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1. Introduction

Convex projective manifolds form an interesting class of aspherical
manifolds, including complete hyperbolic manifolds. We refer to [10, 48,
20] and [51] for surveys on convex projective manifolds and hyperbolic
4-manifolds, respectively. This class of geometric manifolds has been
studied notably in the context of deformations of geometric structures on
manifolds or orbifolds (see the survey [20] and the references therein), or
for its link to dynamical systems through the notion of Anosov represen-
tation [7, 30, 29] (see [43, 38] for the notion of Anosov representation).

A convex projective n-manifold is the quotient Ω/Γ of a properly con-
vex1 domain Ω in the real projective space RPn by a subgroup Γ of the
projective linear group PGLn+1 R acting freely and properly discontin-
uously on Ω. A convex projective n-orbifold is defined similarly without
requiring the action of Γ to be free. If Ω is endowed with its Hilbert met-
ric, then Γ acts on Ω by isometry, and the manifold (or orbifold) Ω/Γ

inherits a complete Finsler metric (see [63] for an introduction to Hilbert
geometry). In the case where Ω is an open ellipsoid, it is isometric to the
hyperbolic space Hn,2 and the quotient Ω/Γ is a complete hyperbolic

1A subset Ω of RPn is properly convex if its closure Ω is contained and convex in
some affine chart.
2This is in fact the projective model of the hyperbolic space, also known as the

Beltrami–Cayley–Klein model.
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manifold (or orbifold). A complete hyperbolic manifold is cusped if it is
non-compact and of finite volume. A convex projective (resp. complete
hyperbolic) structure on a manifold M is a diffeomorphism between M
and a convex projective (resp. hyperbolic) manifold Ω/Γ.

The goal of this paper is to prove the following:

Theorem A. There exists a closed orientable convex projective 4-mani-
fold X containing ten disjoint totally geodesic 2-tori Σ = T1t· · ·tT10 ⊂
X such that:

(1) The complement M = X r Σ admits a complete finite-volume hy-
perbolic structure.

(2) The Euler characteristic of X (and of M) is 12.
(3) The hyperbolic manifold M has a maximal cusp section in which

each filling curve has length 6.
(4) The fundamental group π1X is relatively hyperbolic with respect

to the collection of rank-2 abelian subgroups {π1Ti, π1T
′
i}i, where

{T ′1, . . . , T ′10} is another collection of disjoint, totally geodesic, 2-
tori such that each Ti is transverse to each T ′j.

(5) The hyperbolic structure σ0 on M and the convex projective struc-
ture σ2π on X arise as limits of an analytic path θ 7→ σθ of pro-
jective cone-manifold structures on X, singular along Σ with cone
angle θ ∈ (0, 2π).

(6) For each integer m > 1, the structure σ2π/m is the underlying cone-
manifold structure of a convex projective orbifold Ωm/Γm . For m >
2, the group Γm is relatively hyperbolic with respect to the collection
of rank-2 abelian subgroups {π1Ti}i.

We refer the reader to Remark 2.2 for the meaning of totally geodesic
submanifold in the real projective setting and to Subsection 2.5 for the
definition of relative hyperbolicity and some facts about it.

Note that the manifold X does not admit a hyperbolic structure be-
cause π1X contains Z2 (the tori Ti and T ′i are indeed π1-injective). The
hyperbolic manifold M has ten cusps, each with section diffeomorphic
to the 3-torus. A filling curve is a closed geodesic in a cusp section of M
(with respect to the induced flat metric) that bounds a disc in X.

Cone-manifolds and Dehn filling. Projective cone-manifolds are sin-
gular projective manifolds generalising the more familiar hyperbolic cone-
manifolds (see Definition 2.1). The convex projective 4-manifold X of
Theorem A is obtained from the cusped hyperbolic 4-manifold M by
“projective Dehn filling”. This is in analogy with Thurston’s hyperbolic
Dehn filling [61], where θ 7→ σθ is a path of hyperbolic cone-manifold
structures on a 3-manifold X, singular along a link Σ ⊂ X. In both
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hyperbolic and projective cases, as the cone angle θ approaches 2π, the
projective cone-manifold structure becomes non-singular, and we get a
convex projective structure on X. At the other extreme of the path, as
θ tends to 0, the singular locus Σ is drilled away, giving rise to the cusps
of the hyperbolic manifold M .

The projective cone-manifold structures σθ of Theorem A are singu-
lar along the tori Σ, and induce (non-singular) projective structures3

on both M = X r Σ and Σ. The path θ 7→ σθ is analytic, meaning
that for each θ ∈ (0, 2π) it is possible to choose a holonomy representa-
tion ρθ ∈ Hom(π1M,PGL5 R) of the projective structure σθ|M so that
the function θ 7→ ρθ(γ) is analytic for all γ ∈ π1M . Each torus Ti ⊂ Σ
has a meridian γi ∈ π1M whose holonomy ρθ(γi) ∈ PGL5 R is conjugate
to a (projective) rotation of angle θ. In addition, the sequence of repre-
sentations {ρ2π/m}m converges algebraically to ρ0 as m → ∞, and the

sequence of convex sets {Ωm}m converges to H4 ⊂ RP4 in the Hausdorff
topology.4

New features of the result. Theorem A is shown by an explicit con-
struction. Since the convex projective manifold X has non-zero Euler
characteristic, it is indecomposable5 (see Fact 2.15). It seems that, at
the time of writing this paper, the literature misses concrete examples
of closed indecomposable convex projective n-manifolds, n > 4, which
do not admit a hyperbolic structure. For the moment, we know only two
techniques to obtain such manifolds:

(1) torsion-free subgroups of some discrete projective reflection groups
using Vinberg’s theory [65], as shown by Benoist [8, 9] and Choi
and the first two authors [21, 22];

(2) some Gromov–Thurston manifolds, as shown by Kapovich [40].

In contrast with Theorem A, the Selberg lemma has an important
role to guarantee the existence of such manifolds in all these cases. In
particular, very little is known about the topology of closed convex pro-
jective manifolds. Note that the techniques involved in the construction
of our X are in the spirit of (1) rather than (2).

Remark 1.1. There is a clear distinction between the manifolds con-
structed in [9, 40] and the ones in [8, 21, 22], including our X: the
fundamental groups of the former are Gromov-hyperbolic, but those of
the latter are not.

3A (real) projective structure on an n-manifold is a (PGLn+1 R,RPn)-structure.
4These additional facts can be proved as in [21, §12].
5A properly convex domain Ω of RPn is indecomposable if it is not a convex hull of
lower-dimensional domains. A convex projective manifold or orbifold Ω/Γ is indecom-

posable if Ω is indecomposable.
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The Euler characteristic of a closed even-dimensional manifold can be
seen as a rough measure of its topological complexity. Note that a well-
known conjecture states that closed aspherical 4-manifolds have Euler
characteristic χ > 0, and this is certainly true in the hyperbolic case
by the Gauß–Bonnet theorem. Our manifold X has χ(X) = 12, and
appears to be the closed orientable indecomposable convex projective
4-manifold with the smallest known Euler characteristic (to the best of
our knowledge). In the hyperbolic case, the smallest known value of χ
is 16 [23, 46].6

Theorem A is an effective version, in dimension 4, of a result by
Choi and the first two authors [21, Theorem B]. Let us first recall their
construction, called “convex projective generalised Dehn filling”. They
build a sequence of discrete projective reflection groups {Γm}m>m0

of
PGLn+1 R, each acting cocompactly on a properly convex domain Ωm ⊂
RPn of dimension n = 4, 5, or 6, whose limit as m → ∞ is a discrete
hyperbolic reflection group Γ∞ < Isom(Hn) of finite covolume. A fun-
damental domain of the group Γm is a compact Coxeter polytope Pm
in Ωm whose combinatorics does not depend on m. The hyperbolic Cox-
eter polytope P∞, instead, is combinatorially obtained from Pm by sub-
stituting a ridge with an ideal vertex. In other words, the cusp of the
hyperbolic orbifold Hn/Γ∞ is “projectively filled”. By applying a re-
fined version of Selberg’s lemma to Γ∞, they get a statement similar to
Theorem A(6). The difference is that X = Ωm0/Γ′m0

is “only” an orb-

ifold (where Γ′m0
is a finite-index subgroup of Γm0

). To promote X to
a manifold, one should then apply the Selberg lemma again, this time
to Γ′m0

. Thus, our improvement is twofold: we found an X with small
Euler characteristic, and a continuous (rather than discrete) family of
cone-manifolds.

Another interesting feature of X is the relative hyperbolicity of π1X.
Indeed, Gromov and Thurston ([12, 2])7 have shown that the fundamen-
tal group of a Dehn filling of a hyperbolic manifold with torus cusps is
relatively hyperbolic with respect to the subgroups associated with the
inserted tori, provided that the filling curves are longer than 2π.8 The

6Similarly to the orientable hyperbolic 4-manifolds that one gets from [23, 46], our
manifold X is built as the orientable double cover of a non-orientable convex projec-

tive manifold. So the smallest known value of χ for a closed indecomposable convex

projective (resp. hyperbolic) 4-manifold is currently 6 (resp. 8).
7A proof of the Gromov–Thurston 2π theorem was given by Bleiler and Hodgson [12]
in the context of 3-manifolds, and the same proof holds in any dimension, as explained

in [2, Section 2.1].
8See also [56, 37, 32] for the geometric group theoretic generalisation of that

statement.
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fundamental group of X is not relatively hyperbolic with respect to the
subgroups associated with the inserted tori by Theorem A(4) (see Sub-
section 2.5).9 There is no contradiction between the Gromov–Thurston
2π theorem and Theorem A(3) because 2π > 6.

