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Abstract: This paper is devoted to proving the differential invariance of the multi-
plicity of real and complex analytic sets. In particular, we prove the real version of the

Gau–Lipman theorem, i.e., it is proved that the multiplicity mod 2 of real analytic

sets is a differential invariant. We also prove a generalization of the Gau–Lipman
theorem.
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1. Introduction

In 1983, Y.-N. Gau and J. Lipman proved ([6]) the following result
about the differential invariance of the multiplicity of complex analytic
sets (see [1] for a definition of multiplicity of complex analytic sets):

Theorem 1.1 (Gau–Lipman theorem). Let X,Y ⊂ Cn be two com-
plex analytic sets. If there exists a homeomorphism ϕ : (Cn, X, 0) →
(Cn, Y, 0) such that ϕ and ϕ−1 have a derivative at the origin (as map-
pings from (R2n, 0) to (R2n, 0)), then m(X, 0) = m(Y, 0).

This result was a generalization of the result proved separately by
R. Ephraim in [3] and D. Trotman in [13] (see also [14]). They showed
that the following question has a positive answer when the homeomor-
phism ϕ is a C1 diffeomorphism.

Question A. Let f, g : (Cn, 0)→ (C, 0) be two complex analytic func-
tions. If there is a homeomorphism ϕ : (Cn, V (f), 0)→ (Cn, V (g), 0),
then is it true that m(V (f), 0) = m(V (g), 0)?

This question was asked by O. Zariski in 1971 (see [17]) and in its stated
version is known as Zariski’s multiplicity conjecture. It is still an open
problem.
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Here, we are interested in the case of real analytic sets. However, the
problem has a negative answer in this case, as we can see in the following
example.

Example 1.2. Let X={(x, y)∈R2; y = 0}, Y ={(x, y) ∈ R2; y3 = x2},
and ϕ : R2 → R2 given by ϕ(x, y) = (x, x

2
3 − y). Then ϕ is a homeomor-

phism such that ϕ(X) = Y , but m(X) ≡ 1 mod 2 and m(Y ) ≡ 0 mod 2.

However, some authors have approached Question A in the real case.
For example, J.-J. Risler in [10] proved that the multiplicity mod 2 of a
real analytic curve is invariant by bi-Lipschitz homeomorphisms. T. Fu-
kui, K. Kurdyka, and L. Paunescu proposed in [5] the following conjec-
ture:

Conjecture F-K-P. Let h : (Rn, 0)→ (Rn, 0) be the germ of a suban-
alytic, arc-analytic, bi-Lipschitz homeomorphism, and let X,Y ⊂ Rn be
two irreducible analytic germs. Suppose that Y = h(X), then m(X) =
m(Y ).

They proved that multiplicity of a real analytic curve is invariant by arc-
analytic bi-Lipschitz homeomorphisms. G. Valette proved in [15] that
the multiplicity mod 2 of a real analytic hypersurface is invariant by
arc-analytic bi-Lipschitz homeomorphisms and the multiplicity mod 2
of a real analytic surface is invariant by subanalytic bi-Lipschitz homeo-
morphisms, and the present author proved in [12] that the multiplicity
mod 2 of a real analytic surface is invariant by bi-Lipschitz homeomor-
phisms.

The main aim of this paper is to prove the real version of the Gau–
Lipman theorem, i.e., to prove that the multiplicity mod 2 of real an-
alytic sets is a differential invariant (see Corollary 3.2). Let us remark
that Y.-N. Gau and J. Lipman’s proof does not work in the real setting,
since their proof uses, for instance, that the tangent cone at a point of a
complex analytic set is a complex algebraic set, which may not happen
for tangent cones of real analytic sets.

Let us describe how this paper is organized. In Section 2 we present
some preliminaries. In Section 3 we present a result on the differential
invariance of the multiplicity of real analytic sets (see Theorem 3.1) and
as a corollary we obtain the real version of the Gau–Lipman theorem
(see Corollary 3.2). We also present some examples in order to show
that the hypotheses of Theorem 3.1 cannot be removed. In Section 4 we
present a generalization of the Gau–Lipman theorem (see Theorem 4.1),
which is the complex version of Theorem 3.1. An example showing that
the hypotheses in Theorem 4.1 are weaker than the hypotheses in the
Gau–Lipman theorem is also presented (see Example 4.2).
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2. Preliminaries

Here all real analytic sets are assumed to be pure dimensional.

