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DIFFERENTIAL INVARIANCE OF THE MULTIPLICITY
OF REAL AND COMPLEX ANALYTIC SETS

Jost EDSON SAMPAIO

Abstract: This paper is devoted to proving the differential invariance of the multi-
plicity of real and complex analytic sets. In particular, we prove the real version of the
Gau—Lipman theorem, i.e., it is proved that the multiplicity mod 2 of real analytic
sets is a differential invariant. We also prove a generalization of the Gau-Lipman
theorem.
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1. Introduction

In 1983, Y.-N. Gau and J. Lipman proved ([6]) the following result
about the differential invariance of the multiplicity of complex analytic
sets (see [1] for a definition of multiplicity of complex analytic sets):

Theorem 1.1 (Gau-Lipman theorem). Let X, Y C C" be two com-
plex analytic sets. If there exists a homeomorphism ¢: (C™* X,0) —
(C™,Y,0) such that ¢ and ="' have a derivative at the origin (as map-
pings from (R?",0) to (R*",0)), then m(X,0) = m(Y,0).

This result was a generalization of the result proved separately by
R. Ephraim in [3] and D. Trotman in [13] (see also [14]). They showed
that the following question has a positive answer when the homeomor-
phism ¢ is a C! diffeomorphism.

Question A. Let f,g: (C*,0) — (C,0) be two complex analytic func-
tions. If there is a homeomorphism ¢: (C™, V(f),0) — (C™,V(g),0),
then is it true that m(V'(f),0) = m(V (g),0)?

This question was asked by O. Zariski in 1971 (see [17]) and in its stated
version is known as Zariski’s multiplicity conjecture. It is still an open
problem.
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Here, we are interested in the case of real analytic sets. However, the
problem has a negative answer in this case, as we can see in the following
example.

Example 1.2. Let X ={(z,y)€R?; y =0}, Y ={(z,y) € R?; y> = 22},
and ¢: R2 — R2 given by ¢(z,y) = (2,23 —y). Then ¢ is a homeomor-
phism such that ¢(X) =Y, but m(X) =1 mod 2 and m(Y) = 0 mod 2.

However, some authors have approached Question A in the real case.
For example, J.-J. Risler in [10] proved that the multiplicity mod 2 of a
real analytic curve is invariant by bi-Lipschitz homeomorphisms. T. Fu-
kui, K. Kurdyka, and L. Paunescu proposed in [5] the following conjec-
ture:

Conjecture F-K-P. Let h: (R™ 0) — (R™,0) be the germ of a suban-
alytic, arc-analytic, bi-Lipschitz homeomorphism, and let X,Y C R™ be
two irreducible analytic germs. Suppose that ¥ = h(X), then m(X) =
m(Y).

They proved that multiplicity of a real analytic curve is invariant by arc-
analytic bi-Lipschitz homeomorphisms. G. Valette proved in [15] that
the multiplicity mod 2 of a real analytic hypersurface is invariant by
arc-analytic bi-Lipschitz homeomorphisms and the multiplicity mod 2
of a real analytic surface is invariant by subanalytic bi-Lipschitz homeo-
morphisms, and the present author proved in [12] that the multiplicity
mod 2 of a real analytic surface is invariant by bi-Lipschitz homeomor-
phisms.

The main aim of this paper is to prove the real version of the Gau—
Lipman theorem, i.e., to prove that the multiplicity mod 2 of real an-
alytic sets is a differential invariant (see Corollary 3.2). Let us remark
that Y.-N. Gau and J. Lipman’s proof does not work in the real setting,
since their proof uses, for instance, that the tangent cone at a point of a
complex analytic set is a complex algebraic set, which may not happen
for tangent cones of real analytic sets.

