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Abstract: We study nearly holomorphic Siegel Eisenstein series of general levels

and characters on H2n, the Siegel upper half space of degree 2n. We prove that the

Fourier coefficients of these Eisenstein series (once suitably normalized) lie in the ring
of integers of Qp for all sufficiently large primes p. We also prove that the pullbacks

of these Eisenstein series to Hn × Hn are cuspidal under certain assumptions.

2010 Mathematics Subject Classification: Primary: 11F46; Secondary: 11F37,

11F70.

Key words: Siegel Eisenstein series, Siegel modular forms, pullback formula, nearly
holomorphic.

1. Introduction

Let Hn denote the Siegel upper half space of degree n on which the
group Sp2n(R) acts in the usual way. In the arithmetic and analytic
theory of L-functions attached to automorphic forms on GSp2n, a ma-
jor role is played by pullbacks (i.e., restrictions) of Siegel Eisenstein
series from H2n to Hn × Hn. The importance of such pullbacks has
been realized at least since the early 1980s, when a remarkable inte-
gral representation (the pullback formula) for the standard L-functions
attached to Siegel cusp forms was discovered by Garrett [13]. Subse-
quently, Shimura obtained a similar formula in a wide variety of con-
texts (including other groups). We refer to Shimura’s books [33, 34] for
further details. We note also that this method of obtaining integral rep-
resentations for L-functions using pullbacks of Eisenstein series may be
viewed as a special case of the “doubling method” of Piatetski–Shapiro
and Rallis [26, 15].

In the last three decades, the pullback formula has been used to prove
a host of results related to Siegel cusp forms and their L-functions. We
refer the reader to the introduction of our recent paper [27] for a more
detailed history. As explained in [27], most of the previous results in-
volved significant restrictions on the levels or archimedean parameters
of the Siegel cusp forms involved. To a large extent these were removed
in [27], where we obtained an explicit integral representation for the
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twisted standard L-function attached to a vector-valued Siegel cusp form
of arbitrary level and archimedean parameter. More precisely, for posi-
tive integers N , k, and a Dirichlet character χ mod N , define the Siegel
Eisenstein series
(1)

Eχk,N (Z, s; 1)=
∑

γ=[A B
C D ]∈(P4n(Q)∩Sp4n(Z))\Γ0,4n(N)

χ−1(det(A)) det(Im(γZ))sJ(γ, Z)−k.

Above, we have s ∈ C and Z ∈ H2n, P4n denotes the Siegel parabolic
subgroup of Sp4n, and Γ0,4n(N) denotes the Siegel congruence subgroup
of Sp4n(Z) of level N , consisting of matrices whose lower left block is
congruent to zero modulo N . The series (1) converges absolutely and
uniformly for Re(s) sufficiently large, and the function Eχk,N (Z, s; 1) is
defined by analytic continuation outside this region.

More generally, for each element h ∈ Sp4n(Ẑ), define Eχk,N (Z, s;h) :=

Eχk,N (Z, s; 1)
∣∣
k
h. Then, for a smooth modular form1 F of level N and

weight k on Hn associated with a particular choice of archimedean vector
inside an automorphic representation π of GSp2n(A), and for a certain

Qτ ∈ Sp4n(Ẑ), the main result of [27] was an identity of the form

(2)

∫
Γ2n(N)\Hn

Eχk,N

([
Z1

Z2

]
,
s+ n− k

2
;Qτ

)
F̄ (Z1) dZ1

≈ L(s, π � χ)

L(s+ n, χ)
∏n−1
j=0 L(2s+ 2r, χ2)

F (Z2),

where L(s, π � χ) is the degree 2n+ 1 L-function on GSp2n×GL1, the

element
[
Z1

Z2

]
of H2n is obtained from the diagonal embedding of Hn×

Hn, and the symbol ≈ indicates that the two sides are equal up to some
(well-understood) explicit factors.

The Siegel Eisenstein series Eχk,N (Z, s;h) on H2n defined above corre-

sponds to a special case of the degenerate Eisenstein series on GSp4n(A)
in the sense of Langlands and has been studied previously by many
authors, including Shimura [31, 33], Feit [12], Garrett [13, 14], Böche-
rer [5, 6], and Brown [9, 10]. It is a well-known fact, going back to
Shimura [31], that if either k > n+ 1, or k = n+ 1 and χ2 6= 1, then the
Eisenstein series Eχk,N (Z, 0;h) (i.e., at the special point s = 0) represents

a holomorphic Siegel modular form of weight k and degree 2n. (We note
here that this fact follows immediately in the range k ≥ 2n + 1, where
the series converges absolutely, but is more delicate for n+ 1 ≤ k ≤ 2n.)

1In general, the (scalar-valued) function F is not holomorphic, but it can be obtained

by applying suitable differential operators on a holomorphic (vector-valued) Siegel
cusp form of degree n.
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The goal of this paper is to better understand some key aspects of this
Eisenstein series at certain negative integer values s = −m0 for which
the Eisenstein series becomes a nearly holomorphic Siegel modular form.
We recall that a nearly holomorphic Siegel modular form of degree n is
a function on Hn that has the same definition as a holomorphic Siegel
modular form of degree n, except that we weaken the holomorphy condi-
tion to the condition of being a polynomial in the entries of Im(Z)−1 over
the ring of holomorphic functions. If 0 ≤ m0 ≤ k−n−1

2 is an integer, then
Eχk,N (Z,−m0;h) represents a nearly holomorphic Siegel modular form of

weight k and degree 2n (except in the special case χ2 = 1, m0 = k−n−1
2 ).

From the classical results of Feit and Shimura it follows (see [27,

Proposition 6.8]) that for each m0 as above, and each h ∈ Sp4n(Ẑ),
the Fourier coefficients of Eχk,N (Z,−m0;h) are algebraic numbers which

behave nicely under the action of Aut(C). This was an important ingre-
dient in our paper [27] for proving the expected algebraicity result for
the special values of L(s, π � χ) in the case of n = 2. Motivated by the
Bloch–Kato conjectures, we would like to prove more refined arithmetic
results on these special L-values. In order to achieve such results, the
following questions become crucial to answer:

1. Is the nearly holomorphic modular form Eχk,N
([
Z1

Z2

]
,−m0;Qτ

)
cuspidal in both variables Z1, Z2 when N > 1?

2. Can one say anything about the primes dividing the denominators
of the (algebraic) Fourier coefficients of Eχk,N (Z,−m0;h); in par-
ticular, can we prove that these coefficients are p-integral outside
a finite specified set of primes p?

A positive answer to the former question will allow us to write
Eχk,N

([
Z1

Z2

]
,−m0;Qτ

)
as an explicit bilinear sum over nearly holo-

morphic Siegel cusp forms that are Hecke eigenforms. Combining this
with a positive answer to the latter question will lead to new results on
congruences between Hecke eigenvalues of Siegel cusp forms, which will
open up many avenues for future exploration. We will discuss some of
these potential applications at the end of this introduction.

Previous work on the two questions posed above has been largely re-
stricted to the holomorphic case m0 = 0. For m0 = 0, Question 1 was
answered affirmatively by Garrett [14], which allowed him to deduce
important results on the arithmeticity of ratios of Petersson inner prod-
ucts associated with Siegel cusp forms. In the direction of Question 2, a
product formula for the Fourier coefficients of the Eisenstein series was
established by Shimura [33] and subsequently used by Brown [9, The-
orem 4.4] for the value m0 = 2n+1

2 − k (which is essentially equivalent
to m0 = 0 via the functional equation of the Eisenstein series) to give a
set of primes for which Question 2 has an affirmative answer (however,
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see Remark 4.2). Other results in the direction of Question 2 for m0 = 0,
i.e., giving p-integrality results for holomorphic Siegel Eisenstein series,
include the works of Böcherer [5], Böcherer–Schmidt [8], and Böcherer–
Dummigan–Schulze-Pillot [7].

So far, there appears to have been relatively little work on the above
two questions in the rest of the nearly holomorphic range, i.e., when 0 <
m0 ≤ k−n−1

2 , except in certain full level cases. To put the importance of
the nearly holomorphic range in context, we remark that the holomorphic
case m0 = 0 corresponds (via the pullback formula) to at most one
special L-value for the standard L-function. In contrast, the entire nearly
holomorphic range for m0 allows us to access all the special L-values
using (2).

