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Abstract: In this paper, we study the existence and uniqueness of bounded viscosity
solutions for parabolic Hamilton–Jacobi monotone systems in which the diffusion

term is driven by variable-order nonlocal operators whose kernels depend on the

space-time variable. We prove the existence of solutions via Perron’s method, and
considering Hamiltonians with linear and superlinear nonlinearities related to their

gradient growth we state a comparison principle for bounded sub and supersolutions.

Moreover, we present steady-state large time behavior with an exponential rate of
convergence.
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1. Introduction

In this paper we are interested in studying the existence and unique-
ness of systems with the form

(1.1) ∂tui+Hi(x, t,u(x, t), Dui(x, t), D
2ui(x, t), Ti,x,tui(x, t))=0 in Q,

i ∈ I(n), where Q := Rd × (0,+∞) and I(n) := {1, 2, . . . , n}. We have
considered here the usual notation of bold letters for vectors.

We complement system (1.1) with the initial condition

(1.2) u = u0 := (u0,i)i∈I(n)

of continuous functions, that is, u0,i ∈ C(Rd) for all i ∈ I(n).
Moreover, for each i ∈ I(n), Hi ∈ C(Rd×R+×Rn×Rd×Sd×R), and

the term Ti,x,t (which for ease of notation we call only Ti) is a nonlocal
operator playing the role of the diffusion defined as follows: for x ∈ Rd,
t ∈ R+, and φ : Rd → R, a bounded continuous function which is C2 in
a neighborhood of x, we write

(1.3) Tiφ(x, t) =

∫
Rd

[φ(x+ z)− φ(x)− 1B(z)〈Dφ(x), z〉]Ki(x, t, z) dz,
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whereB is the open ball centered at zero with radius 1. For each i ∈ I(n),
the kernel Ki : Rd × R+ × (Rd \ {0}) → R is a continuous function,
satisfying

(K) 0 ≤ Ki(x, t, z) ≤
Ci

|z|d+2αi(x,t,z)
,

and αi : Rd × R+ × Rd → (0, 1) is a continuous function such that

0 < α− := min
(x,t,z,i)∈Rd×R+×Rd×I(n)

αi(x, t, z)

≤ max
(x,t,z)∈Rd×R+×Rd×I(n)

αi(x, t, z) =: α+ < 1.
(S)

Since for each i∈I(n) the operators Ki(·) and αi(·) are functions depend-
ing on the (x, t, z)-variable, following the ideas of [12], [46], the terms Ti
are called variable-order nonlocal operators. It is interesting to note that
under the symmetric assumption on Ki we can remove the compen-
sator term of (1.3). Hence, considering Ki(x, t, z) = Ci|z|−(d+2αi(x,t,z))

with αi verifying αi(x, t, z) = αi(x, t,−z) for all (x, t, z) ∈ Rd×R+×Rd,
a particular class of operators with the form (1.3) are the variable-order
fractional Laplacians given by the expression

Tiu(x, t) =

∫
Rd

[φ(x+ z)− φ(x)]
Ci

|z|d+2αi(x,t,z)
dz.

Moreover, when αi ∈ (0, 1) is a constant, Ti reduce to the usual fractional
Laplacian operator.

As general conditions we assume that the Hamiltonians satisfy the
following properties:

(H1) Degenerate ellipticity: for all i ∈ I(n) and (x, t, r, p) ∈ Rd × R+ ×
Rn × Rd

Hi(x, t, r, p,X, l1) ≤ Hi(x, t, r, p, Y, l2) if l2 ≤ l1, Y ≤ X.

(H2) Monotone property: there exists cij ∈ R for all i, j ∈ I(n) such that∑n
j=1 cij≥c0 with c0≥0 for all i∈I(n) and for any (x, t, r, p,X, l) ∈

Rd × R+ × Rn × Rd × Sd × R and δ > 0, we have

cijδ ≤ Hi(x, t, r + δej , p,X, l)−Hi(x, t, r, p,X, l) ≤ 0, if j 6= i,

ciiδ ≤ Hi(x, t, r + δei, p,X, l)−Hi(x, t, r, p,X, l),

where (ei)i∈I(n) is the canonical basis of Rd.
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Note that in (H2) necessarily cij ≤ 0 for i 6= j and cii ≥ 0. A particular
case of monotone systems verifying (H2) are the weakly coupled systems
with the form

Hi(x, t,u, Dui, D
2ui, Tiui) :=hi(x, t, ui, Dui, D

2ui, Tiui)+
n∑
j=1

cij(x, t)uj ,

for all i ∈ I(n), where

cii(x, t) ≥ 0, cij(x, t) ≤ 0 for j 6= i and

n∑
j=1

cij(x, t) ≥ 0.

Concerning the classical local problems of first or second order, the basic
assumptions (H1) and (H2) in the nonlocal-term independent formula-
tion make it possible to deal with system (1.1)-(1.2) in the viscosity
solution framework; see [23] and [25]. It is well known that this type
of systems is compatible with comparison principles, those that together
with some regularity properties lead to results related to homogenization,
ergodicity, and large time behavior of first and second-order monotone
and weakly coupled systems of Hamilton–Jacobi equations; see [18], [34],
[38], [40], and references therein.

The notion of viscosity solutions was first introduced by Crandall
and Lions [22] and their theory was applied initially to local partial
differential equations, but motivated by applications to finance, phys-
ical sciences, and mechanics (see for example [15] and [52]), the the-
ory was almost immediately extended to the context of partial integro-
differential equations, i.e., equations involving nonlocal operators such
as Lévy operators and their best-known representative, the fractional
Laplacian. There is a close connection with probability since nonlocal
operators of Lévy type arise as the infinitesimal generator of stochastic
Lévy processes and also appear in the context of optimal control of jump
diffusion processes; see [16], [42], and [44].

The first paper devoted to the mentioned extension, in the context
of stochastic control of jump diffusion processes, was developed by
Soner [47]. Following this work, Sayah [45], in the stationary case and us-
ing first-order equation techniques, studied stability, comparison results,
and the existence of viscosity solutions of a quite general class of integro-
differential equations, nonlinear with respect to the nonlocal term. In the
case of bounded measures, Alvarez and Tourin ([1]) obtained quite gen-
eral results for parabolic equations. For singular measures several results
were obtained, for instance in [5] and [43]. Jakobsen and Karlsen ([29],
[30]) developed a general theory for second-order parabolic nonlinear
integro-differential equations, including comparison results, continuous
dependence estimates, and a maximum principle. For more advanced
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theory, concerning regularity, homogenization, and large time behavior
of Hamilton–Jacobi problems, we refer to [2], [7], and [48]. It should
be noted that the difficulties in the study of the above problems involv-
ing Lévy-type operators are, for example, the coupling of second-order
derivatives and nonlocal terms, the singularity of the measure appearing
in the nonlocal operator, and the lack of basic differentiation tools, such
as the product or chain rule. These difficulties were extensively analyzed
by Barles and Imbert in [6].

Concerning nonlocal operators of variable order which verify similar
conditions to (K)-(S), several properties have been intensively investi-
gated both from the probabilistic and the analytic point of view. Stable-
like processes were introduced originally by Bass [9], [10], by showing the
uniqueness of solutions to the martingale problem as variants of α-sta-
ble processes (said papers considered a spatially dependent index α(x)).
Such a process may be thought of as one that at the point x behaves like
the symmetric stable process of index α(x), but the index α(x) varies
from point to point. Tsuchiya ([49]) defined the processes in terms of
stochastic differential equations with jumps. In [28] Jacob and Leopold
constructed a Feller semigroup generated by operators with variable-
order symbols. Their approach was mainly based on the method of Ja-
cob concerning the generation of Feller semigroups by pseudo-differential
operators in [26], [27], and the results of Leopold on pseudo-differential
operators of variable order and corresponding function spaces [35], [36],
and [37]. See also [31] and [41] for further results concerning the exis-
tence of transition densities and path behavior of stable-like processes.

