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Abstract: We study the group-invariant continuous polynomials on a Banach space X
that separate a given set K in X and a point z outside K. We show that if X is a real

Banach space, G is a compact group of L(X), K is a G-invariant set in X, and z is a

point outside K that can be separated from K by a continuous polynomial Q, then z
can also be separated from K by a G-invariant continuous polynomial P . It turns out

that this result does not hold when X is a complex Banach space, so we present some

additional conditions to get analogous results for the complex case. We also obtain
separation theorems under the assumption that X has a Schauder basis which give

applications to several classical groups. In this case, we obtain characterizations of

points which can be separated by a group-invariant polynomial from the closed unit
ball.
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1. Introduction

Algebras of polynomials invariant under the action of a topological
group have been intensively studied in recent years; see for instance [1,
2, 6, 7, 8, 13, 14, 15, 16] and the references therein. Our aim in
this note is to study separation theorems through polynomials that are
invariant under a group action. This continues the work started in [3],
where the authors prove separation theorems that are invariant under
the action of a finite group.

A separately continuous action of a topological group (G, τ) on a
topological space X is a group action of G on X such that the cor-
responding function G × X 7→ X defined by (g, x) 7→ g · x is sepa-
rately continuous. For a Banach space X, L(X) stands for the space of
linear and continuous mappings from X into itself. In our setting we
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will consider G ⊂ L(X), where G can be endowed with a topology τ
that could differ from the natural topology of L(X). A group that we
will consider several times in this note is the group of permutations of
n elements, Sym({1, . . . , n}). This group induces naturally a group G=
{Tσ : Tσ(x1, . . . , xn) = (xσ(1), . . . , xσ(n)) : σ∈Sym({1, . . . , n})}⊂L(Rn)
(or L(Cn)).

Given a group G of L(X), we say that a polynomial P on a Ba-
nach space X is an invariant polynomial under the action of G or a
G-invariant polynomial if P (z) = P (γ(z)) for all z ∈ X and γ ∈ G.
Also, we say that a polynomial P on a Banach space X separates a
point z and a set K in X if

sup
w∈K

|P (w)| < |P (z)|.

For details on polynomials and holomorphic functions on Banach spaces,
see [9, 10].

Recall that the classical Hahn–Banach separation theorem provides a
separation theorem by polynomials of degree one, that is, if K is a non-
empty closed convex balanced set in X and z is an element in X \ K,
then there exists a linear functional f on X that separates z and K.
R. M. Aron et al. ([3, Theorem 2.3]) showed that when X is the n-di-
mensional space Cn and G is a finite group of L(Cn), if K is a subset
of Cn which is invariant under the action of G and z is an element
in Cn \K that is separated from K by a polynomial Q, then there exists
a G-invariant polynomial P that separates z and K. The proof makes
use of a ‘symmetrization’ P of the polynomial Q on Cn. That is, the
polynomial P defined by

(1) P (w) =
∑
γ∈G

Q(γ(w)) (w ∈ Cn)

that is a G-invariant polynomial. As a direct corollary it is obtained
that if K is a G-invariant closed convex balanced subset of Cn and
z is an element in Cn \K, then there exists a homogeneous G-invariant
polynomial P that separates z and K.

Returning to general Banach spaces X, let U be an open subset of X
and denote by H(U) an algebra of holomorphic functions defined on U .
Suppose that G is a group of L(X) leaving U fixed, i.e., γ(U) ⊂ U for
every γ ∈ G. Then we can consider the subalgebra HG(U) of H(U) that
consists of the G-invariant holomorphic functions:

HG(U) = {f ∈ H(U) : f ◦ γ = f for every γ ∈ G}.
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Algebras of G-invariant holomorphic functions are studied in [1, 4, 6].
For a compact group G of L(X), it is shown [4, Theorem 2.3] that the
mapping SG : H(U)→ HG(U) defined as

(2) SG(f)(u) =

∫
G

(f ◦ γ)(u) dµG(γ) (u ∈ U),

where µG is the normalized Haar measure on G, is a continuous linear
projection. Notice that, when X = Cn and G is a finite group, then the
polynomials P in (1) and SG(Q) from (2) coincide. We will use variants
of this symmetrization operator to obtain several separation results.

The structure of this paper is as follows. In Sections 2 and 3 we con-
sider the scenario of a compact topological group G. In Section 2 we
show the generalization of [3, Theorem 2.3] in the case of real Banach
spaces: if X is a real Banach space and a point can be separated from a
G-invariant set in X by a continuous polynomial on X, then this point
can also be separated from the set by a G-invariant continuous polyno-
mial on X. Section 3 is devoted to the study of the previous result when
the underlying space is a complex space, in which case the result does not
always hold. We present a natural condition on the orbit induced from
a given compact topological group G and a continuous polynomial Q in
order to get the separation theorem for complex Banach spaces. We also
consider the case in which the underlying space has a Schauder basis.
The existence of such a basis allows us to obtain a separation theorem
under natural conditions; see Theorem 3.8, Corollary 4.2, and Corol-
lary 4.7. In the last section we study some classical and new examples of
topological groups acting on Banach spaces and we characterize points
which can be separated by a group-invariant polynomial from the closed
unit ball in specific situations.

2. Real case

This section is devoted to studying the case when X is a real Banach
space and G is a compact topological group. In this scenario we can
obtain the following general result.

Theorem 2.1. Let (G, τ) be a compact topological group of L(X) that
acts separately continuously on X and K a set in X that is invariant
under the action of G. If z is an element in X \K that can be separated
from K by a continuous polynomial Q, then there exists a G-invariant
continuous polynomial P that separates z and K. Furthermore, if Q is
homogeneous, then P can be chosen to be homogeneous.



210 J. Falcó, D. Garćıa, M. Jung, M. Maestre

Proof: Without loss of generality, we may assume that

sup
w∈K

|Q(w)| 6 r < 1 and |Q(z)| > 1.

As the function γ ∈ G 7→ |(Q◦γ)(z)| ∈ [0,+∞) is continuous, we choose
an open neighborhood Vz of IdX in G such that |(Q ◦ γ)(z)| > 1 for
every γ ∈ Vz.

For each m ∈ N, consider

(3) Pm(w) =

∫
G

[(Q ◦ γ)(w)]m dµ(γ) (w ∈ X),

where dµ is the Haar measure on the compact group G. Note that Pm is
mk-homogeneous when Q is k-homogeneous. For w ∈ K, we have that

|P2m(w)| =
∣∣∣∣∫
G

[(Q ◦ γ)(w)]2m dµ(γ)

∣∣∣∣ 6 r2m,

which implies that supw∈K |P2m(w)| → 0 as m→∞.
However, we have that

|P2m(z)| =
∫
G

[(Q ◦ γ)(z)]2m dµ(γ) >
∫
Vz

[(Q ◦ γ)(z)]2m dµ(γ) > µ(Vz)

and it is clear by the definition of the Haar measure that µ(Vz) > 0.

Corollary 2.2. Let (G, τ) be a compact topological group of L(X) that
acts separately continuously on X and K a closed convex balanced subset
of X that is invariant under the action of G. If z is an element in X \K,
then there exists a homogeneous G-invariant continuous polynomial that
separates z and K.

Proof: By the Hahn–Banach separation theorem there exists a linear
functional f ∈ X∗ such that supw∈K Re f(w) < Re f(z). As K is bal-
anced, we deduce that

sup
w∈K

|f(w)| < |f(z)|.

