, so is A.
It follows from Lemma 2.4 that A is contained in the center of F (A) and
so A is abelian. In the latter case, the division subring F (A) is normal-
ized by G. It follows from Corollary 2.3 that either A ⊆ F or F (A) = D.
In either case, we always have that A is abelian or F (A) = D. Our proof
is now finished.

Lemma 2.6 ([32, Proposition 4.1]). Let D = E(A) be a division ring
generated by its metabelian subgroup A and its division subring E such
that E ≤ CD(A). Set H = ND∗(A), B = CA(A′), K = E(Z(B)),
H1 = NK∗(A) = H ∩K∗, and let τ(B) be the maximal periodic normal
subgroup of B.

(1) If τ(B) has a quaternion subgroup Q= 〈i, j〉 of order 8 with A =
QCA(Q), then H =Q+AH1, where Q+ = 〈Q, 1 + j,−(1 + i + j +
ij)/2〉. Also, Q is normal in Q+ and Q+/〈−1, 2〉∼=AutQ∼=Sym(4).

(2) If τ(B) is abelian and contains an element x of order 4 not in the
center of B, then H = 〈x+ 1〉AH1.

(3) In all other cases, H = AH1.
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Theorem 2.7. Let D be a division ring with center F , and G an al-
most subnormal subgroup of D∗. If M is a non-abelian solvable-by-finite
maximal subgroup of G, then M is abelian-by-finite and [D : F ] <∞.

Proof: It follows from Lemma 2.5 that F (M) = D. Let N be a solvable
normal subgroup of finite index in M . In the case where N is abelian,
then, of course, M is abelian-by-finite and L = F (N) is a subfield of D
normalized by M . Take a transversal {x1, x2, . . . , xk} of N and set

∆ = Lx1 + Lx2 + · · ·+ Lxk.

The displayed relation provides that ∆ is a domain with dimL ∆ ≤ k.
The implication of this fact is that ∆ is a centrally finite division ring.
Since ∆ contains both F and M , it must coincide with D.

To settle the whole theorem, it remains to examine the case where
N is a non-abelian. Therefore, we may suppose that N is solvable with
derived series of length s ≥ 2. In other words, we have the following
series:

1 = N (s) EN (s−1) EN (s−2) E · · ·EN ′ EN EM.

If we set A = N (s−2), then A is a non-abelian metabelian normal sub-
group of M . As A is non-abelian, Lemma 2.5 again says that F (A) = D,
from which it follows that Z(A) = F ∗ ∩ A and F = CD(A). Set H =
ND∗(A), B = CA(A′), K = F (Z(B)), H1 = H ∩ K∗, and τ(B) to be
the maximal periodic normal subgroup of B. Then, it is a simple matter
to check that H1 is an abelian group and τ(B) is characteristic in B. It
follows from [15, Lemma 3.8] that τ(B) is characteristic in A. In order
to use Lemma 2.6, we divide our situation into three cases:

Case 1. τ(B) is not abelian.
Since τ(B) is characteristic in B and B is normal in M , we conclude

that τ(B) is normal in M . By virtue of Lemma 2.5, we have F (τ(B)) =
D. In addition, as τ(B) is solvable and periodic, it is actually a locally
finite group ([15, Lemma 2.12]). It follows that D = F (τ(B)) = F [τ(B)]
is a locally finite division ring. Since M is solvable-by-finite, it contains
no non-cyclic free subgroups. With reference to [9, Theorem 3.1], we
deduce that [D : F ] <∞ and M is abelian-by-finite.

Case 2. τ(B) is abelian and contains an element x of order 4 not in the
center of B = CA(A′).

Since x 6∈ Z(B), it does not belong to F . The condition x is of finite
order implies that the field F (x) is an algebraic extension of F . Note that
〈x〉 is indeed a 2-primary component of τ(B) (see [32, Theorem 1.1,
p. 132]); thus, it is a characteristic subgroup of τ(B). Consequently,
〈x〉 is a normal subgroup of M . Therefore, all elements of the set xM =
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{m−1xm | m ∈ M} ⊆ F (x) have the same minimal polynomial over F .
As a result, x is an FC-element and so [M : CM (x)] < ∞. Now, if we
set C = CoreM (CM (x)), then C is a normal subgroup of finite index
in M . In view of Lemma 2.5, either F (C) = D or C is abelian. The
first case cannot occur since it implies that x ∈ F , which is impossible.
Therefore C is abelian and, in consequence, M is abelian-by-finite. By
the same arguments used in the first paragraph, we conclude that D is
centrally finite.