Divisible convex domains. Recall that a properly convex domain Ω
of RPn is divisible (by Γ) if there exists a discrete subgroup Γ of PGLn+1R
acting cocompactly on Ω. A theorem of Benoist ([7]) implies that the
indecomposable divisible convex domains Ωm ⊂ RP4 of Theorem A(6)
are not strictly convex10 because the groups Γm of Theorem A(6) are
not Gromov-hyperbolic.

Currently there are very few known constructions of inhomogeneous
indecomposable divisible non-strictly convex domains. For a complete
historical account, we refer the reader to the introduction of [21]. Here
we mention only its essentials.

The first construction of such domains is due to Benoist [8], and
has been extended in [47, 4, 22]. In those constructions the compact
quotient Ω/Γ is homeomorphic to the union along the boundaries of
finitely many submanifolds, each admitting a complete finite-volume hy-
perbolic structure in its interior. As a result, if Ω is of dimension n, then
Γ is relatively hyperbolic with respect to a collection of virtually abelian
subgroups of rank n− 1.

In [21], a different construction of inhomogeneous indecomposable
divisible non-strictly convex domains is given by convex projective gen-
eralised Dehn filling. In contrast with the previous examples, these are
relatively hyperbolic with respect to a collection of virtually abelian sub-
groups of rank n − 2. The divisible (by Γm) domains Ωm ⊂ RP4 of
Theorem A(6) are new examples of this kind.

We point out that at the time of writing there is no example of inho-
mogeneous indecomposable divisible non-strictly convex domain of di-
mension n, for any n > 9.

We stress that such domains, to all appearances, are linked to the
geometrisation problem, i.e. putting a (G,X)-structure on a manifold.
So far, almost all manifolds geometrised through this process are either
obtained by gluing cusped hyperbolic manifolds, or by Dehn filling of
a cusped hyperbolic manifold. Here, the goal is to do so with a small
manifold and using cone-manifolds. It is especially important that we do
not use Selberg’s lemma.

9It is relatively hyperbolic with respect to a larger family of abelian groups.
10A subset Ω of RPn is strictly convex if it is properly convex and its boundary does
not contain any non-trivial projective line segment.
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Dehn fillings of hyperbolic manifolds. Let us say that a closed
manifold X is a filling of a manifold M if there exists a codimension-2
submanifold Σ ⊂ X such that the complement X r Σ is diffeomorphic
to M . Note that the manifold M is diffeomorphic to the interior of
a compact manifold M whose boundary ∂M fibres in circles over Σ.
Given M as above, we obtain a filling by attaching to M the total space
of a D2-bundle E → Σ through a diffeomorphism ∂M → ∂E. This
operation is commonly called a Dehn filling of M . Any cusped hyperbolic
manifold M has a finite covering M ′ with torus cusps (see e.g. [54,
Theorem 3.1]). In other words, ∂M ′ consists of (n − 1)-tori. Typically
the manifold M ′ has infinitely many fillings up to diffeomorphism.

Thurston’s hyperbolic Dehn filling theorem states that every filling of
a cusped hyperbolic 3-manifold with torus cusps, except for finitely many
fillings on each cusp, admits a hyperbolic structure. In dimension n > 4,
except for finitely many fillings on each cusp, the fundamental group of
a filling of a cusped hyperbolic n-manifold is relatively hyperbolic with
respect to a collection of subgroups virtually isomorphic to Zn−2, by [56,
Theorem 1.1]. Since n > 4, those groups contain Z2 and so those fillings
do not admit any hyperbolic structure. The geometry of the remaining
fillings is rather unpredictable, but it is expected that they also do not
carry a hyperbolic structure. But Theorem A(1) and [21, Theorem B]
show that some fillings of some cusped hyperbolic n-manifolds admit a
convex projective structure. This leads to the following:

Question 1.2. Which filling of a cusped hyperbolic manifold of dimen-
sion n > 4 (with torus cusps) admits a convex projective structure?

It is worth mentioning that almost all fillings of any cusped hyper-
bolic manifold with torus cusps admit a complete Riemannian metric
of non-positive sectional curvature by the Gromov–Thurston 2π the-
orem [12, 2], and an Einstein metric of negative scalar curvature by
work of Anderson [2] and Bamler [3]. Both, in some sense, extend
Thurston’s 3-dimensional theorem to higher dimension (compare also
with [59, 32, 33]). But those theorems cannot be applied to the mani-
fold X of Theorem A, since the filling curves are too short.

Let us also note that there is an opportune version of hyperbolic Dehn
filling in dimension 4: one can sometimes fill some cusps of a hyperbolic
4-manifold and get another cusped hyperbolic 4-manifold, at the expense
of drilling some totally geodesic surfaces [52, 45].

Projective flexibility. Thurston’s hyperbolic Dehn filling theorem es-
sentially relies on the flexibility of the complete hyperbolic structure of
cusped hyperbolic 3-manifolds. The local rigidity theorem of Garland
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and Raghunathan [34] (see also [11]), on the other hand, says that the
holonomy representation ρ of any cusped hyperbolic manifold M of di-
mension n > 4 has a neighbourhood in Hom(π1M, Isom(Hn)) consisting
of conjugates of ρ. Now, Theorem A(5) shows that the hyperbolic struc-
ture σ0 on the 4-manifold M is projectively flexible, i.e. the conjugacy
class of the holonomy representation ρ0 of σ0

[ρ0] ∈ Hom(π1M,PGL5 R)
/

PGL5 R

is not an isolated point. To avoid confusion with the terminology, we
mention that in this definition of flexibility there is no restriction on the
holonomy of the peripheral subgroups of π1M . For instance, all cusped
hyperbolic 3-manifolds are projectively flexible by the hyperbolic Dehn
filling theorem. It is thus natural to ask the following question, which is
a priori different from Question 1.2.

Question 1.3. Which cusped hyperbolic 4-manifold is projectively flex-
ible? Is every cusped hyperbolic 4-manifold finitely covered by a projec-
tively flexible one? 11

We note that some cusped hyperbolic 4-orbifolds, for example the
Coxeter pyramid [6, 3, 3, 3,∞], are not projectively flexible [65, Propo-
sition 20].

6 ∞

Figure 1. The Coxeter diagram of the pyramid [6, 3, 3, 3,∞] (see
Subsection 2.3 for the basic terminology on Coxeter groups). The

associated cusped hyperbolic 4-orbifold is projectively rigid.

On the proof. As already said, the proof of Theorem A is constructive.
We begin with the ideal hyperbolic rectified 4-simplex R ⊂ H4, which
is a Coxeter polytope. By applying the techniques introduced in [21],
we perform a “convex projective generalised Dehn filling” on R: the hy-
perbolic structure on the orbifold R is deformed to projective structures
which extend to “mirror polytope” structures (see Subsection 2.2) on the
bitruncated 4-simplex Q (see Subsection 2.6). Note that Q minus some
ridges is stratum-preserving homeomorphic to R. This will be translated
into the fact that X minus some tori is homeomorphic to M .

We build the hyperbolic manifold M as an orbifold covering of R, by
exploiting a construction by Kolpakov and Slavich [42]. By lifting the
deformation from R to M , we get the path θ 7→ σθ. The manifold X
covers a Coxeter orbifold based on the bitruncated 4-simplex Q.

11Similar considerations were made by Cooper, Long, and Thistlethwaite [25] for

closed hyperbolic 3-manifolds.
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Since there exist cusped orientable hyperbolic 4-manifolds M0 tes-
sellated by copies of R with χ(M0) < 12 [42, 60, 58, 41], one could
wonder why a smaller convex projective manifold X should not be built
by Dehn filling such an M0. A first obstruction is topological: a cusp
section of those M0 does not always fibre in circles. Even when all cusp
sections of such an M0 do fibre in circles, M0 does not cover R but cov-
ers the quotient of R by its symmetry group. The latter is the Coxeter
pyramid [6, 3, 3, 3,∞] [58, Lemma 2.2], which is projectively rigid, so our
technique does not apply in these cases.

Structure of the paper. In Section 2 we introduce some basic con-
cepts of projective cone-manifolds, mirror polytopes, and the truncation
process of the 4-simplex, and in Section 3 we prove Theorem A.
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2. Preliminaries

In this section we introduce some preliminary notions and fix some
notation.