On the other hand, there are numerous results related to problems
in PDE’s that involve nonlocal operators like (1.3). To mention just one
example, using probabilistic methods, in [14] Bass and Levin proved
Harnack inequality of harmonic functions with respect to a class of pure
jump Markov processes in Rd, whose kernels are comparable to those
of symmetric stable processes. Bass and Kassmann generalized this re-
sult and obtained Hölder continuity of harmonic functions of variable
order in [12] and [13]. Bass also established in [11] the Schauder esti-
mates for stable-like operators in Rd. With a purely analytical proof,
in [46], Silvestre provided regularity results for solutions to integro-
differential equations, including the case of an operator with variable
orders. In [17], Caffarelli and Silvestre generalized this result to fully
nonlinear integro-differential equations associated with symmetric ker-
nels comparable to fractional Laplacian, and in [32] and [33], Kim and
Lee extended this result to equations associated with nonsymmetric ker-
nels. In [3], Bae proved regularity results for solutions of fully nonlinear
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integro-differential equations with variable-order operators. Also, in [4],
Bae and Kassmann established Schauder estimates for problems involv-
ing variable-order operators. For other related works, we refer the reader
to [20], [21], [39], [50], and references therein. Especially, we mention
these new works [51], [53], where the order of the kernel in the variable-
order fractional Laplacian verifies (K)-(S) and depends continuously on
the variables involved.

The aim of this work is to study the existence and uniqueness of
bounded viscosity solutions for the parabolic Hamilton–Jacobi monotone
system (1.1)-(1.2) in the framework of viscosity solutions, in which the
integro-differential operators are given by (1.3). Moreover, we state a
comparison principle for bounded sub and supersolutions and we give
steady-state large time behavior with an exponential rate of convergence.

Let us briefly outline the content of this paper. Concerning sys-
tem (1.1), the novelty is the presence of nonlinearities Hi having an
explicit interaction with the time variable. Also, the diffusion terms are
driven by variable-order nonlocal operators whose kernel depends con-
tinuously on the space-time variable. As is usual in the viscosity theory,
the existence of discontinuous solutions to (1.1) is performed by Perron’s
method, adapted in this case to systems involving nonlocal operators
with (x, t)-dependent kernels satisfying (K)-(S).

Since we are working with monotone systems and all the kernels Ki

verify the integrability condition (K1), which allows us to deal with the
kernel dependency on the (x, t)-variables (see Section 4), following the
standard procedure of doubling variables it is possible to provide a com-
parison principle for system (1.1). It is important to note that the con-
tinuity of the kernels Ki and the orders αi are crucial when proving the
existence of solutions and the comparison principle. In addition, (K)-(S)
allows the integro-differential operators Ti to verify the Lévy integrabil-
ity condition (see [6]), allowing in certain cases the integrability of the
kernel. Moreover, to prove the comparison result we concentrate on two
main classes of Hamiltonians which are standard in the analysis of fully
nonlinear equations, and have been addressed in different contexts to
get well-posedness; see for example [6]. The first type of operators are
Hamilton–Jacobi functionals with model form

Hi(x, t, r, p,X, l) = sup
θ∈Θ
{−aθl − Tr(Aθ(x, t)X)− bθ(x, t)p− fθ(x, t)}

+

n∑
j=1

cij(x, t)rj ,
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where Θ is compact, aθ, Aθ, bθ, fθ are bounded and continuous func-
tions, aθ ≥ 0, Aθ is positive (semi)definite, and (cij)ij satisfies the above
conditions. This type of equation fits into assumption (F2); see Section 4.

The second type of problem we are interested in is related to models
which are coercive in the gradient with the model form

Hi(x, t, r, p,X, l)=−l−Tr(A(x, t)X)+b(x, t)|p|m−f(x, t)+

n∑
j=1

cij(x, t)rj ,

for somem > 1 and A, b, f are continuous and bounded, with b uniformly
positive, A is positive (semi)definite, and taking (cij)ij as in the previous
case. This type of nonlinearity arises in the context of Hamilton–Jacobi
equations with unbounded controls and shall be considered as a partic-
ular example falling into assumption (F2)’.

In the last section of this article we construct classical sub and su-
persolutions verifying the initial condition (1.2). Using the comparison
principle we get the existence of continuous viscosity solutions. As an
application, we use the half-relaxed limits method introduced by Bar-
les and Perthame [8] to conclude steady-state large time behavior for
the solution of (1.1)-(1.2) when c0 > 0 in (H2). Moreover, we find an
exponential rate of convergence with a precise index given by c0.

2. Basic notation and viscosity evaluation

In this brief chapter we introduce some notation associated with the
viscosity formulation of our system. We represent by Bδ(x) the open ball
centered at x ∈ Rd and radius δ > 0. If x = 0, we write Bδ and B if in
addition δ = 1. Moreover, the open cylinder in the space-time is defined
by

Cδ(x, t) := Bδ(x)× (t− δ, t+ δ).

For a nonempty set A ⊂ Rd and x, p ∈ Rd and φ : Rd → R, we also
consider

Ti[A](φ, x, t, p) =

∫
A

[φ(x+ z)− φ(x)− 1B〈p, z〉]Ki(x, t, z) dz,

and we omit the p-term in the case p = Dφ(x), i.e., Ti[A](φ, x, t) =
Ti[A](φ, x, t,Dφ(x)).

To end this chapter we give a definition of viscosity solution to sys-
tem (1.1)-(1.2), which is basically the one given in [23] and [48]. We
state the definition in the finite horizon setting, for which we introduce
the notation QT = Rd × (0, T ] for T > 0.
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Definition 2.1. A bounded u.s.c. (resp. l.s.c.) function u : Q̄T → Rn
is a viscosity subsolution (resp. supersolution) to problem (1.1)-(1.2)
if u(·, 0) ≤ (resp. ≥) u0 in Rd and for each (x0, t0) ∈ QT , i ∈ I(n),
φ ∈ C2(Q̄T ), and δ > 0 such that (x0, t0) is a maximum (resp. minimum)
point to ui − φ in Cδ(x0, t0), then the following inequality holds:

∂tφ(x0, t0) +Hi

(
x0, t0,u(x0, t0), Dφ(x0, t0),

D2φ(x0, t0), Ti,δ(ui, φ, x0, t0)
)
≤ (resp. ≥) 0,

where the last nonlocal dependence is understood as

Ti,δ(ui, φ, x, t) := Ti[Bδ](φ(·, t), x, t) + Ti[Bcδ ](ui(·, t), x, t,Dφ(x, t)).

Finally, u is a viscosity solution of (1.1)-(1.2), if u is a sub and superso-
lution of the system.

Following standard viscosity arguments the above definition can be
equivalently stated by assuming that u(x0, t0) = φ(x0, t0) and that
(x0, t0) is a strict maximum point. Moreover, in order to avoid tech-
nicalities in the viscosity evaluation, the following lemmas will be useful
in the sequel.

Lemma 2.2. Let u : Q̄T → Rn, φ ∈ C2(Q̄T ), δ > 0, and i ∈ I(n). If
(x0, t0) is the maximum (resp. minimum) point of ui − φ in Cδ(x0, t0),
then for all 0 < σ ≤ δ, we have

Ti,σ(ui, φ, x0, t0) ≤ (resp. ≥) Ti,δ(ui, φ, x0, t0).

Proof: We focus on the “maximum” statement, hence

ui(x, t0)− ui(x0, t0) ≤ φ(x, t0)− φ(x0, t0) for each x ∈ Bδ(x0).

Taking σ ≤ δ and since the compensator term plays no role because it
is common to both sides of the inequality, we see that

Ti,σ(ui, φ, x0, t0) = Ti[Bcδ ](ui(·, t0), x0, t0)

+ Ti[Bδ \Bσ](ui(·, t0), x0, t0) + Ti[Bσ](φ(·, t0), x0, t0)

≤ Ti[Bcδ ](ui(·, t0), x0, t0)

+ Ti[Bδ \Bσ](φ(·, t0), x0, t0) + Ti[Bσ](φ(·, t0), x0, t0)

= Ti,δ(ui, φ, x0, t0).

Lemma 2.3. Definition 2.1 can be equivalently formulated by taking i ∈
I(n), the test function φ ∈ C2(Q̄T ) bounded, and (x0, t0) a global maxi-
mum (resp. minimum) point of ui−φ in Q̄T and instead of the viscosity
inequality we write

∂tφ(x0, t0) +Hi

(
x0, t0,u(x0, t0), Dφ(x0, t0),

D2φ(x0, t0), Tiφ(x0, t0)
)
≤ (resp. ≥) 0.
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Proof: By (H1), the general setting implies the new version. To prove
the converse we focus only on the case of the subsolution. We consider
φ ∈ C2(Q̄T ) such that (x0, t0) is a strict maximum point for ui − φ
in Cδ(x0, t0) with φ(x0, t0) = ui(x0, t0). Then, there exists a sequence

of functions {φ̃n} bounded and smooth in Q̄T such that φ̃n = φ in

Cδ(x0, t0), with φ̃n ≥ ui in Q̄T and such that φ̃n → ui locally uniform in
(C̄δ(x0, t0))c. Then, since for each n ∈ N, (x0, t0) is a global maximum

point of ui − φ̃n, we have

∂tφ(x0, t0) +Hi

(
x0, t0,u(x0, t0), Dφ(x0, t0),

D2φ(x0, t0), Tiφ̃n(x0, t0)
)
≤ 0.