Definition 2.1. Let X ⊂ Rn be a subset such that x0 ∈ X. We say
that v ∈ Rn is a tangent vector of X at x0 ∈ Rn if there is a sequence of
points {xi} ⊂ X tending to x0 ∈ Rn and there is a sequence of positive
numbers {ti} ⊂ R+ such that

lim
i→∞

1

ti
(xi − x0) = v.

Let C(X,x0) denote the set of all tangent vectors of X at x0 ∈ Rn. We
call C(X,x0) the tangent cone of X at x0.

Remark 2.2. It follows from the curve selection lemma for subanalytic
sets that, if X ⊂ Rn is a subanalytic set and x0 ∈ X is a non-isolated
point, then the following holds true:

C(X,x0) = {v; ∃ subanalytic α : [0, ε)→ Rn s.t. α(0) = x0,

α((0, ε)) ⊂ X, and α(t)− x0 = tv + o(t)}.

Definition 2.3. The mapping βn : Sn−1×R+ → Rn given by βn(x, r) =
rx is called spherical blowing-up (at the origin) of Rn.

Note that βn : Sn−1 × (0,+∞)→ Rn \ {0} is a homeomorphism with
inverse β−1

n : Rn \ {0} → Sn−1 × (0,+∞) given by β−1
n (x) =

(
x
‖x‖ , ‖x‖

)
.

Definition 2.4. The strict transform of the subset X under the spher-

ical blowing-up βn is X ′ := β−1
n (X \ {0}) and the boundary ∂X ′ of the

strict transform is ∂X ′ := X ′ ∩ (Sn−1 × {0}).

Note that ∂X ′ = CX × {0}, where CX = C(X, 0) ∩ Sn−1.

2.1. Multiplicity and relative multiplicities. Let X ⊂ Rn be a
d-dimensional real analytic set with 0 ∈ X and

XC = V (IR(X, 0)),

where IR(X, 0) is the ideal in C{z1, . . . , zn} generated by the complex-
ifications of all germs of real analytic functions that vanish on the
germ (X, 0). We have that XC is a germ of a complex analytic set and
dimCXC = dimRX (see [8, Propositions 1 and 3, pp. 91–93]). Then, for
a linear projection π : Cn → Cd such that π−1(0)∩C(XC, 0) = {0}, there
exists an open neighborhood U ⊂ Cn of 0 such that #(π−1(x)∩(XC∩U))
is constant for a generic point x ∈ π(U) ⊂ Cd. This number is the mul-
tiplicity of XC at the origin and it is denoted by m(XC, 0).
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Definition 2.5. With the above notation, we define the multiplicity
of X at the origin by m(X) := m(XC, 0).

Definition 2.6. We shall not distinguish between a 2(n−d)-dimensional
real linear subspace in Cn and its canonical image in G2n

2(n−d)(R). Thus

we regard Gnn−d(C) as a subset of G2n
2(n−d)(R). Let E(XC) denote the

subset of G2n
2(n−d)(R) consisting of all L ∈ G2n

2(n−d)(R) such that L ∩
C(XC, 0) = {0}.

Remark 2.7. We have the following comments on the set E(XC).

(i) E(XC) is an open dense set in G2n
2(n−d)(R) ∼= G2n

2d (R) (see [2, Lem-

me 1.4]).
(ii) For each L ∈ E(XC) ∩ Gnn−d(C), let πL : Cn → L⊥ be the orthog-

onal projection over L. Then there exist a polydisc U ⊂Cn and a
complex analytic set σ ⊂ U ′ := πL(U) such that dimσ < dimXC
and πL : (U ∩ XC) \ π−1

L (σ) → U ′ \ σ is a k-sheeted cover with
k = m(XC, 0) (see [16, Theorem 7P, p. 234]).