2.1. Projective cone-manifolds. Riemannian (G,X) cone-manifolds
were introduced by Thurston [62] (see also [53]). If the geometry (G,X)
locally embeds in real projective geometry (PGLn+1 R,RPn) (such as the
constant-curvature geometries), a (G,X) cone-manifold can be thought
of as a projective cone-manifold. Hyperbolic cone-manifolds of dimen-
sion 3 appear in the proofs of Thurston’s hyperbolic Dehn filling the-
orem [61] (see also [50, Chapter 15]) and of the orbifold theorem [24,
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13]. Projective cone-manifolds were introduced by Danciger [27, 28]
in the context of geometric transition from hyperbolic to anti-de Sitter
3-dimensional structures. Quite recently, some higher-dimensional cone-
manifolds have been used, in particular, in dimension 4: for hyperbolic
Dehn filling or degeneration [52, 45], and in the projective context of
AdS-hyperbolic transition [57].

We now define projective cone-manifolds “with cone angles along
link singularities”. Our definition is in the spirit of Barbot–Bonsante–
Schlenker [5].

Let Sn = (Rn+1 r {0})/R>0
be the projective sphere and Ŝ : Rn+1 r

{0} → Sn the canonical projection. For every subset U of Rn+1, let S(U)

denote Ŝ(U r {0}). With a little abuse of notation, we embed the pro-
jective spheres Sn−2 and S1 into Sn, n > 2, as follows:

Sn−2 = S({(x1, . . . , xn−1, 0, 0)}) ⊂ Sn and

S1 = S({(0, . . . , 0, xn, xn+1)}) ⊂ Sn.

Given an open subset U ⊂ S1, we define

Sn−2 ∗ U =
⋃

p∈Sn−2

⋃
q∈U

[p,−p]q ⊂ Sn,

where [p,−p]q ⊂ Sn denotes the half circle containing q with endpoints p
and its antipode −p. For example, Sn−2 ∗ S1 = Sn.

A projective circle is a closed connected (SL2 R,S1)-manifold. Let C
be a projective circle. We may think of C as

C =
(∐
α∈A

Uα

)/
∼

for a collection {Uα}α∈A of open subsets of S1, a collection {Uαβ}α,β∈A
of open subsets Uαβ ⊂ Uα, a collection {gαβ}α,β∈A of diffeomorphisms
gαβ : Uαβ → Uβα which are restrictions of elements of SL2 R, and the
relation x ∼ gαβ(x) for all x ∈ Uαβ .

We now add the extra requirement that C = Cθ is an elliptic circle, i.e.
that the holonomy representation ρ of Cθ sends a generator γ of π1Cθ to

an elliptic element ρ(γ) ∈ SL2 R. Going on to the universal covering S̃1

of S1 and the covering group S̃L2 R of SL2 R which acts on S̃1, we lift ρ

to a representation ρ̃ : π1Cθ → S̃L2 R. To the element ρ̃(γ) ∈ S̃L2 R we
naturally associate a unique real number θ > 0 which characterises the
elliptic circle Cθ. Note that ρ(γ) is conjugate to

(
cos θ − sin θ
sin θ cos θ

)
(see [35,

Section 5.4]).
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By extending gαβ ∈ SL2 R to ĝαβ =
(

Id 0
0 gαβ

)
∈ SLn+1 R (thus fixing

Sn−2 ⊂ Sn pointwise), we can define

Sn−2 ∗ Cθ =
(∐
α∈A

Sn−2 ∗ Uα
)/
∼

with the relation x ∼ ĝαβ(x) for all x ∈ Sn−2 ∗ Uαβ .
This space will be the local model for our cone-manifolds. By canon-

ically embedding Sn−2 and Cθ into Sn−2 ∗ Cθ, we have that the cou-
ple (Sn−2 ∗ Cθ,Sn−2) is homeomorphic to (Sn,Sn−2). Moreover, the
sphere Sn−2 ∗ Cθ is stratified in two projective manifolds:

• the singular locus Sn−2, and
• the regular locus (Sn−2 ∗ Cθ) r Sn−2.

The holonomy of a meridian12 of the singular locus in the regular locus
is the holonomy of a generator of π1Cθ.

Definition 2.1. Let X be an n-manifold and Σ ⊂ X a codimension-2
submanifold. A projective cone-manifold structure onX, singular along Σ
with cone angles, is an atlas for X, each chart of which has values in
some Sn−2 ∗ Cθ and sends the points of Σ to the singular locus Sn−2,
and whose transition functions restrict to isomorphisms of projective
manifolds on each stratum.

The regular locus of the cone-manifold X is the complement X r Σ,
while Σ is the singular locus. Both are (non-singular) projective man-
ifolds. To each connected component Σi of Σ we associate a cone an-
gle θi > 0.

Remark 2.2. A projective cone-manifold X with all cone angles θ = 2π
is simply a projective manifold with a totally geodesic codimension-2
submanifold Σ ⊂ X. Here, by totally geodesic we mean that the preimage
of Σ under the universal covering of X is locally mapped to codimension-
2 projective subspaces of Sn. If moreover X is a convex projective (and
so Finsler) manifold, then Σ is totally geodesic in the usual sense.

2.2. Mirror polytopes. We now introduce the main objects for our
proof of Theorem A: mirror polytopes. Roughly speaking, a mirror poly-
tope is a polytope in the projective sphere, together with a choice of
a projective reflection along each of the supporting hyperplanes of the
facets (satisfying some extra conditions). We refer to [21, 65] for further
details.

12Let N be a manifold and S ⊂ N a connected submanifold of codimension 2. We

call a meridian of S an element γ ∈ π1(N r S) that is represented by a curve which
is freely homotopic in N r S to the boundary of a fibre of a tubular neighbourhood

of S in N .
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A subset P of Sn is convex if there exists a convex cone13 U of Rn+1

such that P = S(U), and moreover a convex subset P is properly convex
if its closure P does not contain a pair of antipodal points. A projective
n-polytope is a properly convex subset P of Sn such that P has a non-
empty interior and

P =

N⋂
i=1

S({v ∈ Rn+1 | αi(v) 6 0}),

where αi, i = 1, . . . , N , are linear forms on Rn+1. We always assume
that the set of linear forms is minimal, i.e. none of the half-spaces S({v ∈
Rn+1 | αi(v) 6 0}) contains the intersection of all the others, hence the
polytope P has N facets. A facet (resp. ridge) of a polytope is a face of
codimension 1 (resp. 2).

A projective reflection is an element of SL±n+1 R of order 2 which is
the identity on a projective hyperplane. Each projective reflection σ can
be written as:

σ = Id−α⊗ b, in other words σ(v) = v − α(v)b ∀v ∈ Rn+1,

where α is a linear form on Rn+1 and b is a vector in Rn+1 such that
α(b) = 2. The projective hyperplane S(ker(α)) is called the support of σ.
A projective rotation is an element of SLn+1 R which is the identity on
a subspace H ⊂ Rn+1 of codimension 2 and whose induced linear map
from Rn+1/H to itself is conjugate to a matrix

(
cos θ − sin θ
sin θ cos θ

)
with 0 <

θ < 2π. The real number θ is called the angle of rotation.

Definition 2.3. A mirror polytope is a pair consisting of a projective
polytope P of Sn and a finite collection of projective reflections {σs =
Id−αs ⊗ bs}s∈S with αs(bs) = 2 such that:

• The index set S consists of all the facets of P .
• For each facet s ∈ S, the support of σs is the supporting hyperplane

of s.
• For every pair of distinct facets s, t of P , αs(bt) and αt(bs) are

either both negative or both zero.

Remark 2.4. The third item of Definition 2.3 may seem a bit awkward at
first glance. In fact, [65, Proposition 6] shows that the third item holds
when the group Γ generated by {σs}s∈S satisfies the condition:

γ Int(P ) ∩ Int(P ) = ∅, ∀γ ∈ Γ r {Id},
where Int(P ) denotes the interior of P .

13By a cone we mean a subset of Rn+1 which is invariant under multiplication by
positive scalars.
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Note that the reflections σs of P determine the couples {(αs, bs)}s∈S
up to αs 7→ λsαs and bs 7→ λ−1

s bs for λs > 0, because P is defined
by αi 6 0. Moreover, αs(bt)αt(bs) = 4 cos2 θ for some θ ∈ (0, π/2] if and
only if the product σsσt is a rotation of angle 2θ. The dihedral angle of a
ridge s∩ t of a mirror polytope is θ if σsσt is a rotation of angle 2θ, and
0 otherwise. A Coxeter polytope is a mirror polytope whose dihedral
angles are submultiples of π, i.e. each dihedral angle is π/m for some
integer m > 2 or m =∞.

For any number N ∈ N, we set JNK := {1, . . . , N}. An N × N ma-
trix A = (Aij)i,j∈JNK is Cartan if: (i) Aii = 2 for all i ∈ JNK, (ii) Aij 6 0
for all i 6= j, and (iii) Aij = 0⇔ Aji = 0 for all i 6= j. A Cartan matrix A
is irreducible if it is not the direct sum of smaller matrices (after any re-
ordering of the indices). Every Cartan matrix A is obviously the direct
sum of irreducible Cartan matrices A′1⊕· · ·⊕A′k. Each irreducible Cartan
matrix A′i, i = 1, . . . , k, is called a component of A. If x = (x1, . . . , xN )
and y = (y1, . . . , yN ) ∈ RN , we write x > y if xi > yi for all i ∈ JNK,
and x > y if xi > yi for all i ∈ JNK.