(2.1)

Applying the dominated convergence theorem, we can pass to the limit
and get

Ti[Bcδ ](φ̃n(·, t0), x0, t0, Dφ(x0, t0))→ Ti[Bcδ ](ui(·, t0), x0, t0, Dφ(x0, t0)),

hence
Tiφ̃n(x0, t0)→ Ti,δ(ui, φ, x0, t0).

By the continuity of Hi, we conclude the desired inequality.

3. Existence of discontinuous solutions

Before stating our first results, we need to introduce extra notations.
We write u∗ for the upper semicontinuous envelope of u, which is per-
formed for each component, and similarly u∗ for the lower semicontin-
uous envelope. Also, we give the following definition of discontinuous
viscosity solution.

Definition 3.1. A bounded function u : Q̄T → Rn is a discontinuous
viscosity subsolution (supersolution) of (1.1) if u∗ is a subsolution (u∗ is
a supersolution) of (1.1) in the sense of Definition 2.1. We say that
u is a discontinuous viscosity solution to (1.1) if it is simultaneously a
discontinuous sub and supersolution.

In what follows we perform Perron’s method for nonlocal operators
developed by Ishii in [24], adapted to systems where the diffusion terms
are driven by variable-order nonlocal operators whose kernels depend
on the space-time variable. Throughout this section we make assump-
tions (H1), (H2), and (K)-(S).

Theorem 3.2. Assume that U ∈ LSC(Q̄T ) and V ∈ USC(Q̄T ) are
bounded discontinuous viscosity sub and supersolutions to problem (1.1)
respectively. Then, there is a discontinuous viscosity solution u : Q̄T →
Rn to problem (1.1) with U ≤ u ≤ V.
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Proof: We consider functions z : Q̄T → Rn verifying the condition

(3.1) U ≤ z ≤ V for all (x, t) ∈ Q̄T ,

and we set

Λ = {z : Q̄T → Rn | z∗ is a subsolution of (1.1) and verifies (3.1)}.

We start by noticing that Λ 6= ∅ since U is a discontinuous viscosity
subsolution and verifies (3.1). Hence, we define

(3.2) ui(x, t) = sup
z∈Λ

zi(x, t), ∀i ∈ I(n).

First we prove that u defined as above belongs to Λ. Indeed, it is direct
to see that u verifies (3.1), and to prove that u is a viscosity subsolution
we consider i ∈ I(n), δ > 0, (x0, t0) ∈ QT , and ψ ∈ C2(Q̄T ) such that
u∗i − ψ attains a strict maximum in (x0, t0) at Cδ(x0, t0).

By definition of u∗i and Lemma 2.10 of [19], there are sequences (vk)k∈N
in Λ and (yk, tk)k∈N in Cδ(x0, t0), such that (yk, tk)→ (x0, t0) and (yk, tk)
is a local maximum point of v∗i,k−ψ. Moreover, v∗i,k(yk, tk)→ u∗i (x0, t0).

By the previous arguments and since vk is a subsolution of (1.1), we
have

∂tψ(yk, tk) +Hi

(
yk, tk,v

∗
k(yk, tk), Dψ(yk, tk),

D2ψ(yk, tk), Ti,δ(v∗i,k, ψ, yk, tk)
)
≤ 0.

(3.3)

Now we focus on the nonlocal operator. The continuity of Ki and (K)-(S)
imply ∫

Bδ

|z|2Ki(yk, tk, z) dz ≤
∫
Bδ

|z|2

|z|d+2αi(yk,tk,z)
dz

≤
∫
Bδ

|z|2(1−α+)−d dz < +∞,

and by the smoothness of ψ it is possible to apply the dominated con-
vergence theorem to conclude that

(3.4) lim
k→∞

Ti[Bδ](ψ(·, tk), yk, tk) = Ti[Bδ](ψ(·, t0), x0, t0).
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Also, using the definition of u we have that u∗i ≥ v∗i,k for all k ∈ N, hence
we can write

Ti[Bcδ ](v∗i,k(·, tk), yk, tk, Dψ(yk, tk))

= [u∗i (x0, t0)− v∗i,k(yk, tk)]

∫
Bcδ

Ki(yk, tk, z) dz

+

∫
Bcδ

[v∗i,k(yk + z, tk)− u∗i (x0, t0)− 1B〈Dψ(yk, tk), z〉]Ki(yk, tk, z) dz

≤ ok(1)

∫
Bcδ

Ki(yk, tk, z) dz+

∫
Bcδ

[u∗i (yk + z, tk)−u∗i (x0, t0)]Ki(yk, tk, z) dz

−
∫
B\Bδ

〈Dψ(yk, tk), z〉Ki(yk, tk, z) dz

:= I1 + I2 + I3,

where ok(1)→ 0 as k → +∞.
To treat the term I1, if z ∈ Bcδ , by (K)-(S) we notice that

(3.5) Ki(yk, tk, z) ≤ C[δ−2
1B\Bδ(z)|z|

2(1−α+)−d + 1Bc(z)|z|−d−2α− ],

and since the last term is integrable in Bcδ , we have that I1 → 0 as k →
+∞.

For the second term, since u∗i (yk+z, tk)−u∗i (x0, t0) ≥ −2|u|∞, by (3.5)
and applying Fatou’s lemma in its dominated version, we have that

lim sup
k→+∞

I2 ≤
∫
Bcδ

[u∗i (x0 + z, t0)− u∗i (x0, t0)]Ki(x0, t0, z) dz.

Finally, since Dφ and Ki are continuous, (yk, tk)→ (x0, t0), and

|〈Dψ(yk, tk), z〉|Ki(yk, tk, z) ≤
C

δ
|z|2(1−α+)−d,

by the dominated convergence theorem we have that

lim
k→+∞

I3 = −
∫
B\Bδ

〈Dψ(x0, t0), z〉Ki(x0, t0, z) dz.

Joining the previous calculations, we get that

(3.6) lim sup
k→∞

Ti[Bcδ ](v∗i,k(·, tk), yk, tk, Dψ(yk, tk))

≤ Ti[Bcδ ](u∗i (·, t0), x0, t0, Dψ(x0, t0)).

Thus, by (3.4) and (3.6) we conclude that

(3.7) lim sup
k→+∞

Ti,δ(v∗i,k, ψ, yk, tk) ≤ Ti,δ(u∗i , ψ, x0, t0).
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Now, from (3.3), (3.7), (H2), and the definition of u, we notice that

∂tψ(yk, tk) +Hi

(
yk, tk, u

∗
1, . . . , v

∗
i,k, . . . , u

∗
n, Dψ,

D2ψ, Ti,δ(v∗i,k, ψ, yk, tk)
)
≤ 0.

Now, taking k → +∞, we have

∂tψ(x0, t0) +Hi

(
x0, t0,u

∗(x0, t0), Dψ(x0, t0),

D2ψ(x0, t0), lim sup
k→+∞

Ti,δ(v∗i,k, ψ, yk, tk)
)
≤ 0.

Hence, by (3.7) and (H1) we have

∂tψ(x0, t0) +Hi(x0, t0,u
∗, Dψ,D2ψ(x0, t0), Ti,δ(u∗i , ψ, x0, t0)) ≤ 0,

and we conclude that u is a viscosity subsolution of (1.1).
In what follows we prove that the u∗ given by (3.2) is a viscosity

supersolution of (1.1). By contradiction, we assume the existence of i ∈
I(n), (x0, t0) ∈ QT , φ ∈ C2(Q̄T ) bounded such that (x0, t0) is a strict
global minimum point for (ui)∗−φ on Q̄T with (ui)∗(x0, t0) = φ(x0, t0),
and

∂tφ(x0, t0) +Hi

(
x0, t0,u∗(x0, t0), Dφ(x0, t0),

D2φ(x0, t0), Tiφ(x0, t0)
)
< −θ

(3.8)

for some θ > 0.
Since V is a supersolution to (1.1), (3.8) implies that (ui)∗(x0, t0) <

Vi(x0, t0). Then, by considering r, ε > 0 smaller if necessary we have

φ(x, t) + ε < Vi(x, t) for all (x, t) ∈ Cr(x0, t0),

φ(x, t) + ε ≤ (ui)∗(x, t) for all (x, t) ∈ Cr0(x0, t0) \ Cr(x0, t0).
(3.9)

Moreover, by the smoothness and boundedness of φ and since the ker-
nel Ki is continuous and satisfies (K)-(S), the function (x, t) 7→ Tiφ(x, t)
is continuous. Using this, the continuity of Hi, (H2), the semicontinuity
of u∗, and in view of (3.8), for r > 0 small in terms of θ we have

∂tφ(x, t) +Hi

(
x, t, ((u1)∗, . . . , φ, . . . (un)∗)(x, t), Dφ(x, t),

D2φ(x, t), Tiφ(x, t)
)
< −θ/2

(3.10)

for all (x, t) ∈ Cr(x0, t0), where φ is in the i-th coordinate.
We consider the function w defined as wj = uj for j 6= i and

wi =

{
max{ui, φ+ ε} in Cr(x0, t0),

ui in Cr(x0, t0)c.

