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Abstract: An algebraic system consisting of a set together with an associative bi-

nary and a ternary heap operations is studied. Such a system is termed a pre-truss
and if a binary operation distributes over the heap operation on one side we call it a

near-truss. If the binary operation in a near-truss is a group operation, then it can

be specified or retracted to a skew brace, the notion introduced in [8]. On the other
hand if the binary operation in a near-truss has identity, then it gives rise to a skew-

ring as introduced in [14]. Congruences in pre- and near-trusses are shown to arise

from normal sub-heaps with an additional closure property of equivalence classes that
involves both the ternary and binary operations. Such sub-heaps are called paragons.

A necessary and sufficient criterion on paragons under which the quotient of a unital

near-truss corresponds to a skew brace is derived. Regular elements in a pre-truss
are defined as elements with left and right cancellation properties; following the ring-

theoretic terminology, pre-trusses in which all non-absorbing elements are regular are
termed domains. The latter are described as quotients by completely prime paragons,

also defined hereby. Regular pre-trusses and near-trusses as domains that satisfy the

Ore condition are introduced and pre-trusses of fractions are constructed through lo-
calisation. In particular, it is shown that near-trusses of fractions without an absorber

correspond to skew braces.
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1. Introduction

In the 1920s H. Prüfer and R. Baer defined a heap as an algebraic
system consisting of a set with a ternary operation which fulfils con-
ditions that allow one to associate an isomorphic group to every ele-
ment; conversely, every group gives rise to a heap by taking the opera-
tion (a, b, c) 7→ ab−1c (see [2] and [12]). In 2007 W. Rump introduced
braces as algebraic systems corresponding to set-theoretic solutions of
the Yang–Baxter equation [13]. A brace is a triple (G,+, ·) where (G,+)
is an Abelian group, (G, ·) is a group, and the following distributive law
holds, for all a, b, c ∈ G:

a · (b+ c) = a · b− a+ a · c;
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see [6]. Through their connection with set-theoretic solutions of the
Yang–Baxter equation, braces have become an intensive field of stud-
ies. In particular it has been shown that a brace allows one to construct
a non-degenerate involutive set-theoretic solution of the Yang–Baxter
equation (see for example [6], [13], [5], and [15]). In 2017 L. Guarnieri
and L. Vendramin introduced the notion of a skew brace. This is a gen-
eralisation of a brace in which (G,+) is not required to be Abelian [8].
It has been shown to correspond closely to non-degenerate set-theoretic
solutions of the Yang–Baxter equation; one can construct such a solution
from any skew brace, while to any non-degenerate bijective solution one
can associate a skew brace that satisfies a universal property (see [8], [7],
[17], [9], [16], or [1]). In recent years there has been vast progress in re-
search on set-theoretic solutions of the Yang–Baxter equation, but even
though we know that every skew brace provides us with such a solution,
it is not an easy task to construct skew braces (for a list of problems
regarding skew braces and a literature review see [18]). In 2018 the first
author observed that it is possible to unify the distributive laws of rings
and braces in a single more general algebraic structure which he called a
truss [3]. A skew left truss T is a heap (T, [−,−,−]) with an additional
binary operation · : T×T → T which is associative and which distributes
over the ternary operation from the left, i.e., for all a, b, c, d ∈ T ,

a · [b, c, d] = [a · b, a · c, a · d].

Every skew brace can be associated to an appropriate skew left truss:
in this text we will call such trusses brace-type trusses. This leads to
the main questions that motivated the present article. What exactly are
brace-type trusses? How can they be constructed starting from a not
necessarily brace-type truss? When is such a construction possible? In
the paper we present two approaches to answer questions of this kind.
The first approach is to take quotients of trusses by some special congru-
ence and the second one relies on a localisation procedure. The paper is
organised as follows.

Section 2 contains definitions and facts about near-rings, skew braces,
and heaps which we believe to be necessary to make the paper self-
contained. The section concludes with Lemma 2.1, which fully describes
all equivalence classes for a sub-heap relation ∼S as mutually isomorphic
heaps with an explicitly given isomorphism in each case.