Let us describe how this paper is organized. In Section 2 we present
some preliminaries. In Section 3 we present a result on the differential
invariance of the multiplicity of real analytic sets (see Theorem 3.1) and
as a corollary we obtain the real version of the Gau-Lipman theorem
(see Corollary 3.2). We also present some examples in order to show
that the hypotheses of Theorem 3.1 cannot be removed. In Section 4 we
present a generalization of the Gau-Lipman theorem (see Theorem 4.1),
which is the complex version of Theorem 3.1. An example showing that
the hypotheses in Theorem 4.1 are weaker than the hypotheses in the
Gau-Lipman theorem is also presented (see Example 4.2).
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2. Preliminaries
Here all real analytic sets are assumed to be pure dimensional.

Definition 2.1. Let X C R" be a subset such that 2o € X. We say
that v € R™ is a tangent vector of X at xy € R™ if there is a sequence of
points {z;} C X tending to zp € R™ and there is a sequence of positive
numbers {t;} C Rt such that

1
lim —(x; — x9) = v.
i—oo t;

Let C(X, zo) denote the set of all tangent vectors of X at zo € R”. We
call C(X,xg) the tangent cone of X at x.

Remark 2.2. 1t follows from the curve selection lemma for subanalytic
sets that, if X C R" is a subanalytic set and xy € X is a non-isolated
point, then the following holds true:

C (X, z9) = {v; 3 subanalytic «: [0,e) = R" s.t. a(0) = z,
a((0,¢)) C X, and a(t) — zg = tv + o(t)}.

Definition 2.3. The mapping 3,: S"~! x Rt — R" given by 8, (z,7) =
ra is called spherical blowing-up (at the origin) of R™.

Note that £,: S"™1 x (0, +00) — R™ \ {0} is a homeomorphism with
inverse 57 1: R®\ {0} — S"~1 x (0, +0c0) given by B, 1(z) = (H:—H, ).

Definition 2.4. The strict transform of the subset X under the spher-
ical blowing-up 8, is X’ := 8, (X \ {0}) and the boundary X' of the
strict transform is 0X' := X' N (S"~! x {0}).

Note that X’ = Cx x {0}, where Cx = C(X,0) NS~ L.

2.1. Multiplicity and relative multiplicities. Let X C R”™ be a
d-dimensional real analytic set with 0 € X and

Xc =V(Zr(X,0)),

where Zg(X,0) is the ideal in C{z1, ..., 2z, } generated by the complex-
ifications of all germs of real analytic functions that vanish on the
germ (X,0). We have that X¢ is a germ of a complex analytic set and
dim¢ X¢ = dimg X (see [8, Propositions 1 and 3, pp. 91-93]). Then, for
a linear projection 7: C™ — C? such that 771(0)NC(Xc¢, 0) = {0}, there
exists an open neighborhood U C C™ of 0 such that #(7~1(x)N(XcNU))
is constant for a generic point € 7(U) C C?. This number is the mul-
tiplicity of X¢ at the origin and it is denoted by m(Xc,0).
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Definition 2.5. With the above notation, we define the multiplicity
of X at the origin by m(X) := m(Xc,0).

Definition 2.6. We shall not distinguish between a 2(n—d)-dimensional
real linear subspace in C" and its canonical image in G%’(’n_ 2 (R). Thus

we regard GI'_,(C) as a subset of Gg?nfd) (R). Let £(X¢) denote the

subset of G3(,_; (R) consisting of all L € G3{,_, (R) such that LN

C(Xc,0) = {0}.
Remark 2.7. We have the following comments on the set £(Xc¢).

(i) £(Xc) is an open dense set in G3(,,_ ;) (R) = G33(R) (see [2, Lem-
me 1.4]).

(ii) For each L € £(Xc)NG"_4(C), let w: C* — Lt be the orthog-
onal projection over L. Then there exist a polydisc U CC™ and a
complex analytic set 0 C U’ := 7 (U) such that dimo < dim X¢
and 7z: (UN X¢) \ 7. (¢) = U’ \ o is a k-sheeted cover with
k =m(Xc,0) (see [16, Theorem 7P, p. 234]).