In this paper we prove the following theorem, which gives an affirma-
tive answer to both questions posed above in a general setup.

Theorem 1.1. Let N be a positive integer. Let χ = ⊗χp be a finite
order character of Q×\A× whose conductor divides N . Let k be a positive

integer such that χ∞ = sgnk. For h ∈ Sp4n(Ẑ) and m0 ∈ Z, let

E(Z;h) := πn+n2−(2n+1)k+(2n+2)m0ΛN
(
k − 2m0

2

)
Eχk,N (Z,−m0;h),

where

(3) ΛN (s) := LN (2s, χ)

n∏
i=1

LN (4s− 2i, χ2)

and the notation LN in the L-functions for the Dirichlet characters
means that we exclude the local factors at primes dividing N or∞. Then
the following hold:

(i) Suppose that 0 ≤ m0 ≤ k−2n−2
2 is an integer and that N > 1. Then

the function E
([
Z1

Z2

]
;Qτ

)
is cuspidal in each variable Z1, Z2.

Here, τ ∈ Ẑ×, and Qτ is defined in (17).
(ii) Suppose that 0 ≤ m0 ≤ k−n−1

2 is an integer. If m0 = k−n−1
2 ,

assume further that χ2 6= 1. Let p - 2N be a prime such that
p ≥ 2k. Write out the usual Fourier expansion

E(Z;h) =
∑

S∈ 1
NM

sym
2n (Z)

S≥0

aE((2πY )−1;S;h)e2πi tr(SZ),

where aE(X;S;h) is a polynomial in the entries of the matrix X.
Then, for any choice of isomorphism Qp ' C, the coefficients of

the polynomial aE(−;S;h) lie in the ring of integers of Qp.
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Remark 1.2. In the case m0 = k−n−1
2 (which only occurs when k ≡ n+1

(mod 2)), Theorem 1.1 cannot handle the case χ2 = 1. This is due to the
fact that the normalization of the Eisenstein series corresponding to this
point involves the factor L(1, χ2) which has a pole when χ2 = 1. (This
can be seen directly from (39) in the case m0 = 0, k = n+ 1 by looking
at the Fourier coefficient b(h) when ρh = χ.) Consequently the required
arithmetic results for the Eisenstein series are unavailable in this case.
The restriction p ≥ 2k in Theorem 1.1 comes from the denominator
present for the action of a certain differential operator; see (70).

We now discuss further the significance of this result. Similar results
in the case m0 = 0 have been previously used by various authors to
show that primes dividing the denominators or numerators of certain
L-values are in fact congruence primes for certain lifted Siegel modular
forms. In this context, we note the papers of Brown [9, 10], Agarwal–
Brown [1], Katsurada [17, 18], Böcherer–Dummigan–Schulze-Pillot [7],
and Agarwal–Klosin [2], all of which obtain congruence primes for lifted
Siegel cusp forms to give evidence towards the Bloch–Kato conjecture for
appropriate L-functions. More generally, the method of using congruence
primes for lifts was inaugurated by Ribet’s famous proof of the converse
of Herbrand’s theorem. Following Wiles, Skinner–Urban, and others, this
idea has proved tremendously influential (e.g., for the main conjectures
of Iwasawa theory). In a slightly different direction, there is recent work
of Tobias Berger and Krzysztof Klosin [3] who have developed a new ap-
proach to proving non-trivial cases of the paramodular conjecture using
such congruences for paramodular Saito–Kurokawa lifts. We are cur-
rently working on a project to obtain a general result for congruence
primes for GSp4, extending the works mentioned above. Theorem 1.1
will be a key piece of this future generalization.

We now briefly explain the steps in our proof of Theorem 1.1. The
basic strategy for proving part (i) of the theorem, i.e., the cuspidality
of the pullback, goes back to Garrett [14]. The key point here is that
we assume N > 1, and translate the Eisenstein series by Qτ , which en-
sures that the pullback of the Eisenstein series unwinds to a sum over
exactly one double coset representative. (This step also requires us to as-
sume that the series defining Eχk,N (Z,−m0;Qτ ) is absolutely convergent,

which is why we need to assume m0 ≤ k−2n−2
2 .) To deduce cuspidality

from here, we show that the S-th Fourier coefficient of each term in the
resulting sum vanishes unless S is positive definite. For this, we reduce
the problem to the vanishing of a real integral, which we prove by a
direct computation; see Section 3 for details. This last step of ours is
quite different from the proof given by Garrett, who was able to directly
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use a computation of Siegel to show the vanishing of the integral; this is
no longer available in our setup.

Our proof of part (ii) of Theorem 1.1, i.e., the p-integrality of the
Fourier coefficients, proceeds via several steps. The first step, which is
the most involved part of the argument, is done in Section 4 and deals
with the case m0 = 0, h =

[
0 I2n
−I2n 0

]
. For this, we combine Shimura’s

work, which expresses a general Fourier coefficient as an explicit Euler
product of local Siegel series, explicit formulas [5, 19] for these local
Siegel series at bad primes, and classical facts on the p-integrality of
Bernoulli numbers. The second step, carried out in Subsection 4.5, ex-
tends this to general h via the powerful q-expansion principle (due to
Faltings–Chai [11] in this setting). As a final step (carried out in Sec-
tion 5), we deal with the case of general m0, using the Maass weight
raising differential operator, and results due to Panchishkin [25] and
Shimura [34]. We remark that these steps do not require us to assume
that the series defining Eχk,N (Z,−m0;h) is absolutely convergent, and

therefore, for part (ii) of Theorem 1.1, we can let m0 vary over the full
range of integers that produces a nearly holomorphic modular form.
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Notations. For a positive integer n, let G2n be the algebraic group
GSp2n, defined for any commutative ring R by

G2n(R)={g∈GL2n(R) : tgJng=µn(g)Jn, µn(g)∈R×}, Jn=
[

In
−In

]
,

where In is the n× n identity matrix. The symplectic group Sp2n con-
sists of those elements g ∈ G2n for which the multiplier µn(g) is 1. Let
Hn be the Siegel upper half space of degree n, consisting of all complex,
symmetric n × n matrices X + iY with X, Y real and Y positive defi-
nite. The group Sp2n(R) acts transitively on Hn in the usual way (see
Chapter I of [20]). For each n, we let I denote the element iIn ∈ Hn,
and for g = [A B

C D ] ∈ Sp2n(R), Z ∈ Hn, we let J(g, Z) = det(CZ +D).
For each discrete subgroup Γ of Sp2r(Q), let Nk(Γ) (resp. Nk(Γ)◦) be

the space of nearly holomorphic Siegel modular forms (resp. cusp forms)
of weight k for Γ. Similarly, we let Mk(Γ) (resp. Sk(Γ)) be the space of
holomorphic Siegel modular forms (resp. cusp forms) of weight k for Γ.
We let Γ2r(N) denote the principal congruence subgroup of level N .
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Given a subring R of C, we define the R-module Nk(Γ, R) to consist of
all the elements in Nk(Γ) whose Fourier coefficients lie in R. Specifically,
an element F ∈ Nk(Γ) has a Fourier expansion of the form

(4) F (Z) =
∑

S∈Msym
2r (Q)

S≥0

P ((2πY )−1;S)e2πi tr(SZ), Z = X + iY.

Then F belongs to Nk(Γ, R) if and only if the coefficients of all the
polynomials P (X,S) lie in R. We define Mk(Γ, R) = Nk(Γ, R)∩Mk(Γ).

We fix an embedding of Q in C. Given a prime p, we letOp ⊂ Q denote
the subring consisting of elements whose λ-adic valuation is non-negative
for any prime λ lying above p. Equivalently, an element x ∈ Q ⊂ C
belongs to Op if x lies in the ring of integers of Qp for every choice of

isomorphism Qp ' C. We say that x ∈ Q is p-integral if x belongs to Op.

2. Definition of the Eisenstein series

2.1. Preliminaries. Let A denote the ring of adeles of Q. Let P2n be
the Siegel parabolic subgroup of G2n, consisting of matrices whose lower
left n×n-block is zero. Let N2n denote the unipotent radical of P2n. Let
δP2n be the modulus character of P2n(A). It is given by

(5) δP2n

([
A X
v tA−1

])
= |v−

n(n+1)
2 det(A)n+1|,

where A ∈ GLn(A), v ∈ GL1(A),

and |·| denotes the global absolute value on A, normalized in the standard
way, so that |x| = 1 for x ∈ Q×.