By the above considerations, since U ≤ u ≤ V in Q̄T and Vi > φ + ε
in Cr(x0, t0), then w verifies (3.1). In what follows, we prove that w∗ is a
viscosity subsolution to (1.1) and such that wi>ui at some point in Q̄T
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close to (x0, t0). This contradicts the maximality of u and concludes the
proof.

For this, we consider j ∈ I(n), (x̄, t̄) ∈ QT , ϕ ∈ C2(Q̄T ), and σ > 0
such that (x̄, t̄) is a strict maximum point of w∗j − ϕ in Cσ(x̄, t̄) with
w∗j (x̄, t̄) = ϕ(x̄, t̄).

If j 6= i, by definition of w we have that wj = uj , and since u∗ is a
subsolution, we have that

∂tϕ(x̄, t̄) +Hj(x̄, t̄,u
∗(x̄, t̄), Dϕ(x̄, t̄), D2ϕ(x̄, t̄), Tj,σ(u∗j , ϕ, x̄, t̄)) ≤ 0,

moreover, since w∗j (x̄, t̄) = u∗j (x̄, t̄) and w∗ ≥ u∗, we have that

Tj,σ(u∗j , ϕ, x̄, t̄) ≤ Tj,σ(w∗j , ϕ, x̄, t̄),

hence, by (H1) and (H2), we have that

∂tϕ(x̄, t̄) +Hj(x̄, t̄,w
∗(x̄, t̄), Dϕ(x̄, t̄), D2ϕ(x̄, t̄), Tj,σ(w∗j , ϕ, x̄, t̄)) ≤ 0.

Now, if j = i, we split the analysis into two cases: if w∗i (x̄, t̄) = u∗i (x̄, t̄),
similarly to the previous computations, we get the subsolution’s viscosity
inequality for w∗ at (x̄, t̄).

When w∗i (x̄, t̄) > u∗i (x̄, t̄), by (3.9) we necessarily have that (x̄, t̄) ∈
Cr(x0, t0), hence, taking σ′> 0 such that Cσ′(x̄, t̄)⊂Cr(x0, t0), we con-
sider

φ̃(x, t) =

{
φ(x, t) + ε in Cσ′(x̄, t̄),
φ(x, t) in Cσ′(x̄, t̄)c.

It is straightforward to see that

∂tφ̃(x̄, t̄) = ∂tφ(x̄, t̄), Dφ̃(x̄, t̄) = Dφ(x̄, t̄), D2φ̃(x̄, t̄) = D2φ(x̄, t̄),

and concerning the nonlocal terms it is direct to get from the definition
of φ̃ that

Ti[Bσ′ ](φ̃(·, t̄), x̄, t̄) = Ti[Bσ′ ](φ(·, t̄), x̄, t̄).
Now, by (3.5), we notice that

Ti[Bcσ′ ](φ̃(·, t̄), x̄, t̄) = Ti[Bcσ′ ](φ(·, t̄), x̄, t̄)− ε
∫
Bc
σ′

Ki(x̄, t̄, z) dz

≥ Ti[Bcσ′ ](φ(·, t̄), x̄, t̄)− Cε(σ′)−2.

Replacing this into (3.10) and using the continuity of Hi, taking ε small

in terms of σ′ and θ we get that φ̃ satisfies the inequality

∂tφ̃(x̄, t̄) +Hi

(
x̄, t̄, ((u1)∗, . . . , φ̃, . . . (un)∗)(x̄, t̄), Dφ̃(x̄, t̄),

D2φ̃(x̄, t̄), Tiφ̃(x̄, t̄)
)
< 0.

(3.11)
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Now, since w∗i (x̄, t̄)>u∗i (x̄, t̄), we necessarily have that w∗i (x̄, t̄)=φ(x̄, t̄)+
ε, and taking 0 < σ′′ < min(σ′, σ) small enough we have that

ϕ(x, t) ≥ φ(x, t) + ε in Cσ′′(x̄, t̄), with ϕ(x̄, t̄) = φ(x̄, t̄) + ε,

and the smoothness of φ and ϕ imply that

(3.12)
∂tφ̃(x̄, t̄) = ∂tϕ(x̄, t̄), Dφ̃(x̄, t̄) = Dϕ(x̄, t̄), and

D2φ̃(x̄, t̄) ≤ D2ϕ(x̄, t̄).

From this we can get

Ti[Bσ′′ ](ϕ(·, t̄), x̄, t̄) ≥ Ti[Bσ′′ ](φ̃(·, t̄), x̄, t̄),

and since w∗i ≥ φ+ ε in Cσ′(x̄, t̄), we have

Ti[Bcσ′′ ](w∗i (·, t̄), x̄, t̄, Dϕ(x̄, t̄)) ≥ Ti[Bcσ′ ](w∗i (·, t̄), x̄, t̄, Dφ̃(x̄, t̄))

+ Ti[Bσ′ \Bσ′′ ](φ̃(·, t̄), x̄, t̄).

Adding the above inequalities, using that w∗i ≥ φ and the definition of φ̃,
we conclude that

Ti,σ′′(w∗i , ϕ, x̄, t̄) ≥ Tiφ̃(x̄, t̄).

Then, using the last inequality, (3.11), (3.12), the properties (H1), (H2),
and the definition of w, we arrive at

∂tϕ(x̄, t̄) +Hi(x̄, t̄,w
∗(x̄, t̄), Dϕ(x̄, t̄), D2ϕ(x̄, t̄), Ti,σ′′(w∗i , ϕ, x̄, t̄)) < 0.

Finally, applying Lemma 2.2 and (H1), we obtain the viscosity inequality
associated with σ.

4. Comparison principle

In order to state the comparison principle we present the main as-
sumptions on the Hamiltonian H and the kernel K, which are standard
in the analysis of fully nonlinear equations.

In the first place, we state a regularity assumption of the Hamiltonian.

(F1) H(x, t, r, p,X, l) is Lipschitz continuous in the nonlocal variable l,
uniformly with respect to the other variables (x, t, r, p,X).

Also, we divide the proof of comparison into two main cases, mostly
related with the behavior of the nonlinearity H in terms of the gradient.

The first type is a linear gradient growth satisfying the following con-
dition.
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(F2) For all R > 0 and T > 0, there exist moduli of continuity ω, ωR,T
such that for all |x|, |y| ≤ R, |r| ≤ R, s, t ∈ [0, T ], l ∈ R, and
X, Y satisfying the matrix inequality

(4.1)

[
X 0
0 −Y

]
≤ γ−1

[
Id −Id
−Id Id

]
+ r(β)

[
Id 0
0 Id

]
,

for some γ > 0, r(β)→ 0 as β → 0. Then, if oβ(1)→ 0 as β → 0,
we have

H(y, t, r, p+ oβ(1), Y, l)−H(x, s, r, p,X, l)

≤ ω(β) + ωR,T ((1 + |p|)(|x− y|+ |s− t|)),

with p = γ−1(x− y).

The second type is superlinear Hamiltonians.

(F2)’ There exist m > 1 and C > 0 such that, for all R > 0, T > 0, and
all µ ∈ (0, 1), there exist moduli of continuity ω, ωR,T such that for
all |x|, |y| ≤ R, |r| ≤ R, t ∈ [0, T ], l ∈ R, and X, Y satisfying (4.1)
for some γ > 0, r(β)→ 0 as β → 0. Then, if oβ(1)→ 0 as β → 0,
we have

H(y, t, r, p+ oβ(1), Y, l)− µH(x, s, µ−1r, µ−1p, µ−1X,µ−1l)

≤ ωR,T (|x− y|+|s− t|)(1 + |p|m) +ω(β)|p|m−1+C(1−µ) + (µ−1)|p|m,

with p = γ−1(x− y).

Moreover, we state a boundedness assumption of H.