(iii) Since 7 := 7, is an R-linear mapping, we identify the d-dimensional
real linear subspace 7(R™) with R% and, with this identification, we
obtain that R?No is a closed nowhere dense subset of RN U’. In-
deed, it is clear that R? N o is a closed subset of R4 N U’ and
thus, if ¢ is somewhere dense in R? N U’, then ¢ contains an
open ball B,.(p) € RN U’, which implies that ¢ must contain a
non-empty open subset of U’ (see [8, Proposition 1, p. 91]) and thus
we obtain a contradiction. Therefore, o is nowhere dense in R¢NU’
and then RN U’ \ o is an open dense subset of R4 N U’.

(iv) For a generic point z € R near to the origin (i.e., for z € (R4 N
U\ o), we have
m(Xc,0) = #(r ' (z) N (XcNU))

= #(®R 17 (@) N (X NU))

+#(C"\R*) N7~ (z) N (XcNU))

=#(x @) N (X NU)) +#(7 " (@) N ((Xc \R") N U)).

Since for each f € Zr(X,0) we may write f(2)= . asz! such that
[I=k

ar € Rforall I, then f(21,...,2,) =0ifand only if f(Z1,...,2,) =
0, where each z; denotes the complex conjugate of z;. In particular,
#(m~H(z)N((Xc\R™)NU)) is an even number. Therefore, we obtain
that m(X) = #(7~(z)N(XNU)) mod 2 for a generic point z € R?
near to the origin.
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Definition 2.8. Let X C R” be a subanalytic set such that 0 € X is
a non-isolated point. We say that x € X’ is a simple point of 0X', if
there is an open set U C R*t! with 2 € U such that:

(i) the connected components of (X' NU)\ 0X', say Ma,..., M,, are
topological manifolds with dim M; =dim X,i=1,...,r;
(ii) (M; U9X’")NU are topological manifolds with boundary.

Let Smp(0X') be the set of simple points of 9X’.

Remark 2.9. By Theorems 2.1 and 2.2 in [9], we obtain that Smp(0X")
is an open dense subset of the (d — 1)-dimensional part of 90X’ whenever
0X' is a (d — 1)-dimensional subset, where d = dim X.

Definition 2.10. Let X C R" be a subanalytic set such that 0 € X. We
define kx: Smp(0X’) — N such that kx () is the number of connected
components of the germ (3, 1(X \ {0}),z).

Remark 2.11. It is clear that the function kx is locally constant. In fact,
kx is constant in each connected component C; of Smp(9X’). Then we
define kx(Cj) := kx(z) with « € Cj.

Remark 2.12. The numbers kx (C}) are equal to the numbers n; defined
by Kurdyka and Raby [7, p. 762].

Remark 2.13. When X is a complex analytic set, there is a complex
analytic set ¥ with dim ¥ < dim X, such that X; \ ¥ intersects only one
connected component C; of Smp(0X’) (see [1, pp. 132-133]), for each
irreducible component X; of the tangent cone C(X,0). Then we define
kx(Xj) = kx(ol)

Remark 2.14 ([1, p. 133, Proposition]). Let X be a complex analytic
set of C™ with 0 € X and let X3, ..., X, be the irreducible components
of C(X,0). Then

m(X, 0) = ikx(X]) . m(Xj,O).
j=1

Definition 2.15. Let X C R™ be a real analytic set with 0 € X. We
denote by C’% the union of all connected components C; of Smp(9X")
having odd kx (C;). We call C% the odd part of Cx C S"71.

Definition 2.16. Let X C R" be a d-dimensional real analytic set
with 0 € X, L € &(Xc) NG"_4(C), and let 7 := 7y,: C* — L+ be the
orthogonal projection over L. Let 7': S*~*\ L — S?~! be the mapping
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given by 7'(u) = ”:Ezg”, where we are identifying 7(R") with R? and
7(R™) N S?7"~! with S~ (see Remark 2.7(iii)). We define

0y (2) = (@ () N Ck).

In this case, if ¢, ¢+ (z) mod 2 is constant for a generic x € S !, we
“x
write m(C%) == @r ¢, (x) mod 2, for a generic z € S*1.