By Theorem 2.1, there exists a homogeneous G-invariant polynomial P
that separates z and K.

We now show that letting m tend to infinity in the proof of Theo-
rem 2.1 is necessary to get the result. Specifically, for given m ∈ N, the
polynomial in (3) is the m-th G-symmetrization of the polynomial P .
The following proposition shows that for a fixed natural number N it
is possible to find a space X, a group G, and a polynomial Q which
separates a given point z ∈ X \K and a set K ⊂ X, but its l-th G-sym-
metrizations Pl (1 6 l < N) fail to separate the point z ∈ X \ K and
the set K while the N -th G-symmetrization PN separates z and K.
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Proposition 2.3. For every natural number N > 1 and a natural num-
ber k, given X = R2k+1, there exist a set K ⊂ X, a point z ∈ X \K, and
a continuous polynomial Q such that Q separates z and K, Pl does not
separate z and K for l = 1, . . . , N−1, and PN separates z and K, where
Pl is the l-th symmetrization of Q for the group Sym({1, . . . , 2k + 1}).

Proof: Fix a natural number N > 1 and n = 2k + 1 and denote by G =
Sym({1, . . . , n}). Consider X = `n2N and the compact set K = {x =

(x1, . . . , xn) ∈ Rn : ‖x‖`n2N = (x2N1 + · · · + x2Nn )
1

2N 6 1}. Let us pick
ε, α > 0 so small that

(4) 0 < ε < n
1

2(N−1)
− 1

2N − 1

and

0<α<min

{
ε

2

(
1

n− 1

) 2N−1
2N

,

min
l=1,...,N−1


[(

n

n− 1

){(
1

(1 + ε) 2N
√
n

)2l
− 1

n

}] 1
2l


 .

(5)

Notice that the right hand side of (5) is positive due to condition (4)
on ε > 0.

Let us fix the point z = (1 + ε, 0, . . . , 0) ∈ Rn and the polynomial

Q(x1, . . . , xn) = (x1 − α(x2 + · · ·+ xn))2.

We claim that the point z, the set K, and the polynomial Q satisfy the
first two conditions of the proposition.

First we show that Q separates z from K. Note that, by Hölder’s
inequality,

|Q(x1, . . . , xn)| = |x1 − α(x2 + · · ·+ xn)|2

6

(
1 + α‖(x2, . . . , xn)‖`n−1

2N
‖(1, . . . , 1)‖`n−1

2N
2N−1

)2

6
(

1 + α(n− 1)
2N−1
2N

)2
<

(
1 +

ε

2

(
1

n− 1

) 2N−1
2N

(n− 1)
2N−1
2N

)2

(by (5))

=
(

1 +
ε

2

)2
for every (x1, . . . , xn) ∈ K. However, we have that Q(1 + ε, 0, . . . , 0) =
(1 + ε)2.
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Now we are going to show that Pl does not separate z and K for
l = 1, . . . , N − 1. Note that the G-invariant polynomial Pl is given by

Pl(x1, . . . , xn) =
1

n!

∑
σ∈Sym({1,...,n})

Q(xσ(1), . . . , xσ(n))
l

=
1

n!

∑
σ∈Sym({1,...,n})

[xσ(1) − α(xσ(2) + · · ·+ xσ(n))]
2l.

From this, we can see that, as n is odd, if we write n = 2k + 1 for
some k ∈ N, then

Pl

 1
2N
√
n
,

1
2N
√
n
,
−1
2N
√
n
, . . . ,

1
2N
√
n
,
−1
2N
√
n︸ ︷︷ ︸

2k−terms


=

1

n!

[(
n+1

2

)
(n− 1)!

(
1

2N
√
n

)2l
+

(
n−1

2

)
(n− 1)!

(
1

2N
√
n

+
2α
2N
√
n

)2l]

=

(
n+ 1

2n

)(
1

2N
√
n

)2l

+

(
n− 1

2n

)(
1

2N
√
n

+
2α
2N
√
n

)2l

>

(
n+ 1

2n

)(
1

2N
√
n

)2l

+

(
n− 1

2n

)(
1

2N
√
n

)2l

=

(
1

2N
√
n

)2l

.

However,

Pl(1 + ε, 0, 0, . . . , 0)

=
1

n!

∑
σ∈Sym({1,...,n})

σ(1)=1

(1 + ε)2l +
1

n!

∑
σ∈Sym({1,...,n})

σ(1) 6=

(α(1 + ε))2l

= (1 + ε)2l
(

1

n
+

(
n− 1

n

)
α2l

)
< (1 + ε)2l

(
1

(1 + ε) 2N
√
n

)2l

(by (5))

=

(
1

2N
√
n

)2l

= Pl

(
1

2N
√
n
,

1
2N
√
n
,
−1
2N
√
n
, . . . ,

1
2N
√
n
,
−1
2N
√
n

)
.
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This shows that the G-invariant polynomial Pl does not separate the
point z and the set K for every 1 6 l 6 N − 1.

It only remains to show that PN separates z and K. For this, note
that

lim
α→0

sup
(x1,...,xn)∈K

 1

n!

∑
σ∈Sym({1,...,n})

[xσ(1) − α(xσ(2) + · · ·+ xσ(n)]
2N


= sup

(x1,...,xn)∈K

 1

n!

∑
σ∈Sym({1,...,n})

x2Nσ(1)

 =
1

n
.

However,

PN (1 + ε, 0, 0, . . . , 0) = (1 + ε)2N
(

1

n
+

(
n− 1

n

)
α2N

)
>

1

n

for all positive numbers α. Therefore, by choosing α small enough we
have that PN separates z and K.

Note that in general it is not hard to find large families of mappings
on a Banach space X that are invariant under the action of a compact
topological group G. Indeed, for any mapping f on a Banach space X
the G-symmetrization of f given by

F (x) :=

∫
G

(f ◦ γ)(w) dµ(γ)

is a G-invariant mapping.
We would like to end this section by showing a natural way of con-

structing sets that are invariant under the action of a compact topological
groupG. For this, note that if {fi}i∈I is a family ofG-invariant mappings
from X to R, the mapping F : X 7→ RI defined by F (x) = (fi(x))i∈I
is a G-invariant mapping. It is easily checked that the set F−1(K) is
G-invariant for any set K ⊂ RI .

3. Complex case

This section is devoted to studying the case when X is a complex
Banach space. However, as we will see in Example 3.6 we cannot expect
a general result as in the real case. The following lemma will be used
several times in this note.

Lemma 3.1 ([3, Lemma 2.2]). Given r complex numbers of modulus
one, {z1 . . . , zr}, there exists a strictly increasing sequence of natural
numbers (mk)∞k=1 such that the sequence (zmkj ) converges to 1 for j =
1, . . . , r.
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We denote the argument of a complex number z by Arg(z).

Theorem 3.2. Let (G, τ) be a compact topological group of L(X) that
acts separately continuously on a complex Banach space X and K a set
in X that is invariant under the action of G. If z is an element in X \K
that can be separated from K by a polynomial Q which satisfies that
|Q(z)| > 1 and for some η ∈ (0, 1)

(6) #{Arg(Q(γ(z))) ∈ [0, 2π) : |Q(γ(z))| > η, γ ∈ G} is finite,

then there exists a G-invariant continuous polynomial P that separates z
and K. Furthermore, if Q is homogeneous, then P can be chosen to be
homogeneous.