(iii) Since π := πL is an R-linear mapping, we identify the d-dimensional
real linear subspace π(Rn) with Rd and, with this identification, we
obtain that Rd∩σ is a closed nowhere dense subset of Rd∩U ′. In-
deed, it is clear that Rd ∩ σ is a closed subset of Rd ∩ U ′ and
thus, if σ is somewhere dense in Rd ∩ U ′, then σ contains an
open ball Br(p) ⊂ Rd ∩ U ′, which implies that σ must contain a
non-empty open subset of U ′ (see [8, Proposition 1, p. 91]) and thus
we obtain a contradiction. Therefore, σ is nowhere dense in Rd∩U ′
and then Rd ∩ U ′ \ σ is an open dense subset of Rd ∩ U ′.

(iv) For a generic point x ∈ Rd near to the origin (i.e., for x ∈ (Rd ∩
U ′) \ σ), we have

m(XC, 0) = #(π−1(x) ∩ (XC ∩ U))

= #(Rn ∩ π−1(x) ∩ (XC ∩ U))

+ #((Cn \ Rn) ∩ π−1(x) ∩ (XC ∩ U))

= #(π−1(x) ∩ (X ∩ U)) + #(π−1(x) ∩ ((XC \ Rn) ∩ U)).

Since for each f ∈IR(X, 0) we may write f(z)=
∞∑
|I|=k

aIz
I such that

aI ∈ R for all I, then f(z1, . . . , zn) = 0 if and only if f(z̄1, . . . , z̄n) =
0, where each z̄i denotes the complex conjugate of zi. In particular,
#(π−1(x)∩((XC\Rn)∩U)) is an even number. Therefore, we obtain
that m(X) ≡ #(π−1(x)∩(X∩U)) mod 2 for a generic point x ∈ Rd
near to the origin.
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Definition 2.8. Let X ⊂ Rn be a subanalytic set such that 0 ∈ X is
a non-isolated point. We say that x ∈ ∂X ′ is a simple point of ∂X ′, if
there is an open set U ⊂ Rn+1 with x ∈ U such that:

(i) the connected components of (X ′ ∩U) \ ∂X ′, say M1, . . . ,Mr, are
topological manifolds with dimMi = dimX, i = 1, . . . , r;

(ii) (Mi ∪ ∂X ′) ∩ U are topological manifolds with boundary.

Let Smp(∂X ′) be the set of simple points of ∂X ′.

Remark 2.9. By Theorems 2.1 and 2.2 in [9], we obtain that Smp(∂X ′)
is an open dense subset of the (d− 1)-dimensional part of ∂X ′ whenever
∂X ′ is a (d− 1)-dimensional subset, where d = dimX.

Definition 2.10. Let X ⊂ Rn be a subanalytic set such that 0 ∈ X. We
define kX : Smp(∂X ′)→ N such that kX(x) is the number of connected
components of the germ (β−1

n (X \ {0}), x).

Remark 2.11. It is clear that the function kX is locally constant. In fact,
kX is constant in each connected component Cj of Smp(∂X ′). Then we
define kX(Cj) := kX(x) with x ∈ Cj .

Remark 2.12. The numbers kX(Cj) are equal to the numbers nj defined
by Kurdyka and Raby [7, p. 762].

Remark 2.13. When X is a complex analytic set, there is a complex
analytic set Σ with dim Σ < dimX, such that Xj \Σ intersects only one
connected component Ci of Smp(∂X ′) (see [1, pp. 132–133]), for each
irreducible component Xj of the tangent cone C(X, 0). Then we define
kX(Xj) := kX(Ci).

Remark 2.14 ([1, p. 133, Proposition]). Let X be a complex analytic
set of Cn with 0 ∈ X and let X1, . . . , Xr be the irreducible components
of C(X, 0). Then

m(X, 0) =

r∑
j=1

kX(Xj) ·m(Xj , 0).

Definition 2.15. Let X ⊂ Rn be a real analytic set with 0 ∈ X. We
denote by C ′X the union of all connected components Cj of Smp(∂X ′)
having odd kX(Cj). We call C ′X the odd part of CX ⊂ Sn−1.

