CORRIGENDUM TO: "AN INTERPOLATION PROPERTY OF LOCALLY STEIN SETS"

VIOREL VÂJÂITU

To the memory of my teacher and friend Ilie Bârză

Abstract: The purpose of this note is to supply a correct proof of a proposition in the article quoted above.

2010 Mathematics Subject Classification: 32E10, 32E35, 32U10.

Key words: Stein space, Riemann domain, boundary distance, thin set.

Here we revise Proposition 3 from [5], which is restated below for the convenience of the reader, and give an accurate proof by expanding an idea proposed by Siu ([4, pp. 486–487, Section 4.4]), avoiding the patching technique used in [5].

We need to recall some notations. For a reduced complex space X, X_{reg} denotes the set of smooth points of X and $X_{\text{sg}} := X \setminus X_{\text{reg}}$ is the singular locus of X. An open subset Ω of X is locally Stein on a set $T \subset \partial \Omega$, if every point in T has a neighborhood U in X such that $U \cap \Omega$ is Stein.

Proposition 1. Let X be a normal Stein space of pure dimension n and let $\Omega \subset X$ be an open set that is locally Stein on $\partial \Omega \setminus X_{sg}$.

Then, there exists a smooth function $\phi: \Omega \longrightarrow [0, \infty)$ that is strictly plurisubharmonic, and for every closed subset Λ of Ω whose closure in Xis disjoint with X_{sg} , the restriction of ϕ to Λ is proper.

First, for the proof we need an auxiliary result.

Lemma 1. Let X be a normal complex space of pure dimension, A a hypersurface in X, and $S \subset X$ a thin set of order 2.

If $\varphi \colon X \setminus S \longrightarrow [0, \infty)$ is a plurisubharmonic function that vanishes on $A \setminus S$, then the trivial extension $\tilde{\varphi}$ of φ to X with value 0 on S is plurisubharmonic on X and continuous on S. In particular, $\tilde{\varphi}$ turns out to be continuous if φ is continuous.

Recall that a closed subset S of a complex space X is said to be *thin* of order $k \ (k \in \mathbb{N})$ if S is locally contained in a (not necessarily closed) analytic subset of X of codimension k. Proof of Lemma 1: First note that, if Z is a complex space of pure dimension, granting the maximum principle for plurisubharmonic functions one has that, for every plurisubharmonic function u on Z and any point $z_0 \in Z$,

$$\limsup_{z \mapsto z_0} u(z) = u(z_0).$$

On the other hand, since S is thin of order 2, by $[\mathbf{1}, \text{Satz } 4, \text{ p. } 181]$ there is a unique plurisubharmonic extension $\psi \colon X \longrightarrow [0, \infty)$ of φ . Let $a \in S$ and Γ a one-dimensional irreducible analytic set in a neighborhood of ain A such that $\Gamma \cap S = \{a\}$.

Since the restriction $\psi|_{\Gamma}$ is plurisubharmonic, by the above remark and hypothesis, $\psi(a) = 0$. Thus ψ vanishes on S and ψ is continuous on S, because for every point $a \in S$,

$$0 \le \liminf_{x \mapsto a} \psi(x) \le \limsup_{x \mapsto a} \psi(x) = 0 = \psi(a),$$

so that $\psi = \widetilde{\varphi}$, whence the lemma.

Proof of Proposition 1: We divide the proof into three steps.

Step 1) Let X be a normal Stein space of pure dimension n and consider a discrete holomorphic map $\Phi: X \longrightarrow \mathbb{C}^n$, $\Phi = (\Phi_1, \dots, \Phi_n)$.

The branching locus $B(\Phi)$ of Φ is the complement in X of the set of points $a \in X$ such that there are open neighborhoods U of a in X and W of $\Phi(a)$ in \mathbb{C}^n such that Φ induces a biholomorphism between U and W.

Obviously, $B(\Phi)$ contains the singular part X_{sg} of X and $B(\Phi)$ is a closed analytic subset of X. Furthermore, $B(\Phi)$ is either the empty set or a hypersurface.