Proof: Without loss of generality, we may assume that

sup
w∈K

|Q(w)| 6 r < 1 and |Q(z)| > 1.

As the function γ ∈ G 7→ |(Q◦γ)(z)| ∈ [0,+∞) is continuous, we choose
an open neighborhood Vz of IdX in G such that |(Q ◦ γ)(z)| > 1 for
every γ ∈ Vz.

For each m ∈ N, consider

Pm(w) =

∫
G

[(Q ◦ γ)(w)]m dµ(γ) (w ∈ X),

where dµ is the Haar measure on the compact group G. Note that Pm is
mk-homogeneous when Q is k-homogeneous.

On the one hand, for w ∈ K, we have that

|Pm(w)| =
∣∣∣∣∫
G

[(Q ◦ γ)(w)]m dµ(γ)

∣∣∣∣ 6 rm,

which implies that supw∈K |Pm(w)| → 0 as m→∞.
On the other hand, for each γ ∈ G, let θγ be a real number such that

Q(γ(z)) = |Q(γ(z))|eiθγ . If we let Gη := {γ ∈ G : |Q(γ(z))| > η}, then
by Lemma 3.1 there exists a natural number m large enough so that

|eiθγm − 1| < r, ∀ γ ∈ Gη.
Now, we have that

|Pm(z)| =
∣∣∣∣∫
G

[(Q ◦ γ)(z)]m dµ(γ)

∣∣∣∣
=

∣∣∣∣∫
G

|(Q ◦ γ)(z)|m eiθγm dµ(γ)

∣∣∣∣
>
∫
G

|(Q ◦ γ)(z)|m dµ(γ)−
∫
G

|eiθγm − 1||(Q ◦ γ)(z)|m dµ(γ).
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However,∫
G

|eiθγm−1||(Q ◦ γ)(z)|m dµ(γ)6
∫
Gη

|eiθγm−1||(Q ◦ γ)(z)|mdµ(γ)+2ηm

6r
∫
Gη

|(Q ◦ γ)(z)|m dµ(γ) + 2ηm

6r
∫
G

|(Q ◦ γ)(z)|m dµ(γ) + 2ηm.

It follows that for m ∈ N big enough

|Pm(z)| >
∫
G

|(Q ◦ γ)(z)|m dµ(γ)−
(
r

∫
G

|(Q ◦ γ)(z)|m dµ(γ) + 2ηm
)

= (1− r)
∫
G

|(Q ◦ γ)(z)|m dµ(γ)− 2ηm

> (1− r)
∫
Vz

|(Q ◦ γ)(z)|m dµ(γ)− 2ηm

> (1− r)µ(Vz)− 2ηm >
1

2
(1− r)µ(Vz) > 0

as clearly µ(Vz) > 0, by definition of the Haar measure.

Remark 3.3. Note that if, in the previous theorem, the separating contin-
uous polynomial Q is already G-invariant, then condition (6) is trivially
satisfied since the set consists of only one point, Q(z).

Remark 3.4. It is clear that if G is a finite group, then assumption (6)
holds for any continuous polynomial Q, which implies that Theorem 3.2
is a generalization of [3, Theorem 2.3]. However, even if assumption (6)
is satisfied for some continuous polynomial Q, it does not imply the
finiteness of the cardinality of G. For example, consider the group R of
operators on c0 given by

γ(z) = (z1, e
2πik2/2z2, . . . , e

2πikm/mzm, . . . ) (k2, k3, . . . ∈ N ∪ {0}),

which is compact with the weak operator topology of L(c0). For given ε >
0 and z ∈ c0 which lies outside the closed unit ball Bc0 , there always
exist N,M ∈ N with N < M such that |zN | > 1 and |zn| < ε for
every n >M . This implies that the coefficient functional e∗N separates z

from Bc0 . Since |e∗N (γ(z))| = |e∗N (z)| > 1 for every γ ∈ R,

{e∗N (γ(z)) ∈ C : |e∗N (γ(z))| > ε, γ ∈ R}

= {zN , e2πi/NzN , . . . , e2πi(2N−1)/NzN};
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hence assumption (6) holds for the polynomial e∗N , while R is an infinite
group. Furthermore, the number of elements in the set in (6) can be
made arbitrarily large if we modify the point z. We will study separation
theorems associated with this group in more detail in Subsection 4.1.

As in the previous section, we would like to show a natural way of
constructing sets that are invariant under the action of a compact topo-
logical group. Clearly, the sets F−1(K) constructed from a family (fi)i∈I
of G-invariant functions, i.e., F (x) = (fi(x))i∈I : X → CI , will produce
G-invariant sets. But we are more interested in the case where I is fi-
nite. In this case, the definition of a polynomially convex set plays an
important role since automatically the sets that we obtain satisfy that
any point outside the set can be separated from the set by a G-invariant
continuous polynomial. We now recall the definition of a polynomially
convex set. The polynomially convex hull of a compact subset K of Cn
is the set

K̂ = {z ∈ Cn : |P (z)| 6 sup
w∈K

|P (w)| for every polynomial P}.

A compact set K of Cn is polynomially convex if K̂ = K.

Proposition 3.5. Let (G, τ) be a compact topological group of L(X)
that acts separately continuously on a complex Banach space X and
f1, . . . , fn be G-invariant continuous polynomials on X. Let F (x) =
(f1(x), . . . ,fn(x)). For any polynomially convex set K⊂Cn the set F−1(K)
is G-invariant and any point z /∈ F−1(K) can be separated from F−1(K)
by a G-invariant continuous polynomial.

In general, we cannot expect in the complex case a general result like
Theorem 2.1, even in the case when X is a 1-dimensional space, as the
following example shows.

Example 3.6. Let T = {z ∈ C : |z| = 1} be the circle group (which
is compact) that acts continuously on C if we consider multiplication of
the complex numbers. Then it is obvious that D ⊂ C is invariant under
the action of G = {w 7→ zw : z ∈ T}. Let us consider f(z) := z for
every z ∈ C. Then every w ∈ C \D is separated from D by f . However,
polynomials which are invariant under G are just constant ones and a
constant function cannot separate w from D.

The above example shows that some conditions are required both for
the space and for the group in order to have positive separation results.
This is why we now focus on the case where the Banach space X has
a Schauder basis (en)n∈N. We denote by πn the projection onto the
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span of the first n coordinates, that is, if z =
∑∞
j=1 zjej , then πn(z) =∑n

j=1 zjej . Let us denote by Πn : X → Cn the projection defined as

Πn(z) = (z1, . . . , zn) for every z =
∑∞
j=1 zjej in X and by ιn : Cn → X

the inclusion defined as ιn(z1, . . . , zn) =
∑n
j=1 zjej . Observe that πn =

ιn ◦ Πn for each n ∈ N. Given a group G ⊂ L(X) and n ∈ N, consider
the following set

Σn(G) := {Πn ◦ g ◦ ιn : g ∈ G} ⊂ L(Cn).