Fix the following embedding of H2a,2b := {(g, g′) ∈ G2a × G2b :
µa(g) = µb(g

′)} into G2a+2b:

(6) H2a,2b 3
([
A1 B1

C1 D1

]
,
[
A2 B2

C2 D2

])
7−→

[
A1 −B1

A2 B2

−C1 D1

C2 D2

]
∈ GSp2a+2b .

We will also let H2a,2b denote its image in G2a+2b, and think of (g, g′) ∈
H2a,2b as an element of G2a+2b.

For p =
[
A ∗
v tA−1

]
with v ∈ GL1(A) and A ∈ GL2n(A), note that

δP4n
(p)= |v−ndet(A)|2n+1. Let χ be a finite order character of Q×\A×. We

define a character on P4n(A), also denoted by χ, by χ(p)=χ(v−n det(A)).
For a complex number s, let

(7) I(χ, s) = Ind
G4n(A)
P4n(A) (χδsP4n

).
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Thus, any f(·, s) ∈ I(χ, s) is a smooth complex-valued function satisfying

(8) f(pg, s) = χ(p)δP4n
(p)s+

1
2 f(g, s)

for all p ∈ P4n(A) and g ∈ G4n(A). Note that these functions are invari-
ant under the center of G4n(A). Let I(χv, s) be the analogously defined
local representation at a place v of Q. We have I(χ, s) ∼= ⊗I(χv, s) in a
natural way.

Let f(·, s) ∈ I(χ, s) be a section whose restriction to the standard
maximal compact subgroup of G4n(A) is independent of s. Consider
the Eisenstein series on G4n(A) which, for Re(s) > 1

2 , is given by the
absolutely convergent series

(9) E(g, s, f) =
∑

γ∈P4n(Q)\G4n(Q)

f(γg, s),

and defined outside this region by analytic continuation [21, Appen-
dix II].

2.2. Choice of section. For the rest of this paper, let N be an integer
and let S be the set of primes dividing N . Write N =

∏
p∈S p

mp , so
that mp > 0 for all p ∈ S. Let χ = ⊗χp be a finite order character
of Q×\A× whose conductor divides N . In other words, S contains all
primes p where χp is ramified, and for each p ∈ S, χp

∣∣
(1+pmpZp)

= 1. Let

k be a positive integer such that χ∞ = sgnk.
For 0 ≤ r ≤ n, define a matrix of size 4n× 4n by

(10) Qr =

 In 0 0 0

0 I′n−r 0 Ĩr

0 0 In Ĩr
Ĩr −Ĩr 0 I′n−r

 ,
where Ĩr =

[
0n−r 0

0 Ir

]
and I ′n−r = In − Ĩr =

[
In−r 0

0 0

]
. Given f ∈ I(χ, s),

it follows from iii) of Lemma 2.2 of [27] that, for all h1, h2 ∈ G2n(A)
with the same multiplier,

(11) f(Qn · (gh1, gh2), s) = f(Qn · (h1, h2), s) for g ∈ G2n(A).

Choose local sections as follows.

1. Let p /∈ S be a finite prime. We choose fp ∈ I(χp, s) to be the
unique normalized unramified vector, i.e., fp : G4n(Qp)×C→ C is
given by

(12) fp(Pk, s) = χp(P )δP4n
(P )s+

1
2

for P ∈ P4n(Qp) and k ∈ G4n(Zp).
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2. Let p ∈ S. Define Kp(mp) := {g ∈ Sp4n(Zp) : g ≡ I4n mod pmp}.
Let fp(g, s) be the unique function on G4n(Qp)× C such that

(13) fp(Pk, s) = χp(P )δP4n(P )s+
1
2

for all P ∈ P4n(Qp) and k ∈ Kp(mp)

and

(14) fp(g, s) = 0 if g /∈ P4n(Qp)Kp(mp).

It is easy to see that fp is well defined. Evidently, fp ∈ I(χp, s).

3. Let v =∞. Let K(2n) ' U(2n) be the standard maximal compact
subgroup of Sp4n(R).

Let

(15) f∞
([
A ∗
u tA−1

]
g, s
)

= sgnk(det(A)) sgnnk(u)|u−n det(A)|(2n+1)(s+ 1
2 )J(g, I)−k

for A ∈ GL2n(R), u ∈ R×, and g ∈ K(2n).

Define

(16) f(g, s) =
∏
v

fv(gv, s).

Let Q denote the element Qn embedded diagonally in
∏
p<∞ Sp4n(Zp),

and for any τ ∈ Ẑ× =
∏
p<∞ Z×p , let

(17) Qτ =
[
τI2n

I2n

]
Q
[
τ−1I2n

I2n

]
.

For f as in (16) and any h∈Sp4n(Ẑ)=
∏
p<∞ Sp4n(Zp), define f (h)(g, s)=

f(gh−1, s). We can now define the Eisenstein series E(g, s, f (Qτ )) to be
the Eisenstein series defined in (9) with f , Qτ as above.

2.3. The Eisenstein series Eχk,N(Z, s;h). For Z ∈ H2n and h ∈
Sp4n(Ẑ), we define

(18) Eχk,N (Z, s;h) := J(g, I)kE

(
g,
k + 2s

2n+ 1
− 1

2
, f (h)

)
,

where g is any element of Sp4n(R) with g(I) = Z. (For a proof that
this definition coincides with the earlier one given by (1), see Section 6.2
of [27].) We will be interested in the function Eχk,N (Z,−m0;h), where
m0 ≥ 0 is a non-negative integer. The following result is a consequence
of [27, Propositions 6.6 and 6.8].
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Proposition 2.1. Suppose that k ≥ n+ 1 and let h ∈
∏
p<∞ Sp4n(Zp).

If k = n+ 1, assume further that χ2 6= 1. Let 0 ≤ m0 ≤ k
2 −

n+1
2 be an

integer, and exclude the case m0 = k
2 −

n+1
2 , χ2 = 1. Then

π−2m0nEχk,N (Z,−m0;h) ∈ Nk(Γ4n(N),Qab),

where Qab is the maximal abelian extension of Q.

We note, however, that the series defining Eχk,N (Z,−m0;h) converges

absolutely only in the smaller range m0 ≤ k
2 − n− 1.

3. Cuspidality of the pullback

The results of this section will complete the proof of assertion (i) of
Theorem 1.1.

3.1. Formulation of the main result. Let the Eisenstein series
E(g, s, f (Qτ )) be as defined in the previous section. In this section we
will prove the following theorem.

Theorem 3.1. Let 0 ≤ m0 ≤ k/2 − n − 1. Assume that N > 1. Then
the restriction of E

(
−, k−2m0

2n+1 −
1
2 , f

(Qτ )
)

to H2n,2n(A) gives a cuspidal

automorphic form on H2n,2n(A).

Let us clarify what cuspidality means. Let s = k−2m0

2n+1 −
1
2 . The above

theorem states that∫
R(Q)\R(A)

E((ug1, g2), s, f (Qτ )) du=

∫
R(Q)\R(A)

E((g1, ug2), s, f (Qτ )) du=0

for each (g1, g2) ∈ H2n,2n(A), and the unipotent radical R of any maxi-
mal parabolic subgroup of Sp2n.

A nearly holomorphic modular form is cuspidal in the classical sense
(i.e., its Fourier expansion at each cusp is supported on positive definite
matrices), if and only if its adelization is cuspidal in the sense that its
integral over the unipotent radical of any maximal parabolic subgroup
vanishes. For details of this argument see, e.g., the proof of Proposi-
tion 4.5 of [28].

Therefore, Theorem 3.1 is equivalent to the following statement: for
each m0 with 0 ≤ m0 ≤ k

2 − n− 1,

(19) Eχk,N
([
Z1

Z2

]
,−m0;h

)
∈ Nk(Γ2n(N))◦ ⊗Nk(Γ2n(N))◦,

which is precisely the assertion of part (i) of Theorem 1.1.