Case 3. H = AH1.
The fact that A′ ⊆ H1 ∩A implies that H/H1

∼= A/A∩H1 is abelian
and so H ′ ⊆ H1. Since H1 is abelian, it follows that H ′ is abelian too.
Because M ⊆ H, we know that M ′ is also abelian. In other words, M is
a metabelian group; hence, the conclusions follow from [15, Proposi-
tion 3.7].

Lemma 2.8 ([25, 4.5.1]). Let D be a division ring that is not a locally
finite field, and n ≥ 2 an integer. If N is a non-central normal subgroup
of GLn(D), then N contains a non-cyclic free subgroup.

Lemma 2.9. Let D be a division ring with center F containing at least
four elements, and G a normal subgroup of GLn(D) with n ≥ 2. Assume
that M is a maximal subgroup of G. If A is an F -subalgebra of Mn(D)
normalized by M , then either A∗ ∩G ⊆M or A = Mn(D) provided that
A∗ ∩G 6⊆ F .

Proof: Since M normalizes A, we have M ⊆ NGLn(D)(A
∗) ∩ G ⊆ G.

Since M is maximal in G, we have either M = NGLn(D)(A
∗) ∩ G or

NGLn(D)(A
∗)∩G = G. If the first case occurs, then G∩A∗ ⊆M . Now,

suppose that NG(A∗) = G and that A∗ ∩G 6⊆ F . It is clear for this case
that A∗ ∩ G is a non-central normal subgroup of GLn(D), from which
it follows that SLn(D) ⊆ A∗ ([18, Theorem 11]). The consequence of
this fact is that A contains the subring F [SLn(D)], which is normal-
ized by GLn(D). According to the Cartan–Brauer–Hua theorem for the
matrix ring (see e.g. [3, Theorem D]), we obtain that A = Mn(D).

Lemma 2.10. Let D be an infinite division ring with center F , and
n ≥ 1. If SLn(D) is (locally solvable)-by-finite, then n = 1 and D = F .

Proof: For a proof by contradiction, we assume that n > 1. Set S =
SLn(D). From our hypothesis, S contains a locally solvable normal sub-
group G such that S/G is finite. If G is not contained in F , then G = S
([18, Theorem 11]), and so S is locally solvable. By Lemma 2.8, we de-
duce that D is a field, which means that S is indeed a solvable linear
group; recall that every locally solvable linear group is solvable. But
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this leads at once to the contradiction that S is a perfect group. We
may therefore assume that G ⊆ F , from which it follows that S/S ∩ F ∗
is finite. A similar argument permits us to conclude that F is again a
field. Then, we also have a contradiction since it is well known that for
an infinite field F , the special linear group SLn(F ) contains no proper
subgroups of finite index. These contradictions imply that n = 1 and, in
consequence, we have D′ is (locally solvable)-by-finite. With reference
to Lemma 2.4, we conclude that D′ is contained in F . As a result, D∗ is
solvable, yielding that D = F . The proof is completed.

Lemma 2.11. Let D be an infinite division ring with center F , and G a
normal subgroup of GLn(D). Assume that M is a non-abelian maximal
subgroup of G, and that N is a subnormal subgroup of M . If either

(1) M is (locally solvable)-by-finite, D is non-commutative, and n ≥ 2,
or

(2) M is solvable, D is a field, and n ≥ 5,

then the following hold:

(i) M is primitive,
(ii) CMn(D)(M) is a field,

(iii) either N is abelian or F [N ] is a prime Goldie ring whose classical
right quotient ring coincides with Mn(D),

(iv) CMn(D)(N) is a simple Artinian ring.

Proof: We begin by proving that M is irreducible. Otherwise, it follows
from [25, 1.1.1] that there exist a matrix P ∈ GLn(D) and some inte-
ger 0 < m < n such that PMP−1 ⊆ H, where

H =

(
GLm(D) ∗

0 GLn−m(D)

)
∩G.