Definition 2.16. Let X ⊂ Rn be a d-dimensional real analytic set
with 0 ∈ X, L ∈ E(XC) ∩ Gnn−d(C), and let π := πL : Cn → L⊥ be the

orthogonal projection over L. Let π′ : Sn−1 \ L→ Sd−1 be the mapping
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given by π′(u) = π(u)
‖π(u)‖ , where we are identifying π(Rn) with Rd and

π(Rn) ∩ S2n−1 with Sd−1 (see Remark 2.7(iii)). We define

ϕπ,C′
X

(x) := #(π′−1(x) ∩ C ′X).

In this case, if ϕπ,C′
X

(x) mod 2 is constant for a generic x ∈ Sd−1, we

write mπ(C ′X) := ϕπ,C′
X

(x) mod 2, for a generic x ∈ Sd−1.

3. Proof of the real version of the Gau–Lipman theorem

In this section we show that the multiplicity mod 2 of a real analytic
set is a differential invariant, which is the real version of the Gau–Lipman
theorem. In fact, we prove a little bit more, as we can see in the next
result.

Theorem 3.1. Let X,Y ⊂ RN be two real analytic sets with 0 ∈ X ∩Y .
Assume that there exists a mapping ϕ : (RN , 0) → (RN , 0) such that
ϕ : (X, 0)→ (Y, 0) is a homeomorphism. If ϕ has a derivative at the ori-
gin and Dϕ0 : RN → RN is an isomorphism, then m(X) ≡ m(Y ) mod 2.

Proof: Since φ := Dϕ0 : RN → RN is an R-linear isomorphism, we have
that A = φ(X) is a real analytic set.

We have that the complexification of φ, denoted by φC, is a complex
diffeomorphism between XC and AC. Thus, by the proposition in ([1,
Section 11, p. 120]), m(XC, 0) = m(AC, 0). Therefore, m(X) = m(A).

Thus it is enough to show that m(Y ) ≡ m(A) mod 2. In order to do
this, we consider the mapping ψ : (Y, 0)→ (A, 0) given by ψ = φ ◦ ϕ−1.

Claim 3.1.1. The mapping ψ′ : Y ′ → A′ given by

ψ′(x, t) =


(

ψ(tx)

‖ψ(tx)‖
, ‖ψ(tx)‖

)
, t 6= 0,

(x, 0), t = 0

is a homeomorphism.

Proof of Claim 3.1.1: Observe that ν : SN−1 → SN−1 given by

ν(x) =
φ(x)

‖φ(x)‖

is a homeomorphism, and using that ϕ(tx) = tφ(x) + o(t) we obtain

lim
t→0+

ϕ(tx)

‖ϕ(tx)‖
=

φ(x)

‖φ(x)‖
= ν(x).
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Therefore, the mappings φ′ : SN−1×[0,∞)→SN−1×[0,∞) and ϕ′ : X ′ →
Y ′ given by

φ′(x, t) =


(

φ(tx)

‖φ(tx)‖
, ‖φ(tx)‖

)
, t 6= 0,

(ν(x), 0), t = 0,

and

ϕ′(x, t) =


(

ϕ(tx)

‖ϕ(tx)‖
, ‖ϕ(tx)‖

)
, t 6= 0,

(ν(x), 0), t = 0

are homeomorphisms, which implies that the mapping (ϕ−1)′ : Y ′ → X ′

given by

(ϕ−1)′(x, t) =


(

ϕ−1(tx)

‖ϕ−1(tx)‖
, ‖ϕ−1(tx)‖

)
, t 6= 0,

(ν−1(x), 0), t = 0

is also a homeomorphism. Since ψ′ = φ′ ◦ (ϕ−1)′, we finish the proof of
Claim 3.1.1.

As a direct consequence, we obtain that Smp(∂Y ′) = ψ′(Smp(∂Y ′)) =
Smp(∂A′).

Claim 3.1.2. kY (p) = kA(p) for all p ∈ Smp(∂Y ′).