Nearly Holomorphic Siegel Eisenstein Series 415

3.2. Unwinding of the Eisenstein series. For the rest of Section 3,
we will assume that N > 1, or equivalently, that S is non-empty. By
Proposition 2.1 of [27], we have the double coset decomposition

(20) G4n(Q) =

n⊔
r=0

P4n(Q)QrH2n,2n(Q),

where the Qr are defined in (10). By (9) and (20),

(21) E(g, s, f (Qτ )) =

n∑
r=0

∑
γ∈∆r\H2n,2n(Q)

f (Qτ )(Qrγg, s),

where ∆r := H2n,2n(Q) ∩Q−1
r P4n(Q)Qr.

Lemma 3.2. Let p be a prime in S. Let the integer mp > 0 and the
group Kp(mp) be as defined in Subsection 2.2. Let g1, g2 ∈ G2n(Qp) with
the same multiplier. Then, for 0 ≤ r < n,

Qr(g1, g2) 6∈ P4n(Qp)QnKp(mp).

Proof: Suppose that Qr(g1, g2) ∈ P4n(Qp)QnKp(mp). Then there is a
p′ ∈ P4n(Qp) such that p′Qr(g1, g2)Q−1

n ∈ Kp(mp). Here we have used

that Kp(mp) is normalized byQn. Suppose gi =
[
Ai Bi
Ci Di

]
for i = 1, 2.

Then

Qr(g1, g2)Q−1
n =

[ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ĨrD2−D1 D1 −ĨrC2

∗ I′n−rD2+Ĩr(B1−B2) −ĨrB1 ĨrA2−I′n−rC2

]
,

where Ĩr =
[

0n−r 0
0 Ir

]
and I ′n−r = In − Ĩr =

[
In−r 0

0 0

]
. Write p′ ∈ P4n,

with the lower right entry being
[
h1 h2

h3 h4

]
. Then we see from the six entries

in the last two rows and last three columns of p′Qr(g1, g2)Q−1
n that

h1(ĨrD2 −D1) + h2(I ′n−rD2 + Ĩr(B1 −B2)) ∈Mn(pm),

h1D1 − h2ĨrB1 ∈ In +Mn(pm),

− h1ĨrC2 + h2(ĨrA2 − I ′n−rC2) ∈Mn(pm),

h3(ĨrD2 −D1) + h4(I ′n−rD2 + Ĩr(B1 −B2)) ∈Mn(pm),

h3D1 − h4ĨrB1 ∈Mn(pm),

− h3ĨrC2 + h4(ĨrA2 − I ′n−rC2) ∈ In +Mn(pm).
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We can put this in matrix form as follows:[
−h2Ĩr h1Ĩr+h2I

′
n−r

−h4Ĩr h3Ĩr+h4I
′
n−r

][
B2 A2

D2 C2

]
≡ 1 (mod pm).

The first n − r columns of the leftmost matrix are zero, and therefore,
since r < n, the left hand side has determinant zero. This contradiction
proves the lemma.

It is easy to see that P4n(Qp)Qn = P4n(Qp)
[
τI2n

I2n

]
Qn

[
τ−1I2n

I2n

]
.

Together with (14), this implies that, for p ∈ S, the support of the local

section f
(Qτ )
p (·, s) is P4n(Qp)QnKp(mp). Using Lemma 3.2, it follows

that

E((g1, g2), s, f (Qτ )) =
∑

γ∈∆n\H2n,2n(Q)

f (Qτ )(Qnγ(g1, g2), s).

By Proposition 2.3 of [27], a set of representatives of ∆n\H2n,2n(Q) is
{(x, 1) : x ∈ Sp2n(Q)}. Hence

(22) E((g1, g2), s, f (Qτ )) =
∑

x∈Sp2n(Q)

f (Qτ )(Qn(xg1, g2), s).

3.3. Proof of Theorem 3.1. Let ψ be the additive character of Q\A
which is x 7→ e2πix for x ∈ R and is trivial on Zp for every finite prime p.
For a symmetric matrix S in Mn(Q), we obtain a character of the unipo-
tent radical of the Siegel parabolic by setting

U(A) 3 u(X) = [ 1 X
1 ] 7→ θS(u(X)) := ψ(tr(SX)).

Note that earlier we used S to denote the set of primes dividing N . From
the context, the meaning of S should be clear.

Lemma 3.3. Let Φ be an automorphic form on Sp2n(A). Assume that

(23)

∫
U(Q)\U(A)

Φ(ug)θ−1
S (u) du = 0

for all g ∈ Sp2n(A) and all S ∈ M sym
n (Q) for which the first row and

column are zero. Then Φ is a cusp form.
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Proof: We have

(24) M sym
n = M ′ ⊕M sym

n−1,

where we think of M sym
n−1 embedded into M sym

n as matrices whose first
row and column are zero, and where

(25) M ′ =

[ ∗ ∗ ... ∗
∗ 0 ... 0
...

...
...

∗ 0 ... 0

]
⊂M sym

n .

Hence M ′ is a space of dimension n. Let S ∈ M sym
n−1(Q), considered

as an element of M sym
n (Q) via (24). Since θ−1

S (X) = −ψ(tr(SX)), by
hypothesis, for any g ∈ Sp2n(A),

(26)

∫
Msym
n (Q)\Msym

n (A)

Φ ([ 1 X
1 ]g)ψ(tr(SX)) dX = 0.

Using (24), it follows that

0 =

∫
Msym
n−1(Q)\Msym

n−1(A)

∫
M ′(Q)\M ′(A)

Φ
([

1 X+Y
1

]
g
)
ψ(tr(S(X + Y ))) dY dX

=

∫
Msym
n−1(Q)\Msym

n−1(A)

( ∫
M ′(Q)\M ′(A)

Φ ([ 1 X
1 ][ 1 Y

1 ]g) dY

)
ψ(tr(SX)) dX.

Hence the inner integral is zero as a function of X, and in particular

(27)

∫
M ′(Q)\M ′(A)

Φ ([ 1 Y
1 ]g) dY = 0.

Since M ′ is the intersection of the unipotent radicals of all standard
maximal parabolics, it follows that Φ is cuspidal.

We are now ready to prove Theorem 3.1. Fix (g1, g2) ∈ H2n,2n(A). By
Lemma 3.3, and by symmetry between the first and second variables, it
suffices to prove that∫

U(Q)\U(A)

E((ug1, g2), s, f (Qτ ))θ−1
S (u) du = 0



418 A. Pitale, A. Saha, R. Schmidt

for all S ∈ M sym
n (Q) whose first row and column are zero. Recall that

we are choosing values of s such that (2n + 1)(s + 1/2) = k − 2m0 for
0 ≤ m0 ≤ k/2− n− 1. From (22), we see that

E((g1, g2), s, f (Qτ )) =
∑

x∈Sp2n(Q)/U(Q)

∑
v∈U(Q)

f (Qτ )(Qn(xvg1, g2), s)

=
∑

x∈Sp2n(Q)/U(Q)

∑
v∈U(Q)

f (Qτ )(Qn(vg1, x
−1g2), s).

Here we have used (11). Hence it is enough to show that∫
U(Q)\U(A)

θ−1
S (u)

∑
v∈U(Q)

f (Qτ )(Qn(vug1, g2), s) du

=

∫
U(A)

θ−1
S (u)f (Qτ )(Qn(ug1, g2), s) du

is zero. The above integral is Eulerian. We will show that any of the
archimedean components∫

U(R)

θ−1
S (u)f∞(Qn(ug1, g2), s) du

is already zero. By the definition of f∞ given in (15), it is enough to
consider g1 = Q(v, y), g2 = u(X0)Q(v, y0) ∈ G2n(R). Here Q(v, y) =[
y

v ty−1

]
for v > 0 and y ∈ GLn(R)+. Recall that for (g1, g2) ∈ H2n,2n

it is necessary that µn(g1) = µn(g2). Once again using (11),∫
U(R)

θ−1
S (u)f∞(Qn(uQ(v, y), u(X0)Q(v, y0)), s) du

=

∫
Msym
n (R)

θ−1
S (u(X))f∞(Qn(u(X)Q(v, y), u(X0)Q(v, y0)), s) dX

=

∫
Msym
n (R)

θ−1
S (u(X))f∞(Qn(u(y−1

0 (X−X0)v ty−1
0 )Q(1, y−1

0 y), 1), s) dX

= θ−1
S (u(X0))v−

n(n+1)
2

×
∫

Msym
n (R)