(F3) For each R > 0, there exists a constant CH(R) > 0 such that
|H(x, t, r, p,X, l)|≤CH(R) for all (x, t)∈Q and all |r|, |p|, |X|, |l|≤
R.

Finally, we consider the following integrability condition on the kernel.

(K1) There exists a constant C > 0, such that∫
B

|K(x, t, z)−K(y, s, z)| dz ≤ C(|x− y|+ |t− s|).

Now we would like to give some examples of functions verifying hy-
pothesis (K1). Note that this condition, for each i ∈ I(n), complements
hypothesis (K)-(S), and it is a crucial technical integrability condition
in the proof of the comparison principle.

We can see, as a simple example, that the kernel of the fractional
Laplacian K(x, t, z) = C|z|−d−2α with constant α ∈ (0, 1) verifies triv-
ially (K1). For more developed examples of functions that verify these
conditions we can consider the following two cases:
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In the first one, if K verifies (K)-(S) with K(x, t, z) 6≡ C|z|−d−2α(x,t,z),
satisfying the assumption (K1) is enough to consider K(x, t, z) locally
Lipschitz in the variable (x, t), uniformly with respect to the variable z.

On the other hand, if K(x, t, z) = C|z|−d−2α(x,t,z), to satisfy assump-
tion (K1), we can consider for example

|α(x, t, z)− α(y, s, z)| ≤ C(z)(|x− y|+ |t− s|)

with C(z) ≤ |z|2(1+α+−α−)/|ln(|z|)| for all z ∈ B \ {0} and C(0) = 0.

At this moment, it is useful to consider the following technical results.
Hence, we introduce some notation and we define

I1 = {j : Hj satisfies (F2)}; I2 = {j : Hj satisfies (F2)’},
and notice that I(n) = I1 ∪ I2 and the union is disjoint.

Lemma 4.1. Let u be a viscosity subsolution to system (1.1). For
each η > 0 and µ ∈ (0, 1), the function w defined as

(4.2) wi(x, t) = µiui(x, t)− ηt, (x, t) ∈ Q̄T , i ∈ I(n),

where

µi =

{
1 if i ∈ I1,
µ if i ∈ I2,

is a viscosity subsolution to the system

∂twi + µiHi

(
x, t, µ−1

i w, µ−1
i Dwi,

µ−1
i D2wi, µ

−1
i Ti(wi)

)
≤ C(1− µ)− η in QT ,

for some constant C > 0 depending on T , |u|∞, and (cij)i,j∈I(n) of (H2).

Proof: Let i ∈ I(n), δ > 0, (x0, t0) ∈ QT , and φ ∈ C2(Q̄T ) such that
wi − φ attains a maximum in (x0, t0). We split our analysis into two
cases:

If i ∈ I1 and since u is a subsolution of (1.1), we have

(4.3) ∂tφ+Hi(x0, t0,u, Dφ,D
2φ, Ti,δ(wi, φ, x0, t0)) ≤ −η in QT .

In the following computations, we drop the dependence of Hi on (x0, t0,
Dφ,D2φ, Ti,δ(wi, φ, x0, t0)), since these variables do not play any role
here. Also, we denote by (ei)i∈I(n) the canonical basis of Rd.

Hence, taking j∈I2, since j 6= i by (H2), there exists cij ≤ 0 such that

Hi(u)−Hi(u + (wj − uj)ej) ≥

{
0 if uj ≤ wj ,
cij(1− µ)uj + cijηt if uj ≥ wj .

By (4.3) and taking Cj = −cij |u|∞ > 0 we notice that

∂tφ+Hi(u + (wj − uj)ej) ≤ Cj(1− µ)− cijηt− η.
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Now, if j ∈ I1 (including the case j = i), we have that wj = uj−ηt ≤ uj ,
and by (H2)

Hi(u)−Hi(u + (wj − uj)ej) ≥ cijηt.
Thus, by (4.3) there exists Cj > 0 such that

∂tφ+Hi(u + (wj − uj)ej) ≤ −cijηt− η.
By the above computations and iterating the procedure for each j ∈ I(n),
we conclude the desired viscosity formulation since

∂tφ+Hi(w) ≤ (1− µ)
∑
j∈I2

Cj − ηt
∑
j∈I(n)

cij − η

≤ C(1− µ)− c0ηt− η
≤ C(1− µ)− η

for a constant C > 0 large enough and c0 ≥ 0, the constant that appears
in (H2).

Now, if i ∈ I2, using the fact that u is a subsolution of (1.1), we have

∂tφ+ µHi

(
x0, t0,u, µ

−1Dφ,

µ−1D2φ, µ−1Ti,δ(wi, φ, x0, t0)
)
≤ −η in QT .

(4.4)

Doing a similar analysis as in the previous case, for all j ∈ I1 by (H2)
we note that

Hi(u)−Hi(u+(µ−1wj−uj)ej)≥

{
0 if uj≤µ−1wj ,

cij(1−µ−1)uj+cijµ
−1ηt if uj≥µ−1wj .

By (4.4), there exists a constant Cj > 0 such that

∂tφ+ µHi(u + (µ−1wj − uj)ej) ≤ Cj(1− µ)− cijηt− η.
Now, if j ∈ I2 (including the case j = i), we have that µ−1wj = uj −
µ−1ηt ≤ uj , and by (H2)

Hi(u)−Hi(u + (µ−1wj − uj)ej) ≥ cijµ−1ηt.

Thus, by (4.4) there exists Cj > 0 such that

∂tφ+ µHi(u + (µ−1wj − uj)ej) ≤ −cijηt− η.
Iterating the procedure for each j ∈ I(n), we conclude

∂tφ+ µHi(µ
−1w) ≤ (1− µ)

∑
j∈I1

Cj − ηt
∑
j∈I(n)

cij − η

≤ C(1− µ)− c0ηt− η
≤ C(1− µ)− η

for a constant C > 0 large enough.
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Before stating the comparison principle and following the spirit of [6],
we introduce some properties of localization terms in the state variable.

Lemma 4.2. For each i ∈ I(n), let Ti be defined as in (1.3). Let ψ ∈
C2
b (Rd). For β > 0, define the function

ψβ(x) = ψ(βx), x ∈ Rd.

Then, ψβ satisfies

|Dψβ |∞ ≤ Cβ, |D2ψβ |∞ ≤ Cβ2, |Tiψβ(·, t)|∞ ≤ oβ(1),

for all t ∈ R+, where oβ(1)→ 0 as β → 0.

Proof: We concentrate on the nonlocal operator since the other results
are direct. For each (x, t) ∈ Rd × R+, by (K)-(S) we have

|Tiψβ(x, t)|≤|Ti[B](ψβ , x, t)+Ti[Bβ−1/2\B](ψβ , x, t)+Ti[Bcβ−1/2](ψβ , x, t)|

≤ C
[
β2

∫
B

|z|2Ki(x, t, z) dz + β

∫
B
β−1/2\B

|z|Ki(x, t, z) dz

+

∫
Bc
β−1/2

Ki(x, t, z) dz

]

≤ C
[
β2

∫
B

|z|−d+2(1−α+) dz + β1/2

∫
B
β−1/2\B

|z|−d−2α− dz

+

∫
Bc
β−1/2

|z|−d−2α− dz

]
≤ C[β2 + β1/2 + βα

−
].

At this moment we are able to establish the comparison principle for
bounded viscosity sub and supersolutions.

Theorem 4.3. Assume (H1), (H2), (K)-(S), and that for each i ∈ I(n)
the kernel Ki satisfies (K1) and the Hamiltonian Hi satisfies (F1) and
(F2), or (F2)’. Let u u.s.c. in Q̄T be a bounded viscosity subsolution
to (1.1), and v l.s.c. in Q̄T be a bounded viscosity supersolution to (1.1)
such that u(·, 0) ≤ v(·, 0) in Rd. Then, u ≤ v in Q̄T .

Proof: We assume by contradiction that

max
j∈I(n)

sup
(x,t)∈Q̄T

{uj(x, t)− vj(x, t)} := Θ > 0.
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We consider a function ψ∈C2
b (Rd) with ψ=0 inB1, ψ≥ max

j∈I(n)
supQ̄T{uj−

vj} + 1 in Bc2, and for β > 0 we define the function ψβ(x) = ψ(βx) for
all x ∈ Rd.

By taking β, η > 0 small enough and µ close to 1 in terms of T , Θ,
|u|∞, |v|∞, using the notation of Lemma 4.1 we consider w defined as
in (4.2), hence we get

(4.5) max
j∈I(n)

sup
(x,t)∈Q̄T

{wi(x, t)− vi(x, t)− ψβ(x)} := Θ̃ ≥ Θ/2 > 0.