Section 3 starts with the introduction of pre-trusses, near-trusses,
and skew trusses. A pre-truss is a heap with an additional semigroup
operation. A near-truss is a pre-truss in which the semigroup operation
distributes over the ternary operation from the left. The best-known ex-
amples of these objects are near-trusses with left absorbers associated
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to near-rings (see Example 3.4) or unital near-trusses, which can be as-
sociated to the recently introduced skew-rings [14] (see Example 3.5).
The notion of a near-truss was introduced in [3, Definition 2.1] under
the name of a skew left truss; the present terminology is intended to be
coherent with that of near-ring theory. Another example of a near-truss
which is of particular interest is a near-truss associated to a skew brace
(see Example 3.8); these near-trusses are said to be brace-type. Finally,
a skew truss is a near-truss for which the right distributive law holds.
The first part of Section 3 is focused on the characterisation of algebraic
structures that correspond to congruences in a pre-truss. For that, we
give the definition of a paragon as a normal sub-heap, the equivalence
classes of which have a particular closure property, and in Theorem 3.14
we show that paragons fully describe all the congruences in a pre-truss.
We conclude this theorem with Corollary 3.15 and Corollary 3.17, which
tell us that congruence equivalence classes in near-rings and skew braces
are in fact paragons in the associated near-trusses. After that, we intro-
duce the definition of an ideal to determine whether a unital near-truss
is associated to a skew brace or a near-ring, Proposition 3.22.

Combining the most natural concept of a maximal paragon with the
analysis of the ideal structure of a truss we give a full description of those
paragons whose quotient is a brace-type near-truss. More precisely, in
Theorem 3.28 we show that a quotient near-truss is brace-type if and
only if all equivalence classes are not subsets of any ideal in a near-truss.
We conclude this section with two examples of paragons that fulfil the
hypothesis of the theorem.

Section 4 focuses on the study of domains. We start with the definition
of a regular element in a pre-truss, then we define a domain as a pre-truss
for which all elements except the absorbers are regular. In Lemma 4.5
we justify the definition by showing that domains are exactly pre-trusses
for which the cancellation property holds. After that, we introduce the
notion of a completely prime paragon. Since the definition of a completely
prime ideal in a ring depends on an absorber and near-trusses do not
necessarily have an absorber, one should expect that the definition of a
completely prime paragon does not depend on it. Therefore, we fix the
absence of an absorber by using ideals in the quotient; see Definition 4.6.
The most important result of this section is Theorem 4.10 stating that
the quotient of a pre-truss by a paragon is a domain if and only if the
paragon is completely prime. We conclude this section with an example
of a completely prime paragon in the truss of polynomials with integer
coefficients summing up to an odd number.
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The aim of Section 5 is to devise a method for constructing brace-type
near-trusses by localisation. We start the section with Definition 5.1 of
a left regular pre-truss. Then we describe the localisation of pre-trusses.
Perhaps the most important result of this section is Corollary 5.5, which
states that if we localise a regular near-truss with no absorbers we will
obtain a skew brace. This is supplemented with an example: the local-
isation of a non-commutative truss of square integer matrices with odd
diagonal and even off-diagonal entries.

2. Near-rings, skew-rings, skew braces, and heaps

In this section we gather preliminary information and fix the notation
and conventions on near-rings, skew braces, and heaps.

2.1. Near-rings, skew-rings, and skew braces. A near-ring (see
[11]) is a set N with two associative binary operations +, ·, such that
(N,+) is a group and, for all n,m,m′ ∈ N ,

n(m+m′) = nm+ nm′.

Analogously to the case of rings, a near-field is a near-ring such that
(N \ {0}, ·) is a group, where 0 is the neutral element for +.

A homomorphism of near-rings is a function f : N → N ′ that com-
mutes with both near-ring operations, that is, for all a, b ∈ N ,

f(ab) = f(a)f(b) and f(a+ b) = f(a) + f(b).

A skew-ring [14, Definition 3 and Corollary] is a triple (B,+, ·), where
(B,+) is a group, (B, ·) is a monoid, and the following distributive law
holds:

a(b+ c) = ab− a+ ac,

for all a, b, c ∈ B. A skew-ring (B,+, ·) in which (B, ·) is a group is called
a skew left brace [8]. A homomorphism of skew braces is a function that
commutes with both group operations. A close connection between skew
left braces and near-rings is revealed in [16, Proposition 2.20], which
states that any construction subgroup of a near-ring is a skew left brace.
In what follows, we drop the adjective ‘left’, and hence skew brace means
skew left brace1. An ideal in a skew brace B is a subset B′ ⊂ B such
that (B′,+) is a normal subgroup, aB′ = B′a and ab − a ∈ B′, for all
a ∈ B and b ∈ B′.

