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Abstract: We give an improved polynomial bound on the complexity of the equation
solvability problem, or more generally, of finding the value sets of polynomials over

finite nilpotent rings. Our proof depends on a result in additive combinatorics, which

may be of independent interest.
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1. Introduction

Several ‘classical’ algebraic problems are investigated from the com-
putational perspective. The equivalence problem and the equation solv-
ability problem for various algebraic structures have received increasing
attention recently. Both problems originate from the theory of rings and
fields. The equivalence problem over a finite ring asks whether or not two
polynomials define the same function over the given ring. The equation
solvability problem is basically looking for the existence of a root or for
the solution of an equation. It asks whether or not two polynomials over
a ring have at least one substitution, where they attain the same value.
Both of these problems are decidable for finite rings: it is enough to
substitute every element of the ring into the variables.

Early investigations into the computational complexity of the equiva-
lence problem were carried out by computer scientists at Syracuse Uni-
versity. In the early 1990s it was shown by Hunt and Stearns [11] that the
equivalence problem of a finite commutative ring either can be decided
in polynomial time or has co-NP-complete complexity. Later Burris and
Lawrence proved in [3] that the same holds for rings in general: the
problem can be decided in polynomial time if the ring is nilpotent (this
part is already found in [11]), and it is co-NP-complete otherwise.



198 G. Károlyi, C. Szabó

The solvability problem has a somewhat shorter history. Although
the borderline is again nilpotency, the proofs are more complicated. Fol-
lowing the idea of Burris and Lawrence it is not hard to verify that the
solvability problem for non-nilpotent rings is NP-complete. Horváth ([7])
has proved that for nilpotent rings the problem can be decided in polyno-
mial time. More precisely, let R be a nilpotent ring of size m and nilpo-
tency class `, and let f be a polynomial over R in the (non-commuting)
variables x1, . . . , xn. In [7] it is shown that O(||f ||t) substitutions suffice
to decide, whether f has a root or not. Here ||f || represents the number
of operations used to present f . The exponent t = t(m, `), obtained in
terms of the Ramsey number for a particular coloured hypergraph, is
rather enormous, though.

In the present paper, by applying a recent result in additive combi-
natorics the exponent t is reduced to m logm; see Theorem 4.3 for a
more precise formulation. In particular, it is proved that the range of a
polynomial can be found using O(nm(`−1)) many substitutions.

Note that the equivalence and solvability problems for finite groups
have proved to be far more challenging. For results and detailed refer-
ences see for example [9, 10] and the most recent paper of Horváth [8],
where most of the existing results for equivalence and equation solvabil-
ity are brought under a unified theory. For results about these problems
on finite monoids and semigroups we refer to [1, 12, 15, 16]; concerning
general algebras see e.g. [6].

2. Terminology

Polynomials. Having a diverse readership in mind we introduce our
notions in a somewhat informal, albeit precise manner. Let R be an
arbitrary ring, and x1, . . . , xn symbols we think of as non-commuting
variables. By a polynomial in these variables over R we mean an expres-
sion that can be constructed in a finite number of steps according to the
following rules: (i) every element of {x1, . . . , xn} ∪ R is a polynomial;
(ii) if f is a polynomial, then −f is also a polynomial; (iii) if f , g are
polynomials, then f + g is also a polynomial; and (iv) if f , g are poly-
nomials, then fg is also a polynomial. The set of all such polynomials
we denote by R[x1, . . . , xn].

Evaluating a polynomial f ∈R[x1, . . ., xn] at the point c=(c1, . . ., cn)∈
Rn, or substituting c in f , means replacing each occurrence of the
variable xi in f by the corresponding ring element ci, for every 1 ≤
i ≤ n; the result is an element of R denoted by f(c). This way f de-
fines a function from Rn to R; two polynomials are equivalent if they
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define the same function. For example, for a, b ∈ R the polynomi-
als (ax)b, a(xb),−(ax)(−b) ∈ R[x] are equivalent, but may not be equiv-
alent to (ab)x. One may even identify the first three, but this is irrelevant
to our purposes. The polynomials x1(x2x1) and x1x2 are also equivalent
over Z/2Z.