Proposition 2.5 (Vinberg [65, Theorem 3]). If A is an irreducible
Cartan matrix of size N ×N , then exactly one of the following holds:

(P) (i) The matrix A is non-singular, and (ii) for every x ∈ RN , if
Ax > 0, then x > 0 or x = 0.

(Z) (i) The rank of A is N − 1, (ii) there exists a vector y ∈ RN such
that y > 0 and Ay = 0, and (iii) for every x ∈ RN , if Ax > 0,
then Ax = 0.

(N) (i) There exists a vector y ∈ RN such that y > 0 and Ay < 0, and
(ii) for every x ∈ RN , if Ax > 0 and x > 0, then x = 0.

We say that A is of positive, zero, or negative type if (P), (Z), or (N)
holds, respectively.

A Cartan matrix A is of positive (resp. zero) type if every compo-
nent of A is of positive (resp. zero) type. The Cartan matrix of a mirror
polytope P is the matrix AP = (αs(bt))s,t∈S . Note that the Cartan ma-
trix of P is well defined up to conjugation by a positive diagonal matrix
because the reflections σs of P determine the couples {(αs, bs)}s∈S up
to αs 7→ λsαs and bs 7→ λ−1

s bs for λs > 0. Two Cartan matrices A and B
are equivalent if A = DBD−1 for some positive diagonal matrix D. We
will make essential use of the following:

Theorem 2.6 ([65, Corollary 1]). Let A be a Cartan matrix of size N×
N . If A is irreducible, of negative type, and of rank n + 1, then there
exists a mirror polytope P of Sn with N facets (unique up to the action
of SL±n+1 R) such that AP = A.
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Remark 2.7. Theorem 2.6 is not explicitly stated in [65, Corollary 1]
for non-Coxeter polytopes, but it follows from Propositions 13 and 15
of [65] that the consequent Corollary 1 of [65] is valid not only for
Coxeter polytopes, but also for mirror polytopes.

To understand the combinatorics14 of a mirror polytope P with
facets {s}s∈S , we introduce the poset σ(P ) ⊂ 2S partially ordered by
inclusion, which is dual15 to the face poset of P :

σ(P ) := {T ⊂ S | T = σ(f) for some face f of P},
where σ(f) := {s ∈ S | f ⊂ s}. For any subset T ⊂ S, we denote by AT
the restriction of the Cartan matrix AP of P to T × T .

Theorem 2.8 ([65, Theorems 4 and 7]). Let P be a mirror n-polytope
with facets {s}s∈S and with irreducible Cartan matrix AP of negative
type. Let T be a proper subset of S (i.e. T 6= ∅, S). Then:

(1) If AT is of positive type and ]T = k, then T ∈ σ(P ) and its
corresponding face ∩s∈T s is of dimension n− k.

(2) If AT is of zero type and of rank n − 1, then T ∈ σ(P ) and the
face ∩s∈T s is of dimension 0, i.e. a vertex of P .

Remark 2.9. Theorem 2.8 is not explicitly stated in [65, Theorems 4
and 7], but it is obtained by applying [65, Theorem 4] as in the proof
of [65, Theorem 7].

Remark 2.10. Theorem 2.8(1) tells us that for any mirror polytope P
with facets {s}s∈S and reflections {σs=Id−αs⊗bs}s∈S , if αs(bt)αt(bs) <
4, then the intersection s∩ t is a face of codimension 2, i.e. a ridge of P .

2.3. Coxeter groups. A Coxeter matrix M = (Mst)s,t∈S on a finite
set S is a symmetric matrix with the entries Mst ∈ {1, 2, . . . ,m, . . . ,∞}
such that the diagonal entries Mss = 1 and the others Mst 6= 1. To
any Coxeter matrix M = (Mst)s,t∈S we associate a Coxeter group WS,M

given by a presentation 〈S | (st)Mst = 1 for Mst 6= ∞〉. We denote the
Coxeter group WS,M also simply by W , WS , or WM . The rank of WS

is the cardinality ]S of S.
The Coxeter diagram of WS,M is a labelled graph GW such that:

(i) the set of nodes (i.e. vertices) of GW is the set S, (ii) two nodes s, t ∈ S
are connected by an edge st of GW if and only ifMst ∈ {3, . . . ,m, . . . ,∞},
and (iii) the edge st is labelled by Mst if and only if Mst > 3. A Coxeter
group W is irreducible if the Coxeter diagram GW is connected.

14The combinatorics (or face poset) of a polytope is the poset of its faces partially
ordered by inclusion.
15Two posets P1 and P2 are dual to each other provided there exists an order-

reversing isomorphism between P1 and P2.
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An irreducible Coxeter group W is spherical (resp. affine) if it is fi-
nite (resp. infinite and virtually abelian). For a Coxeter group W (not
necessarily irreducible), each connected component of the Coxeter dia-
gram GW corresponds to a Coxeter group, called a component of W . A
Coxeter group W is spherical (resp. affine) if each component of W is
spherical (resp. affine). We sometimes refer to Appendix A for the list
of all the irreducible spherical and irreducible affine Coxeter diagrams.

For each T ⊂ S, the subgroup W ′ of W generated by T is called a
standard subgroup of W . It is well known that W ′ identifies with the
Coxeter group WT,MT

, where MT is the restriction of M to T × T . A
subset T ⊂ S is said to be “something” if the Coxeter group WT is
“something”. For example, the word “something” can be replaced by
“spherical”, “affine”, and so on. Two subsets T,U ⊂ S are orthogonal if
Mtu = 2 for every t ∈ T and every u ∈ U . This relationship is denoted
by T ⊥ U .

2.4. Coxeter polytopes. Recall that a Coxeter polytope is a mirror
polytope whose dihedral angles are submultiples of π, i.e. each dihedral
angle is π/m for some integer m > 2 or m =∞.

Let P be a Coxeter polytope with the set of facets S and the set of
reflections {σs = Id−αs ⊗ bs}s∈S . The Coxeter group WP of P is the
Coxeter group WS,M associated with a Coxeter matrix M = (Mst)s,t∈S
satisfying that Mst = mst if αs(bt)αt(bs) = 4 cos2(π/mst) and Mst =∞
if αs(bt)αt(bs) > 4. For a proper face f of P (i.e. f 6= ∅, P ), we write
σ(f) = {s ∈ S | f ⊂ s} and Wf := Wσ(f).

Theorem 2.11 (Tits [14, Chapter V] for Tits simplex, and Vin-
berg [65]). Let P be a Coxeter polytope of Sn with Coxeter group WP and
let ΓP be the subgroup of SL±n+1 R generated by the reflections {σs}s∈S.
Then:

(1) The homomorphism σ : WP → ΓP ⊂ SL±n+1 R defined by σ(s) = σs
is an isomorphism.

(2) The ΓP -orbit of P is a convex subset CP of Sn, and γ Int(P ) ∩
Int(P ) = ∅ for all non-trivial γ ∈ ΓP .

(3) The group ΓP acts properly discontinuously on the interior ΩP
of CP .

(4) An open proper face f of P lies in ΩP if and only if the Coxeter
group Wf is spherical.

Theorem 2.11 tells us that ΩP is a convex domain of Sn, and that if ΩP
is properly convex then ΩP /ΓP is a convex projective Coxeter orbifold.

2.5. Relative hyperbolicity. Let Y be a proper Gromov-hyperbolic
space (see e.g. [39, Section 2] for a quick review and [16, Part III.3] for
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details on Gromov-hyperbolic spaces). We recall that for every isome-
try γ of Y exactly one of the following holds:

(1) γ fixes a point of Y .
(2) γ fixes exactly one point of the Gromov boundary ∂Y of Y .
(3) γ fixes two points of ∂Y .

We say that γ is parabolic (resp. hyperbolic) if (2) (resp. (3)) holds. Let
Γ be a subgroup of isometries of Y that acts properly discontinuously.
A subgroup of Γ is parabolic if it is infinite and contains no hyperbolic
element. A parabolic subgroup fixes a unique point of ∂Y , called a par-
abolic point. The stabiliser of a parabolic point is a maximal parabolic
subgroup.

Relative hyperbolicity has many equivalent definitions, see e.g. [39,
Section 3]. We recall one of them, named cusp uniform action. A group Γ
is relatively hyperbolic with respect to a collection P of subgroups if there
exist a proper Gromov-hyperbolic metric space Y and a properly dis-
continuous effective action of Γ on Y by isometry such that:

• the collection P is a set of representatives of the conjugacy classes
of maximal parabolic subgroups of Γ,
• there exists a Γ-equivariant collectionH of disjoint open horoballs16

centered at the parabolic points of Γ,
• the action of Γ on Y rU is cocompact, where U denotes the union

of the horoballs in H.

For example, the fundamental group of a cusped hyperbolic n-mani-
fold (or n-orbifold) is relatively hyperbolic with respect to its cusp sub-
groups, which are virtually Zn−1 [15, 31].

For k > 2, any Zk-subgroup Λ of a relatively hyperbolic group Γ
with respect to a collection P of subgroups must lie in a conjugate of
a subgroup P ∈ P. Indeed, the centraliser of a hyperbolic element in a
discrete subgroup of isometries of Y is virtually Z. Thus Λ must contain
a parabolic isometry δ with a unique fixed point p ∈ ∂Y , and any other
element γ ∈ Λ also has to fix p since it commutes with δ. So Λ lies in
the stabiliser of p.