Note that Σn(G) need not be a group. Indeed, assume that G is a group
such that the element g defined as

g(ej) =


ej for j 6= N, j 6= N + 1,

eN+1 for j = N,

eN for j = N + 1,

for some fixed N ∈ N is in G. Then one can easily check that

(ΠN ◦ g ◦ ιN )(w) = (w1, . . . , wN−1, 0), w = (w1, . . . , wN ) ∈ CN ;

hence we have that ΠN ◦ g ◦ ιN ∈ L(CN ) is not invertible.
However, in many natural cases it is satisfied that for a sequence of

natural numbers (jn)∞n=1 the set Σjn(G) is a group. This is the case, for
instance, when G is the Cartesian product of the groups G1, G2, . . . each
acting on a finite-dimensional Banach space X1, X2, . . . and we consider
the group G1 × G2 × · · · and the product space, with a suitable norm,
X = X1 ×X2 × · · · and the natural action of G on X.

The following straightforward lemma will be used in Theorem 3.8.

Lemma 3.7. Let X be a complex Banach space with a Schauder basis,
(G, τ) a group of L(X) that acts separately continuously on the complex
Banach space X, and K a G-invariant set in X. If there exists n ∈ N
such that Σn(G) is a group of L(Cn) and πn(K) ⊂ K, then the set Πn(K)
in Cn is invariant under the action of Σn(G).

Proof: Let Πn ◦ g ◦ ιn ∈ Πn(G) and Πn(z) ∈ Πn(K) be given. As the
element πn(z) belongs to K, g(πn(z)) = z′ for some z′ ∈ K; hence

(Πn ◦ g ◦ ιn)(Πn(z)) = Πn(g(πn(z))) = Πn(z′) ∈ Πn(K).

This shows that the set Πn(K) is a Σn(G)-invariant set.

Theorem 3.8. Let X be a complex Banach space with a Schauder ba-
sis, G a group of L(X) that acts separately continuously on the complex
Banach space X, and K a G-invariant set in X. If there exists a subse-
quence (jn) ⊂ N such that
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(1) Σjn(G) is a compact subgroup for each n ∈ N,
(2) g(span{ei : i > jn + 1}) ⊂ span{ei : i > jn + 1} for every n ∈ N

and g ∈ G,
(3) πjn(K) ⊂ K,

and if an element z in X \K can be separated from K by a continuous
polynomial Q, which satisfies that for some r ∈ (0, 1)

(7) #{Arg((Q ◦ ιjn)(γ(z))) ∈ [0, 2π) : |(Q ◦ ιjn)(γ(z))|
> r, γ ∈ Σjn(G)} is finite for each n ∈ N,

then there exists a G-invariant continuous polynomial P that separates z
and K. Furthermore, if Q is homogeneous, then P can be chosen to be
homogeneous.

Proof: Suppose that supw∈K |Q(w)|<r< |Q(z)| for some r>0. Choose
n ∈ N such that |Q(πjn(z))|> r. Note from supw∈K |(Q ◦ πjn)(w)| < r
that the polynomial Q ◦ ιjn separates the point Πjn(z) ∈ Cjn and the
set Πjn(K) ⊂ Cjn . Note from Lemma 3.7 that the set Πjn(K) is invariant
under the action of the compact group Σjn(G). By Theorem 3.2, there ex-

ists a Σjn(G)-invariant continuous polynomial P̃ (which is homogeneous

whenever Q is) that separates Πjn(z) and Πjn(K). Let P := P̃ ◦ Πjn .
Then P separates the point z and the set K. Observe that

(P ◦g)(z)=(P̃ ◦Πjn)(g(z))=(P̃ ◦Πjn)

(g ◦ ιjn)(Πjn(z))+

∞∑
k=jn+1

zkg(ek)


=(P̃ ◦Πjn ◦ g ◦ ιjn)(Πjn(z))

=(P̃ ◦Πjn)(z)

=P (z)

for every g ∈ G and z=
∑∞
j=1 zjej ∈X. This implies that P is a G-in-

variant continuous polynomial.

It is clear that if Σjn(G) in the previous theorem is a finite group for
each n ∈ N, then condition (7) is true automatically for any continuous
polynomial Q.

Corollary 3.9. Let X be a complex Banach space with a Schauder
basis, G a group of L(X) that acts continuously on the complex Ba-
nach space X, and K a G-invariant set in X. If there exists a subse-
quence (jn) ⊂ N such that
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(1) Σjn(G) is a finite group for each n ∈ N,
(2) g(span{ei : i > jn + 1}) ⊂ span{ei : i > jn + 1} for every n ∈ N

and g ∈ G,
(3) πjn(K) ⊂ K,

and if an element z in X \K can be separated from K by a continuous
polynomial Q, then there exists a G-invariant continuous polynomial P
that separates z and K. Furthermore, if Q is homogeneous, then P can
be chosen to be homogeneous.

4. Separation theorems for classical groups

In this section we study separation theorems for several classical
groups which in general are not compact.

Given a Banach space X with a Schauder basis (ej)
∞
j=1, we can as-

sociate with it a Banach sequence space X̃ = ψ(X) where ψ : X 7→ KN

is given by ψ(
∑∞
j=1 xjej) = (xj)j and x̃ = ψ(x). Moreover, if we de-

fine ‖(xj)j‖ := ‖
∑
j xjej‖ then ψ is an isometric isomorphism from X

onto X̃. For this reason we will work in this section in the more general
setting of Banach sequence spaces.

4.1. Roots of unity. Let X be a Banach sequence space. Consider the
group R consisting of the operators

γ(z) = (z1, e
2πik2/2z2, . . . , e

2πikm/mzm, . . . ) (k2, k3, . . . ∈ N ∪ {0}),
for z = (zm)m∈N, or the subgroup RF of R generated by {γm}m∈N, where

γm(z) = (z1, . . . , zm−1, e
2πi/mzm, zm+1, . . . ).

Each group can be endowed with natural topologies of L(X). Note that
for instance if X is the Banach space c0, then the group R is compact
in the weak operator topology of L(c0). However, neither R nor the
subgroup RF is compact in the strong operator topology of L(c0) (so, in
the norm topology of L(c0)).

The action of the subgroup RF on the spaces Cn and c0 was stud-
ied in [4, Section 4], where the authors show that any k-homogeneous
polynomial Q on Cn that is invariant under the action of RF can be
written as Q(z1, z2, . . . , zn) = Q̃(z1, z

2
2 , . . . , z

n
n), where Q̃ is a polynomial

defined on Cn. The analogous happens on c0, where [4, Corollary 4.3]
shows that any k-homogeneous RF -invariant polynomial Q can be writ-
ten as Q(z1, z2, . . . , zn, zn+1, . . . ) = Q̃(z1, z

2
2 , . . . , z

n
n) for some natural

number n and Q̃ is a polynomial defined on Cn.
Assume that R acts continuously on a space X with a 1-unconditional

Schauder basis, such as c0, `p (for 1 6 p <∞), Lorentz sequence spaces
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or Orlicz sequence spaces. Let us denote by R̃ the group generated by
γ̃ : Cn → Cn defined as

γ̃(w1, . . . , wn) = (w1, e
2πik2/2w2, . . . , e

2πikn/nwn), (w1, . . . , wn) ∈ Cn

for some k2, . . . , kn ∈ N ∪ {0}. If γ ∈ R is such that

γ(z) = (z1, e
2πik2/2z2, . . . , e

2πikm/mzm, . . . ),

then
(Πn ◦ γ ◦ ιn)(w) = γ̃(w)

for every w = (w1, . . . , wn) ∈ Cn. This shows that Σn(R) is a finite
group contained in L(Cn) for every n ∈ N. Moreover, it is clear that
γ(span{ei : i ∈ I}) ⊂ span{ei : i ∈ I} for every γ ∈ R and I ⊂ N. Thus,
the group R and its subgroup RF satisfy the conditions in Corollary 3.9,
so we have the following result.