The normality of G and the maximality of M imply that PMP−1 is
a maximal subgroup of G contained in H, which yields either H = G
or H = PMP−1. We observe that in the former event, we would have
SLn(D) ⊆ H, which is impossible since In + En1 belongs to SLn(D)
but it is not an element of H (here En1 is the matrix with 1 in the
position (n, 1) and 0 everywhere else). Therefore, we may assume that
H = PMP−1, which is conjugate to M . It follows that H is (locally
solvable)-by-finite. Consequently, the group(

SLm(D) 0
0 SLn−m(D)

)
⊆ H,

which clearly contains a copy of SLm(D) and of SLn−m(D), is (locally
solvable)-by-finite too. By virtue of Lemma 2.10, we must have m =
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n −m = 1 and so n = 2 and D = F , a contradiction. As a result, the
group M is irreducible, proving our claim.

AsM is irreducible, it follows from [1, Lemma 8] that F1 =CMn(D)(M)
is a division ring. Take an element x ∈ F ′1 ⊆ SLn(D); by [18, Theo-
rem 11], we have x ∈ G. The maximality of M in G again means that
either 〈M,x〉 ∩ G = M or G ⊆ 〈M,x〉. If the first case occurs, then
〈M,x〉 = M , or x ∈ M . It follows that x ∈ Z(M). In the latter case,
we have F [G] = F [〈M,x〉] = Mn(D) by the Cartan–Brauer–Hua the-
orem for the matrix ring and so x ∈ F . Thus, in either case we have
x ∈ F ∗Z(M), from which we conclude that F ′1 is abelian. A consequence
of this fact is that F ∗1 is solvable, and so F1 is indeed a field. Assertion (ii)
is now established.

For a proof of (i), we assume by contradiction that M is imprimi-
tive. Then, the proof of [9, Lemma 2.5] says that M contains a copy of
SLr(D) oSk, the wreath product of SLr(D) and the symmetric group Sk

for some r > 1 and n = rk. Since M is (locally solvable)-by-finite, so
is SLr(D). By Lemma 2.10, we have r = 1, k = n, and D is a field,
which contradicts the assumption of (1). Therefore M is primitive under
assumption (1). If n ≥ 5 and M is solvable, then the fact that n = k im-
plies that Sn is solvable, a contradiction. This contradiction indicates
that M is primitive, and (i) is proved.

To prove (iii), we note that R is in fact Goldie ([29, Corollary 24])
and prime. Therefore, the classical right quotient ring, say Q, of R must
be simple Artinian ([7, Theorem 6.18]), which is embedded in Mn(D)
by [25, 5.7.8]. Therefore, there exist a division F1-algebra E and an
integer m ≥ 1 such that Q ∼= Mm(E). Since M normalizes R, it also
normalizes Q. It follows from Lemma 2.9 that either Q∗ ∩ G E M or
Q = Mn(D). The first case implies that Q∗∩G is a subnormal subgroup
of Q∗ contained in M . As a result, the subgroup N ⊆ Q∗∩G is contained
in Z(Q) by Lemmas 2.4 and 2.8. In other words, N is abelian, and (iii)
is proved.

The confirmation of the final assertion (iv) follows from the same
argument used in the proof of [3, Proposition 3.3].

Lemma 2.12 ([17, Theorem 2]). Let R be a prime ring with identity,
Z = Z(R) the center of R containing at least five elements, and U the
Z-subalgebra of R generated by R∗. Assume U contains a non-zero ideal
of R. If R∗ has a solvable normal subgroup which is not central, then R
is a domain.

Lemma 2.13. Let A, B, C be groups such that A E B E C and that
A is a solvable subgroup of finite index in B. Then A is contained in a
solvable subgroup of B and such a subgroup is normal in C.
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Proof: For any x ∈ C, it is clear that x−1Ax is a solvable normal sub-
group of B. If we set H = 〈x−1Ax〉 where x runs over C, then AEH ⊆ B
and H E C. Since [B : A] is finite, we conclude that [H : A] is finite.
Let {h1, . . . , hn} be a transversal of A in H. Since H = 〈x−1Ax〉, for
each 1 ≤ i ≤ n, the element hi may be expressed in the form

hi = x−1i1
ai1xi1 · · ·x−1iki

aiki
xiki

,

where xij ∈ C and aij ∈ A. It is clear that

H = 〈x−1ij
Axij : 1 ≤ i ≤ n, 1 ≤ j ≤ ki〉.

Since there are only finitely many xij ’s, it follows that H is a solvable
normal subgroup of C containing A.