At this point we start the standard process of doubling variables. For
0 < ε < γ we define

Ψ(x, y, t, s, i) := wi(x, s)− vi(y, t)−
|x− y|2

2γ
− |t− s|

2

2ε
− ψβ(y)

for all (x, t), (y, s) ∈ Q̄T and i ∈ I(n). Then, by (4.5) and the definition
of Ψ there exists a point (x̄, ȳ, s̄, t̄, ī) such that

Ψ(x̄, ȳ, s̄, t̄, ī) = max
j∈I(n)

max
(x,t)∈Q̄T

Ψ ≥ Θ̃ > 0.

Since I(n) is finite, up to a subsequence if necessary, we can assume the
index ī above is fixed and independent of the other parameters, namely i.

Then, using the boundedness, the semicontinuity of w, v, and the
maximal condition above we see that

(4.6) |t̄− s̄|2 ≤ Cε, |x̄− ȳ|2 ≤ Cγ, and lim
γ→0

lim sup
ε→0

|x̄− ȳ|2

γ
= 0.

Moreover, the localization term ψβ makes |x̄|, |ȳ| ≤ 4/β for all γ, ε
small enough. Then, up to a subsequence there exists (x∗, t∗) ∈ Q̄T such
that t̄, s̄→ t∗ and x̄, ȳ → x∗ as ε, γ → 0. And using that u ≤ v at t = 0
it is possible to conclude that s̄, t̄ > 0 uniformly in ε, γ when β > 0 is
fixed small and µ < 1 is fixed close to 1 in terms of Θ̃.

Now, in order to establish the viscosity evaluations, we denote

φ1(x, s) = vi(ȳ, t̄) +
|x− ȳ|2

2γ
+
|s− t̄|2

2ε
+ ψβ(ȳ),

which serves as a test function for w at (x̄, s̄), and

φ2(y, t) = wi(x̄, s̄)−
|x̄− y|2

2γ
− |s̄− t|

2

2ε
− ψβ(y),

which serves as a test function for vi at (ȳ, t̄). Thus, applying the Cran-
dall–Ishii–Lions lemma for nonlocal problems given by Corollary 1 in [6],
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properly adapted to our current framework, and by Lemma 4.1 we can
write

∂tφ1(x̄, s̄) + µiHi(x̄, s̄, µ
−1
i w, µ−1

i p̄, µ−1
i X,µ−1

i Ti,δ(wi, φ1, x̄, s̄))

≤ C(1− µ)− η,
∂tφ2(ȳ, t̄) +Hi(ȳ, t̄,v, q̄, Y, Ti,δ(vi, φ2, ȳ, t̄)) ≥ 0,

where p̄ = γ−1(x̄− ȳ), q̄ = p̄−Dψβ(ȳ), and X, Y are symmetric matrices
satisfying condition (4.1), for any δ > 0 small enough.

Taking into account that ∂tφ1(x̄, s̄) = ∂tφ2(ȳ, t̄) and subtracting the
above equations we obtain that

Hi(ȳ, t̄,v, q̄, Y, Ti,δ(vi, φ2, ȳ, t̄))

− µiHi(x̄, s̄, µ
−1
i w, µ−1

i p̄, µ−1
i X,µ−1

i Ti,δ(wi, φ1, x̄, s̄)) ≥ η − C(1− µ).

Calling the first term of the above inequality A, we have

A = Hi(ȳ, t̄,v(ȳ, t̄), q̄, Y, Ti,δ(vi, φ2, ȳ, t̄))

− µiHi(x̄, s̄, µ
−1
i v(ȳ, t̄), µ−1

i p̄, µ−1
i X,µ−1

i Ti,δ(vi, φ2, ȳ, t̄))

+ µi
[
Hi(x̄, s̄, µ

−1
i v(ȳ, t̄), µ−1

i p̄, µ−1
i X,µ−1

i Ti,δ(vi, φ2, ȳ, t̄))

−Hi(x̄, s̄, µ
−1
i v(ȳ, t̄), µ−1

i p̄, µ−1
i X,µ−1

i Ti,δ(wi, φ1, x̄, s̄))
]

+ µi
[
Hi(x̄, s̄, µ

−1
i v(ȳ, t̄), µ−1

i p̄, µ−1
i X,µ−1

i Ti,δ(wi, φ1, x̄, s̄))

−Hi(x̄, s̄, µ
−1
i w(x̄, s̄), µ−1

i p̄, µ−1
i X,µ−1

i Ti,δ(wi, φ1, x̄, s̄))
]

:= A1 +A2 +A3.

Now, by Lemma 4.2 we have that q̄ = p̄+oβ(1) with oβ(1)→ 0 as β → 0.
Hence, to estimate B1 we divide the analysis into cases: if Hi satis-
fies (F2), then µi = 1, hence by applying (F2) directly we see that

A1 ≤ oβ(1) + ωβ,T ((1 + |p̄|)(|x̄− ȳ|+ |s̄− t̄|)).
If Hi satisfies (F2)’, then µ∗ = µ and we see that

A1 ≤ ωβ,T (|x̄−ȳ|+|s̄− t̄|)(1+|p̄|m)+oβ(1)|p̄|m−1+C(1−µ)+(µ−1)|p̄|m.
Then, if p̄ is uniformly bounded when γ is small, it is easy to see that

A1 ≤ Cωβ,T (|x̄− ȳ|+ |s̄− t̄|) + oβ(1) + C(1− µ).

Otherwise, if p̄ is unbounded, for µ < 1 fixed, we consider ε� γ and for
all γ, β small enough in terms of 1− µ, such that (4.6) implies

A1 ≤ ωβ,T (|x̄− ȳ|+ |s̄− t̄|) + C(1− µ)

+ [ωβ,T (|x̄− ȳ|+ |s̄− t̄|) + oβ(1)|p̄|−1 + (µ− 1)]|p̄|m

≤ ωβ,T (|x̄− ȳ|+ |s̄− t̄|) + C(1− µ).
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Then, summarizing the above estimates and considering ε, γ, β as above,
by (4.6) we conclude

A1 ≤ oγ(1) + oβ(1) + C(1− µ).

Now, before dealing with the term A2, we analyze the nonlocal operators.
Hence, by definition of φ2 and (K)-(S), we have

|Ti[Bδ](φ2(·, t̄), ȳ)− Ti[Bδ](ψβ , ȳ, t)| ≤ Cγ−1

∫
Bδ

|z|2K(ȳ, t̄, z) dz

≤ Cγ−1

∫
Bδ

|z|−d+2(1−α+) dz,

then,

(4.7) Ti[Bδ](φ2(·, t̄), ȳ) = γ−1oδ(1)− Ti[Bδ](ψβ , ȳ, t).
Similarly,

(4.8) Ti[Bδ](φ1(·, s̄), x̄) = γ−1oδ(1).

Moreover, by the maximality of (x̄, ȳ, s̄, t̄) we see that

vi(ȳ + z, t̄)− vi(ȳ, t̄) ≥ wi(x̄+ z, s̄)− wi(x̄, s̄)− ψβ(ȳ + z) + ψβ(ȳ),

hence

Ti[Bcδ ](vi(·, t̄), ȳ, q̄)

≥
∫
Bcδ

[wi(x̄+z, s̄)−wi(x̄, s̄)−1B(z)〈p̄, z〉]Ki(ȳ, t̄, z) dz−Ti[Bcδ ](ψβ , ȳ, t̄)

=Ti[Bcδ ](wi(·, s̄), x̄, p̄) + I(wi, x̄, s̄, ȳ, t̄)− Ti[Bcδ ](ψβ , ȳ, t̄)|,

(4.9)

where

I(wi, x̄, s̄, ȳ, t̄)

:=

∫
Bcδ

[wi(x̄+ z, s̄)−wi(x̄, s̄)− 1B(z)〈p̄, z〉][Ki(ȳ, t̄, z)−Ki(x̄, s̄, z)] dz.

Now we concentrate to get a bound for the term I, hence

I(wi, x̄, s̄, ȳ, t̄) =

∫
B\Bδ

[wi(x̄+ z, s̄)− wi(x̄, s̄)][Ki(ȳ, t̄, z)−Ki(x̄, s̄, z)] dz

−
∫
B\Bδ

〈p̄, z〉[Ki(ȳ, t̄, z)−Ki(x̄, s̄, z)] dz

+

∫
Bc

[wi(x̄+ z, s̄)− wi(x̄, s̄)][Ki(ȳ, t̄, z)−Ki(x̄, s̄, z)] dz

:= I1 + I2 + I3.
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For the terms I1 and I2, by (K1) we notice that

|I1| ≤ 2|u|∞
∫
B

|Ki(ȳ, t̄, z)−Ki(x̄, s̄, z)| dz ≤ C(|x̄− ȳ|+ |t̄− s̄|),

and

|I2| ≤ γ−1|x̄−ȳ|
∫
B

|Ki(ȳ, t̄, z)−Ki(x̄, s̄, z)| dz ≤ C
|x̄− ȳ|
γ

(|x̄−ȳ|+|t̄−s̄|).