Also, there is a thin subset of order 2 in X (see [2]) such that

$$X_{\rm sg} \subseteq S \subseteq \mathcal{B}(\Phi),$$

and for an arbitrary point $a \in B(\Phi) \setminus S$ there are coordinates (x_1, \ldots, x_n) centered at a with respect to which the function Φ takes the form

$$\Phi(x', x_n) = (x', x_n^{\mu})$$

for some $\mu \in \mathbb{N}$, $\mu \geq 2$, where $x' = (x_1, \ldots, x_{n-1})$.

Besides, if $\vartheta_{k_1}, \ldots, \vartheta_{k_n}$ are holomorphic vector fields on X generating the tangent vector space at every point of a discrete set $\Lambda \subset X$ disjoint with X_{sg} and containing a point of each connected component of X, then

$$\det(\vartheta_{k_i}(\Phi_j))_{i,j}$$

defines a holomophic function on X_{reg} that extends, due to the normality of X, to a holomorphic function f on X vanishing on $B(\Phi)$, but f does not vanish identically on any connected component of X.

A straightforward argument gives finitely many such holomorphic functions f_1, \ldots, f_m on X (incidentally, the form of these functions are of crucial importance, as can be seen from the next step) such that

$$\mathcal{B}(\Phi) = \bigcap_{j=1}^{m} \{f_j = 0\}.$$

Besides, since the sheaf of holomorphic vector fields on X is an analytic coherent sheaf and X is Stein, we may apply Cartan's Theorem A and [3] to get global holomorphic vector fields $\vartheta_1, \ldots, \vartheta_N$ on X generating the tangent vector space at every regular point of X; hence above we can take $m = \binom{N}{n}$.

Step 2) Here we reconsider the setting from Step 1. Let $Z_f = \{f = 0\}$, where f is one of the holomorphic functions f_1, \ldots, f_m .

For $x \in \Omega \setminus Z_f$ define $\delta(x)$ to be the largest positive number so that Φ maps an open neighborhood of x in $\Omega \setminus Z_f$ biholomorphic onto the ball of radius $\delta(x)$ centered at $\Phi(x)$.

Pictorially, we have the following diagram, where $\iota \colon \Omega \longrightarrow X$ is the inclusion:

Notice that $\delta < \infty$ everywhere on Ω , unless Ω is biholomorphic to \mathbb{C}^n ; so there is nothing to be proved in this case.

Let $\Sigma \subset X$ be the thin set of order 2 defined as the union of S and the singular part of Z_f .

Now we claim that, for every point $a \in Z_f \setminus \Sigma$, there is an open neighborhood U of a in $\Omega \setminus \Sigma$ and a positive constant M such that

$$(\star) \qquad \forall x \in U \setminus Z_f, \quad |f(x)|^2 \le M\delta(x).$$

Here we check (*). Clearly, $a \in X_{\text{reg}}$. Let W be an open neighborhood of a in X_{reg} with coordinates (x_1, \ldots, x_n) centered at a such that

$$W \cap Z_f = \{x_n = 0\}.$$

We have the following alternative: either the point a does not belong to $B(\Phi)$, or $a \in B(\Phi) \setminus S$.

In the first case, it is easily seen that, for a suitable neighborhood U of a relatively compact in W, one has $\|\Phi(x) - \Phi(a)\| \ge C \|x - a\| \ge |f(x)|$. Therefore, we obtain (\star) with exponent 1 instead of 2. In the second case, the definition of f gives the form $f(x) = \mu x_n^{\mu-1} g(x)$, for some holomorphic function g on W. Hence, for a relatively compact neighborhood U of a in W, whenever $x \in U$ in which $|x_n|$ is small, it holds that:

$$|f(x_1, \dots, x_n)|^2 \le ||g||_U \cdot (\mu |x_n|^{\mu-1})^2 \le M |x_n|^{\mu} \le M ||(x_1, x_2, \dots, x_n^{\mu}) - (x_1', \dots, x_{n-1}', 0)|| = M ||\Phi(x) - \Phi(a)|,$$

which readily implies inequality (\star) .