In particular, the fundamental group π1X of Theorem A, which is
relatively hyperbolic with respect to the collection P = {π1Ti, π1T

′
i}i

of rank-2 abelian subgroups, is not relatively hyperbolic with respect to
any proper subcollection of P.

We end this section by giving a criterion to determine when a Coxeter
group is relatively hyperbolic with respect to a collection of standard
subgroups. We will use this criterion in Subsection 3.2.

16We refer to [39, Section 2] for the notion of horoballs in Gromov-hyperbolic space.
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Theorem 2.12 (Moussong [55] and Caprace [18, 19]). Let WS be
a Coxeter group, and let T be a collection of subsets of S. Then the
group WS is relatively hyperbolic with respect to {WT | T ∈ T } if and
only if the following hold:

(1) For every irreducible affine subset U ⊂ S of rank > 3, there exists
T ∈ T such that U ⊂ T .

(2) For every pair of irreducible non-spherical subsets S1, S2 of S with
S1 ⊥ S2, there exists T ∈ T such that S1 ∪ S2 ⊂ T .

(3) For every pair T, T ′ ∈ T with T 6= T ′, the intersection T ∩ T ′ is
spherical.

(4) For every T ∈ T and every irreducible non-spherical subset U ⊂ T ,
we have U⊥ ⊂ T , where U⊥ := {s ∈ S | s ⊥ U}.

2.6. Operation on a simplex. Here we introduce three uniform17

Euclidean 4-polytopes via truncation, rectification, and bitruncation of
the 4-simplex.

Roughly speaking, by truncation, rectification, and bitruncation of
a regular polytope P ⊂ Rn we mean cutting P uniformly at every
vertex with a hyperplane orthogonal to the line joining the vertex to
the barycentre. This operation is nicely described in Coxeter’s classic
book [26, Section 8.1]. For example, a truncated (resp. rectified, resp. bi-
truncated) 3-simplex is a truncated tetrahedron (resp. an octahedron,
resp. a truncated tetrahedron) in Figure 2. Combinatorially, by collaps-
ing some ridges of the bitruncated P to vertices, one gets the rectified P .

Figure 2. The truncated (left), rectified (middle), and bitrun-

cated (right) 3-simplex.

17A polytope P of dimension n > 3 (in the Euclidean space) is uniform if it is a vertex-
transitive polytope with uniform facets. A uniform polygon is a regular polygon. By
vertex-transitive we mean that the symmetry group of P acts transitively on the set

of vertices of P .
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We now explain this operation in detail for the 4-simplex. Consider
a regular 4-simplex ∆ ⊂ R4 with barycentre at the origin and ver-
tice v1, . . . , v5. We denote by Fi the facet of ∆ opposite to vi and
by Hi the closed half-space containing the origin with Fi ⊂ ∂Hi. Then
∆ = H1 ∩ · · · ∩H5.

Let c := |vi| and fix a positive parameter s 6 c. We denote by H ′i
the closed half-space (depending on s) containing the origin such that
∂H ′i is orthogonal to vi and s

cvi ∈ ∂H
′
i, and we set

Qs = H1 ∩ · · · ∩H5 ∩H ′1 ∩ · · · ∩H ′5.

Note that Qc = ∆ is the original simplex. There exist some numbers
0 < a < b < c such that the combinatorics of the 4-polytope Qs is
constant for s in (a, b) and (b, c), and changes at s = a, b, and c. The
polytope Qs (depicted in Figure 3) is called:

• a truncated 4-simplex for s ∈ (b, c),
• a rectified 4-simplex for s = b,
• a bitruncated 4-simplex for s ∈ (a, b).

Figure 3. The Schlegel diagrams of the truncated (left), rectified

(middle), and bitruncated (right) 4-simplex. The facets F ′
i are

coloured darker than Fi (cf. Table 1 below).

The rectified simplex Qb is in fact the convex hull of the midpoints of
the edges of the regular simplex ∆ = Qc, while Qa is another rectified
simplex. For all s ∈ [a, c], the polytope Qs is uniform.

2.7. The combinatorics of the rectified and bitruncated 4-sim-
plices. We describe the combinatorics of Qs for s ∈ (a, b].

The link of a vertex of the rectified (resp. bitruncated) 4-simplex is
a triangular prism (resp. a tetrahedron) as in Figure 4. Each vertex
of Qs is the intersection of facets F ′i1 ∩ F

′
i2
∩ Fi3 ∩ Fi4 ∩ Fi5 for all

distinct i1, . . . , i5 (resp. F ′i1 ∩ F
′
i2
∩ Fi3 ∩ Fi4 for all distinct i1, . . . , i4),

where Fi and F ′i denote the facets of Qs whose supporting hyperplanes
are ∂Hi and ∂H ′i, respectively. The ten facets of Qs are divided into
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five octahedra (resp. truncated tetrahedra) Fi ⊂ ∂Hi, and five tetrahedra
(resp. truncated tetrahedra) F ′i ⊂ ∂H ′i. For all i 6= j, the ridge Fi ∩ Fj
is a triangle, F ′i ∩F ′j is a vertex (resp. triangle), and Fi ∩F ′j is a triangle
(resp. hexagon), while Fi ∩ F ′i = ∅ (see Table 1).

Truncated 4-simplex Rectified 4-simplex Bitruncated 4-simplex

Fi Truncated tetrahedron Octahedron Truncated tetrahedron
F ′
j Tetrahedron Tetrahedron Truncated tetrahedron

Fi ∩ Fj Hexagon Triangle Triangle
Fi ∩ F ′

i ∅ ∅ ∅
Fi ∩ F ′

j Triangle Triangle Hexagon
F ′
i ∩ F ′

j ∅ Vertex Triangle

Table 1. Some information on the faces of the truncated, recti-

fied and bitruncated 4-simplex. The symbols i, j are two distinct

indices in {1, . . . , 5}.

i′1

i′2

i4i3i5 i′1 i′2

i3

i4

Figure 4. The vertex link of the rectified (left) and bitruncated

(right) 4-simplex Qs. A facet of the link labelled by i (resp. i′)
corresponds to the facet Fi (resp. F ′

i ) of the 4-polytope Qs.

The following is a simple observation, but it will be useful later to
prove Theorem A (more precisely, Proposition 3.1).

Lemma 2.13. Let Qs be the rectified or bitruncated 4-simplex for s ∈
(a, b]. Relabel each facet F ′i of Qs with Fi′ , and let S :={1′, . . . , 5′,1, . . . , 5}.

(1) In the case where Qs is the rectified 4-simplex, i.e. s=b, each vertex
of Qs corresponds to a subset {i′, j′, k, l,m}⊂S with ]{i, j, k, l,m}=
5 and each edge of Qs corresponds to a subset {i′, j, k} ⊂ S with
]{i, j, k} = 3.

(2) In the case where Qs is the bitruncated 4-simplex, i.e. a < s < b,
each vertex of Qs corresponds to a subset {i′, j′, k, l} ⊂ S with
]{i, j, k, l} = 4.

2.8. The ideal hyperbolic rectified 4-simplex. Every vertex-tran-
sitive polytope Q ⊂ Rn can be realised as an ideal hyperbolic n-polytope,
obtained by interpreting the ball in which Q is inscribed as a projective
model of the hyperbolic n-space Hn. What is nice about the rectified
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simplex of dimension n 6 4 is that its regular ideal hyperbolic realisa-
tion R ⊂ Hn is a Coxeter polytope.18 For instance, the polytope R of
dimension 3 is a right-angled hyperbolic octahedron.

Let R ⊂ H4 be the ideal rectified 4-simplex. The facets of R are regular
ideal Coxeter 3-polytopes: five right-angled octahedra Fi and five π/3-
angled tetrahedra F ′i . The horospherical link of any (ideal) vertex of R
is a Euclidean right triangular prism with equilateral bases (see the left
of Figure 4). Thus, for all i 6= j the dihedral angle at a ridge Fi ∩ Fj
(resp. Fi ∩ F ′j) is π/3 (resp. π/2), while F ′i and F ′j are parallel, i.e. the
facet F ′i is tangent to F ′j at infinity.
Remark 2.14. The bitruncated 4-simplex is “combinatorially” a “filling”
of the ideal rectified 4-simplex in the sense that the latter is obtained
from the former by collapsing each triangular ridge F ′i ∩ F ′j for i 6= j to
a point and removing it. We call such triangles the filling ridges of the
bitruncated 4-simplex.

2.9. Decomposability and Euler characteristics. We conclude the
section with a remark on convex projective manifolds that has proba-
bly been noticed by many experts on the subject, but whose explicit
statement seems to be missing in the literature. This remark is a simple
consequence of works of Vey, Benoist, and Gottlieb.

Fact 2.15. If a convex projective manifold Ω/Γ is decomposable, then
χ(Ω/Γ) = 0.

Proof: Assume by contradiction that Ω/Γ is decomposable but χ(Ω/Γ) 6=
0. By a theorem of Gottlieb [36, Corollary IV.3], the fundamental group
of a finite, aspherical polyhedron with non-zero Euler characteristic has
trivial centre. But since Ω/Γ is decomposable, by Proposition 4.4 of
Benoist [6] (see also [64]), the centre of Γ contains a non-trivial free
abelian subgroup.