Proof of Claim 3.1.2: In fact, let p∈Smp(∂Y ′) be a point and let U ⊂ Y ′
be a small neighborhood of p. Since ψ′ : Y ′ → A′ is a homeomorphism,
we have that V = ψ′(U) is a small neighborhood of p = ψ′(p) ∈ ∂A′.
Moreover, ψ′(U \ ∂Y ′) = V \ ∂A′, since ψ′|∂Y ′ : ∂Y ′ → ∂A′ is a homeo-
morphism as well. Using once more that ψ′ is a homeomorphism, we ob-
tain that the number of connected components of U \∂Y ′ is equal to the
number of connected components of V \∂A′, showing that kY (p) = kA(p)
for all p ∈ Smp(∂Y ′).

As a direct consequence, we obtain that C ′Y = ψ′(C ′Y ) = C ′A.
Let L ∈ E(YC) ∩ GNN−d(C) and let π := πL : CN → L⊥ be the or-

thogonal projection over L, where d = dimY (see Remark 2.7). Let

π′ : SN−1 \ L→ Sd−1 be given by π′(u) = π(u)
‖π(u)‖ , where we are identify-

ing π(RN ) with Rd and π(RN ) ∩ S2N−1 with Sd−1 as in Definition 2.16.



362 J. E. Sampaio

Claim 3.1.3. ϕπ,C′
Y

(y)=#(π′−1(y)∩C ′Y ) mod 2 is constant for a generic

point y ∈ Sd−1. Moreover, mπ(C ′Y ) ≡ m(Y ) mod 2.

Proof of Claim 3.1.3: If dimCY <d−1, then C ′Y=∅ and dimC(π(Y ), 0)<
d, which implies that there exist w ∈ Sd−1 and small enough num-
bers η, ε ∈ (0, 1) such that Cη,ε(y) ∩ π(Y ) = ∅, where Cη,ε(w) = {v ∈
Rd; ‖v − tw‖ ≤ ηt, t ∈ (0, ε]}. Therefore ϕπ,C′

Y
(y) = 0 for any point y ∈

Sd−1 and m(Y ) ≡ 0 mod 2, since C ′Y = ∅ and π−1(v) ∩ Y = ∅, for all
v ∈ Cη,ε(w) (see Remark 2.7(iv)). In particular, mπ(C ′Y ) is defined and
satisfies mπ(C ′Y ) ≡ m(Y ) mod 2.

Thus we may assume that dimCY =d−1. By Remark 2.9, Smp(∂Y ′) is
an open dense subset of the (d−1)-dimensional part of ∂Y ′ = CY ×{0} ∼=
CY . Let y ∈ Sd−1 be a generic point such that π′−1(y)∩CY = π′−1(y)∩
Smp(∂Y ′) = {y1, . . . , yp} and u = #(π−1(ty) ∩ Y ) ≡ m(Y ) mod 2, for
all small enough t > 0 (see Remark 2.7(iv)). Then we have the following:

u =

p∑
j=1

kY (yj).

In fact, let η, ε > 0 be small enough numbers such that Cη,ε(y) ∩
π(br(π|Y )) = ∅, where Cη,ε(y) = {v ∈ Rd; ‖v − ty‖ ≤ ηt, t ∈ (0, ε]}
and br(π|Y ) denotes the set of all critical points of π|Y . Thus denote
the connected components of (π|Y )−1(Cη,ε(y)) by Y1, . . . , Yu. Hence,
π|Yi

: Yi → Cη,ε(y) is a homeomorphism, for i = 1, . . . , u. Thus, for
each i = 1, . . . , u, there is a unique γi : (0, ε)→ Yi such that π(γi(t)) = ty

for all t ∈ (0, ε). We define for each i = 1, . . . , u, γ̃i : [0, ε) → β−1
N (Yi)

given by γ̃i(s) = lim
t→s+

β−1
N ◦ γi(t), for all s ∈ [0, ε).

We remark that γ̃i(0) = lim
t→0+

γ̃i(t) ∈ {y1, . . . , yp} for all i = 1, . . . , u

and thus u ≤
p∑
j=1

kY (yj). Shrinking η, if necessary, we can suppose that

each CYi contains at most one yj . Thus for fixed yj and if γ : [0, δ)→ Y

is a subanalytic curve such that lim
t→0+

β−1
N ◦ γ(t) = yj , then there exists

δ0 > 0 such that π(γ(t)) ∈ Cη,ε(y), for all 0 < t < δ0. So, there is
i ∈ {1, . . . , u} such that γ(t) ∈ Yi, with 0 < t < δ0. Then γ̃i(0) = yj and

we obtain the equality u =
p∑
j=1

kY (yj).