θ−1
v−1S(u(X))f∞(Qn(u(y−1

0 X ty−1
0 )Q(1, y−1

0 y), 1), s) dX.
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The factor v−
n(n+1)

2 comes from the variable transformation X 7→ v−1X.
We will show that, up to a factor, we can reduce to evaluating the
f∞ term at a block lower triangular matrix. Let us abbreviate B =
y−1

0 X ty−1
0 and A = y−1

0 y. Then

f∞(Qn(u(B)Q(1, A), 1), s)

= f∞

([
In

In
In In

In In

][
In

In
In

−In

]
(u(B)Q(1, A), 1), s

)

= f∞

([
In

In
In In

In In

][
In −B

In
In

In

]
(Q(1, A), 1), s

)

= (−i)−nkf∞

([
In B −B

In
In

B −B In

][
In

In
In In

In In

]
(Q(1, A), 1), s

)

= (−i)−nkf∞

([
In

In
In

B In

][
In

In
In In

In In

][
A
In

tA−1

In

]
, s

)

= (−i)−nkf∞

([
A
In

tA−1

In

][
In

In
tA In

A B In

]
, s

)

= (−i)−nk sgnk(det(A))|det(A)|k−2m0f∞

([
In

In
tA In

A B In

]
, s

)
.

(28)

Lemma 3.4. Let C ∈M2n(R) be a symmetric matrix such that I2n+C2

is invertible. Then

(29)
[
I2n
C I2n

]
=
[
I2n U

I2n

][
Y
tY −1

]
g,

where

U = C(I2n + C2)−1, Y tY = (I2n + C2)−1,

and g ∈ K(2n) ' U(2n) is such that J(g, iI2n) = det(Y ) det(iC + I2n).

Proof: Act with both sides of (29) on iI2n to get iI2n(iC + I2n)−1 =
U + iY tY . Hence we get iI2n = (U + iY tY )(iC + I2n) = U − Y tY C +
i(UC+Y tY ). Comparing the real and imaginary parts of both sides we
get the values of U and Y in terms of C. Applying the J function to both
sides of (29), we get J

([
I2n
C I2n

]
, iI2n

)
= J

([
Y
tY −1

]
, iI2n)J(g, iI2n

)
.

This concludes the proof.
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We now put C =
[ tA
A B

]
and use Lemma 3.4 to evaluate f∞(. . .)

in (28). We have

f∞
([
I2n
C I2n

]
, s
)

= f∞
([
I2n U

I2n

][
Y
tY −1

]
g, s
)

(15)
= sgnk(det(Y ))|det(Y )|k−2m0J(g, iI2n)−k

= sgnk(det(Y ))|det(Y )|k−2m0 det(Y )−k det(I2n+iC)−k

= |det(Y )|−2m0 det(I2n + iC)−k

= det(I2n + iC)m0−k det(I2n − iC)m0 .

Set Z = −i(y ty + y0
ty0). Computing both sides of the equality below,

we get

det(I2n + iC) = det(y0)−2in det(X + Z).

(Observe that X+Z is invertible, since X+ Z̄ is an element of the Siegel
upper half space Hn.) Putting all of this together, we get

f∞(Qn(u(B)Q(1, A), 1), s)=det(y0y)k−2m0det(X+Z)m0−kdet(X+Z̄)m0 .

Hence, we want to show that the integral

(30)

∫
Msym
n (R)

θ−1
S (u(X)) det(X + Z)m0−k det(X + Z̄)m0 dX

is zero for any S ∈M sym
n (R) for which the first row and column are zero.

Let x denote the (1, 1) matrix entry of the variable X. By assumption
on S, the quantity θ−1

S (u(X)) does not depend on x. Let Mij be the
submatrix ofX+Z obtained by eliminating the i-th row and j-th column.
Then, expanding along the first row, we get

det(X + Z) = det




x+z11 x12+z12 ... x1n+z1n

x21+z21 x22+z22

...
...

. . .
...

xn1+zn1 ... ... xnn+znn




= (x+ z11) det(M11) +

n∑
j=2

(−1)j+1(x1j + z1j) det(M1j).
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Observe that M̄11 is an element of the Siegel upper half space of de-
gree n− 1, and hence invertible. We can therefore write

det(X + Z)

= det(M11)

(
x+ z11 + det(M11)−1

n∑
j=2

(−1)j+1(x1j + z1j) det(M1j)

)
r.

Hence det(X + Z) = f(X)(x + g(X)), with functions f and g that do
not depend on x. We also need that g(X) is not real; this follows from
Lemma 3.5 below. This discussion implies that, in (30), there is an inner
integral with respect to the variable x of the form

∞∫
−∞

(x+ z)m0−k(x+ z̄)m0 dx, z /∈ R.

Set I(`,m) =
∫∞
−∞(x+z)m−`(x+ z̄)m dx for integers `, m with 2m− ` <

−1. Using integration by parts, one can check that

I(`,m) =
m

`−m− 1
I(`− 2,m− 1).

Applying the above relation m times, we get

I(`,m) =
m!(`− 2m− 1)!

(`−m− 1)!
I(`− 2m, 0).

Since ` − 2m > 1 and z /∈ R, we can easily see that I(` − 2m, 0) = 0.
Hence I(`,m) = 0 whenever 2m− ` < −1. Since our assumption is that
0 ≤ m0 ≤ k/2− n− 1, it follows that I(k,m0) = 0. This concludes the
proof of Theorem 3.1.

Lemma 3.5. Let M ∈ Hn, and let M11 be the submatrix of M obtained
by eliminating the first row and the first column. Then

det(M)

det(M11)
/∈ R.

Proof: The reciprocal det(M11)
det(M) is the (1, 1)-coefficient of M−1. Since

−M−1 =
[

In
−In

]
M ∈ Hn, this coefficient is not real.

4. The integrality result at m0 = 0

4.1. An initial integrality result. Recall the definition of the Eisen-
stein series Eχk,N (Z,−m0;h) from Subsection 2.3. Let ι =

[
0 I2n

−I2n 0

]
. We

will first prove the following result.
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Proposition 4.1. Let k, n, N be positive integers with k ≥ n + 1 and
N > 1. If k = n + 1, assume further that χ2 6= 1. Let p be any prime
such that p - 2N and p ≥ 2k. Then

(31) πn+n2−(2n+1)kΛN
(
k

2

)
Eχk,N (Z, 0; ι) ∈Mk(Γ4n(N),Op).

Remark 4.2. The above result is closely related to Theorem 4.4 of
Brown [9], which states a similar result for the Eisenstein series at the
point m0 = (2n + 1)/2 − k instead of m0 = 0. (The proof of the above
theorem as it appears in [9] has a gap which has recently been corrected
by Brown in a note available on his webpage2.) The points (2n+1)/2−k
and 0 are related by the functional equation for the Eisenstein series. So
in principle one can try to deduce Proposition 4.1 from Brown’s result.
However, the functional equation will involve factors coming from the
local intertwining operators at the primes dividing the level and the p-in-
tegrality of these factors will need to be proven. We give an independent
proof of Proposition 4.1 that does not rely on Brown’s result.

4.2. Fourier expansion of Eisenstein series. Let the setup be as in
the statement of Proposition 4.1. We begin by noting that

(32) Eχk,N (Z, s; 1) = E(Z, s+ k/2; k, χ,N),

where the Eisenstein series on the right hand side is defined by Shimura
in [34, (16.40)]. (See Remark 6.2 of [27].) We also note that

(33) Eχk,N (Z, s; ι) = E∗(Z, s+ k/2; k, χ,N).

Here E∗ is defined in [34, (16.33)]. The Fourier expansion of E∗(Z, s) :=
E∗(Z, s; k, χ,N) is given by [34, (16.42)] as follows:

(34) E∗(Z, s) =
∑

h∈N−1L

c(h, Y, s)e2πi tr(hX), Z = X + iY.

Here L is the set of symmetric 2n× 2n half-integral matrices.
The argument on p. 460 of [31] implies that c(h, Y, k/2) are non-

zero only when h is positive definite (this fact requires N > 1). So we
henceforth assume that h is positive definite. For any Hecke character ρ
of Q×\A×, define

LN (s, ρ) =
∏

p<∞, p-N

L(s, ρp).