Each polynomial is equivalent to a ‘standard’ polynomial, that is, to
one that can be written as a sum of monomials. More precisely, a mono-
mial is a polynomial that can be constructed using only the rules (i),
(ii), and (iv), where (ii) is only applied in the last step, if at all. Sup-
pressing the brackets, each monomial can be represented in a canonical
form as z1 · · · zt or −z1 · · · zt, where each zi ∈ {x1, . . . , xn} ∪ R. If two
monomials have the same canonical form, then they are clearly equiva-
lent. A standard polynomial is one obtained from monomials using only
the rule (iii). Once again, up to equivalence it does not matter in which
order the additions are executed.

The computational model. In our model R denotes a fixed finite
ring, presented by its addition and multiplication tables. Thus, its car-
dinality is |R| = O(1). We may assume that the table of additive in-
verses and the zero element are also given, for they can be computed
from the addition table in O(1) time. In accordance with rules (i)–(iv),
the length ||f || of a polynomial f ∈ R[x1, . . . , xn] is defined as follows:
||f || = 0 if f ∈ {x1, . . . , xn} ∪ R, and if ||f ||, ||g|| are defined, then set
|| − f || = ||f || + 1 and ||f + g|| = ||fg|| = ||f || + ||g|| + 1. Thus, ||f || is
the number of operations used to define f , which may be regarded as
the complexity of evaluating f at any single point of Rn. Our goal is to
measure the complexity of the problems mentioned in the introduction
in terms of ||f ||.

Nilpotency. In what follows, R(i) will denote the ideal consisting of
all finite sums of terms of the form c1 · · · ci, where c1, . . . , ci ∈ R. The
ring R is nilpotent if there is a positive integer i such that R(i) = 0; the
smallest such i is called the nilpotency class of R. The standard example
for a ring of nilpotency class ` is the ring of strictly upper triangular
`× ` matrices over an arbitrary field.

3. A result in additive combinatorics

A standard application of the pigeonhole principle gives that for
any sequence g1, g2, . . . , gn of a finite group G there is a subsequence
gi1 , gi2 , . . . , git with t < |G| such that gi1gi2 · · · git = g1g2 · · · gn. Here
we need a more general result that we can establish for finite abelian
p-groups.
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Let p denote a prime and let G be an arbitrary finite abelian p-group,
written additively. Then there exist unique positive integers r and α1 ≤
· · · ≤ αr such that G ∼= Z/pα1Z⊕ · · · ⊕ Z/pαrZ. For a finite set H and
a non-negative integer k we denote by Pk(H) the set of all subsets X
of H with |X| ≤ k. Given a function ϕ : Pk(H)→ G, associate with each
subset U of H the value

ϕ(U) =
∑

X⊆U, |X|≤k

ϕ(X).

Thus, ϕ(H) is simply the total sum of the values of ϕ over Pk(H).

Theorem 3.1. Let H be a finite set, k a non-negative integer. For any
function ϕ : Pk(H)→ Z/pα1Z⊕· · ·⊕Z/pαrZ, there is a set U ⊆ H such
that

|U | ≤ k
r∑
j=1

(pαj − 1)

and ϕ(U) = ϕ(H).

Remark 3.2. It is easily seen that the case k = 1 of the above theorem
is equivalent to Olson’s classical result [13] on the Davenport constant
of finite abelian p-groups.

Remark 3.3. The bound on the cardinality of U cannot be improved
upon for any k. Assume that |H| ≥ k

∑r
j=1(pαj − 1). Select pairwise

disjoint k-element subsets Hj,l of H for 1 ≤ j ≤ r, 1 ≤ l < pαj . Denote
by ej any generating element of the jth direct summand Z/pαjZ, and
consider the function ϕ that assigns ej to each set Hj,l and 0 to any other
element of Pk(H). Then ϕ(H) =

∑r
j=1(pαj −1)ej , and it is obvious that

ϕ(U) = ϕ(H) implies U ⊇ ∪Hj,l.