Let C1, . . . , Cr be the connected components of Smp(∂Y ′). By Re-
mark 2.11, we know that kY is constant in each Ci and thus if yj , yj′ ∈ Ci,
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then kY (yj) = kY (yj′). Since π′−1(y) ∩ CY = π′−1(y) ∩ Smp(∂Y ′) =
{y1, . . . , yp}, we have

u =

p∑
j=1

kY (yj) =
∑
i∈Λ

kY (Ci) ·#(π′−1(y) ∩ Ci),

where Λ = {i ∈ {1, . . . , r}; π′−1(y) ∩ Ci 6= ∅}. Therefore, we obtain

u =

r∑
i=1

kY (Ci) ·#(π′−1(y) ∩ Ci).

However,
r∑
i=1

kY (Ci) · #(π′−1(y) ∩ Ci) ≡ #(π′−1(y) ∩ C ′Y ) mod 2 and

u ≡ m(Y ) mod 2, then

m(Y ) ≡ #(π′−1(y) ∩ C ′Y ) mod 2,

for a generic y ∈ Sd−1, which shows that ϕπ,C′
Y

(y) = #(π′−1(y) ∩ C ′Y )

mod 2 is constant for a generic point y ∈ Sd−1 and thus mπ(C ′Y ) is
defined and satisfies mπ(C ′Y ) ≡ m(Y ) mod 2.

Then we obtain that mπ(C ′Y ) does not depend on a generic π, since
m(Y ) does not depend on a generic π. Similarly, we obtain that mπ̄(C ′A)
does not depend on a generic projection π̄ and mπ̄(C ′A) ≡ m(A) mod 2.
Thus we write m(C ′Y ) (resp. m(C ′A)) instead of mπ(C ′Y ) (resp. mπ̄(C ′A)).

Let L̃ ∈ E(YC ∪ AC) ∩ GNN−d(C) and let π̃ := πL̃ : CN → L̃⊥ be the

orthogonal projection over L̃. Let π̃′ : SN−1 \ L̃→ Sd−1 given by π̃′(u) =
π̃(u)
‖π̃(u)‖ as in Definition 2.16. Then, for a generic y ∈ Sd−1, we obtain the

following:

m(Y ) ≡ m(C ′Y ) mod 2 (by Claim 3.1.3)

≡ #(π̃′−1(y) ∩ C ′Y ) mod 2 (by the definition of m(C ′Y ))

≡ #(π̃′−1(y) ∩ C ′A) mod 2 (since C ′Y = C ′A)

≡ m(C ′A) mod 2 (by the definition of m(C ′A))

≡ m(A) mod 2 (by Claim 3.1.3),

which finishes the proof.

As consequences, we obtain the following.

Corollary 3.2. Let X,Y ⊂ RN be two real analytic sets containing 0.
If there exists a homeomorphism ϕ : (RN , X, 0)→ (RN , Y, 0) such that ϕ
and ϕ−1 have a derivative at the origin, then m(X) ≡ m(Y ) mod 2.
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Proof: Since ϕ and ϕ−1 have a derivative at 0, we have that Dϕ0 : RN →
RN is an isomorphism and by Theorem 3.1, m(X) ≡ m(Y ) mod 2.

Definition 3.3. Let X ⊂ Rn and Y ⊂ Rm be closed subsets. We say
that a continuous mapping f : X → Y is differentiable at x ∈ X, if there
exist an open U ⊂ Rn and a continuous mapping F : U → Rm such that
x ∈ U , F |X∩U = f |X∩U , and F has a derivative at x.

Corollary 3.4. Let X ⊂Rm and Y ⊂Rn be two real analytic sets con-
taining 0. If there exists a homeomorphism φ : (X, 0)→ (Y, 0) such that
φ and φ−1 are differentiable at 0, then m(X) ≡ m(Y ) mod 2.