Proposition 4.1. Let X be a Banach sequence space such that its
canonical basis is a 1-unconditional Schauder basis. If a set K is in-
variant under the group R (resp. RF ) with πjn(K) ⊂ K for some sub-
sequence (jn) ⊂ N and z is an element in X \K that can be separated
from K by a continuous polynomial Q, then there exists an R-invariant
(resp. RF -invariant) continuous polynomial P that separates z and K.
Furthermore, if Q is homogeneous, then P can be chosen to be homoge-
neous.

The natural R-invariant set to consider on a Banach sequence space
is the unit ball of the space, for which the following separation theorem
holds.

Corollary 4.2. Let X be a Banach sequence space such that its canoni-
cal basis is a 1-unconditional Schauder basis such that BX is R-invariant
(or RF -invariant). If z is an element outside BX , then z can be separated
from BX by a homogeneous R-invariant (or RF -invariant) continuous
polynomial.

4.2. Groups of permutations. The set of polynomials invariant un-
der the group of permutations of the natural numbers has been inten-
sively studied on the spaces c0 and `p for 1 6 p <∞ and in a more gen-
eral setting on Banach sequence spaces; see for instance [5, 12, 13, 16]
and the references therein. Let us denote by G the group of all permuta-
tions of the natural numbers. Among other results, it is observed in [13,
Theorem 1.1] that the polynomials Fk on `p given by

(8) Fk(x) =

∞∑
j=1

xkj (x = (xj)
∞
j=1 ∈ `p),
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for k = dpe, dpe+ 1, . . . , where dpe is the smallest integer that is greater
than or equal to p, form an algebraic basis of the algebra of all G-in-
variant polynomials on `p. Such polynomials Fk are called elementary
G-invariant polynomials. Moreover, a polynomial on the space `p for
1 6 p <∞ is G-invariant if and only if it is symmetric with respect to the
subgroup G0 :=

⋃
n∈N Sym({1, . . . , n}), where Sym({1, . . . , n}) denotes

the set of permutations σ of the natural numbers such that σ(j) = j
for j > n (see [13]).

By using similar arguments to the ones used in the proof of Theo-
rem 3.2 we can obtain the following result.

Proposition 4.3. Set 1 6 p < ∞. If z = (zj)
∞
j=1 ∈ `p is such that

for some j0 ∈ N, |zj0 | > 1, then z can be separated from B`p by an
elementary G-invariant polynomial.

Proof: Since z ∈ `p, there exists a natural number N > j0 such that∑
j>N |z|p < 1. Let θj ∈ [0, 2π) be so that zj = |zj |eiθj for each

j = 1, . . . , N . Using Lemma 3.1, we may choose an increasing sequence
of natural numbers (nk)∞k=1 such that supj=1,...,N |eiθjnk − 1| < 1

2 for
every k ∈ N. Observe that

|Fnk(z)| =

∣∣∣∣∣∣
∞∑
j=1

znkj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N∑
j=1

znkj +
∑
j>N

znkj

∣∣∣∣∣∣
>

N∑
j=1

|zj |nk − sup
j=1,...,N

|1− eiθjnk |
N∑
j=1

|zj |nk −
∑
j>N

|zj |nk .

For sufficiently large nk bigger than p, we have

|Fnk(z)| > 1

2
|zj0 |nk −

∑
j>N

|zj |nk >
1

2
|zj0 |nk − 1 −−−−→

k→∞
∞.

As |Fnk(x)| 6 1 for every x ∈ B`p , we complete the proof.

Remark 4.4. If z = (zj)j /∈ B`p but |zj | 6 1 for every j ∈ N, nothing can
be said in general. That is, the point z may or may not be separated by
an elementary G-invariant polynomial. For example, if p ∈ N and zj > 0
for every j ∈ N, then taking Fp(x) =

∑∞
n=1 x

p
n, we will have Fp(z) >

1 > ‖x‖ > Fp(x) for every x ∈ B`p . Hence, the point z can be separated

from B`p by the elementary G-invariant polynomial Fp.

On the other hand, if p /∈ N there always exists z = (zj)j /∈ B`p ,

zj > 0, for all natural numbers j that cannot be separated from B`p by
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any elementary G-invariant polynomial. Indeed, let m ∈ N be chosen so
that m < p < m+ 1, that is, dpe = m+ 1. Consider the sequence

z =

(
1

2
1

m+1

, . . . ,
1

2
n

m+1
, . . .

)
∈ `p;

then

‖z‖p =
1

2
p

m+1 − 1
> 1.

However, if Fk(x) =
∑∞
n=1 x

k
n with k > m+ 1, then

|Fk(z)| = 1

2
k

m+1

+ · · ·+ 1

2
kn
m+1

+ · · · = 1

2
k

m+1 − 1
6 1,

which implies that z cannot be separated from B`p by elementary G-in-
variant polynomials. Observe that Fk is not well defined if k < p.

Remark 4.5. Note that if a point z ∈ lp cannot be separated from Blp
by elementary symmetric polynomials Fk, in some cases it can still be
separated by other symmetric polynomials. For example, for p = 1, let
z = (1/2, 1/2,−1/2,−1/2, 0, 0, . . . ) ∈ l1. Then F1(z) = 0 and |Fk(z)| <
|F2(z)| = 1 for k > 2. Let P (z) = 24G4(z), where

G4(z) =
∑

i<j<k<l

zizjzkzl.

From [7, Lemma 3.1] we know that ‖G4‖ = 1
4! = 1

24 . So ‖P‖ = 1 and

P (z) = 24
16 > 1.

However, the group G of permutations of the natural numbers can be
too restrictive in many cases. For instance it was shown in [13, Exam-
ple 1.3] that there are no non-null polynomials on c0 that are G-invariant.
The same happens for several Orlicz sequence spaces and Lorentz se-
quence spaces; see [13, Examples 1.4 and 1.5]. Also, it was observed
in [11, Theorems 3.2 and 5.5] that the only homogeneous polynomial
on `∞ or on L∞[0,+∞) which is G-invariant is the null polynomial.
This motivates us to consider a smaller group of permutations of the
natural numbers.

Let X be a Banach sequence space and G be a subgroup of the group
of permutation of the natural numbers. Given σ ∈ G, we can consider
the linear operator σ̂ ∈ L(X) defined as

σ̂(x) = (xσ(j))
∞
j=1 (x = (xj)

∞
j=1 ∈ X).

Note that as the operator σ̂ is well defined, by the closed graph theorem

we have that the operator is continuous. We denote by Ĝ the set {σ̂ :
σ ∈ G} ⊂ L(X).
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Fix a strictly increasing sequence of non-negative integers (nk)∞n=1

with n1 = 0. Set Nk = {nk + 1, . . . , nk+1} for k ∈ N. Consider the
group S of permutations of the natural numbers such that σ(Nk) = Nk
for each k ∈ N. Given k ∈ N and σ ∈ S, observe that

(Πnk ◦ σ̂ ◦ ιnk)(w) = (wσ(1), . . . , wσ(nk)).

This shows that Σnk(Ŝ) is a finite group contained in L(Cnk) for each k ∈
N and Corollary 3.9 yields the following result.