Our proof depends on the following result of Brink [2], which can be
viewed as a generalization of Chevalley’s well-known theorem [4] and its
somewhat forgotten extension by Schanuel [14].

Theorem 3.4. Let p denote a prime and let A1, . . . , An be non-empty
subsets of Z such that the natural homomorphism from Z to Z/pZ re-
stricted to Ai is injective for each 1 ≤ i ≤ n. Assume that the polynomi-
als f1, . . . , fr ∈ Z[x1, . . . , xn] satisfy

n∑
i=1

(|Ai| − 1) >

r∑
j=1

(pαj − 1) deg fj .

If the set {a ∈ A1 × · · · × An | fj(a) ≡ 0 (mod pαj ), 1 ≤ j ≤ r} is not
empty, then it has at least two different elements.
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Proof of Theorem 3.1: Putting |H| = n, enumerate the elements of H
as h1, . . . , hn. We may assume that n ≥ k

∑r
j=1(pαj − 1) + 1, for the

statement is valid with U = H otherwise. For 1 ≤ j ≤ r denote by
ϕj : Pk(H)→ Z/pαjZ the jth coordinate function of ϕ, and consider the
polynomial fj ∈ (Z/pαjZ)[x1, . . . , xn] defined by

fj(x) =

k∑
ν=0

( ∑
1≤i1<···<iν≤n

ϕj({hi1 , . . . , hiν})
ν∏

α=1

xiα

)
.

Thus, letting f = (f1, . . . , fr) we have f(0) = ϕ(∅) = ϕ(∅), f(1) = ϕ(H),
and

f(x) = ϕ(U) with U = U(x) = {hi | xi = 1}

for x ∈ {0, 1}n in general.
Define sequences Is ⊆ {1, . . . , n} and a(s) ∈ {0, 1}n recursively as

follows. Put I0 = {1, . . . , n} and a(0) = 1, then

I0 = {i | a(0)i = 1} and f(a(0)) = ϕ(H).

Assume that Is and a(s) are already defined such that

Is = {i | a(s)i = 1} and f(a(s)) = ϕ(H).

If |Is| > k
∑r
j=1(pαj − 1), then put Ai = {0, 1} for i ∈ Is and Ai = {0}

for i ∈ I0 \ Is. Note that a(s) ∈ A1 × · · · × An. For each 1 ≤ j ≤ r the
polynomial gj = fj−ϕj(H) ∈ (Z/pαjZ)[x1, . . . , xn] vanishes at a(s) and

n∑
i=1

(|Ai| − 1) = |Is| > k

r∑
j=1

(pαj − 1) ≥
r∑
j=1

(pαj − 1) deg gj .

It follows from Theorem 3.4 that there exists an element

a ∈ (A1 × · · · ×An) \ {a(s)}

such that gi(a) = 0 in Z/pαiZ for every i = 1, 2, . . . , r, and accordingly
f(a) = ϕ(H). Let

a(s+ 1) = a, Is+1 = {i | a(s+ 1)i = 1};

then Is+1 is a proper subset of Is.
This process must terminate at some t ≥ 1 with |It| ≤ k

∑r
j=1(pαj −

1), meaning that the statement of the theorem is valid with

U = {hi | i ∈ It} = U(a(t)).
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4. Nilpotent rings

All the results claimed in Section 1 can be easily reduced to the fol-
lowing general statement.

Proposition 4.1. Let R be an arbitrary finite ring and g ∈ R[x1, . . . , xn]
a standard polynomial, written as a sum of monomials. If each such
monomial contains at most k different variables, then O(nk|R|) evalua-
tions suffice to determine the range of g.

Proof: Assume first that the cardinality of R is a power of a prime p.
That is, the additive group of R is a finite abelian p-group:

R+ ∼= Z/pα1Z⊕ · · · ⊕ Z/pαrZ.