1Obviously, ‘right’ versions of all the notions discussed in this text can be defined and
developed symmetrically, and in fact in [14] Rump gives the definition of a skew-ring
in the right-sided convention.
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2.2. Heaps. A heap is a set H together with a ternary operation,

[−,−,−] : H ×H ×H −→ H,

that is associative and satisfies Mal’cev identities. Explicitly this means
that, for all a1, a2, a3, a4, a5 ∈ H,

[a1, a2, [a3, a4, a5]] = [[a1, a2, a3], a4, a5]

and

[a1, a1, a2] = a2 = [a2, a1, a1].

These conditions imply that, for all a1, a2, a3, a4, a5 ∈ H,

(2.1) [[a1, a2, a3], a4, a5] = [a1, [a4, a3, a2], a5].

We say that H is an Abelian heap if, for all a, b, c ∈ H, [a, b, c] = [c, b, a].
A homomorphism of heaps is a map that commutes with the ternary

operations, that is, f : H → H ′ is a heap morphism if, for all a, b, c ∈ H,

f([a, b, c]) = [f(a), f(b), f(c)].

Every non-empty heap can be associated to a group by fixing the
middle entry of the ternary operation, that is, for all a ∈ H, +a :=
[−, a,−] is a group operation on H. This group is called a retract of H
at a and is denoted by G(H; a). Retracts at two different elements are
isomorphic. Starting with a group G one can assign a heap to it by
setting [a, b, c] := ab−1c, for all a, b, c ∈ G. This heap associated to a
group G will be denoted by H(G).

A subset S of a heap H is a sub-heap if it is closed under the heap
operation of H. A non-empty sub-heap S of a heap H is said to be
normal if there exists e ∈ S such that, for all a ∈ H and s ∈ S, there
exists t ∈ S such that [a, e, s] = [t, e, a]. This is equivalent to saying that
for all a ∈ H and e, s ∈ S, [[a, e, s], a, e] ∈ S. Every non-empty sub-heap
of an Abelian heap is normal. The retract of a normal sub-heap at an
element e is a normal subgroup of the retract of the heap at the same
element e. Furthermore, for any heap homomorphism f : H → H ′ and
any b ∈ Im f , f−1(b) is a normal sub-heap of H; see e.g. [4, Lemma 2.12].

If S is a sub-heap of H, then the relation ∼S on H given by

a ∼S b ⇐⇒ ∃s ∈ S [a, b, s] ∈ S ⇐⇒ ∀s ∈ S [a, b, s] ∈ S

is an equivalence relation. The set of equivalence classes is denoted
by H/S. The equivalence class of any s ∈ S is equal to S. If S is
a normal sub-heap, then ∼S is a congruence and thus the canonical
map π : H → H/S is a heap epimorphism; see [4, Proposition 2.10].
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The following lemma summarises properties of the sub-heap equiva-
lence relation and gives an explicit description of all equivalence classes
and relations between them.

Lemma 2.1. Let S be a non-empty sub-heap of (H, [−,−,−]), and con-
sider the sub-heap relation ∼S.

(1) For all a, b ∈ H, define the translation map

(2.2) τ ba : H −→ H, z 7−→ [z, a, b].

(i) The map τ ba is an isomorphism of heaps.
(ii) The equivalence classes of ∼S are related by the formula

b̄ = τ ba(ā) = {[z, a, b] | z ∼S a}.

(iii) For all e ∈ S and a ∈ H, set Sae := τae (S). Then ā = Sae .
(2) For all a ∈ H, the equivalence class ā is a sub-heap of H. Further-

more, if S is a normal sub-heap of H, then so are the ā.
(3) Equivalence classes of ∼S are mutually isomorphic as heaps.
(4) For all a ∈ H, the sub-heap equivalence relation ∼S coincides with

the sub-heap equivalence relation ∼ā. Consequently H/S = H/ā.

Proof: (1)(i) First we need to check that τ ba preserves the ternary oper-
ation. Using the associativity and Mal’cev identities, we can compute,
for all z, z′, z′′ ∈ H,

[τ ba(z),τ ba(z′),τ ba(z′′)]=[[z, a, b], [z′, a, b], [z′′, a, b]]=[z, a,[b,[z′, a, b], [z′′, a, b]]]

= [z, a, [[b, b, a], z′, [z′′, a, b]]] (by equation (2.1))

= [[z, z′, z′′], a, b] = τ ba([z, z′, z′′]).

Therefore, the τ ba preserve ternary operations and thus each one of them
is a homomorphism of heaps. The inverse of τ ba is τab .