Now, since Ki is continuous, t̄, s̄ → t∗ and x̄, ȳ → x∗ as ε, γ → 0, we
have that |Ki(ȳ, t̄, z)−Ki(x̄, s̄, z)| → 0. Moreover, by (K)-(S) we get

|Ki(ȳ, t̄, z)−Ki(x̄, s̄, z)| ≤ 2C|z|−d−2α− if z ∈ Bc.

Hence, by the dominated convergence theorem we have that

|I3| ≤ 2|u|∞
∫
Bc
|Ki(ȳ, t̄, z)−Ki(x̄, s̄, z)| dz = oγ(1).

By the above computations and (4.6), we obtain that Ti(w̄i, x̄, s̄, ȳ, t̄) =
oγ(1) as ε� γ and γ → 0.

Hence, if we join the approach of I with (4.7), (4.8), and (4.9), by
Lemma 4.2 we get that

(4.10) Ti,δ(vi, φ2, ȳ, t̄) ≥ Ti,δ(wi, φ1, x̄, s̄) + oβ(1) + oγ(1) + γ−1oδ(1).

Now, by (4.10), (H1), and (F1), we have

A2 ≤ µi
[
Hi(x̄, s̄, µ

−1
i v(ȳ, t̄), µ−1

i p̄, µ−1
i X,µ−1

i (Ti,δ(wi, φ1, x̄, s̄) + oβ(1)

+ oγ(1) + γ−1oδ(1)))

−Hi(x̄, s̄, µ
−1
i v(ȳ, t̄), µ−1

i p̄, µ−1
i X,µ−1

i Ti,δ(wi, φ1, x̄, s̄))
]

≤ oβ(1) + oγ(1) + γ−1oδ(1).

To deal with the last term we use the monotone property (H2). Then,
we define

Gi(k) := Hi

(
x̄, s̄, v1(ȳ, t̄), . . . , vk(ȳ, t̄), wk+1(x̄, s̄), . . . ,

wn(x̄, s̄), µ−1
i p̄, µ−1

i X,µ−1
i Ti,δ(wi, φ1, x̄, s̄)

)
,

where Gi(0)=Hi(x̄, s̄,w(x̄, s̄), µ−1
i p̄, µ−1

i X,µ−1
i Ti,δ(wi, φ1, x̄, s̄)). Hence,

A3 = −µi
n∑
k=1

[Gi(k − 1)−Gi(k)].
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By definition of Ψ, w, and v, we have that

wi(x̄, s̄)− vi(ȳ, t̄) ≥ Θ̃ and

wi(x̄, s̄)− vi(ȳ, t̄) ≥ wk(x̄, s̄)− vk(ȳ, t̄)
for k 6= i,(4.11)

therefore, using (H2) for all k 6= i we obtain

Gi(k − 1)−Gi(k) ≥

{
0 if wk(x̄, s̄) ≤ vk(ȳ, t̄),

cik(wk(x̄, s̄)− vk(ȳ, t̄)) if wk(x̄, s̄) ≥ vk(ȳ, t̄),

and since cik ≤ 0 for all k 6= i, by (4.11) we have

Gi(k − 1)−Gi(k) ≥ cik(wi(x̄, s̄)− vi(ȳ, t̄)).
Again, by (H2) and (4.11) we have

Gi(i− 1)−Gi(i) ≥ cii(wi(x̄, s̄)− vi(ȳ, t̄)).
Then, we have

A3 ≤ −µi(wi(x̄, s̄)− vi(ȳ, t̄))
n∑
k=1

cik ≤ −c0µΘ̃.

Finally, replacing the bounds of A in (4.7), we obtain

0 < η + c0µΘ̃ ≤ γ−1oδ(1) + oγ(1) + oβ(1) + C(1− µ).

Fixing η > 0 and letting δ, ε, γ, β → 0 and µ → 1, we arrive at a
contradiction. This concludes the proof.

5. Well-posedness and large time behavior

The main result of this paper is the following existence and uniqueness
for system (1.1)-(1.2).

Theorem 5.1. Assume the hypotheses of Theorem 4.3 and that for
each i ∈ I(n) the Hamiltonian Hi satisfies (F3). Then, for the initial
data u0 ∈ Cb(Rd,Rn), there exists a unique viscosity solution u ∈ C(Q̄)
for the Cauchy problem (1.1)-(1.2).

Moreover, if c0 > 0 in (H2), the solution u is uniformly bounded and
we have the estimate

(5.1) |ui(x, t)| ≤ C + |u0|∞, for all (x, t) ∈ Q, i ∈ I(n),

for some constant C > 0 depending on c0.

Proof: We begin by considering QT with T > 0. First we assume that
u0,i∈C2

b (Rd) for all i∈I(n), with |u0|C2(Rd,Rn) < +∞. Then, we consider
Vi(x, t) = Ct+ u0,i(x) for some C > 0 to be fixed later, for all i ∈ I(n).

By (K)-(S) we see that

|Tiu0,i(x, t)| ≤ R
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for some R > 0 fixed. By (F3) and for each i ∈ I(n), there exists a
constant CH,i(R) > 0 such that

∂tVi(x, t) +Hi(x, t,V, DVi, D
2Vi, TiVi(x, t))

≥ C +Hi(x, t,u0, Du0,i, D
2u0,i, Tiu0,i(x, t))

≥ C − CH,i(R)

for all (x, t) ∈ QT . Taking C > 0 large in terms of maxi∈I(n){CH,i(R)},
we thus get that V is a classical supersolution to (1.1) for the problem
set up on QT , which satisfies V(x, 0) = u0(x) for all x ∈ Rd.

Similarly, the function Ui(x, t) = −Ct + u0,i(x) for all i ∈ I(n) is
a classical subsolution to (1.1) for some C > 0 large enough verifying
U(x, 0) = u0(x). Hence, Theorem 3.2 implies the existence of a discontin-
uous viscosity solution u for (1.1) such that u∗(x, 0) = u∗(x, 0) = u0(x)
for all x ∈ Rd and thus by Theorem 4.3 we conclude u ∈ C(Q̄T ). Unique-
ness follows again by Theorem 4.3.

In the general case, when u0 ∈ Cb(Rd,Rn), we take a sequence
(uε0)ε in C2

b (Rd,Rn) with |uε0|C2(Rd,Rn) < +∞ and |uε0 − u0|∞ < ε for
all ε > 0. Thus, by the previous analysis we can construct a supersolution
V εi (x, t) = uε0,i(x)+ε+Cεt, and a subsolution U εi (x, t) = uε0,i(x)−ε−Cεt
to equation (1.1). Then, defining

Ui(x, t)=sup
ε>0
{U εi (x, t)} and Vi(x, t)= inf

ε>0
{V εi (x, t)} for all i ∈ I(n),

by the first part of the proof of Theorem 3.2 we have that U, V are
respectively viscosity sub and supersolutions to problem (1.1) and match
with u0 at t = 0. From this point we follow the same lines of the previous
case.

Finally, given 0 < T < T ′, the viscosity solution in (0, T ′] must co-
incide in (0, T ] with the viscosity solution in this interval, by unique-
ness. Thus, the viscosity solution of (1.1)-(1.2) extends uniquely to all t ∈
[0,+∞), i.e., it is global in time.

For the estimate (5.1), we consider the constant function Vi = C +
|u0|∞ > 0 for all i ∈ I(n), hence by (H2) for each j ∈ I(n) we have

Hi(x, t, V1, . . . , Vj , . . . , Vn, 0, 0, 0)−Hi(x, t, V1, . . . , 0, . . . , Vn, 0, 0, 0)

≥ cij(C + |u0|∞).

Furthermore, iterating the process we obtain

∂tVi(x, t) +Hi(x, t, V1, . . . , Vj , . . . , Vn, 0, 0, 0)

≥ (C + |u0|∞)
∑
j∈I(n)

cij +Hi(x, t, 0, 0, 0, 0)

≥ Cc0 − |Hi(·, ·, 0, 0, 0, 0)|∞,
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and taking C = c−1
0 |H(·, ·, 0, 0, 0, 0)|∞, we get that V is a supersolution

to (1.1)-(1.2) for the problem on Q. A lower bound can be obtained
similarly by considering a function with the form Ui(x, t) = −C − |u0|∞
for all i ∈ I(n). By the comparison principle, the proof is complete.