3. Proof of the real version of the Gau—Lipman theorem

In this section we show that the multiplicity mod 2 of a real analytic
set is a differential invariant, which is the real version of the Gau—Lipman
theorem. In fact, we prove a little bit more, as we can see in the next
result.

Theorem 3.1. Let X, Y C RY be two real analytic sets with 0 € XNY'.
Assume that there erxists a mapping ¢: (RY,0) — (RN ,0) such that
p: (X,0) = (Y,0) is a homeomorphism. If v has a derivative at the ori-
gin and Dpg: RY — RY is an isomorphism, then m(X) = m(Y) mod 2.

Proof: Since ¢ := Dygg: RY — RY is an R-linear isomorphism, we have
that A = ¢(X) is a real analytic set.

We have that the complexification of ¢, denoted by ¢c, is a complex
diffeomorphism between X¢ and Ac. Thus, by the proposition in ([1,
Section 11, p. 120]), m(X¢,0) = m(Ac,0). Therefore, m(X) = m(A).

Thus it is enough to show that m(Y) = m(A) mod 2. In order to do
this, we consider the mapping v: (Y,0) — (4,0) given by ¢ = ¢po o~ 1.

Claim 3.1.1. The mapping ¢': Y/ — A’ given by

Y(tx)
Y (z,t) = (W;( |’ (t )II>, t#0,
(z,0), t=0

is a homeomorphism.
Proof of Claim 3.1.1: Observe that v: S¥=1 — SN~1 given by

b
“®) = To@)

is a homeomorphism, and using that ¢(tz) = tp(x) + o(t) we obtain

im pltz) o(z) = v(z)
=0t [ptz)] ~ @)l '
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Therefore, the mappings ¢’: SV =1 x[0,00) =SV ~1x[0,00) and ¢': X’ —
Y’ given by

o(tx) i
(v(z),0), A
and
o(tx) N
o' (z,t) = (Hcp(tx)”"@(t )||)7 t#0,
(v(z),0), f—o

are homeomorphisms, which implies that the mapping (¢~ !): Y/ — X’
given by

eta)
(™) (@,t) = (IIsol(tx)|’”‘P (t )II), t#0,

(v=1(),0), t=0

is also a homeomorphism. Since 9’ = ¢’ o (¢~1)’, we finish the proof of
Claim 3.1.1. 0

As a direct consequence, we obtain that Smp(9Y”’) = ¢/ (Smp(9Y”)) =
Smp(9A’).

Claim 3.1.2. ky(p) = ka(p) for all p € Smp(9Y”).

Proof of Claim 3.1.2: In fact, let p€Smp(9Y”) be a point and let U C Y’
be a small neighborhood of p. Since ¢': Y’ — A’ is a homeomorphism,
we have that V = ¢/(U) is a small neighborhood of p = ¢'(p) € 0A’.
Moreover, ¥/ (U \ dY') = V' \ 9A’, since 9'|gy: Y’ — 9A’ is a homeo-
morphism as well. Using once more that 1’ is a homeomorphism, we ob-
tain that the number of connected components of U\ 9Y” is equal to the
number of connected components of V\9A’, showing that ky (p) = ka(p)
for all p € Smp(9Y”). O

As a direct consequence, we obtain that Cy, = ¢'(C%,) = C').

Let L € E(Yc) N GY_4(C) and let 7 := 7,: CN¥ — L+ be the or-
thogonal projection over L, where d = dimY (see Remark 2.7). Let
7't SN\ L — S9! be given by 7/(u) = %, where we are identify-
ing 7(RY) with R? and 7(RY)NS*V~! with S¥~! as in Definition 2.16.



362 J. E. SAMPAIO

Claim 3.1.3. ¢ 1 (y)=#(7"""' (y)"Cy) mod 2 is constant for a generic
point y € S4=1. Moreover, m,(C%) = m(Y) mod 2.