(1)(ii) Assume that z ∼S a, that is, that [z, a, s] ∈ S, for all s ∈ S. If
z′ = τ ba(z) = [z, a, b], then [z′, b, s] = [z, a, s], by the associativity and
the Mal’cev property. Hence z′ ∼S b, that is, τ ba(ā) ⊆ b̄. On the other
hand, if z′ ∈ b̄, then set z = τab (z′) = [z′, b, a]. Since τab is the inverse
of τ ba, z′ = τ ba(z). Furthermore, for all s ∈ S, [z, a, s] = [z′, b, s], and so
[z, a, s] ∈ S, since z′ ∼S b. This proves the second inclusion b̄ ⊆ τ ba(ā),
and hence the required equality.

Assertion (1)(iii) follows by 1(ii) and the fact that ē = S.
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Statement (2) follows by (1) and the observation that heap isomorphisms
preserve the normality. Statement (3) is a straightforward consequence
of (1) and (2).

(4) Using (1)(iii) we can argue as follows: b ∼S c if, and only if, there
exist s, s′ ∈ S such that [b, c, s] = s′. This is equivalent to the equality
[[b, c, s], e, a] = [s′, e, a], for any a ∈ H and e ∈ S, which, by associativity,
is equivalent to [b, c, [s, e, a]] = [s′, e, a]. The fact that ā = Sae implies that
b ∼ā c.

3. Quotient pre-trusses, near-trusses, and skew braces

The aim of this section is to characterise heaps with an additional
monoid operation that yield skew braces. Let us first introduce the ap-
propriate terminology.

Definition 3.1.

(1) A pre-truss is a heap (T, [−,−,−]) together with an associative
binary operation (denoted by juxtaposition of elements or by ·).

(2) A pre-truss T satisfying the left distributive law

a[b, c, d] = [ab, ac, ad], for all a, b, c, d ∈ T ,
is called a near-truss.

(3) A near-truss T satisfying the right distributive law

[b, c, d]a = [ba, ca, da], for all a, b, c, d ∈ T ,
is called a skew truss.

(4) A skew truss such that the underlying heap is Abelian is called a
truss.

Every one of the above notions is said to be unital provided the binary
operation has an identity (denoted by 1).

A homomorphism of (pre-, near-, skew) trusses is a homomorphism
of heaps that is also a homomorphism of semigroups (or monoids in the
unital case).

It is clear from this definition that the image of a homomorphism of
(pre-, near-, skew) trusses is itself a (pre-, near-, skew) truss.

Remark 3.2. Except for a pre-truss all the notions listed in Definition 3.1
were introduced in [3] and [4]. Note, however, that the terminology intro-
duced there was motivated by braces, and thus what we call a near-truss
here was named a skew left truss there. In this paper we are adopting
a terminology more aligned with that of ring (or near-ring) theory. Of
course, a right distributive version of a near-truss can be considered, but
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in line with the convention of Subsection 2.1 we only consider the left
distributive version (with no qualifier).

A left (resp. right) absorber is an element a of a pre-truss T such
that, for all t ∈ T , ta = a (resp. at = a). We say that a is an absorber
if it is a left and right absorber. It is worth noting that if a pre-truss T
has both a left and a right absorber, then they necessarily coincide; in
particular, absorbers are unique. We denote TAbs := T \ {a}, if a is
the unique absorber, with the tacit understanding that TAbs = T when
T has no absorbers. Furthermore, since homomorphisms of pre-trusses
preserve multiplication, if f : T → T ′ is a morphism and e is a left (resp.
right) absorber in T , then f(e) is a left (resp. right) absorber in the
pre-truss f(T ).

Example 3.3. If T is a truss that has an absorber, then T is a ring-type
truss. This means that by taking the retract of T at the absorber, say 0,
we obtain a ring (T,+0, ·).

Conversely, if R is a ring then one can associate to it the truss (H(R), ·)
with absorber 0. This truss is denoted by T(R). If R is unital, then
T(R) is unital. Observe that if we start with a ring R, assign to it the
truss T(R) and then take the retract, we necessarily obtain R again,
since the absorber is unique.

Example 3.4. Let T be a near-truss such that there exists a left ab-
sorber e. Then a near-ring can be associated to T by taking the retract
of the heap T at e to obtain (T,+e, ·). We call such a T a ring-type
near-truss.