Proof: By hypothesis there are closed representatives A and B respec-
tively of (X, 0) and (Y, 0) and a homeomorphism φ : A → B such that

φ(0) = 0, and φ and φ−1 have a derivative at 0. Let φ̃ : Rm → Rn (resp.

ψ̃ : Rn → Rm) be a continuous extension of φ (resp. φ−1), which has a de-
rivative at 0 ∈ Rm (resp. 0 ∈ Rn). Then the mapping ϕ : Rm+n → Rm+n

given by

ϕ(x, y) = (x− ψ̃(y + φ̃(x)), y + φ̃(x))

is a homeomorphism such that ϕ(A×{0}) = {0}×B, its inverse is given
by

ϕ−1(z, w) = (z + ψ̃(w), w − φ̃(z + ψ̃(w))),

and both have a derivative at 0 ∈ Rm+n.
Since m(A×{0}) = m(A) = m(X) and m({0}×B) = m(B) = m(Y ),

by Corollary 3.2, we obtain m(X) ≡ m(Y ) mod 2.

Let us make some remarks on Theorem 3.1. Firstly, the assumption
that Dϕ0 is an isomorphism cannot be removed, as is shown in the next
example.

Example 3.5. Let X={(x, y) ∈ R2; y3 =x2} and Y ={(x, y) ∈ R2; y =
0}. Then ϕ : (R2, X, 0) → (R2, Y, 0) given by ϕ(x, y) = (x, y3 − x2) is a
homeomorphism, which has a derivative at the origin, but Dϕ0 is not
an isomorphism. In this case, m(X) = 2 and m(Y ) = 1.

Secondly, we cannot expect equality (without modulus 2), as is shown
in the next example.

Example 3.6. Let V ={(x, y, z)∈R3; z3 =x5y + xy5}. Then the map-

ping ϕ : R3 → R3 given by ϕ(x, y, z) = (x, y, z − (x5y + xy5)
1
3 ) is a

homeomorphism which has a derivative at the origin and its inverse also
has a derivative at the origin. Moreover, ϕ(V ) = R2×{0}, but m(V ) = 3
and m(R2 × {0}) = 1.



Differential Invariance of the Multiplicity 365

We finish this section by presenting an example of a mapping which
has a derivative at the origin and is a homeomorphism between two
analytic sets, but its inverse does not have a derivative at the origin.

Example 3.7. The mapping ϕ : R2 → R2 given by

ϕ(x, y) =


(
x, y + 2y2 sin

1

y

)
, y 6= 0,

(x, 0), y = 0

has a derivative at the origin, Dϕ0 = id: R2 → R2 and ϕ|R×{0} : R ×
{0} → R × {0} is a homeomorphism, but it does not have an inverse
which has a derivative at the origin.

4. A generalization of the Gau–Lipman theorem

In this section we present a complex version of Theorem 3.1, which is
a generalization of the Gau–Lipman theorem.

Theorem 4.1. Let X,Y ⊂ CN be two complex analytic sets with 0 ∈ X∩
Y . Assume that there exists a mapping ϕ : (CN , 0) → (CN , 0) such that
ϕ|X : (X, 0) → (Y, 0) is a homeomorphism. If ϕ has a derivative at the
origin (as a mapping from (R2N , 0) to (R2N , 0)) and Dϕ0 : R2N → R2N

is an isomorphism, then m(X, 0) = m(Y, 0).

Proof: By using that φ := Dϕ0 : R2N → R2N is an R-linear isomor-
phism, we obtain that φ maps bijectively the irreducible components
of C(X, 0) over the irreducible components of C(Y, 0) (see Lemma A.8
in [6] or Proposition 2 in [11]) and the mapping ϕ′ : X ′ → Y ′ given by

ϕ′(x, t) =


(

ϕ(tx)

‖ϕ(tx)‖
, ‖ϕ(tx)‖

)
, t 6= 0,(

φ(x)
‖φ(x)‖ , 0

)
, t = 0

is a homeomorphism. Let X1, . . . , Xr and Y1, . . . , Yr be the irreducible
components of C(X, 0) and C(Y, 0), respectively, such that Yj = φ(Xj),
j = 1, . . . , r. Thus, by proceeding as in the proof of Claim 3.1.2, we
obtain kX(Xj) = kY (Yj) for all j = 1, . . . , r.