Furthermore, if η is a primitive Dirichlet character, then we take the
L-function of η to be that of the associated Hecke character (see Sec-
tion 7.1 of [27]).

2Retrieved in February 2021 from http://jim-brown.oxycreates.org/research.html.

http://jim-brown.oxycreates.org/research.html
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Proposition 16.9 of [34], specialized to our case, gives the following
formula for the Fourier coefficients:

(35) c(h, Y, s)=det(Y )s−k/2N−
2n(2n+1)

2 αN (h; 2s, χ)ξ

(
Y, h, s+

k

2
, s− k

2

)
,

where, by Proposition 16.10 of [34],

(36) αN (h; 2s, χ) = ΛN (s)−1LN (2s− n, χρh)
∏
`∈C

fh,`(χ(`)`−2s),

with

(37) ΛN (s) := LN (2s, χ)

n∏
i=1

LN (4s− 2i, χ2).

Above, ρh is the quadratic character corresponding to the extension
Q(
√

(−1)n det(2h))/Q, C consists of the set of primes that divide det(2h)
but do not divide N , and fh,` is a polynomial whose coefficients are in Z
and depend only on h, `, and n (to be made more precise in Subsec-
tion 4.4). Next,

ξ(Y, h, s, t) :=

∫
Msym

2n (R)

e−2πi tr(hX) det(X + iY )−s det(X − iY )−t dX.

We have

(38) ξ(Y, h; k, 0) = (−1)−nk2kπ2nk−n2

det(h)k−
2n+1

2

×
n−1∏
j=1

22k−2j−2

(2k − 2j − 2)!
e−2π tr(Y h).

This follows from formulas (4.34.K) and (4.35.K) of [30] by setting α = k,
β = 0, p = 2n, q = r = 0. Hence, we see that

ΛN (k/2)E∗(Z, k/2) = N−n(2n+1)(−1)nk2kπ2nk−n2

×
n−1∏
j=1

22k−2j−2

(2k − 2j − 2)!

∑
h∈N−1L
h>0

b(h)e2πi tr(hZ),

where

(39) b(h) = det(h)k−
2n+1

2 LN (k − n, χρh)
∏
`∈C

fh,`(χ(`)`−k).

Proposition 4.1 will follow if we can show that πn−kb(h) ∈ Op.
Let Nh be the conductor of χρh and let Ch be the conductor of ρh.

Since the conductor of χ divides N , and p - N , we can write Nh =
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uCh, where u ∈ Q is such that p does not divide the numerator or the
denominator of u. Note that

(40) πn−kb(h) = un−k+ 1
2

[(
det(h)

Ch

)k−n− 1
2 ∏
`∈C

fh,`(χ(`)`−k)

]
×
[
πn−kN

k−n− 1
2

h LN (k − n, χρh)
]
.

Clearly, un−k+ 1
2 ∈ O×p . We will show that the two expressions in the

square brackets above are individually in Op, which will complete the
proof.

4.3. Integrality of L-values of Hecke characters. We continue
with the notations from the previous section. The following lemma takes
care of the second bracketed expression in (40).

Lemma 4.3. Let the hypotheses be as in Proposition 4.1. Then

πn−kN
k−n− 1

2

h LN (k − n, χρh) ∈ Op.

Proof: Let ηh denote the primitive Dirichlet character corresponding
to χρh. We have

LN (k − n, χρh) = L(k − n, χρh)
∏
`|N

(1− ηh(`)`n−k).

Since we have assumed p - N , we see that LN (k − n, χρh) in the state-
ment of the lemma can be replaced with L(k − n, χρh) = L(k − n, ηh).
Note that, by definition of χ and ρh, we have (−1)k−n = (χρh)(−1) =
ηh(−1) =: (−1)ε, with ε ∈ {0, 1}. Hence, Corollary 2.10 in Chapter VII
of [24] implies that

(41) L(k − n, ηh) = (−1)1+(k−n−ε)/2G(ηh)

2iε

(
2π

Nh

)k−n
Bk−n,ηh
(k − n)!

.

Here the Gauss sum is defined by

G(ηh) =

Nh−1∑
ν=1

ηh(ν)e2πiν/Nh ,

and the generalized Bernoulli numbers Bn,ηh are defined by the gener-
ating series

Nh∑
a=1

ηh(a)teat

eNht − 1
=

∞∑
n=0

Bn,ηh
tn

n!
.

Write Nh = N1N2, where N1 contains only prime factors dividing N ,
and N2 contains only prime factors not dividing N . Then there exist
unique primitive Dirichlet characters χ1 and χ2 such that ηh = χ1χ2.
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Since the conductor of χ is coprime to N2, and ηh is the Dirichlet char-
acter attached to χρh, it follows that χ2 must be a quadratic Dirichlet
character.

We now claim that N
−1/2
h G(ηh) ∈ O×p . To see this, first note that

G(ηh) = µG(χ1)G(χ2),

where µ is a root of unity. This follows by an elementary calculation using
the Chinese remainder theorem; see, e.g., Section 1.6 of [4]. We know

that G(χ1)G(χ1) = N1. Since G(χ1) is an algebraic integer, and p does

not divide N1, it follows that N
−1/2
1 G(χ1) ∈ O×p . Next, since χ2 is a

quadratic character, it follows that G(χ2)2 = N2. Hence, N
−1/2
2 G(χ2) ∈

O×p . This proves our claim.
Putting it all together by (41), we have

πn−kN
k−n− 1

2

h L(k − n, ηh) = Bk−n,ηh v,

where v ∈ O×p .
Next, let us consider the generalized Bernoulli numbers. From p. 137

of [22], if Nh is divisible by two or more distinct primes, then Bk−n,ηh
is an algebraic integer. Now, let Nh = `e` . If `|2N , then by pp. 138–139
of [22], we see thatBk−n,ηh ∈ Op. If ` - 2N , then we have e` = 1 and ηh is
a quadratic character. Then again, by p. 139 of [22], Bk−n,ηh ∈ Op.
4.4. Proof of Proposition 4.1. We will now prove

(42)

(
det(h)

Ch

)k−n− 1
2 ∏
`∈C

fh,`(χ(`)`−k) ∈ Op,

which will complete the proof of Proposition 4.1; see (40). If ` ∈ C and
p 6= `, then

fh,`(χ`(`)`
−k) ∈ Op.

This follows immediately from the fact that fh,` has integer coefficients.
So (42) follows from the next proposition.

Proposition 4.4. Let p - 2N be a prime, and let h ∈ M sym
2n (Zp) be

such that det(h) 6= 0, p | det(h). Let C ' Qp be an isomorphism, and
let vp : C → Q ∪ {∞} be the resulting valuation, normalized so that
vp(p) = 1. Then(

k − n− 1

2

)
(vp(det(h))− ep,h) + vp(fh,p(χp(p)p

−k)) ≥ 0,

where we denote

ep,h := vp(Ch) =

{
0 if vp(det(h)) is even,

1 if vp(det(h)) is odd.
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The rest of this section will be concerned with the proof of Proposi-
tion 4.4. From now on, we let p, h be as in that proposition.

We need to recall the definition of the local Siegel series. Given a
matrix R ∈ GL2n(Qp), it is well known by the theory of elementary
divisors that there exist matrices A,B ∈ GL2n(Zp) such that

ARB = diag(pe1 , pe2 , . . . , pe2n),

where the ei are integers independent of the choice of A, B, and e1 ≤
e2 ≤ · · · ≤ e2n. We define the integer e(R) ≥ 0 by

e(R) = −
∑
i:ei≤0

ei.

Now given any matrix h ∈M sym
2n (Zp), det(h) 6= 0, define a formal power

series Bp(X,h) and a formal p-Dirichlet series bp(s, h) by

Bp(X,h) =
∑

R∈Msym
2n (Qp)/Msym

2n (Zp)

Xe(R)e2πi tr(hR), bp(s, h)=Bp(p
−s, h).