Theorem 2.14. Let D be a non-commutative division ring with cen-
ter F which contains at least five elements, and G a normal subgroup
of GLn(D) with n ≥ 2. If M is a solvable-by-finite maximal subgroup
of G such that F [M ] 6= Mn(D), then M is abelian.

Proof: Let N be a solvable normal subgroup of finite index of M . We
shall show first that N is abelian. For this purpose, we set R = F [N ]
and Q to be the classical right quotient ring of R. Then, Lemma 2.11(iii)
ensures that R is prime and Goldie, and that either N is abelian or
Q = Mn(D). If the first case occurs, then we are done. Now, we shall
show that the latter case cannot happen by contradiction. So, assume
that Q = Mn(D) and that N is non-abelian. In view of Lemma 2.9,
we have G ∩ R∗ ⊆ M , from which it follows that G ∩ R∗ is a normal
subgroup of R∗ contained in M . Now, we have N E G ∩ R∗ E R∗ and
[G ∩ R∗ : N ] < ∞. With reference to Lemma 2.13, we conclude that
N is contained in a solvable normal subgroup, say H, of R∗. Since
Z(R) contains F , it has at least five elements. Additionally, the fact
that N ⊆ H ensures us that H is not contained in Z(R). Therefore, we
may apply Lemma 2.12 to obtain that R is a domain. Now, R is both a
domain and Goldie, and actually an Ore domain, and so Q = Mn(D) is a
division ring. But this leads to the contradiction that n > 1. Therefore,
we have that N is abelian, and so M is abelian-by-finite.

Next, we assert that M is indeed abelian. Again, Lemma 2.11(iii)
shows that S = F [M ] is a prime ring. Because M is abelian-by-finite, we
may apply [21, Lemma 11, p. 176] to conclude that the group ring FM is
a PI-ring. Thus, as a homomorphic image of FM , the ring S is also a PI-
ring. Since M normalizes S, by Lemma 2.9, we deduce that S∗ ∩G ⊆ F
or S∗∩G ⊆M . The first case yields that M is abelian, and we are done.
The latter illustrates that M = S∗ ∩ G. In view of Lemma 2.11(i), we
obtain that F1 = CMn(D)(M) is a field. There are two possible cases:
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Case 1. F1 ⊆ M . In this case, the field F1 is the center of the prime
ring S. In view of [24, Corollary 1.6.28], we conclude that S is a simple
ring. Now S is a simple PI-ring, so it is a simple Artinian ring by Kaplan-
sky’s theorem. Therefore, S coincides with its classical right quotient Q
and thus we may apply Lemma 2.11(iii) to get that M is abelian.

Case 2. F1 6⊆ M . Set M1 = F ∗1M and N1 = F ∗1N . If M1 = N1,
then M1 contains SLn(D), which is impossible since SLn(D) cannot be
abelian-by-finite. If M1 6= N1, then M1 is a maximal subgroup of N1.
In the same way, we conclude that M1 is abelian, and so is M . This
completes the proof of the theorem.

Lemma 2.15. Let D be a division ring with center F , and M a subgroup
of GLn(D) with n ≥ 1. If M/M ∩F ∗ is a locally finite group, then F [M ]
is a locally finite-dimensional vector space over F .

Proof: Pick a finite subset S = {x1, x2, . . . , xk} of F [M ]. Then, for each
1≤ i≤ k, we can find elements fi1 , fi2 , . . . , fis in F and mi1 ,mi2 , . . . ,mis

in M such that

xi = fi1mi1 + fi2mi2 + · · ·+ fismis .

Let G be the subgroup of M generated by the mij ’s. We know that
M/M ∩ F ∗ ∼= MF ∗/F ∗ and so MF ∗/F ∗ is locally finite, from which it
may be concluded that GF ∗/F ∗ is finite. If {y1, y2, . . . , yt} is a transver-
sal of F ∗ in GF ∗, then

R = Fy1 + Fy2 + · · ·+ Fyt

is a ring containing S. The displayed relation also means R is finite-
dimensional over F . Since S is chosen to be arbitrary, our result follows.

Lemma 2.16. Let R be a ring, and G a subgroup of R∗. Assume that F
is a central subfield of R and that A is a maximal abelian subgroup of G
such that K = F [A] is normalized by G. Then F [G] is a crossed product
of K by G/A. In addition, if K is a field, then it is a maximal subfield
of R.