Fix j ∈ {1, . . . , r} and regard Xj and Yj as real algebraic sets in
R2N ∼= CN . Since φ is an R-linear isomorphism, then its complexifica-
tion φC : C2N → C2N is a C-linear isomorphism such that φC(XjC) =
YjC. By Proposition 2.9 in [4], XjC (resp. YjC) is complex analytic dif-
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feomorphic to Xj × cN (Xj) (resp. Yj × cN (Yj)), where cN : CN → CN is
the conjugation mapping given by cN (z1, . . . , zN ) = (z1, . . . , zN ). Then,

m(XjC, 0) = m(Xj × cN (Xj), 0) = m(Yj × cN (Yj), 0) = m(YjC, 0),

since the multiplicity is invariant by complex analytic diffeomorphisms
(see [1, Section 11, p. 120, Proposition]). However, cN (Xj) and cN (Yj)
are complex analytic sets satisfying m(cN (Xj), 0) = m(Xj , 0) and
m(cN (Yj), 0) = m(Yj , 0), then we obtain m(Xj×cN (Xj), 0) = m(Xj , 0)2

and m(Yj × cN (Yj), 0) = m(Yj , 0)2, so we obtain m(Xj , 0) = m(Yj , 0),
for all j ∈ {1, . . . , r}.

By Remark 2.14,

m(X, 0) =

r∑
j=1

kX(Xj) ·m(Xj , 0)

and

m(Y, 0) =

r∑
j=1

kY (Yj) ·m(Yj , 0).

Therefore, m(X, 0) = m(Y, 0).

It is clear that as a consequence of Theorem 4.1, we obtain the Gau–
Lipman theorem. The next example shows that Theorem 4.1 is really a
generalization of the Gau–Lipman theorem.

Example 4.2. Let X = {(x, y) ∈ C2; y4− 2x3y2− 4x5y+ x6− x7 = 0}
and X̃ = {(x, y) ∈ C2; y4 − 2x3y2 − 4x6y + x6 − x9 = 0}. The mapping
Φ: (C, 0)→ (X, 0) given by Φ(t) = (t4, t6 + t7) is a Puiseux parametriza-
tion of X and there exists a complex analytic function φ : (C, 0)→ (C, 0)

such that ord0(φ) > 9 and the mapping Φ̃ : (C, 0) → (X̃, 0) given by

Φ̃(t) = (t4, t6+t9+φ(t)) is a Puiseux parametrization of X̃. Let f : R→ R
be the function given by

f(s) =


s+ 2s2 sin

1

s
, s 6= 0,

0, s = 0,

and ϕ : (C2, 0)→ (C2, 0) be the mapping given by

ϕ(x, y)=


Φ̃(t), if (x, y)=Φ(t) for some t∈C,(
x, f

(
y + y

2

)
+if

(
y − y

2

))
, if (x, y) 6=Φ(t) for any t∈C.

Thus ϕ has a derivative at the origin, Dϕ0 = id: R4 → R4 and ϕ|X :

(X, 0) → (X̃, 0) is a homeomorphism. Moreover, since X and X̃ have
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different Puiseux pairs, there is no homeomorphism h : (C2, 0)→ (C2, 0)

such that h(X) = X̃.
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Departamento de Matemática, Universidade Federal do Ceará, Rua Campus do

Pici, s/n, Bloco 914, Pici 60440-900, Fortaleza-CE, Brazil
E-mail address: edsonsampaio@mat.ufc.br

Received on June 15, 2020.

Accepted on September 25, 2020.

http://dx.doi.org/10.1007/s00454-009-9205-z
http://dx.doi.org/10.1090/s0002-9904-1971-12729-5

	1. Introduction
	2. Preliminaries
	2.1. Multiplicity and relative multiplicities

	3. Proof of the real version of the Gau–Lipman theorem
	4. A generalization of the Gau–Lipman theorem
	Acknowledgements

	References