The series bp(s, h) is known as the local Siegel series. It can be shown
that it has a closed form expression as a rational function in p−s, and
hence is defined on the entire complex plane with finitely many poles.
Unpacking the notation of Chapter 16 of [34], we find

fh,p(χp(p)p
−k) =

Λp(k/2)

Lp(k − n, χρh)
Bp(χ(p)p−k, h)

=
Λp(k/2)

Lp(k − n, χρh)
bp(k + it, h),

(43)

where we define t ∈ R by χp(p) = p−it. Hence

vp(fh,p(χp(p)p
−k)) = vp(bp(k+it, h))+vp(Λp(k/2))−vp(Lp(k−n, χρh)).

Note that Lp(k− n, χρh) = 1 if ep,h = 1 and vp(Lp(k− n, χρh)) = k− n
if ep,h = 0. Using (37), we deduce that

(44) vp(fh,p(χp(p)p
−k)) = vp(bp(k + it, h)) + 2nk − n2 + ep,h(k − n).

On the other hand, Kitaoka ([19]) found an exact formula for bp(s, h).
The result given below follows by substituting s = k + it in Theorem 2
of [19].
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Proposition 4.5 (Theorem 2 of [19]). Let p - N be an odd prime, and
let h ∈M sym

2n (Zp) such that det(h) 6= 0 and p | det(h). Then
(45)

bp(k + it, h)=
∑

G∈GL2n(Zp)\M2n(Zp)

2vp(det(G))≤vp(det(h))

χ2
p(p)p

vp(det(G))(2n+1−2k)αχp(−tG−1hG−1, k),

where αχp(S, k) is defined as follows. If S /∈M sym
2n (Zp), then αχp(S, k) =

0. If S ∈M sym
2n (Zp), then let NS denote the space F2n

p equipped with the
quadratic form defined by S. Write NS = N1 ⊥ N2, where N2 is the
maximal totally singular subspace. Let d = dim(N1). Put ε = 1 if N1

is an orthogonal direct sum of hyperbolic planes, or if d = 0; otherwise
ε = −1. Then

(46) αχp(S, k) =


(1− χp(p)p−k)(1 + εχp(p)p

2n−d/2−k)

×
∏

1≤i≤2n−d/2−1(1− χ2
p(p)p

2i−2k) if 2 | d,

(1− χp(p)p−k)

×
∏

1≤i≤2n−(d+1)/2(1− χ2
p(p)p

2i−2k) if 2 - d.

Remark 4.6. In [5], Böcherer found a very similar formula.

Remark 4.7. Note that pdim(N2) | det(S) above. For the special case
S = −tG−1hG−1, we get

vp(det(G)) ≤
⌊

1

2
vp(det(h))− n+

d

2

⌋
.

Using vp(x, y) ≥ min(vp(x), vp(y)) and taking valuations of both sides
of (45), we see that

(47) vp(bp(k + it, h)) ≥ min
G

(
vp(det(G))(2n+ 1− 2k)

+ vp(αχp(−tG−1hG−1, k))
)
.

Above and henceforth, G denotes any element in M2n(Zp) such that
2vp(det(G)) ≤ vp(det(h)). Note from the formulas for αχp(S, k) that

whenever αχp(−tG−1hG−1, k) is non-zero,
(48)

vp(αχp(−tG−1hG−1, k))≥

{
b(2n−d/2)(2n− d/2− 2k)c if d≥4n−2k,

−k2 if d<4n−2k.

We observe here that the case d < 4n − 2k can only occur for k in the
range n+ 1 ≤ k ≤ 2n− 1.
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By Remark 4.7 and (48) (and using k ≥ n + 1) the contribution to
the right hand side of (47) from the matrices G for which d ≥ 4n − 2k
is always greater than or equal to

(49)

⌊
1

2
vp(det(h))− n+

d

2

⌋
(2n+1−2k)+b(2n−d/2)(2n−d/2−2k)c.

One can check that in all cases, vp(det(h)) even or odd, d even or odd,
(49) is greater than or equal to

(50) (vp(det(h))− ep,h)(n− k + 1/2) + n(n− 2k) + ep,h(n− k).

Next, we consider the matrices G for which d < 4n − 2k. Again, by
Remark 4.7 and (48), the contribution to the right hand side of (47)
from the matrices G for which d < 4n− 2k is greater than or equal to

(51)

⌊
1

2
vp(det(h))− n+

d

2

⌋
(2n+ 1− 2k)− k2.

One can check that in all cases (51) is greater than or equal to

(52) (vp(det(h))− ep,h)(n− k + 1/2) + n(n− 2k) + ep,h(n− k).

Combining the above, we get

(53) vp(bp(k + it, T )) ≥ (vp(det(h))− ep,h)(n− k + 1/2)

+ n(n− 2k) + ep,h(n− k).

Proposition 4.4 follows by combining (53) and (44). This completes the
proof of Proposition 4.1.

4.5. An application of the q-expansion principle. In this short
subsection, we continue to focus on the case m0 = 0 and extend Propo-
sition 4.1 from h = ι to general h and also include the case N = 1.

Proposition 4.8. Let k ≥ n+1. If k = n+1, assume further that χ2 6=
1. Let p be any prime such that p - 2N and p ≥ 2k. Let h ∈ Sp4n(Ẑ).
Then

(54) πn+n2−(2n+1)kΛN
(
k

2

)
Eχk,N (Z, 0;h) ∈Mk(Γ4n(N),Op).

Before proving this proposition, let us begin with some related discus-
sion. Let P be the Siegel parabolic subgroup of Sp2m. By a cusp of Γ(N)
we mean an element of the (finite) double coset space

(55) Γ(N)\Sp2m(Q)/P (Q) ∼= Γ(N)\ Sp2m(Z)/P (Z).
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Let γ ∈ P (Z). Let F ∈ Mk(Γ(N)) and assume that the ring R contains
e2πi/N . It is easy to see that

(56) F ∈Mk(Γ(N), R) ⇐⇒ F
∣∣
k
γ ∈Mk(Γ(N), R).

Hence, for given F∈Mk(Γ(N), R) and g∈Sp2m(Z), whether F
∣∣
k
g also has

Fourier coefficients in R depends only on the double coset Γ(N)gP (Z),
i.e., on the cusp determined by g. In fact, provided that R contains 1/N ,
the following much stronger statement is true.

Proposition 4.9. Let N be an integer and let k, m be positive integers.
Let F ∈ Mk(Γ(N)) be a Siegel modular form of degree m and weight k
with respect to the principal congruence subgroup Γ(N) of Sp2m(Z). Let
R be a subring of C containing Z[e2πi/N , e2πi/3, 1/N, 1/6]. Then, for
any g ∈ Sp2m(Z),

(57) F ∈Mk(Γ(N), R) ⇐⇒ F
∣∣
k
g ∈Mk(Γ(N), R).

Proof: This follows from the q-expansion principle; see Proposition 1.5
of [11], Section 2.1 of [16], and Section 5.5.6 of [35].

We can now finish the proof of Proposition 4.8. We proved in Propo-
sition 4.1 that if N > 1, and p is a prime such that p - 2N and p ≥ 2k,
then

(58) πn+n2−(2n+1)kΛN
(
k

2

)
Eχk,N (Z, 0; ι) ∈Mk(Γ2m(N),Op).

It is straightforward to verify that if h is an element of Sp4n(Z),
considered as an element of

∏
p<∞ Sp4n(Zp), then

(59) Eχk,N (Z, 0;h) = Eχk,N (Z, 0; ι)
∣∣
k
(ι−1h).

Putting h = 1 above and using Proposition 4.9 we get that

πn+n2−(2n+1)kΛN
(
k

2

)
Eχk,N (Z, 0; 1) ∈Mk(Γ4n(N),Op).

We can now extend Proposition 4.1 to include the case N = 1. Indeed,
by Proposition 2.4 of [31],

E1
k,1(Z, 0; 1) =

∑
τ

E1
k,2(Z, 0; 1)

∣∣
k
τ,

where τ ranges over a finite subset of Sp4n(Z). This shows that Propo-
sition 4.8 holds in the case h = 1 (and N arbitrary).