Proof: Since K is normalized by G, it follows that F [G] =
∑

g∈T Kg

for every transversal T of A in G. Thus, to establish that F [G] is a
crossed product of K by G/A, it suffices to prove that every finite sub-
set {g1, g2, . . . , gn} of T is linearly independent over K. For purposes of
contradiction, we assume that there exists such a non-trivial relation

k1g1 + k2g2 + · · ·+ kngn = 0.
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Clearly, we can suppose that all the ki’s are non-zero and that n is
minimal. The case where n = 1 is obviously trivial and so we suppose
that n > 1. As the cosets Ag1 and Ag2 are disjoint, we know that
g−11 g2 6∈ A = CG(A). Therefore, there exists an element x ∈ A for
which g−11 g2x 6= xg−11 g2. For each 1 ≤ i ≤ n, if we set xi = gixg

−1
i , then

x1 6= x2. Since G normalizes K, it follows that xi ∈ K for all 1 ≤ i ≤ n.
Now, we have

(k1g1 + · · ·+ kngn)x− x1(k1g1 + · · ·+ kngn) = 0.

By definition of the xi’s, we deduce that xigi = gix, and so x, xi ∈ K
for all i. By the fact that K = F [A] is commutative, the last equality
reveals

(x2 − x1)k2g2 + · · ·+ (xn − x1)kngn = 0,

which is a non-trivial relation (since x1 6= x2) with less than n summands,
contrasting with the minimality of n. As a result, we obtain the desired
fact that T is linearly independent over K.

Regarding the last assertion of our lemma, we assume that R = F [G]
and that K is a field. If we set L = CR(K), then every element y ∈ L
may be written in the form

y = l1m1 + l2m2 + · · ·+ ltmt,

where l1, l2, . . . , lt ∈ K and m1,m2, . . . ,mt ∈ T . Take an arbitrary ele-
ment a ∈ A; by the normality of A in M , there exist ai ∈ A such that
mia = aimi for all 1 ≤ i ≤ t. Since ya = ay, it follows that

(l1a1 − l1a)m1 + (l2a2 − l2a)m2 + · · ·+ (ltat − lta)mt = 0.

As {m1,m2, . . . ,mt} is linearly independent over K, the outcome is that
a = a1 = · · · = at. Consequently, mia = ami for all a ∈ A; thus,
mi ∈ CM (A) = A for all 1 ≤ i ≤ t. The consequence of this fact is that
y ∈ K, yielding L = K. This implies that K is a maximal subfield of R,
and our proof is now completed.

Lemma 2.17 ([31, 3.2]). Let R be a ring, J a subring of R, and H ≤ K
subgroups of the group of units of R normalizing J such that R is the
ring of right quotients of J [H] ≤ R and J [K] is a crossed product of J [B]
by K/B for some normal subgroup B of K. Then K = HB.

Theorem 2.18. Let D be a non-commutative division ring with cen-
ter F which contains at least four elements, and G a normal subgroup of
GLn(D) with n ≥ 2. If M is a non-abelian solvable-by-finite maximal
subgroup of G such that F [M ] = Mn(D), then [D : F ] <∞.
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Proof: First, we observe that M is abelian-by-locally finite ([28, The-
orem 1]). As a result, there exists in M a maximal subgroup A with
respect to the property: A is an abelian normal subgroup of M and
M/A is locally finite. In view of [25, 1.2.12], we conclude that F [A] is a
semisimple Artinian ring; thus, the Wedderburn–Artin theorem implies
that

F [A] ∼= Mn1(D1)×Mn2(D2)× · · · ×Mns(Ds),

where Di are division F -algebras, 1 ≤ i ≤ s. Since F [A] is abelian, it
follows that the ni’s are equal to 1 and Di’s are fields that contain F .
Consequently,

F [A] ∼= K1 ×K2 × · · · ×Ks.

With reference to Lemma 2.11(iii), we conclude that F [A] is an integral
domain and so s = 1. It follows that K := F [A] is a subfield of Mn(D)
containing F .