Proof of Claim 3.1.3: If dim Cy <d—1, then C{,=0 and dim C(7(Y),0) <
d, which implies that there exist w € S?~! and small enough num-
bers n,e € (0,1) such that C, .(y) N7(Y) = 0, where C) (w) = {v €
R% ||v — tw|| < nt, t € (0,¢]}. Therefore ¢x.cy, (y) = 0 for any point y €
S?1 and m(Y) = 0 mod 2, since C§, = () and 71 (v) NY = 0, for all
v € Cy - (w) (see Remark 2.7(iv)). In particular, m,(C% ) is defined and
satisfies m,(C%) = m(Y) mod 2.

Thus we may assume that dim Cy =d—1. By Remark 2.9, Smp(9Y”) is
an open dense subset of the (d—1)-dimensional part of Y’ = Cy x {0} =
Cy. Let y € S™! be a generic point such that 7'~!(y) NCy = 7'~ (y) N
Smp(AY”’) = {y1,...,yp} and u = #(r (ty) NY) = m(Y) mod 2, for
all small enough ¢ > 0 (see Remark 2.7(iv)). Then we have the following:

u = Z’W(yj)-

In fact, let n,e > 0 be small enough numbers such that C, .(y) N
m(br(nly)) = 0, where Cp(y) = {v € R% |[v —ty| < nt, t € (0,¢]}
and br(w|y) denotes the set of all critical points of 7|y. Thus denote
the connected components of (r|y)~*(C,c(y)) by Yi,...,Y,. Hence,
'n.e(y) is a homeomorphism, for ¢ = 1,...,u. Thus, for
each i =1,...,u, there is a unique v;: (0,&) — Y; such that = (v;(¢¥)) = ty
for all t € (0,¢). We define for each i = 1,...,u, %;: [0,e) — By (Y;)
given by 7;(s) = tlim+ Byt 0i(t), for all s € [0,¢).

We remark that ;(0) = 1ir([)1+ Yi(t) € {y1,...,ypt foralli=1,...,u
t—

P

and thus v < ) ky(y;). Shrinking 7, if necessary, we can suppose that
j=1

each Cy, contains at most one y;. Thus for fixed y; and if v: [0,6) = Y

is a subanalytic curve such that lim+ 5;[1 o y(t) = yj;, then there exists
t—0

do > 0 such that w(y(t)) € Cy(y), for all 0 < t < &y. So, there is
i €{1,...,u} such that ~(t) 6 Y;, with 0 < ¢ < dg. Then ¥;(0) = y; and

we obtain the equality u = Z ky (y;)-

Let Ci,...,C, be the connected components of Smp(dY”’). By Re-
mark 2.11, we know that ky is constant in each C; and thus if y;, y; € C},
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then ky (y;) = ky(yjr). Since 7'~'(y) N Cy = 7'~ (y) N Smp(9Y") =
{y1,.-.,Yp}, we have

u = ZkY(yj) = ZkY(Ci) SFH(EHy) NGy,

€A

where A = {i € {1,...,r}; 7'~1(y) N C; # 0}. Therefore, we obtain
u= ZkY(Ci) # (T Hy) N Cy).
i=1

However, Z ky (C;) - #(n'~Yy) N C;) = #(r'~1(y) N C}) mod 2 and
u=m(Y) mod 2, then
m(Y) = #(7'~(y) N C4) mod 2,

for a generic y € S9~!, which shows that orcy (y) =#(@" " (y) NCY)
mod 2 is constant for a generic point y € S and thus m,(C}) is
defined and satisfies m,(C3,) = m(Y) mod 2. O

Then we obtain that m,(C4-) does not depend on a generic 7, since
m(Y") does not depend on a generic 7. Similarly, we obtain that mz(C’)
does not depend on a generic projection 7 and mz(C’) = m(A) mod 2.
Thus we write m(C%,) (resp. m(C")) instead of m,(C4,) (resp. mz(C")).