Altogether, given $c \in \mathbb{R}$, c > 2 (for instance, $c = \sqrt{5}$), there is an open neighborhood V of $Z_f \cap (\Omega \setminus \Sigma)$ in $\Omega \setminus \Sigma$ such that on V it holds true that

$$(\star\star) \qquad -\log\delta + c\log|f| < 0.$$

Notice also that, if $(x_k)_k$ is a sequence of points in $\Omega \setminus Z_f$ that converges to a point of $\partial \Omega \setminus X_{sg}$, then $\delta(x_k) \mapsto 0$.

Step 3) Here we give the patching procedure. First note that there are finitely many holomorphic maps $\Phi_j: X \longrightarrow \mathbb{C}^n, 1 \leq j \leq p$, with discrete fibers such that

$$X_{\rm sg} = \bigcap {\rm B}(\Phi_j).$$

Then as in Step 2, we get, for each j, finitely many holomorphic functions f_{j1}, \ldots, f_{jq} (their form via the above vector fields is important) such that

$$\mathcal{B}(\Phi_j) = \bigcap_k Z(f_{jk}).$$

Since $X \setminus Z(f_{jk})$ is a Stein manifold, $\Omega \setminus Z(f_{jk})$ is Stein too, hence the boundary distance δ_{jk} of the domain $\Omega \setminus Z(f_{jk})$ over \mathbb{C}^n via Φ_j has the property that $-\log \delta_{jk}$ is plurisubharmonic and continuous. (As noted above, we dispense with the case when Ω is biholomorphic to \mathbb{C}^n , when there is nothing to be done!)

Therefore, granting Lemma 1 and $(\star\star)$, the function $\varphi_{jk} \colon \Omega \longrightarrow [0, \infty)$ defined by

$$\varphi_{jk} := \begin{cases} \max\{-\log \delta_{jk} + \sqrt{5} \log |f_{jk}|, 0\} & \text{on } \Omega \setminus Z_{jk}, \\ 0 & \text{elsewhere,} \end{cases}$$

is plurisubharmonic and continuous.

Finally, the desired function ϕ is obtained via Richberg's regularization of the following strict plurisubharmonic function, which has the required properties except regularity, namely

$$\psi + \max\{\varphi_{jk}\},\$$

where $\psi \colon X \longrightarrow [0, \infty)$ is strictly plurisubharmonic, continuous, and surjective. The proof of the proposition is concluded.

Remark. The reasons, in the proof of [5, Proposition 3], on p. 720, lines 33–35, why "the function $\psi_V^{(k)} - \psi_W^{(l)}$ is bounded on $M \cap \Omega$ " were not well explained.

References

- H. GRAUERT AND R. REMMERT, Plurisubharmonische Funktionen in komplexen Räumen, Math. Z. 65 (1956), 175–194. DOI: 10.1007/BF01473877.
- [2] H. GRAUERT AND R. REMMERT, Komplexe Räume, Math. Ann. 136 (1958), 245–318.
- [3] B. KRIPKE, Finitely generated coherent analytic sheaves, Proc. Amer. Math. Soc. 21(3) (1969), 530–534. DOI: 10.2307/2036414.
- [4] Y.-T. SIU, Pseudoconvexity and the problem of Levi, Bull. Amer. Math. Soc. 84 (1978), 481–512. DOI: 10.1090/S0002-9904-1978-14483-8.
- [5] V. VÂJÂITU, An interpolation property of locally Stein sets, Publ. Mat. 63(2) (2019), 715–725. DOI: 10.5565/PUBLMAT6321909.

Université des Sciences et Technologies de Lille 1, Laboratoire Paul Painlevé, Bât. M2, F-59655 Villeneuve d'Ascq Cedex, France *E-mail address*: viorel.vajaitu@univ-lille.fr

Received on June 15, 2020. Accepted on October 7, 2020.