If we set L = CMn(D)(K), then by Lemma 2.11(iv), one has L ∼=
Mm(E) for some division F -algebra E and some integer m ≥ 1. Since
M normalizes K, it also normalizes L; hence, either L∗ ∩ G ⊆ F , or
L = Mn(D) or L∗ ∩ G ⊆ M (Lemma 2.9). The first case implies that
Mn(D) = K, which is impossible since n > 1. If the second case occurs,
then A ⊆ F , from which it follows that M/M ∩ F ∗ is locally finite.
According to Lemma 2.15, we deduce that D is a locally finite division
ring. Now, we can use [9, Theorem 3.1] to conclude that [D : F ] <∞. It
remains only to consider the third case, L∗∩G ⊆M , from which we have
L∗ ∩G is a solvable-by-finite normal subgroup of GLm(E). By applying
both Lemmas 2.4 and 2.8 to this situation, we obtain that L∗∩G ⊆ Z(E).
Thus, L∗∩G is an abelian normal subgroup of M and M/L∗∩G is locally
finite. The maximality of A in M yields A = L∗∩G = L∗∩M = CM (A).
These equalities imply that A is actually a maximal abelian subgroup
of M . In view of Lemma 2.16, we conclude that F [M ] = Mn(D) is
a crossed product of K by M/A, and that K is a maximal subfield
of Mn(D).

Our next step is to prove that M/A is simple. To do so, assume
that B is an arbitrary normal subgroup of M properly containing A.
Note that by the maximality of A in M , we may assume further that
N is non-abelian. If we set R = F [B] and Q to be its quotient ring, then
Lemma 2.11(iii) says that Q = Mn(D). Now, we may apply Lemma 2.17
to conclude that M = AB = B; recall that A ⊆ B. It follows that M/A
is simple.

SinceM is solvable-by-finite, it contains a solvable normal subgroupN
such that M/N is finite. As AN is also a normal subgroup of M , the
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simplicity of M/A shows that AN = M or AN = A. The first case im-
plies that M is solvable, which also means that M/A is solvable. Now,
M/A is simple and solvable, and one has M/A ∼= Zp for some prime num-
ber p. By Lemma 2.16, it follows that dimK Mn(D) = |M/A| = p, which
forces n = 1, an obvious contradiction. As a result, we must have AN=
A, from which it follows that [M : A]<∞. Again by Lemma 2.16, one
has [Mn(D) : K] = |M/A| <∞ and so [D : F ] <∞.

Corollary 2.19. Let D be a non-commutative division ring with cen-
ter F which contains at least five elements, and G a normal subgroup of
GLn(D) with n ≥ 2. If M is a solvable maximal subgroup of G, then M
is abelian.

Proof: If F [M ] 6= Mn(D), then the result follows from Theorem 2.14. In
the case F [M ] = Mn(D), if M is non-abelian, then the last paragraph of
the proof of the above theorem means that n = 1, a contradiction.

Here now is the proof of the main theorem of this section.

Proof of Theorem 1.1: Combining Theorems 2.7, 2.14, and 2.18, we get
[D : F ] < ∞. By hypothesis, we conclude that M contains no non-
cyclic free subgroups. Therefore, most of the conclusions follow from [9,
Theorem 3.1]. From the maximality of K, we deduce that CMn(D)(K) =

K. By the centralizer theorem ([4, (vii), p. 42]) one has [K : F ]2 =
[Mn(D) : F ] = n2[D : F ]. It follows that |M/K∗ ∩G| = |Gal(K/F )| =
[K : F ] = n

√
[D : F ].

Other results concerning solvable-by-finite subgroups of GLn(D),
where D is a centrally finite division ring and n ≥ 1, were obtained
by Wehrfritz in [32]. In fact, he proved that if M is a solvable-by-finite
subgroup of GLn(D), then it contains an abelian normal subgroup of in-
dex dividing b(n)[D : F ]n, where b(n) is an integer-valued function that
depends only on n. In view of Theorem 1.1, if M is supposed further to
be a maximal subgroup of an almost subnormal subgroup of GLn(D),
then M possesses an abelian normal subgroup of very explicit index.

Theorem 1.1 also gives some interesting corollaries that are closely
related to the results obtained in [3], [11], [23], and [32]. More precisely,
the authors of [11] asked whether a division D is a crossed product if
the multiplicative group D∗ contains an absolutely irreducible solvable-
by-finite subgroup M (see [11, Question 2.5]). By definition, a centrally
finite division D is called a crossed product if it contains a maximal
subfield that is a Galois extension over the center of D. The following
corollary, which follows immediately from Theorem 1.1, shows that the
question has a positive answer if M is a non-abelian solvable-by-finite
maximal subgroup of an almost subnormal subgroup of D∗.
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Corollary 2.20. Let D be a division ring, and G an almost subnor-
mal subgroup of D∗. If M is a non-abelian solvable-by-finite maximal
subgroup of G, then D is a crossed product.