Now, by another application of Proposition 4.9 via (59), and observing

that Sp4n(Z) is dense in Sp4n(Ẑ) by strong approximation, we get the
proof of Proposition 4.8.
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5. Application of differential operators

5.1. An integrality result for the Maass operator. In this sub-
section, m will be any positive integer; we will take m = 2n in the next
subsection. The Maass operator ∆k of weight k and degree m is defined
on smooth functions f : Hm → C by the following formulas:

∆ = det(∂ij), ∂ij =


∂

∂Zij
if i = j,

1

2

∂

∂Zij
if i 6= j,

(60)

(∆kf)(Z)=det(Z−Z̄)κ−k−1∆(det(Z−Z̄)k−κ+1f(Z)), κ=
m+1

2
.(61)

If Γ is a congruence subgroup of Sp2m(Q), f ∈ Mk(Γ), then ∆kf ∈
Nk+2(Γ); see (7.3) of [29] or §19 of [23]. More generally, ∆k takes Nk(Γ)
to Nk+2(Γ); see [32, 4.11].

The relation with the operator δk defined in (1.2) of [25] is

(62) δk =

(
− i

2

)m
π−m∆k.

For a positive integer r, let ∆r
k and δrk be the r-fold iterations of these

operators, i.e.,

(63) ∆r
k = ∆k+2(r−1) ◦ · · · ◦∆k+2 ◦∆k, δrk = δk+2(r−1) ◦ · · · ◦ δk+2 ◦ δk.

From (62), we get

(64) δrk =

(
− i

2

)mr
π−mr∆r

k.

Define λi : Mm(C)→ C, for 0 ≤ i ≤ m, by

(65) det(tIm + Z) =

m∑
i=0

λi(Z)tm−i.

Let Y be an invertible m×m matrix, and ξ any m×m matrix. Letting
Z = ξY , we get

(66) det(tY −1 + ξ) =

m∑
i=0

λi(ξY )

det(Y )
tm−i.

It follows that

(67)
λi(ξY )

det(Y )
is a polynomial in the entries of Y −1

of degree at most m− i.
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We also see that

(68) if ξ has entries in a ring R,

then the coefficients of the polynomial
λi(ξY )

det(Y )
are also in R.

Let F ∈Mk(Γ2m(N)) with Fourier expansion

F (Z) =
∑

Q∈N−1L

c(Q)e2πi tr(QZ),

where L is the set of half-integral, symmetric, positive definite m ×
m matrices. Theorem 3.6(a) of [25] gives the following Fourier expansion
of δrkF :

δrkF (Z) =
∑

Q∈N−1L

c(Q)

r∑
t=0

(
r

t

)
det(Q)r−t

×
∑

|L̂|≤mt−t

RL̂

(
m+ 1

2
− k − r

) t∏
j=1

λlj (4πQY )

det(4πY )
e2πi tr(QZ),

where L̂ runs over all multi-indices 0 ≤ l1 ≤ · · · ≤ lt ≤ m, such that
|L̂| = l1 + · · · + lt ≤ mt − t and the coefficients RL̂ are polynomials
with coefficients in Z[1/2]. Note that Theorem 3.6(a) of [25] is stated for
Siegel congruence subgroups, but the proof goes through without change

for principal congruence subgroups. By (67) and (68),
λlj (4πQY )

det(4πY ) is a

polynomial in the entries of 4πY of degree at most m − lj and with
coefficients in Z[1/N ]. It follows that δrkF ∈ Nk+2r(Γ2m(N),Op), as long
as p - 2N . In view of (64), we get the following result.

Proposition 5.1. Let m, k, N , r be positive integers. Let p be a prime
not dividing 2N . Then, for any F ∈Mk(Γ2m(N),Op),

π−mr∆r
kF ∈ Nk+2r(Γ2m(N),Op).

5.2. Completion of the proof of Theorem 1.1. We can now com-
plete the proof of part (ii) of Theorem 1.1.

Proposition 5.2. Suppose that 0 ≤ m0 ≤ k−n−1
2 is an integer and

h ∈ Sp2m(Ẑ). If m0 = k−n−1
2 , assume further that χ2 6= 1. Then, for

any prime p with p - 2N and p ≥ 2k,

πn+n2−(2n+1)k+(2n+2)m0ΛN
(
k−2m0

2

)
Eχk,N (Z,−m0;h)∈Nk(Γ4n(N),Op).

Here ΛN is the factor defined in (37).
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Proof: The operator ∆r
k defined in (63) coincides with the operator ∆r

k

defined in the proof of Theorem 17.9 of [34]; see Proposition 7.2 of [29].
Setting p = m0, q = k − 2m0, and s = k−2m0

2 in (17.20) of [34], and
observing the shift (32), we get

(69) d−1(−4)nm0 ·∆m0

k−2m0
(Eχk−2m0,N

(Z, 0;h)) = Eχk,N (Z,−m0;h)

with

(70) d =

2n∏
a=1

m0∏
b=1

(
2m0 − k − b+

a+ 1

2

)
.

The condition p ≥ 2k assures that p - d.
By Proposition 4.8,

(71) πn+n2−(2n+1)(k−2m0)ΛN
(
k − 2m0

2

)
× Eχk−2m0,N

(Z, 0;h) ∈Mk−2m0(Γ4n(N),Op).

Hence the assertion follows from Proposition 5.1.
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Qué. 45 (2021), 113–159. DOI: 10.1007/s40316-020-00134-6.

[28] A. Pitale, A. Saha, and R. Schmidt, Lowest weight modules of Sp4(R) and

nearly holomorphic Siegel modular forms, Kyoto J. Math. Advance Publication
(2021), 1–70. DOI: 10.1215/21562261-2021-0012.

[29] G. Shimura, Arithmetic of differential operators on symmetric domains, Duke

Math. J. 48(4) (1981), 813–843. DOI: 10.1215/S0012-7094-81-04845-6.
[30] G. Shimura, Confluent hypergeometric functions on tube domains, Math. Ann.

260 (1982), 269–302. DOI: 10.1007/BF01461465.
[31] G. Shimura, On Eisenstein series, Duke Math. J. 50(2) (1983), 417–476.

DOI: 10.1215/S0012-7094-83-05019-6.

[32] G. Shimura, Nearly holomorphic functions on hermitian symmetric spaces,
Math. Ann. 278 (1987), 1–28. DOI: 10.1007/BF01458058.

[33] G. Shimura, “Euler Products and Eisenstein Series”, CBMS Regional Confer-

ence Series in Mathematics 93, American Mathematical Society, Providence, RI,
1997.

[34] G. Shimura, “Arithmeticity in the Theory of Automorphic Forms”, Mathemat-

ical Surveys and Monographs 82, American Mathematical Society, Providence,
RI, 2000. DOI: 10.1090/surv/082.

[35] C. Skinner and E. Urban, The Iwasawa Main Conjectures for GL2, Invent.

Math. 195 (2014), 1–277. DOI: 10.1007/s00222-013-0448-1.

Ameya Pitale

Department of Mathematics, University of Oklahoma, Norman, OK 73019 USA

E-mail address: apitale@ou.edu

Abhishek Saha

School of Mathematical Sciences, Queen Mary University of London, London E14NS
UK

E-mail address: abhishek.saha@qmul.ac.uk

Ralf Schmidt
Department of Mathematics, University of North Texas, Denton, TX 76203 USA

E-mail address: ralf.schmidt@unt.edu

Received on June 17, 2020.

Accepted on March 2, 2021.

http://dx.doi.org/10.1007/s40316-020-00134-6
http://dx.doi.org/10.1215/21562261-2021-0012
http://dx.doi.org/10.1215/S0012-7094-81-04845-6
http://dx.doi.org/10.1007/BF01461465
http://dx.doi.org/10.1215/S0012-7094-83-05019-6
http://dx.doi.org/10.1007/BF01458058
http://dx.doi.org/10.1090/surv/082
http://dx.doi.org/10.1007/s00222-013-0448-1

	1. Introduction
	Acknowledgements
	Notations

	2. Definition of the Eisenstein series
	2.1. Preliminaries
	2.2. Choice of section
	2.3. The Eisenstein series Ek,N(Z,s; h)

	3. Cuspidality of the pullback
	3.1. Formulation of the main result
	3.2. Unwinding of the Eisenstein series
	3.3. Proof of Theorem 3.1

	4. The integrality result at m0=0
	4.1. An initial integrality result
	4.2. Fourier expansion of Eisenstein series
	4.3. Integrality of L-values of Hecke characters
	4.4. Proof of Proposition 4.1
	4.5. An application of the q-expansion principle

	5. Application of differential operators
	5.1. An integrality result for the Maass operator
	5.2. Completion of the proof of Theorem 1.1

	References