Proposition 4.6. Let X be a Banach sequence space such that its canon-

ical basis is a Schauder basis and Ŝ defines a separately continuous action

on X. If a set K is invariant under the group Ŝ with πjn(K) ⊂ K and
z is an element in X \K that can be separated from K by a continuous

polynomial Q, then there exists an Ŝ-invariant continuous polynomial P
that separates z and K. Furthermore, if Q is homogeneous, then P can
be chosen to be homogeneous.

As before, a natural Ŝ-invariant set to consider on a Banach sequence
space is the unit ball of the space. In this case, the analogous to Corol-
lary 4.2 also holds.

Corollary 4.7. Let X be a Banach sequence space such that its canoni-

cal basis is a 1-unconditional Schauder basis so that Ŝ defines an action

on X. Assume that BX is Ŝ-invariant. If z is an element outside BX ,

then z can be separated from BX by a homogeneous Ŝ-invariant contin-
uous polynomial.

Notice that due to the fact that the space `∞ has no Schauder ba-
sis, the above Proposition 4.6 cannot be applied to `∞. Meanwhile, a
permutation σ of the natural numbers is called a finite bijection if there
is n ∈ N such that the restriction of σ to the set {n, n + 1, . . . } is the
identity map. Let us denote by Gf the group of all finite bijections on the
natural numbers. It is observed in [11, Theorem 4.3] that a bounded-
type entire function f on `∞ is Gf -invariant if and only if there is a

bounded-type entire function f̃ on `∞/c0 such that f = f̃ ◦Q, where Q
is the quotient map from `∞ to `∞/c0.

Proposition 4.8. Let z = (zj)
∞
j=1 be an element in `∞. The point z

can be separated from B`∞ by a Gf -invariant continuous polynomial if
and only if lim supj→∞ |zj | > 1.

Proof: Put α = lim supj→∞ |zj | and suppose that α > 1. Hence, there
exists a sequence (jn)n∈N ⊂ N such that

|zjn | −−−−→
n→∞

α > 1.
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Let I = {jn : n ∈ N} and U be a free ultrafilter on I. Consider the linear
functional ϕ on `∞ given by

ϕ(x) = lim
U
xi (x ∈ `∞).

As ϕ(x + y) = ϕ(x) for every x ∈ `∞ and y ∈ c0, we see that ϕ is a
Gf -invariant polynomial. It is clear that supx∈B`∞

|ϕ(x)| 6 1. However,

|ϕ(z)| = limn→∞ |zjn | > 1; hence z is separated from B`∞ by ϕ.
Conversely, assume that α 6 1. Notice that if α < 1, then there

exist at most finitely many zn whose modulus is greater than 1. Say,
{n ∈ N : |zn| > 1} = {n1, . . . , nl} for some n1, . . . , nl ∈ N. If P is a
Gf -invariant continuous polynomial on `∞, then

P (z) = P (z − (0, . . . , 0, zn1 , 0, . . . , 0, zn2 , 0, . . . , 0, znl , 0, . . . ))

since w := (0, . . . , 0, zn1
, 0, . . . , 0, zn2

, 0, . . . , 0, znl , 0, . . . ) belongs to c0;
see [11, Theorem 4.3]. As every component of z − w has modulus less
than or equal to 1, we have that

|P (z)| = |P (z − w)| 6 sup
x∈B`∞

|P (x)|.

Now, assume that α = 1. Then, for each r ∈ (0, 1), we have that
lim supj→∞ |rzj | = rα = r < 1. From the preceding observation, we
have that

|P (rz)| 6 sup
x∈B`∞

|P (x)|.

By letting r → 1, we get that |P (z)| 6 supx∈B`∞
|P (x)|; hence we con-

clude that z cannot be separated from B`∞ by a Gf -invariant continuous
polynomial.

4.3. The group of supersymmetries. Let us fix a finite or infi-
nite subset A of the natural numbers. We denote by A0 = A ∪ −A ⊂
Z \ {0} and by `p(A0), 1 6 p 6 ∞, the Banach space of all absolutely
p-summing complex sequences with index in A0. Note that if the car-
dinal of A is finite, say n, we have that A0 can be identified with the
set {−n,−n+1, . . . ,−2,−1, 1, 2, . . . , n−1, n}, and if the cardinal of A is
infinite, A0 can be identified with the set Z \ {0}. Then, any element z
in `p(A0) can be written as

z = (z−n, . . . , z−2, z−1, z1, z2, . . . , zn),

if n is finite, and

z = (. . . , z−n, . . . , z−2, z−1, z1, z2, . . . , zn, . . . ),
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if n is infinite. Consider the following set of permutations of A0 given by

Λ := {σ : A0 7→ A0 such that σ is a permutation,

with σ(A) = A and σ(−A) = −A}.
Note that Λ is a subgroup of permutations of the countable set A0

and it can be considered to be a group action on `p(A0) in a natural
way. Therefore, if A is finite the results obtained in Subsection 4.2 fol-
low automatically. However, here we are interested in a specific family
of Λ-invariant polynomials. Consider the following polynomials defined
on `p(A0), 1 6 p <∞:

Tk(z) =
∑
i∈A

zki −
∑
i∈−A

zki

for k ∈ N. It is clear by definition that Tk(z) = Tk(σ̂(z)) for all σ ∈ Λ;
hence Tk is a Λ-invariant continuous polynomial provided k > p.

A polynomial P on `p(A0) is said to be supersymmetric if it can be
represented as an algebraic combination of polynomials (Tk)∞k=1. In other
words, P is a finite sum of finite products of polynomials in (Tk)∞k=1 and
constants.

Supersymmetric polynomials were studied in [17, 18] for the case
where A is finite. In [14] the authors consider the case where A is infinite,
and they study algebraic bases of the space of supersymmetric polynomi-
als and the spectrum of algebras of supersymmetric analytic functions.
Indeed, supersymmetric polynomials have applications in several areas of
mathematics and physics such as the study of infinite generated Brauer
groups and in the modeling of the behavior of ideal gas in statistical
mechanics; see [14, 17, 18] and the references therein for the details.
Almost the same techniques as the ones used in the previous Proposi-
tion 4.3 allow us to obtain the following result.

Proposition 4.9. Let A ⊂ N be a set and set X = `p(A0) for 1 6 p <
∞. Suppose that z is an element in X such that either there exists j0 ∈ A
such that |xj0 | > 1 and |xj | 6 1 for all j ∈ −A or there exists j0 ∈ −A
such that |xj0 | > 1 and |xj | 6 1 for all j ∈ A. Then z can be separated

from BX by a supersymmetric polynomial T .

Remark 4.10. Note that in general there are points outside the unit ball
of `p(A0) that cannot be separated from B`p(A0) by a supersymmetric
polynomial. Consider, for instance, the point z in `p(A0) such that zj =
z−j for every j ∈ A. Then z does not satisfy the assumptions of the
previous proposition. Moreover, Tk(z) = 0 for every k ∈ N, which implies
that P (z) = 0 for every supersymmetric polynomial P on `p(A0).
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It is worth noting that, in general, for a given group G in L(X), the

group G̃ of all operators which preserves all functions in HG does not
coincide with G, where HG is the algebra of holomorphic G-symmetric
functions. That is,

G̃ = {γ ∈ L(X) : f ◦ γ = f for every f ∈ HG}

is a semigroup and, in the general case, G̃ ) G. For example, symmetric
analytic functions on lp are invariant, also, with respect to operators

(x1, x2, . . . , xn−1, xn, . . . ) 7→ (x1, x2, . . . , xn−1, 0, xn, . . . )

which are not permutations. Also, supersymmetric analytic functions are
invariant with respect to operators

(. . . , z−n, . . . , z−1, z1, . . . , zn, . . . )

7→ (. . . , z−n−1, a, z−n, . . . , z−1, z1, . . . , zn, a, zn+1, . . . )

for every number a ∈ C.