Conversely, if N is a near-ring then one can associate to it the near-
truss (H(N), ·) which we will denote by T(N). In contrast to rings, since
left absorbers are not unique, if one associates a near-truss T(N) to N
and then takes the retract at a left absorber, then one does not neces-
sarily obtain N .

Example 3.5. Let T be a unital near-truss. Then a skew-ring can be
associated to it by taking the retract of the heap T at the identity 1 of
the multiplication, that is, (T,+1, ·) is a skew-ring.

Conversely, if B is a skew-ring, then one can assign to it the unital
near-truss (H(B), ·), which we will denote by T(B). Observe that if we
start with a skew-ring B, assign to it the near-truss T(B) and then take
the retract at the identity, we obtain the same skew-ring as the identity
is unique.

Recall from [14] that an element u in a skew-ring B is called a unit
if, for all a ∈ B,

a · u = a+ u+ a.
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Lemma 3.6. Units in a skew-ring B are in one-to-one correspondence
with left absorbers in the associated unital near-truss T(B).

Proof: The correspondence is given by u = [1, e, 1]. That is, u is a
unit in B (resp. absorber in T(B)) provided e is an absorber in T(B)
(resp. unit in B).

Remark 3.7. Combining Example 3.4 with Example 3.5 and Lemma 3.6
we are led to the correspondence between skew-rings with units and uni-
tal near-rings. If u is a unit in a skew-ring B, then (T (B),+[1,u,1], ·, 1)
is a unital near-ring, and vice versa, if (N,+, ·, 1) is a unital near-ring
with zero e, then (T (N),+1, ·) is a skew-ring with unit [1, e, 1] = −e
(cf. [14, Example 3]). This correspondence is seemingly different from
the one described in [14, Proposition 2] as it changes the additive struc-
ture keeping the multiplication fixed, while in [14, Proposition 2] one
considers a new multiplication with addition unchanged. However, if e
is a left absorber in a unital near-truss (T, [−,−,−], ·, 1), then using the
translation heap automorphism (2.2) one can induce a new associative
product on T by the formula

a ∗e b = τ1
e (τe1 (a) · τe1 (b)), for all a, b ∈ T .

Then (T, [−,−,−], ∗e, [1, e, 1]) is a unital near-truss isomorphic to
(T, [−,−,−], ·, 1) in which 1 is a left absorber. Consequently, (T,+1, ∗e)
is a unital near-ring corresponding to the skew-ring (T,+1, ·). In par-
ticular, if B is a skew-ring with unit u, then (T (B),+1, ∗[1,u,1], u) =
(B,+, ∗−u, u) is the unital near-ring described in [14, Proposition 2].

Example 3.8. Let T be a near-truss such that (T, ·) is a group with
neutral element 1. Then (T,+1, ·) is a skew brace. We call such a T a
brace-type near-truss.

Conversely, if B is a skew brace, then one can assign to it the near-
truss (H(B), ·), which we will denote by T(B). As was the case with
the skew-rings, if we start with a skew brace B, assign to it the near-
truss T(B) and then take the retract at identity, we obtain the same
skew brace.

Our goal is to describe the properties that a pre-truss T and a con-
gruence ∼ on it must have for the quotient near-truss T/∼ to be a
brace-type near-truss, i.e., a near-truss associated to a skew brace. The
main theorem of this section is Theorem 3.28, which states when a near-
truss T/∼ can be associated to a skew brace. First we identify those
normal sub-heaps of a pre-truss T that faithfully correspond to congru-
ences.
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Definition 3.9. Let T be a pre-truss.

(1) A sub-heap S of T is said to be left-closed (resp. right-closed) if,
for all s, s′ ∈ S and t ∈ T ,

(3.1) [ts′, ts, s] ∈ S (resp. [s′t, st, s] ∈ S).

(2) A sub-heap S that is left- and right-closed is said to be closed.
(3) A normal sub-heap P of T such that every equivalence class of the

sub-heap relation ∼P is a closed (normal) sub-heap of T is called
a paragon.

Observe that Lemma 2.1 implies that if P is a paragon in a pre-
truss T , then all the equivalence classes of ∼P are mutually isomorphic
paragons as well.

Remark 3.10. In the case of a non-empty sub-heap S the quantifier ‘for
all s ∈ S’ in the definition of the left or right closure property (3.1) can
be equivalently replaced by the existential quantifier. Indeed, assume
that there exists q ∈ S such that, for all s′ ∈ S and t ∈ T , [ts′, tq, q] ∈ S.
Then, for all s ∈ S,

[ts′, ts, s] = [[[ts′, tq, q], q, tq], ts, s] = [[ts′, tq, q], [ts, tq, q], s] ∈ S,

by the associativity, Mal’cev identities, and (2.1), and since S is a sub-
heap. Similarly for the right closure property.