Let L€ E(Ye U Ac) N G- d((C) and let 7 :=77: C¥ — L be the
orthogonal projection over L. Let #: SN-1 \E — S9! given by 7' (u) =
H:Eu)\l as in Definition 2.16. Then, for a generic y € S*~!, we obtain the
following:

m(Y) = m(Cy) mod 2 (by Claim 3.1.3)
=#(7'(y) N Cy) mod 2 (by the definition of m(C%))
= #(7 *(y)NC’) mod 2 (since Cy = C'y)
= m(C’;) mod 2 (by the definition of m(C?%))
=m(A) mod 2 (by Claim 3.1.3),
which finishes the proof. O

As consequences, we obtain the following.

Corollary 3.2. Let X,Y C RY be two real analytic sets containing 0.
If there exists a homeomorphism ¢: (RN, X,0) — (RY,Y,0) such that ¢
and ¢~! have a derivative at the origin, then m(X) = m(Y) mod 2.
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Proof: Since ¢ and ¢! have a derivative at 0, we have that Dgg: RY —
RY is an isomorphism and by Theorem 3.1, m(X) = m(Y) mod 2. O

Definition 3.3. Let X C R™ and Y C R™ be closed subsets. We say
that a continuous mapping f: X — Y is differentiable at x € X, if there
exist an open U C R™ and a continuous mapping F': U — R™ such that
x €U, Flxnu = f|lxnu, and F has a derivative at x.

Corollary 3.4. Let X CR™ and Y CR" be two real analytic sets con-
taining 0. If there exists a homeomorphism ¢: (X,0) — (Y,0) such that
¢ and ¢~ are differentiable at 0, then m(X) = m(Y) mod 2.

Proof: By hypothesis there are closed representatives A and B respec-
tively of (X,0) and (Y,0) and a homeomorphism ¢: A — B such that
#(0) =0, and ¢ and ¢! have a derivative at 0. Let 6: R™ — R™ (resp.
7:2;: R™ — R™) be a continuous extension of ¢ (resp. ¢ 1), which has a de-
rivative at 0 € R™ (resp. 0 € R™). Then the mapping ¢: R™*T" — R+
given by
p(z,y) = (@ =y + ¢(2)),y + ¢(z))
is a homeomorphism such that ¢(A x {0}) = {0} x B, its inverse is given
by
¢z w) = (2 + Y(w), w = 6(z + P(w))),

and both have a derivative at 0 € R™*™,

Since m(A x {0}) = m(A) = m(X) and m({0} x B) = m(B) = m(Y),
by Corollary 3.2, we obtain m(X) = m(Y) mod 2. O

Let us make some remarks on Theorem 3.1. Firstly, the assumption
that Dyg is an isomorphism cannot be removed, as is shown in the next
example.

Example 3.5. Let X ={(z,y) € R% y3=2?} and Y ={(z,y) e R%; y =
0}. Then ¢: (R? X,0) — (R2,Y,0) given by p(z,y) = (z,y> — 2?) is a
homeomorphism, which has a derivative at the origin, but D¢y is not
an isomorphism. In this case, m(X) =2 and m(Y) = 1.

Secondly, we cannot expect equality (without modulus 2), as is shown
in the next example.

Example 3.6. Let V ={(x,y,2) €R3; 22 =25y + 2y°}. Then the map-
ping ¢: R* — R3 given by ¢(z,v,2) = (v,y,2 — (2°y + xy‘r’)%) is a
homeomorphism which has a derivative at the origin and its inverse also
has a derivative at the origin. Moreover, p(V) = R?x {0}, but m(V) =3
and m(R? x {0}) = 1.
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We finish this section by presenting an example of a mapping which
has a derivative at the origin and is a homeomorphism between two
analytic sets, but its inverse does not have a derivative at the origin.

Example 3.7. The mapping ¢: R? — R? given by

1
<x,y—|—2y28in>, y #0,
o(r,y) = Y

(z,0), y=0

has a derivative at the origin, Dy = id: R? — R? and @lrx{oy: R x
{0} — R x {0} is a homeomorphism, but it does not have an inverse
which has a derivative at the origin.

4. A generalization of the Gau—Lipman theorem

In this section we present a complex version of Theorem 3.1, which is
a generalization of the Gau-Lipman theorem.