Polycyclic-by-finite maximal subgroups of GLn(D) have already been
studied in [23]. One of the main results of [23] states that GLn(D)
contains no polycyclic-by-finite maximal subgroups if n = 1 or the center
of D contains at least five elements ([23, Theorem B]). In the next
corollary, we extend this result to polycyclic-by-finite maximal subgroups
of an almost subnormal subgroup of GLn(D).

Corollary 2.21. Let D, F , G as in Theorem 1.1. If M is a finitely
generated solvable-by-finite maximal subgroup of G, then M is abelian. In
particular, if M is polycyclic-by-finite, then it is abelian.

Proof: With reference to Theorem 1.1, we have [D : F ] <∞. But then
M cannot be finitely generated in view of [19, Corollary 3]. The rest of
our corollary follows immediately from the fact that every polycyclic-by-
finite group is finitely generated.

3. Locally solvable maximal subgroups

In this section we study locally solvable maximal subgroups of an
almost subnormal subgroup of GLn(D), with n ≥ 1. We note that in
the case n = 1, the following results were obtained in [15].

Theorem 3.1 ([15, Theorem 3.6]). Let D be a division ring with cen-
ter F , and G an almost subnormal subgroup of D∗. If M is a locally
nilpotent maximal subgroup of G, then M is abelian.

Theorem 3.2 ([15, Theorem 3.7]). Let D be a division ring with cen-
ter F , and G an almost subnormal subgroup of D∗. If M is a non-abelian
locally solvable maximal subgroup of G, then the following hold:

(1) There exists a maximal subfield K of D such that K/F is a finite
Galois extension with Gal(K/F ) ∼= M/K∗∩G ∼= Zp and [D : F ] =
p2, for some prime number p.

(2) The subgroup K∗∩G is the FC-center. Also, K∗∩G is the Hirsch–
Plotkin radical of M . For any x ∈ M \ K, we have xp ∈ F and
D = F [M ] =

⊕p
i=1Kx

i.

For any group G, we denote by τ(G) the unique maximal locally finite
normal subgroup of G, η(G) the Hirsch–Plotkin radical of G, and α(G)
and β(G) the two subgroups of G which are defined by

β(G)/τ(G) = η(G/τ(G)) and α(G)/τ(G) = Z(β(G)/τ(G)).
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Lemma 3.3 ([30]). Let G be a locally solvable primitive subgroup
of GLn(D) with n ≥ 1. Then the F -subalgebra F [G] of the full ma-
trix ring Mn(D) generated by G is a crossed product over the (locally
finite)-by-abelian normal subgroup α(G) of G.

Proof of Theorem 1.2: For purposes of contradiction, assume that M is
not abelian. The crucial step in our proof is to point out that [D : F ]<∞.
For, since M is primitive (Lemma 2.11(i)), it follows from the previous
lemma that F [M ] is a crossed product over the (locally finite)-by-abelian
normal subgroup α(M) of M . Let A be the maximal (locally finite)-
by-abelian normal subgroup of M containing α(M). If B is a normal
subgroup of M properly containing A, then by the same arguments used
in the second paragraph of the proof of Theorem 2.18 we conclude that
M = Bα(M) = B and, in consequence, the group M/A is simple.

Since M/A is simple and locally solvable, it is a finite group of prime
degree. Let T be a locally finite normal subgroup of A such that A/T is
abelian. Then, Lemma 2.11(iii) implies that F [T ] is prime. Because T
is locally finite, we conclude that F [T ] is simple Artinian ([25, 1.1.14]).
Thus, Lemma 2.11(iii) again says that either F [T ] = Mn(D) or T is
abelian. If the first case occurs, then Lemma 2.15 implies that D is
locally finite, and thus [D : F ] < ∞ by [9, Theorem 3.1]; we are done.
If the second case occurs, then A is solvable, and M is thus solvable-by-
finite. With reference to Theorem 1.1, we conclude that [D : F ] <∞.

Set k := [D : F ]. By viewing M as a (linear) subgroup of GLkn(F ),
we conclude that it is solvable. It follows from Corollary 2.19 that M
is abelian, and we arrive at the desired contradiction. The proof is now
completed.