In particular, since χ(X) 6= 0, the convex projective manifold X of
Theorem A is indecomposable.

3. The proof of Theorem A

In this section, we prove Theorem A. In Subsection 3.1, we perform
convex projective generalised Dehn filling on the ideal hyperbolic recti-
fied 4-simplex R ⊂ H4, and build mirror polytopes Pα combinatorially

18It is well known that the link of the regular ideal hyperbolic rectified n-simplex is
a Euclidean right simplicial (n − 1)-prism with regular (n − 2)-simplicial bases, and

the dihedral angle of the Euclidean regular (n− 2)-simplex is arccos(1/(n− 2)). The
latter is π/m for some integer m > 2 if and only if n 6 4. Hence, R is a Coxeter

polytope if and only if n 6 4.
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equivalent19 to the bitruncated 4-simplex. In Subsection 3.2, we show
that the Coxeter group Wp = WPπ/p of the Coxeter polytope Pπ/p is rel-
atively hyperbolic. In Subsections 3.3 and 3.4, we construct the cusped
hyperbolic 4-manifold M , by gluing some copies of R, and a filling X
of M , respectively. Finally, in Subsection 3.5, we give X a projective
cone-manifold structure induced by Pα, and finish the proof of Theo-
rem A.

3.1. Deforming the rectified 4-simplex. In this subsection, we ob-
tain a family of projective structures on the orbifold OR associated with
the ideal hyperbolic rectified 4-simplex R by deforming its original com-
plete hyperbolic structure.

Accordingly, the composition of two projective reflections along the
facets F ′i and F ′j of OR, i 6= j (recall the notation from Subsection 2.6),
will deform to be conjugate to a projective rotation of angle 2α > 0.
At the original hyperbolic structure on OR, the facets F ′i and F ′j are
parallel, i.e. α = 0. But, at the deformed projective structure on OR,
new ridges F ′i ∩ F ′j can be added to OR to form a mirror polytope Pα
that is combinatorially equivalent to a bitruncated 4-simplex, where α
is the dihedral angle of the ridge F ′i ∩ F ′j . So, the goal is to prove the
following:

Proposition 3.1. There exists a path (0, π/3] 3 α 7→ Pα of mirror
polytopes with the combinatorics of a bitruncated 4-simplex and dihedral
angles:

• α at the filling ridges F ′i ∩ F ′j,
• π/2 at the ridges Fi ∩ F ′j, and
• π/3 at the ridges Fi ∩ Fj.

Moreover, the limit P0 is the ideal hyperbolic rectified 4-simplex R.

Before proving Proposition 3.1, we begin with some auxiliary lemmas.
First, let

t3 =
1

2

(
11 + 9

√
2− 3

√
31 + 22

√
2

)
≈ 0.0422

and for t ∈ [t3, 1],

f(t)=
t(t+ 2)3(2t+ 1)3

(t2+t+1)2(t2+7t+1)2
, h(t)=2 +

1

t
+

t(t+ 2)4

(t2+t+1)(t2+7t+1)
,

gp(t)=
2tp(t+ 2)p(2t+ 1)3−p

(t2 + t+ 1)(t2 + 7t+ 1)
, and gp(t)=

4f(t)

gp(t)
,

19Two polytopes Q and Q′ are combinatorially equivalent if the face poset of Q is

isomorphic to the face poset of Q′.
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where p = 0, 1, 2, 3. The number t3 is the unique positive solution less
than 1 satisfying the equation f(t3) = 1/4 = cos2(π/3). Since t3 is
positive, it is easy to check:

Lemma 3.2. The functions f , h, gp, and gp : [t3, 1]→ R are well defined
and positive.

Given t ∈ [t3, 1], we now consider the matrix

Ct=



2 −g0(t) −g1(t) −g2(t) −g3(t) −h(t) 0 0 0 0

−g0(t) 2 −g0(t) −g1(t) −g2(t) 0 −h(t) 0 0 0

−g1(t) −g0(t) 2 −g0(t) −g1(t) 0 0 −h(t) 0 0

−g2(t) −g1(t) −g0(t) 2 −g0(t) 0 0 0 −h(t) 0

−g3(t) −g2(t) −g1(t) −g0(t) 2 0 0 0 0 −h(t)

−2 0 0 0 0 2 −1/t −1/t −1/t −1/t

0 −2 0 0 0 −t 2 −1/t −1/t −1/t

0 0 −2 0 0 −t −t 2 −1/t −1/t

0 0 0 −2 0 −t −t −t 2 −1/t

0 0 0 0 −2 −t −t −t −t 2



.

Lemma 3.3. For every t ∈ [t3, 1], the matrix Ct is an irreducible Cartan
matrix of negative type and of rank 5.

Proof: It easily follows from Lemma 3.2 that Ct is an irreducible Cartan
matrix. A simple but long computation shows that the rank of Ct is 5,
which is less than 9 = 10 − 1. Hence, the irreducible Cartan matrix Ct
is of negative type by Proposition 2.5.

Lemma 3.4. There exists a monotonically decreasing analytic func-
tion α : [t3, 1]→ R satisfying

cos2 α(t) = f(t), α(t3) =
π

3
, α(1) = 0.

t

f(t)

t3

1

1

3/4

1/2

1/4

1/4 1/2 3/4

Figure 5. The graph of f(t) over the interval [0, 1].
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Proof: The derivative f ′ of f satisfies:

f ′(t) = −2(t− 1)(t+ 1)(t+ 2)2(2t+ 1)2(t4 + 2t3 + 21t2 + 2t+ 1)

(t2 + t+ 1)3(t2 + 7t+ 1)3
.

Since f ′(t) is positive for all t ∈ [t3, 1) and is zero for t = 1, the func-
tion f : [t3, 1] → R is monotonically increasing with f(t3) = 1/4 and
f(1) = 1 (see Figure 5). The lemma now follows easily.

We are finally ready to prove Proposition 3.1 by applying Theo-
rems 2.6 and 2.8. Recall the combinatorics of the truncated, rectified,
and bitruncated 4-simplex, described in Table 1. See Figure 6 for a geo-
metric picture of the vertex link of the mirror polytope Pα.

i′1

i′2

i4i3i5 i′1 i′2

i3

i4

Figure 6. The vertex links of a mirror polytope are also mirror

polytopes. For Pα we have: (i) a right triangular prism with equi-

lateral bases for the (ideal) rectified 4-simplex P0 (left), and (ii) a
tetrahedron for the bitruncated 4-simplex Pα, α ∈

(
0, π

3

]
(right).

The edges of dihedral angle π/2 (resp. π/3, resp. α) are drawn in

black (resp. red, resp. green).

Proof of Proposition 3.1: Let us call and order the indices of Ct as S :=
{1′, . . . , 5′, 1, . . . , 5}. Lemmas 3.3 and 3.4 together with Theorem 2.6 im-
ply that there exists a path [0, π/3] 3 α 7→ Pα of mirror polytopes in S4

with facets {Fs}s∈S and with Cartan matrix Ct. The facet Fi′ of Pα
(i = 1, . . . , 5) is also denoted by F ′i .

We consider two cases separately: (i) α ∈ (0, π/3] and (ii) α = 0.

In case (i), equivalently, t∈ [t3,1), by Remark 2.10 (or Theorem 2.8(1)),
the intersections F ′i ∩ F ′j , Fi ∩ F ′j , and Fi ∩ Fj , i 6= j, are ridges of Pα
and their dihedral angles are α, π/2, and π/3, respectively, because for
example

(Ct)i′j′(Ct)j′i′ = gp(t)gp(t) = 4f(t) = 4 cos2 α < 4.

We now claim that Pα is combinatorially equivalent to the bitruncated
4-simplex. For every subset T = {i′, j′, k, l} ⊂ S with ]{i, j, k, l} = 4,
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the submatrix (Ct)T is the direct sum (Ct){i′,j′} ⊕ (Ct){k,l} of matrices

of positive type, hence {Fs}s∈T ∈ σ(Pα) 20 and ∩s∈TFs is a vertex of Pα
by Theorem 2.8(1).

That is, if V denotes the set of all subsets {F ′i , F ′j , Fk, Fl} with

]{i, j, k, l} = 4, then V ⊂ σ(Pα). Let Ŝ = {Fs}s∈S , and let F be the

subposet of 2Ŝ defined by:

F := {T̂ ′ ∈ 2Ŝ | T̂ ′ ⊂ T̂ for some T̂ ∈ V}.
As in the previous argument, Theorem 2.8(1) implies that F is a sub-

poset of σ(Pα). We know, in addition, from Lemma 2.13(2) and Figure 4
that the poset F is dual to the face poset of the bitruncated 4-simplex.
It is a well-known fact (e.g. [17, Exercise 1.1.20]) that if two polytopes Q
and Q′ are of the same dimension and the face poset of Q′ is a subposet
of the face poset of Q, then Q is combinatorially equivalent to Q′. As a
result, the polytope Pα is combinatorially equivalent to the bitruncated
4-simplex, as claimed.