Suppose that g admits the value v: there are elements c1, . . . , cn ∈ R such
that g(c1, . . . , cn) = v. For each subset X of H = {1, 2, . . . , n} with |X| ≤
k, denote by gX the sum of those monomial terms of g which contain
exactly the variables xi with i ∈ X. Writing ϕ(X) = gX(c1, . . . , cn)
we have v =

∑
X∈Pk(H) ϕ(X) = ϕ(H). Theorem 3.1 guarantees the

existence of a subset U of {1, 2, . . . , n} with

|U | ≤ k
r∑
j=1

(pαj − 1) ≤ k|R|

and ϕ(U) = ϕ(H) = v. Putting c′i = ci for i ∈ U and c′i = 0 for i 6∈ U
we have

gX(c′1, . . . , c
′
n) =

{
gX(c1, . . . , cn) if X ⊆ U ,

0 otherwise.

It follows that

g(c′1, . . . , c
′
n) =

∑
X∈Pk(H)

gX(c′1, . . . , c
′
n) =

∑
X⊆U

gX(c1, . . . , cn)

=
∑
X⊆U

ϕ(X) = ϕ(U) = ϕ(H) = v.

Consequently, to determine the range of g it suffices to substitute into g
only those n-tuples (c1, . . . , cn) in which all but at most k|R| elements
are equal to 0. The number of such n-tuples is

k|R|∑
i=0

(
n

i

)
|R|i ≤ (k|R|+ 1)|R|k|R|nk|R| = O(nk|R|),

where the implied constant only depends on k and R.
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Turning to the general case, assume that R+ = G1 ⊕ · · · ⊕Gs, where

Gi is an abelian group of order pβii , the primes p1, . . . , ps being pairwise
different. Each set defined by

Ri = {r ∈ R | pβii r = 0}
is an ideal in R whose additive group must be identical to Gi. It follows
that R = R1⊕ · · · ⊕Rs, and there are natural homomorphisms πi : R→
Ri such that π1 + · · · + πs is the identical map from R to R. Thus, if
the n-tuple c ∈ Rn is written as c = c1 + · · · + cs with ci ∈ (Ri)

n,
then g(c) = g1(c1) + · · · + gs(cs), where gi is the polynomial over Ri
obtained from g by replacing each coefficient in g by its image under πi.
Accordingly, the value set of g is the Minkowski sum of the value sets of
the polynomials gi, and in view of the first part of the proof it can be
found using

O

(
s∏
i=1

nk|Ri|

)
= O

(
nk

∑s
i=1 |Ri|

)
= O(nk|R|)

substitutions.

Remark 4.2. As part of the preprocessing, one can compute in O(1) time

the factorization |R| = pβ1

1 · · · pβss , and then the ideals Ri in the direct
decomposition of R. To compute the range of g it is then enough to
evaluate g on the elements of the small set

S = {c ∈ Rn : |{j : (ci)j 6= 0}| ≤ kpβii for every 1 ≤ i ≤ s}.

According to the above proof, |S| = O(nk|R|).

Theorem 4.3. Let R be a nilpotent ring of size m. For an n-variable
polynomial f ∈ R[x1, x2, . . . , xn], it can be decided in O(||f ||nm logm)
time whether or not f has a root in R.

Proof: Denote by ` the nilpotency class of R. Thus, R(`) = 0. Therefore
f is equivalent to a standard polynomial f ∈ R[x1, x2, . . . , xn] in which
every monomial term contains at most `−1 different variables. By Propo-
sition 4.1, the range of f , which is the same as the range of f , can be
found by evaluating f on a subset S of Rn, of size O(n(`−1)m); see Re-
mark 4.2 for an explicit description. In particular, one can check whether
f admits the value 0, and it can be also decided if f is identically zero
or not. Note that the chain of ideals R . R(2) . · · · . R(`) = 0 is strictly
decreasing. As |R(i)/R(i+1)| ≥ 2, it follows that `− 1 ≤ log2m.

Remark 4.4. During the preparation of this article Földvári ([5])
proved a similar result with an entirely different method. His bound
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is O(||f ||m2 logm log5m). Note that one may assume that ||f || ≥ n − 1,
otherwise the set of variables that occur in f can be restricted to a proper
subset of {x1, . . . , xn}. If this is the case, then Theorem 4.3 implies the
bound O(||f ||m logm).
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