4.4. The group of composition operators on C(K). Let us con-
sider C(K), the space of continuous complex valued functions on a com-
pact Hausdorff space K, and the group H ⊂ L(C(K)) of composition
operators on C(K) defined as

H = {γ : C(K)→ C(K) such that γ(f) = f ◦ φ,
for some homeomorphism φ : K → K}.

This group was studied in [4, Section 3] and it is proved that, in the
case of K = [0, 1], there exists a continuous non-multiplicative projec-
tion from Hb(C[0, 1]) onto the algebra of H-symmetric (bounded-type)
analytic functions on C[0, 1], endowed with the topology of uniform con-
vergence on bounded subsets of C[0, 1]. We present the following re-
sult which characterizes elements in C[0, 1] \ BC[0,1] that are separated

from BC[0,1] by an H-invariant continuous polynomial.

Theorem 4.11. Let g be an element outside BC[0,1]. Then g can be

separated from BC[0,1] by an H-invariant continuous polynomial P if
and only if max{|g(0)|, |g(1)|} > 1.

Proof: Suppose that max{|g(0)|, |g(1)|}61. As |g(t0)| > 1 for some t0 ∈
(0, 1), notice that the element g is separated from BC[0,1] by the evalua-
tion functional δt0 ∈ C[0, 1]∗. However, noH-invariant holomorphic func-
tion on C[0, 1] separates g and BC[0,1]. Indeed, [4, Theorem 3.1] shows
that an H-invariant holomorphic function F on C[0, 1] satisfies that

F (f) = F (t 7→ f(0)(1− t) + f(1)t) (f ∈ C[0, 1]).
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Let us consider g̃ ∈ C[0, 1] defined as g̃(t) = g(0)(1 − t) + g(1)t for
every t ∈ [0, 1]. Then ‖g̃‖ 6 1, which implies that g̃ ∈ BC[0,1]. As
F (g) = F (g̃), hence |F (g)| = |F (g̃)| 6 supf∈BC[0,1]

|F (f)|. It follows

that an H-invariant holomorphic function F on C[0, 1] cannot separate
the element g and the ball BC[0,1].

Conversely, assume that max{|g(0)|, |g(1)|} > 1, say |g(0)| > r > 1.
For each m ∈ N, consider the continuous polynomial Pm : C[0, 1] → C
defined as

Pm(f) :=
1

2
(f(0)m + f(1)m) (f ∈ C[0, 1]).

As

Pm(γ(f)) = Pm(t 7→ (f ◦ φ)(t)) =
1

2
[f(φ(0))m + f(φ(1))m]

=
1

2
(f(0)m + f(1)m) = Pm(f)

for every γ ∈ H (with associated homeomorphism φ) and f ∈ C[0, 1],
the continuous polynomial Pm is an H-invariant continuous polynomial.
Note that

|Pm(f)| =
∣∣∣∣12(f(0)m + f(1)m)

∣∣∣∣ 6 1

for every f ∈ BC[0,1] and m ∈ N. However, if we write g(0) = |g(0)|eiθ0
and g(1) = |g(1)|eiθ1 for some real numbers θ0 and θ1, then

(9) |Pm(g)| =
∣∣∣∣12(g(0)m + g(1)m)

∣∣∣∣ =
1

2

∣∣|g(0)|meiθ0m + |g(1)|meiθ1m
∣∣ .

By Lemma 3.1, there exists a sequence (ml)
∞
l=1⊂N such that eiθ0ml −−−→

l→∞
1 and eiθ1ml −−−→

l→∞
1. Pick l0 ∈ N so that |1−eiθ0ml | < 1

2 and |1−eiθ1ml | <
1
2 for every l > l0. From (9), we have for l > l0

|Pml(g)| > 1

2
(|g(0)|ml + |g(1)|ml − |g(0)|ml |1− eiθ0ml |

− |g(1)|ml |eiθ1ml − 1|)

>
1

4
(|g(0)|ml + |g(1)|ml)

>
1

4
rml .

It follows that Pml with sufficiently large l ∈ N separates the element g
and the set BC[0,1].
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In [4] the authors also considered the space of H-invariant holomor-
phic functions on C(K), where K = [−1, 1] ∪ [0, i] ⊂ C is the T -shaped
space, or {eiθ ∈ C : θ ∈ [0, 2π]}, i.e., the unit circle in C, or [0, 1]2 ⊂ C,
i.e., the square in C. It is proved that any H-invariant holomorphic func-
tion is constant when K is the unit circle or square in C. When K is
the T -shaped space, an analytic function F : C(K) → C is H-invariant
if and only if there is a polynomial F ∈ H(C4) symmetric with respect
to the last three variables so that F (f) = F(f(0), f(1), f(−1), f(i)) for
every f ∈ C(K). Following the idea of the proof of [4, Example 3.6], we
can observe that if F : C(K)→ C is an H-invariant polynomial, then

(10) F (f) = F (f(0)(1− κ1 − κ2 − κ3) + f(1)κ1 + f(−1)κ2 + f(i)κ3)

(f ∈ C(K)),

where κ1, κ2, and κ3 are elements in C(K) defined as

κ1(a+ ib) = aχ[0,1](a+ ib),

κ2(a+ ib) = −aχ[−1,0](a+ ib),

κ3(a+ ib) = b (a+ ib ∈ K).

The following result is an analogue of Theorem 4.11 for the space C(K)
where K is the T -shaped set.

Theorem 4.12. Let K be the T -shaped set and g be an element out-
side BC(K). Then g can be separated from BC(K) by an H-invariant
continuous polynomial P if and only if

max{|g(0)|, |g(1)|, |g(−1)|, |g(i)|} > 1.

Proof: Suppose that max{|g(0)|, |g(1)|, |g(−1)|, |g(i)|} 6 1. Let F be
an H-invariant holomorphic function on C(K). We know by (10) that

F (f) = F (f̃) where

f̃(w) = f(0)(1− κ1(w)− κ2(w)− κ3(w)) + f(1)κ1(w)

+ f(−1)κ2(w) + f(i)κ3(w)

for every w ∈ K and every f ∈C(K). Hence, if g ∈ C(K) and max{|g(0)|,
|g(1)|, |g(−1)|, |g(i)|} 6 1 we have that ‖g̃‖ 6 1. But, |F (g)| = |F (g̃)| 6
supf∈BC(K)

|F (f)|. Therefore, no H-invariant holomorphic function on

C(K) separates the element g and the ball BC(K).
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Conversely, assume that max{|g(0)|, |g(1)|, |g(−1)|, |g(i)|} > 1.

(i) If |g(0)| > r > 1, let us consider the continuous polynomial Pm :
C(K)→ C defined as

Pm(f) =
1

4
(f(0)m + f(1) + f(−1) + f(i)) (f ∈ C(K)).