In case (ii), equivalently, t = 1, we claim that P0 is combinatorially
equivalent to the rectified 4-simplex. For every subset U={i′, j′, k, l,m}⊂
S with ]{i, j, k, l,m}=5, the submatrix (C1)U is the direct sum (C1){i′,j′}⊕
(C1){k,l,m} of matrices of zero type and the rank of (C1)U is 3. Hence
{Fs}s∈U ∈ σ(P0) and ∩s∈UFs is a vertex of P0 by Theorem 2.8(2). Fur-
thermore, for every subset U ′ = {i′, j, k} ⊂ S with ]{i, j, k} = 3, the sub-
matrix (C1)U ′ is of positive type. Hence {Fs}s∈U ′ ∈ σ(P0) and ∩s∈U ′Fs is
an edge of P0 by Theorem 2.8(1). Then, as in the proof of case (i), using
Lemma 2.13(1) and Figure 4, we may conclude that the polytope P0 is
combinatorially equivalent to the rectified 4-simplex, as claimed. Finally,
a simple computation shows that the Cartan matrix C1 is equivalent to
a symmetric matrix of signature (4, 1), and therefore the polytope P0

(without vertices) may be identified with the ideal hyperbolic rectified
4-simplex R.

Remark 3.5. The symmetry group of the mirror polytope Pα, α ∈
[0, π/3], is of order > 5. For, if we set Q̂ =

(Q 0
0 Q

)
with

Q =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 ,

20See the end of Subsection 2.2 for the definition of the poset σ(P ).



392 G.-S. Lee, L. Marquis, S. Riolo

then Q̂ is a permutation matrix of order 5 and Q̂CtQ̂
−1 is equivalent

to Ct.

Remark 3.6. A (slightly more complicated) computation reveals that
the deformation space of projective structures on the orbifold OR asso-
ciated with the ideal hyperbolic rectified 4-simplex R is 6-dimensional.
In other words, one can find a 6-parameter family of Cartan matrices (of
rank 5) which correspond to projective structures on OR. But, we choose
a particular 1-parameter family of Cartan matrices having symmetry as
described in Remark 3.5 in order to simplify the computation.

We end the subsection with the following.

Corollary 3.7. For every integer p > 3, the mirror polytope Pπ/p is a

Coxeter polytope. Moreover, if Γp denotes the subgroup of SL±5 R gener-
ated by the associated reflections, then the Γp-orbit of Pπ/p is a properly

convex domain Ωp of S4, i.e. it is divisible by Γp.

Proof: It is obvious that the mirror polytope Pπ/p is a Coxeter polytope.
For any subset T = {i′, j′, k, l} ⊂ S with ]{i, j, k, l} = 4, the standard
subgroup WT of the Coxeter group WS of Pπ/p is isomorphic to Dp ×
D3, where Dm is the dihedral group of order 2m, hence it is a finite
group. In the proof of Proposition 3.1, we show that every vertex of Pπ/p
corresponds to a subset {i′, j′, k, l} ⊂ S with ]{i, j, k, l} = 4, so by
Theorem 2.11, the Γp-orbit of Pπ/p is a divisible convex domain of S4.

3.2. The Coxeter group Wp. The goal of this subsection is to show
that the Coxeter groupWp of Pπ/p is relatively hyperbolic with respect to
a collection of virtually abelian subgroups of rank 2. To do so, we need to
analyse the Coxeter diagram of Wp in Figure 7, and to use Theorem 2.12
together with the (complete) list of the irreducible spherical and affine
Coxeter groups in Appendix A.

The following collection of subsets of S = {1′, . . . , 5′, 1, . . . , 5} is de-
noted by Tp:
• In the case p>4, the collection Tp consists of all subsets {i′, j′, k, l,m}

of S with ]{i, j, k, l,m} = 5, so the cardinality of Tp, p > 4, is 10.
• In the case p=3, the collection T3 consists of all subsets {i′, j′, k, l,m}

and {i′, j′, k′, l,m} of S with ]{i, j, k, l,m} = 5, so the cardinality
of T3 is 20.

For each U ∈ Tp, the standard subgroup (Wp)U of Wp is isomorphic

to Ã2 × I2(p) (see Appendix A), hence it is virtually isomorphic to Z2.
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p

∞

∞∞
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1

1′

5′

4′ 3′

2′

5

4 3

2

Figure 7. The Coxeter diagram of the Coxeter group Wp of Pπ/p.

Proposition 3.8. The Coxeter group Wp is relatively hyperbolic with
respect to the collection of subgroups {(Wp)U | U ∈ Tp}, in particular, a
collection of virtually abelian subgroups of rank 2.

Proof: We only prove it for the case p = 3; the argument is similar
for other cases where p > 4. Thanks to Theorem 2.12, we just need to
carefully analyse the Coxeter diagram of Wp in Figure 7, using the list
of irreducible spherical and affine Coxeter groups in Appendix A.

First, condition (1) holds because all irreducible affine subsets U ⊂
S of rank > 3 are {i′, j′, k′} and {i, j, k} with ]{i, j, k} = 3. Second,
condition (2) holds because there does not exist a pair of irreducible non-
spherical subsets S1, S2 of S with S1 ⊥ S2. Third, condition (3) holds
because for every pair T, T ′ ∈ T3 with T 6= T ′ the intersection T ∩ T ′ is
a subset of {i′, j′, k, l} with ]{i, j, k, l} = 4. Finally, condition (4) holds
because for every T ∈ T3 there exists only one irreducible non-spherical
subset U ⊂ T , which is either {i′, j′, k′} or {i, j, k} with ]{i, j, k} = 3,
and T = U t U⊥.

Remark 3.9. The Coxeter group Wp of Pπ/p is in fact a finite-index

subgroup of the following Coxeter group Ŵp:
6 2p

It is easier to verify conditions (1)–(4) of Theorem 2.12 for the Coxeter

group Ŵp.
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3.3. The cusped hyperbolic manifold. In this subsection, we build
the cusped hyperbolic manifold M of Theorem A. Readers who are not
familiar with hyperbolic manifolds (with totally geodesic boundary) can
consult [50, Chapter 3].

1

1

1

2

2

2

3

3

3

4

4

4

5 5

5

Figure 8. The edge-labelled complete graph K6.

We first recall the construction of a building block B by Kolpakov
and Slavich [42]. Consider the complete graph K6 on six vertices with
its edges labelled by numbers in {1, . . . , 5} so that adjacent edges have
distinct labels (see Figure 8). For each vertex of K6, take a copy of the
ideal hyperbolic rectified 4-simplex R ⊂ H4, described in Subsection 2.8.
If two vertices of K6 are connected by an edge of label i ∈ {1, . . . , 5},
then we glue together the facets Fi of the two corresponding copies of R
using the identity as a gluing map.

Proposition 3.10 ([42, Section 3]). Let B be the building block con-
structed above.

• The space B is a non-orientable, complete, finite-volume hyperbolic
4-manifold with non-compact totally geodesic boundary.

• The boundary ∂B of B has exactly five connected components
∂1, . . . , ∂5, each tessellated by the facets F ′i of the copies of R in B.

• The hyperbolic manifold B has exactly ten cusps Cij, i < j ∈
{1, . . . , 5}. Each cusp section Sij is diffeomorphic to K × [0, 1],
where K denotes the Klein bottle. One boundary component of Sij
is contained in ∂i, and the other in ∂j.

Now, consider again the edge-labelled graph K6 in Figure 8. For each
vertex of K6, take a copy of B. If two vertices of K6 are joined by
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an edge of label i ∈ {1, . . . , 5}, then we glue together the boundary
components ∂i of the two corresponding copies of B using the identity
as a gluing map. Let us call M ′ the resulting cusped hyperbolic manifold
(without boundary), and M its orientable double cover.

Proposition 3.11. The orientable hyperbolic 4-manifold M has exactly
ten cusps, each with section diffeomorphic to the 3-torus.

Proof: We obtain the cusps of M ′ by gluing together the cusps of the
copies of B, and the gluing maps are induced by the identity. Hence, each
cusp section of M ′ must be diffeomorphic to K × S1. By construction,
for each pair i < j ∈ {1, . . . , 5}, the simple cycle (of length 6) in the
graph K6 with edges labelled alternately by i and j corresponds to a
cusp of M ′, thus M ′ has exactly ten cusps. Since the cusps of M ′ are
non-orientable, each cusp section of M is the orientable double covering
of a cusp section of M ′. In particular, M has precisely ten cusps, each
with 3-torus section.

Remark 3.12. The natural map M → OR is an orbifold covering of
degree 6 · 6 · 2 = 72, where OR denotes the orbifold associated with R.

3.4. Topology of the filling. In this subsection, we build the man-
ifold X of Theorem A topologically. The desired (singular) geometric
structures on X will be given in the next subsection.

Let Q ⊂ R4 be a bitruncated 4-simplex. We define X in the same
way as the manifold M (see Subsection 3.3), but substituting the ideal
rectified simplex R with the bitruncated simplex Q.

Proposition 3.13. The space X is a closed, orientable, smooth 4-mani-
fold, containing ten pairwise disjoint embedded 2-tori whose complement
is diffeomorphic to the cusped hyperbolic manifold M .