The comparison principle is used to study steady-state large time
behavior for system (1.1). More specifically, we consider functions H̄i

and K̄i (with the associated function ᾱi) not depending on the time
variable t and satisfying the above conditions in the time-independent
formulation for all i ∈ I(n). Thus, the stationary problem has the form

(5.2) H̄i(x,u, Dui, D
2ui, T̄i(ui)) = 0 in Rd,

where

T̄i(ui, x) =

∫
Rd

[ui(x+ z)− ui(x)− 1B(z)〈Dui(x), z〉]K̄i(x, z) dz.

Following closely the lines in the proofs of Theorem 3.2 and Theorem 4.3,
where c0 > 0 in (H2) plays the role of the parabolicity performed by the
time derivative, we can conclude the well-posedness of (5.2), given the
following result.

Theorem 5.2. Consider the stationary problem (5.2), where for all i ∈
I(n), H̄i ∈ C(Rd × R × Rd × Sd × R), and K̄i ∈ C(Rd × (Rd \ {0}))
satisfy the conditions (K)-(S), (H1), (F1), (F3), (F2), or (F2)’ and (H2)
with c0 > 0, in the time-independent formulation. Then, there exists a
unique viscosity solution u ∈ C(Rd,Rn) for (5.2) and the following bound
holds:

|u|∞ ≤ c−1
0 |H̄(·, 0, 0, 0, 0)|∞.

The uniqueness for the stationary problem leads to a steady-state
large time behavior result for parabolic problems as an application of
the half-relaxed limits method introduced by Barles and Perthame [8].

Theorem 5.3. Assume there exist vector functions H̄, K̄, and the hy-
potheses of Theorems 5.1 and 5.2 hold, such that

(5.3) Hi → H̄i, Ki → K̄i locally uniform as t→∞.

Then, the unique bounded viscosity solution u to (1.1)-(1.2) converges lo-
cally uniform in Rd to the unique bounded viscosity solution u∞ of (5.2)
as t→ +∞.

Moreover, if H, K are not dependent on t, we have the following rate
of convergence:

|u∞ − u(·, t)|∞ ≤ e−c0t|u∞ − u0|∞, for all t ≥ 0.
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Proof: Let u be the solution to (1.1). For each i ∈ I(n), ui is a bounded
function in Q from which the functions

ūi(x, t) = lim sup
y→x, ε→0

ui(y, t/ε), ui(x, t) = lim inf
y→x, ε→0

ui(y, t/ε)

are well defined for each (x, t) ∈ Q. It is worth noting that

lim sup
y→x, ε→0

ui(y, t/ε) = lim
σ→0, ε→0

sup{ui(y, t/ε′) : y ∈ Bσ(x), 0 < ε′ < ε},

and analogously for lim inf.
We claim that for each t0 > 0, the functions x 7→ ū(x, t0) and x 7→

u(x, t0) are respectively viscosity sub and supersolutions to (5.2). We
will only deal with subsolutions, as the case of supersolutions is similar.

Let t0 > 0 fixed and i ∈ I(n), x0 ∈ Rd, φ ∈ C2
b (Rd) such that

ūi(·, t0) − φ has a global, strict maximum point at x0. Hence, taking
appropriate sequences in the formulation of ūi, we have the existence
of δ > 0, xk → x0, and εk → 0 such that, denoting tk = t0/εk, (xk, tk)
is a maximum point of the function (x, t) 7→ ui(x, t)− φ(x) in Bδ(x0)×
(tk − δ/εk, tk + δ/εk), satisfying in addition that ui(xk, tk) → ūi(x0, t0)
as k →∞.

Now, since u is a subsolution to (1.1) and since ∂tφ(x) = 0, we can
write

(5.4) Hi(xk, tk,u(xk, tk), Dφ(xk), D2φ(xk), Ti,δ(ui, φ, xk, tk)) ≤ 0.

Before continuing we analyze the nonlocal term; hence by (K)-(S), (5.3),
and the dominated convergence theorem we have

Ti[Bδ](φ, xk, tk) = ok(1) + T̄i[Bδ](φ, x0),

where T̄i is the operator (1.3) with the kernel K̄i. Also, we notice that

Ti[Bcδ ](ui(·, tk), φ, xk, tk)− T̄i[Bcδ ](ūi(·, t0), φ, x0)

≤ 2|u|∞
∫
Bcδ

|Ki(xk, tk, z)− K̄i(x0, z)| dz

+

∫
Bcδ

|(ui(xk+z,tk)−ui(xk,tk))−(ūi(x0+z, t0)−ūi(x0, t0))|K̄i(x0, z) dz

+

∫
B\Bδ

|〈Dφ(xk), z〉Ki(xk, tk, z)− 〈Dφ(x0), z〉K̄i(x0, z)| dz

:= I1 + I2 + I3.
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Similarly to the previous case, by using the dominated convergence the-
orem, the properties (K)-(S), and the uniform convergence of (5.3), we
have I1, I3 = ok(1). For the term I2 we conclude I2 ≤ ok(1) by using the
definition of ūi and (K)-(S). Then, summarizing the above estimates,

Ti,δ(ui, φ, xk, tk) ≤ ok(1) + T̄i,δ(ūi, φ, x0, t0).

Using the property (H1) and (5.4), we have

Hi(xk, tk,u(xk, tk), Dφ(xk), D2φ(xk), ok(1) + T̄i,δ(ūi, φ, x0, t0)) ≤ 0.

Then, considering the above estimate, the smoothness of φ, the continu-
ity of Hi, taking k → +∞, since then ui(xk, tk) → ūi(x0, t0), (5.3), the
definition of each ūj , and the monotone property (H2), we conclude that

H̄i(x0, ū(x0, t0), Dφ(x0), D2φ(x0), T̄i,δ(ūi, φ, x0, t0)) ≤ 0,

which is the desired viscosity inequality.
To conclude the steady-state large time behavior, we apply the com-

parison principle for the stationary problem (5.2) and we arrive at ū ≤ u,
which leads to the local uniform convergence of u to the unique solution
of the stationary problem.

Now, in order to prove the rate of convergence, we notice that, since
H, K do not depend on t, we have that H = H̄, K = K̄ in (5.3). Hence,
we consider the function

Ui(x, t) = u∞,i(x) + e−c0t|u∞ − u0|∞
for all i ∈ I(n) and c0 > 0 is the constant in (H2).

We claim that U is a supersolution for system (1.1)-(1.2). In fact, we
clearly have U(x, 0) ≥ u0(x) and we consider i ∈ I(n), δ > 0, (x0, t0) ∈
QT , φ ∈ C2(Q̄T ) such that (x0, t0) is a strict minimum point of Ui − φ
on Cδ(x0, t0) satisfying Ui(x0, t0) = φ(x0, t0).

On the other hand, taking ψ(x) = −e−c0t0 |u∞ − u0|∞ + φ(x, t0), we
get that x0 is a minimum point for the function u∞,i−ψ in Bδ(x0). Since
u∞ is a supersolution of (5.2) and Ti,δ(u∞,i, ψ, x0) = Ti,δ(Ui, φ(·, t0), x0),
we see that

Hi(x0,u∞(x0), Dφ(x0, t0), D2φ(x0, t0), Ti,δ(Ui, φ(·, t0), x0)) ≥ 0.

In the following computations, we drop the dependence of Hi on x0,
Dφ(x0, t0), D2φ(x0, t0), and Ti,δ(Ui, φ(·, t0), x0)), since these variables
do not play any role here. Hence by (H2) we get that

Hi(U1(x0, t0), . . . , Uj(x0, t0), . . . , Un(x0, t0))

−Hi(U1(x0, t0), . . . , u∞,j(x0), . . . , Un(x0, t0)) ≥ cije−c0t|u∞ − u0|∞
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for all j ∈ I(n). Iterating the process for each j ∈ I(n), we can obtain

∂tUi(x0, t0) +Hi(U(x0, t0))

≥
(
−c0 +

∑
j∈I(n)

cij

)
e−c0t0 |u∞ − u0|∞ +Hi(u∞(x0))

≥ Hi(u∞(x0)).

By the above computations, we conclude that U is a supersolution
to (1.1).

In the same way, the function

Vi(x, t) = u∞,i(x)− e−c0t|u∞ − u0|∞, ∀i ∈ I(n),

is a subsolution to (1.1), and the result follows by the comparison prin-
ciple.
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