By the shape of the set K, for every homeomorphism φ : K → K, we
see that φ(0) = 0 and {φ(1), φ(−1), φ(i)} = {1,−1, i}. Hence, Pm is an
H-invariant continuous polynomial. Note that

|Pm(f)| =
∣∣∣∣14(f(0)m + f(1) + f(−1) + f(i))

∣∣∣∣ 6 1

for every f ∈ BC(K) and m ∈ N. However,

|Pm(g)| =
∣∣∣∣14(g(0)m + g(1) + g(−1) + g(i))

∣∣∣∣
>

1

4
(|g(0)|m − |g(1) + g(−1) + g(i)|)

>
1

4
(rm − |g(1) + g(−1) + g(i)|) −−−−→

m→∞
∞;

hence, Pm with sufficiently large m can separate the element g and the
ball BC(K).

(ii) If max{|g(1)|, |g(−1)|, |g(i)|} > r > 1, then consider the continuous
polynomial Rm from C(K) to C defined as

Rm(f) =
1

4
(f(0) + f(1)m + f(−1)m + f(i)m) (f ∈ C(K)).

Note that Rm is an H-invariant continuous polynomial and |Rm(f)| 6 1
for every f ∈ BC(K) andm ∈ N. Let θ1, θ−1, and θ0 be real numbers such

that g(1) = |g(1)|eiθ1 , g(−1) = |g(−1)|eiθ−1 , and g(i) = |g(i)|eiθ0 . Using
Lemma 3.1, we can find a sequence (ml)

∞
l=1 ⊂ N so that eiθ1ml −−−→

l→∞
1,

eiθ−1ml −−−→
l→∞

1, and eiθ0ml −−−→
l→∞

1. Choose l0 ∈ N such that |1 −
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eiθ1ml | < 1
2 , |1− eiθ−1ml | < 1

2 , and |1− eiθ0ml | < 1
2 , then

|Rml(g)| =
∣∣∣∣14(g(0) + g(1)ml + g(−1)ml + g(i)ml)

∣∣∣∣
=

1

4
|g(0) + |g(1)|mleiθ1ml + |g(−1)|mleiθ−1ml + |g(i)|mleiθ0ml |

>
1

4

(
|g(1)|ml + |g(−1)|ml + |g(i)|ml − |g(1)|ml |1− eiθ1ml |

− |g(−1)|ml |1− eiθ−1ml | − |g(i)|ml |1− eiθ0ml | − |g(0)|
)

>
1

8
(|g(1)|ml + |g(−1)|ml + |g(i)|ml)− 1

4
|g(0)|

>
1

8
rml − 1

4
|g(0)|

for every l > l0. This implies that the H-invariant continuous polyno-
mial Rml with sufficiently large l ∈ N separates the element g and the
set BC(K).

4.5. The group of composition of measure-preserving maps on
Lp[0, 1]. Let us consider the space X = Lp[0, 1] for 1 6 p < ∞. We
study the group M of L(Lp[0, 1]) defined as

M = {T : Lp[0, 1]→ Lp[0, 1] such that Tx = x ◦ φ,
φ : [0, 1]→ [0, 1] a measure-preserving mapping},

with the topology induced by L(Lp[0, 1]), which was studied in [4, Sec-
tion 5].

Note that x ∈ Lp[0, 1] →
∫ 1

0
xk ∈C is a k-homogeneous M -invariant

continuous polynomial for each 1 6 k 6 p. Given N ∈ N, let I
(N)
j ⊂ [0, 1]

be the interval ((j − 1)2−N , j2−N ) for j = 1, . . . , 2N . Note that the

measure of this interval I
(N)
j is 2−N and these intervals form a partition

of [0, 1]. As in [4], let us denote by SN the space of N -level step functions
defined as

SN =

{
x : [0, 1]→ C : x(t) =

2N∑
j=1

ajχ
(N)
j (t)

for some finite sequence {aj}2
N

j=1 ⊂ C

}
,



Group-Invariant Separating Polynomials on a Banach Space 231

where χ
(N)
j (t) = χ

I
(N)
j

(t). Note that
⋃∞
N=1 SN is dense in Lp[0, 1]. Let

ιN : C2N → SN be the identification map defined by

z 7→ x(t) =

2N∑
j=1

zjχ
(N)
j (t), z = (zj)

2N

j=1 ∈ C2N .

It is observed in [4, Corollary 5.4] that if Pk is a k-homogeneous M -in-
variant continuous polynomial with k 6 p, then there exists a continuous
polynomial Q : Ck → C such that

Pk(x) = Q

(∫ 1

0

x, . . . ,

∫ 1

0

xk
)

(x ∈ Lp[0, 1]).

Proposition 4.13. For 1 6 p 6 ∞, if z ∈ Lp[0, 1] satisfies that

sup
16j6p
j∈N

∣∣∫ 1

0
zj
∣∣ > 1, then z can be separated from BLp[0,1] by an M -in-

variant continuous polynomial P .

Proof: First we prove the case with 1 6 p <∞. Suppose that
∣∣∫ 1

0
zj
∣∣ > 1

for some integer j with 1 6 j 6 p. Consider the continuous polynomial P
on Lp[0, 1] given by

(11) P (x) =

∫ 1

0

xj (x ∈ Lp[0, 1]).

It is clear that P is an M -invariant continuous polynomial. Note that

|P (x)| 6
∫ 1

0

|x|j 6
(∫ 1

0

(|x|j)
p
j

) j
p

= ‖x‖jp 6 1

for every x ∈ BLp[0,1]. However,

|P (z)| =
∣∣∣∣∫ 1

0

zj
∣∣∣∣ > 1

which implies that P separates z and BLp[0,1].
For the case with p = ∞, note that for x ∈ L∞[0, 1] the sequence

(‖x‖k)k∈N increases to ‖x‖∞. So if x is in the unit ball of L∞[0, 1] then∣∣∫ 1

0
xk dx

∣∣ 6 ‖x‖∞ 6 1 for all k ∈ N. Thus, if there exists a natural

number j such that
∣∣∫ 1

0
zj
∣∣ > 1 the polynomial given in (11) separates z

and BL∞[0,1].

Remark 4.14. Note that the function x(t) = 2e2πit has the property that
‖x‖ = 2 in Lp[0, 1] (so, x lies outside the closed unit ball of Lp[0, 1]) but
Pk(x) = 0 for every 1 6 p <∞ and every k ∈ N.
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Given N ∈ N, if x =
∑2N

j=1 zjχ
(N)
j ∈ SN and σ ∈ Sym{1, . . . , 2N}, let

us denote by x ◦ σ the element in SN given by

x ◦ σ =

2N∑
j=1

zσ(j)χ
(N)
j .

We say that a subset K of Lp[0, 1] is symmetric in the following sense:

(12) if x ∈ K belongs to SN for some N ∈ N,

then x ◦ σ ∈ K for every σ ∈ Sym{1, . . . , 2N}.

Using similar techniques to the ones we used in the proof of Theo-
rem 3.2 and [4, Lemma 5.1], we can obtain the following result.

Proposition 4.15. Let K be a symmetric set in
⋃∞
N=1 SN ⊂ Lp[0, 1].

If z is an element in Lp[0, 1]\K that can be separated from K by a k-ho-
mogeneous continuous polynomial Q, then there exists an M -invariant
continuous polynomial P that separates z and K.
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