Theorem 4.1. Let X, Y C CV be two complex analytic sets with 0 € XN
Y. Assume that there exists a mapping ¢: (CN,0) — (CV,0) such that
vlx: (X,0) = (Y,0) is a homeomorphism. If ¢ has a derivative at the
origin (as a mapping from (R?N,0) to (R?N,0)) and Dypg: R?N — R2N
is an isomorphism, then m(X,0) = m(Y,0).

Proof: By using that ¢ := Dgg: R?N — R2V is an R-linear isomor-
phism, we obtain that ¢ maps bijectively the irreducible components
of C'(X,0) over the irreducible components of C(Y,0) (see Lemma A.8
in [6] or Proposition 2 in [11]) and the mapping ¢': X’ — Y’ given by

o(tx)
(nm)n’ |«p<m>||), £40,

6() _
(wunﬁ)’ t=0

is a homeomorphism. Let X;,..., X, and Y7,...,Y, be the irreducible
components of C'(X,0) and C(Y,0), respectively, such that Y; = ¢(X}),
j =1,...,r. Thus, by proceeding as in the proof of Claim 3.1.2, we
obtain kx(X,;) =ky(Y;) forall j=1,...,r.

Fix j € {1,...,r} and regard X; and Y; as real algebraic sets in
R2N =~ CN ., Since ¢ is an R-linear isomorphism, then its complexifica-
tion ¢c: C?N — C?V is a C-linear isomorphism such that ¢c(Xjc) =
Yjc. By Proposition 2.9 in [4], Xjc (resp. Yjc) is complex analytic dif-

cp/(x,t) =
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feomorphic to X; x cn(X;) (resp. Yj x cn(Y;)), where cy: CN — CV is
the conjugation mapping given by ¢y (z1,...,2n5) = (Z1,...,2Zn). Then,

m(Xjc,0) = m(X; x en(X;),0) = m(Y; x en(Y;),0) = m(Yie, 0),
since the multiplicity is invariant by complex analytic diffeomorphisms
(see [1, Section 11, p. 120, Proposition]). However, ¢y (X;) and ey (Y;)
are complex analytic sets satisfying m(cy(X;),0) = m(X;,0) and
m(cen(Y;),0) = m(Y;,0), then we obtain m(X; x ey (X;),0) = m(X;,0)?
and m(Y; x ey (Y;),0) = m(Y;,0)2, so we obtain m(X;,0) = m(Y;,0),
for all j € {1,...,r}.

By Remark 2.14,

Z kX X]v O)
and

Zky m(Y;,0).

Therefore, m(X,0) = m(Y, O). O

It is clear that as a consequence of Theorem 4.1, we obtain the Gau—
Lipman theorem. The next example shows that Theorem 4.1 is really a
generalization of the Gau—Lipman theorem.

Example 4.2. Let X = {(z,y) € C?; y* — 223y? — 425y + 2% — 27 = 0}
and X = {(z,y) € C?; y* — 223y? — 425y + 26 — 2° = 0}. The mapping
®: (C,0) — (X,0) given by ®(t) = (t1,t5+17) is a Puiseux parametriza-
tion of X and there exists a complex analytic function ¢: (C,0) — (C,0)
such that ordg(¢) > 9 and the mapping o: (C, 0) — (X 0) given by
O(t) = (t*, t5+124¢(t)) is a Puiseux parametrization of X. Let f: R — R
be the function given by

1
s+2s?sin -, s#0,
s
0, s=0,
and ¢: (C2,0) — (C2,0) be the mapping given by
D(t), if (z,y)=2(t) for some teC,

pla,y)= <x,f(y;y)+ f< >) if (x,y)#£®(t) for any teC.

Thus ¢ has a derivative at the origin, Dy = id: R* — R* and g0|X
(X,0) = (X,0) is a homeomorphism. Moreover, since X and X have
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different Puiseux pairs, there is no homeomorphism h: (C2,0) — (C2,0)
such that h(X) = X.
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