Proof: To prove that the polyhedral complex X is a smooth manifold,
it suffices to show that the link of each vertex is homeomorphic to the 3-
sphere. Recall that the polytope Q is vertex transitive. The vertex link L
of Q is the tetrahedron on the right in Figure 4.

When we glue the first six copies of Q to form B, for each vertex
of Q, six copies of L are glued cyclically around one edge, to form a
polyhedral complex L′ homeomorphic to the closed 3-disc D3. Thus,
B is a 4-manifold with boundary. Note that R is homeomorphic to the
complement Q r ∪i<jF ′j ∩ F ′j of the filling ridges; in particular, B is
non-orientable (recall Proposition 3.10). When we glue six copies of B
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to get X ′, for each vertex of the complex, six copies of L′ are glued
cyclically around a circle C ⊂ ∂L′. The resulting polyhedral complex is
clearly homeomorphic to the 3-sphere, so X ′ is a manifold. Its orienta-
tion cover X is thus a manifold.

Now, the cusped hyperbolic manifold M is diffeomorphic to the inte-
rior of a compact manifold M with boundary ∂M consisting of ten 3-tori
(recall Proposition 3.11). Let Σ ⊂ X be the union of the copies of the
filling ridges of Q. Clearly, M is diffeomorphic to XrΣ. Moreover, ∂M is
diffeomorphic to the boundary of a regular neighbourhood of Σ in X.
Thus, Σ consists of ten 2-tori.

We conclude the subsection with some additional information aboutX.

Remark 3.14. The 4-manifold X has Euler characteristic χ(X) = 12. In-
deed, OR has orbifold Euler characteristic χorb(OR) = 1/6 [42, Appen-
dix 1], and the covering M → OR has degree 72 (recall Remark 3.12), so
χ(M) = 12. Since χ(∂M) = 0 and χ(Σ) = 0, we have χ(X) = χ(M) =
12.

Remark 3.15. The manifold X is a filling of M , which has a maximal
cusp section S such that each filling curve in S has length 6. The reason is
that the maximal, and maximally symmetric, cusp section of OR consists
of ten Euclidean prisms, each with all edges of length 1 [42, Section 3.2].
Each of the filling curves of X is made of six copies of the height of these
prisms. Since 6 < 2π, one cannot apply directly the Gromov–Thurston
2π theorem to conclude, for instance, that X is aspherical. We will see
later that, being convex projective, X is in fact aspherical.

Remark 3.16. The 6 theorem, obtained independently by Agol [1] and
Lackenby [44], shows that a filling of a cusped hyperbolic 3-manifold
carries a hyperbolic structure as soon as the filling curves are of length
strictly greater than 6. This is thus an improvement of Gromov and
Thurston’s 2π theorem in dimension three. It is an open question
whether or not it is possible to generalise the 6 theorem to higher di-
mension as follows: “The fundamental group of a filling of a cusped
hyperbolic n-manifold is relatively hyperbolic with respect to the collec-
tion of subgroups associated with the inserted (n − 2)-submanifolds, as
soon as the filling curves are of length > 6.”

Note that in dimension n = 3 the bound of 6 is sharp, as shown by
Agol [1, Section 7]. Remark 3.15 shows that the same bound would be
sharp in dimension n = 4.
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3.5. Cone-manifold structures on the filling. We now conclude
the proof of Theorem A. Let Σ ⊂ X be the union of the copies of the
filling ridges F ′i ∩F ′j . We first show item (5), giving a path of projective
cone-manifold structures on X with the desired properties.

In Proposition 3.1, we built a path of mirror polytope struc-
tures

(
0, π3

]
3 α 7→ Pα on the bitruncated simplex Q. Since the man-

ifold X is built by pairing the facets of some copies of Q through the
map induced by the identity, for each α we have a well-defined projective
structure on the complement in X of the ridges of the copies of Q. In-
deed, the projective structures of the copies of Pαr∪(ridges) match well
via the projective reflections associated with the facets of Pα. We want
to show that this projective structure extends to a projective structure
on X r Σ, and on the whole X as projective cone-manifold structures
with cone angle θ = 6 · α along Σ.

The link L of a vertex of Pα is a mirror tetrahedron. Its non-right
dihedral angles are α and π

3 along its two opposite edges {i′1, i′2} and
{i3, i4}, respectively (see Figure 6-right). Recall Subsection 2.1 about
projective cone-manifolds. Some copies of L are glued together in X to
form a 3-sphere, which we now show to be the projective cone 3-mani-
fold S1 ∗ Cθ, where θ = 6 · α.

The manifoldX was built in three steps. At the first step (when gluing
six copies of Q to build the block B), six copies of L are glued cyclically
along its edge {i3, i4}. The resulting space L′ is the intersection of two
half-spaces of S3 with “dihedral angle”21 α. At the second step (when
gluing six copies of B to build X ′), six copies of L′ are glued cyclically
along its edge. Indeed, the cycle in the graph K6 with edges labelled
alternately by i1 and i2 has length 6. The resulting space is thus S1 ∗Cθ.
The third step is just the orientation double covering X → X ′, so the
local structure of X is the same as that of X ′.

The union of the copies of the filling ridge F ′i1 ∩ F
′
i2

of Q in X is a
component T of Σ (a 2-torus). The holonomy of a meridian of T in X
is (σ′i1σ

′
i2

)3, where σ′i is the projective reflection (depending on α) asso-
ciated with the facet F ′i of the mirror polytope Pα.

Since (X,Σ) is locally modelled on (S2 ∗Cθ,S2), we have a projective
cone structure σθ for each θ ∈ (0, 2π]. Since S2 ∗ C2π = S4, the projec-
tive structure σ2π is non-singular, and each component of Σ is totally
geodesic in X (see Remark 2.2). The associated path of projective cone-
manifold structures θ 7→ σθ on X is analytic because the path of Cartan
matrices t 7→ Ct is analytic.

21Since to each hyperplane we associate a reflection, it makes sense to talk about the

dihedral angle, even if L′ is not properly convex.
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We have shown item (5) of Theorem A. Clearly, item (1) follows from
Proposition 3.11. Item (2) is shown in Remark 3.14, and item (3) in
Remark 3.15.

Let us now fix an integer p > 3. By Corollary 3.7, the mirror poly-
tope Pπ/p is a convex projective orbifold. If moreover p = 3m (i.e.
θ = 2π/m), the natural map X → Pπ/p gives X a convex projective orb-
ifold structure Ωm/Γm with cone structure σ2π/m. We have thus shown
the first part of item (6).

Remark 3.17. We already know that the convex projective manifold X
is indecomposable. Another way to see this is as follows. Since X covers
the Coxeter polytope Pπ/3, and the Coxeter group W3 acts strongly

irreducibly on R5 because the Cartan matrix of Pπ/3 is indecomposable
and W3 is not virtually abelian (see e.g. [49, Theorem 2.18]), so does
Γ1
∼= π1(X).

Let T1, . . . , T10 be the components of Σ. Being totally geodesic for
each Ti, the natural map π1Ti → Γm induced by the inclusion Ti ⊂ X is
injective. For m > 2, the group Γm is relatively hyperbolic with respect
to {π1Ti}i. Indeed, by Proposition 3.8, the Coxeter group W3m, which
is the orbifold fundamental group of Pπ/3m, is relatively hyperbolic with
respect to the collection {(W3m)U | U ∈ T3m} which corresponds to the
fundamental groups of the T1, . . . , T10. The proof of item (6) is complete.

It remains to show item (4). For m = 1 (i.e. α = π/3 and θ =
2π) there is another collection of totally geodesic tori T ′1, . . . , T

′
10 tiled

by the ridges Fi ∩ Fj . Being totally geodesic, also T ′i is π1-injective.
This time, the group Γ1

∼= π1X is relatively hyperbolic with respect
to {π1Ti, π1T

′
i}i. Indeed, by Proposition 3.8, the Coxeter group W3,

which is the orbifold fundamental group of Pπ/3, is relatively hyperbolic
with respect to the collection {(W3)U | U ∈ T3} which corresponds to
the fundamental groups of the T1, . . . , T10 and T ′1, . . . , T

′
10. Finally, for

every T ∈ {T1, . . . , T10} and T ′ ∈ {T ′1, . . . , T ′10}, the tori T and T ′ are
transverse (sometimes T ∩ T ′ = ∅) in X, since the ridges F ′i ∩ F ′j and

Fk ∩F` are so in S4. Also, in the universal cover Ω, the lifts of T and T ′

are transverse.
The proof of Theorem A is complete.
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Appendix A. The spherical and affine Coxeter diagrams

For the reader’s convenience, we reproduce below the list of the irre-
ducible spherical and irreducible affine Coxeter diagrams.

An (n > 1)

Bn (n > 2) 4

Dn (n > 4)

I2(p) (p > 5)
p

H3
5

H4
5

F4
4

E6

E7

E8

Table 2. The irreducible
spherical Coxeter diagrams.

Ãn (n > 2)

B̃n (n > 3)
4

C̃n (n > 3)
4 4

D̃n (n > 4)

Ã1
∞

B̃2 = C̃2
4 4

G̃2
6

F̃4
4

Ẽ6

Ẽ7

Ẽ8

Table 3. The irreducible
affine Coxeter diagrams.
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