The proof of Theorem 1.2 depends strongly on the assumption that D
is non-commutative. To deal with the commutative case, we need some
different approaches. The rest of the present paper aims to consider
Theorem 1.2 in the case where D is a field.

Remark 1. Let D be a division ring and n ≥ 1 an integer. As mentioned
in the introduction, a subgroup G of GLn(D) is called an absolutely
irreducible skew linear group over D if F [G] = Mn(D). For the linear
case, there are various equivalent definitions of this concept. To be more
specific, suppose that G is a subgroup of GLn(F ) for some field F . Then
G is said to be absolutely irreducible if one of the following equivalent
conditions holds: F [G] = Mn(F ); G is irreducible over every field exten-
sion of F ; the centralizer of G in Mn(F ) is F (see [25, p. 10]). Therefore,
the following lemma is immediate.
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Lemma 3.4. Let F be a field, F̄ the algebraic closure of F , and M a
subgroup of GLn(F ) with n ≥ 1. If M is absolutely irreducible over F ,
then it is absolutely irreducible over F̄ .

Proof of Theorem 1.3: In order to arrive at a contradiction, we assume
that M is non-abelian. If we set R = F [M ], then either R∗ ∩ G ⊆
M or else R = Mn(F ) by Lemma 2.9. If the first case occurs, by the
same arguments used (for N) in the proof of Theorem 2.14 we find that
M is abelian, an obvious contradiction. We may therefore assume that
R = Mn(F ), which means that M is absolutely irreducible over F . It
follows from [27, Lemma 3.5(ii)] that M is abelian-by-finite. Let A be
a maximal subgroup of M with respect to the property: A is an abelian
normal subgroup of M such that M/A is finite. If K = F [A], then the
primitivity (see Lemma 2.11(i)) of M yields that K is a prime ring, and
so this is actually an integral domain. Since dimF K <∞, we conclude
that K is a subfield of Mn(F ). If we set L = CMn(F )(A), then there exist
a division F -algebra E and an integer m ≥ 1 such that L ∼= Mm(E)
(Lemma 2.11(iv)). It follows from Lemma 2.9 that either L = Mn(F ) or
L∗ ∩G ⊆M . There are two possible cases.

Case 1. L = Mn(F ). It is clear that A ⊆ K ⊆ F . Since we are in the
case F [M ] = Mn(F ), we conclude that Z(M) = M ∩ F ∗. Thus, the
condition [M : A] < ∞ and A ⊆ F imply that [M : Z(M)] < ∞. As
a result, we can take a transversal {x1, . . . , xk} of Z(M) in M . Pick an
element x ∈ G\M and set H = 〈x, x1, . . . , xk〉. The maximality of M
in G ensures us that G = HZ(M). Since G′ = (HZ(M))′ = H ′ ⊆ G, it
follows that H is normal in G, from which it follows that H is a finitely
generated subnormal subgroup of GLn(F ). By virtue of [19], we have
H ⊆ F , and so M is abelian, which is a desired contradiction.

Case 2. L∗ ∩G ⊆ M . In this case, one has L∗ ∩G is a solvable normal
subgroup of GLm(E), from which it follows that L∗ ∩ G is an abelian
normal subgroup of M . The maximality of A in M shows that L∗∩G =
L∗ ∩M = A. Consequently, A is indeed a maximal abelian subgroup
of M . Therefore, we may apply Lemma 2.16 to conclude that F [M ] =
Mn(F ) is a crossed product of K by M/A, and that K is a maximal
subfield of Mn(F ). By the same arguments used in the second paragraph
of the proof of Theorem 2.18, we conclude that M/A is a simple group.

Since M/A is solvable and simple, it is of prime degree, say p. Conse-
quently, we have n = p and [K : F ] = p. Let F̄ be the algebraic closure
of F . In view of Lemma 3.4, we conclude that F̄ [M ] = Mn(F̄ ). It fol-
lows that Z(M) = M ∩ F̄ ∗. The condition A ⊆ K∗ ⊆ F̄ ∗ implies that
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A ⊆ Z(M); hence, we deduce A = Z(M) by the maximality of A. Also,
the fact that F [M ] = Mn(F ) yields that Z(M) = M ∩F ∗, from which it
follows that A ⊆ F . This being the case, we obtain that K = F [A] = F ,
contrasting with the fact that [K : F ] = p is a prime number.

Acknowledgements. The authors are profoundly grateful to the ref-
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