Lemma 3.11. A normal sub-heap P of a pre-truss T is a paragon if
and only if, for all a, b ∈ T and p, e ∈ P ,

[a[p, e, b], ab, e] ∈ P and [[p, e, b]a, ba, e] ∈ P.

Proof: By Lemma 2.1, the equivalence class of b ∈ T is b̄ = P be =
{[p, e, b] | p ∈ P}, for all e ∈ P . Hence b̄ is left-closed if and only if, for
all p ∈ P and a ∈ T , there exists q ∈ P such that

[a[p, e, b], ab, b] = [q, e, b],

that is, if and only if

[a[p, e, b], ab, e] = q ∈ P,

as required. By the same argument we obtain that b is right-closed.

Corollary 3.12. A normal sub-heap P of a near-truss T is a paragon
if and only if P is left-closed and all equivalence classes of the induced
sub-heap relation are right-closed. In particular P is a paragon in a skew
truss if and only if it is a closed normal sub-heap.
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Proof: Since in a near-truss the left distributive law holds, the left closure
property in Lemma 3.11 reduces to [ap, ae, e] ∈ P , that is, the left-
closedness of P . In a skew truss the right closure property is treated
symmetrically.

Corollary 3.12 shows that, in the case of skew trusses (and hence
trusses) the notion of a paragon introduced in Definition 3.9 reduces to
the notion introduced in [4, Definition 3.15].

Lemma 3.13. Let f : T → T ′ be a morphism of pre-trusses.

(1) For all z ∈ Im f , f−1(z) is a paragon in T . In particular, if P ′ is
a paragon in Im f , then f−1(P ′) is a paragon in T .

(2) If P is a paragon in T , then f(P ) is a paragon in Im f .

Proof: (1) By [4, Lemma 2.12], f−1(z) is a normal sub-heap which is
non-empty (since z ∈ Im f). For all a, b ∈ T and p, e ∈ f−1(z),

f([a[p, e, b], ab, e]) = [f(a)[f(p), f(e), f(b)], f(a)f(b), f(e)]

= [f(a)[z, z, f(b)], f(a)f(b), z] = z,

since f preserves multiplication and ternary operations, and by
Mal’cev identities. Thus [a[p, e, b], ab, e] ∈ f−1(z). By the same argu-
ments, [[p, e, b]a, ba, e] ∈ f−1(z). In view of Lemma 3.11 this means that
f−1(z) is a paragon.

Assume that P ′ is a paragon. That the pre-image of a normal sub-heap
is a normal sub-heap follows by the standard group-theoretic arguments.
Since f preserves multiplication and heap operations, for all a, b ∈ T and
p, q ∈ f−1(P ′),

f([a[p, q, b], ab, q]) = [f(a)[f(p), f(q), f(b)], f(a)f(b), f(q)] and

f([[p, q, b]a, ba, q]) = [[f(p), f(q), f(b)]f(a), f(b)f(a), f(q)].

Since P ′ is a paragon, and f(p), f(q) ∈ P ′, both expressions are elements
of P ′. Therefore, [a[p, q, b], ab, q], [[p, q, b]a, ba, q] ∈ f−1(P ′), and hence
f−1(P ′) is a paragon.

Statement (2) is proven by similar arguments.

Theorem 3.14. Let P be a normal sub-heap of a pre-truss T . Then the
canonical heap map π : T → T/P is a homomorphism of pre-trusses if
and only if P is a paragon.

Proof: Assume that π is a pre-truss homomorphism. Since P = π−1(P ),
P is a paragon by Lemma 3.13.

For the proof of the opposite implication assume that P is a paragon.
Then ∼P is a congruence on the heap T , so we only need to show that
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this relation is a congruence on the pre-truss T as well. Let a, b ∈ T be
such that a ∼P b, so that a, b ∈ π(b). Since P is a paragon, for all t ∈ T ,
[ta, tb, b] ∈ π(b). Hence, [π(tb), π(ta), π(b)] = π(b), that is, π(tb) = π(ta)
or, equivalently, ta ∼P tb. In the same way one can prove that a ∼P b
implies at ∼P bt for all t ∈ T . Assume that a ∼P b and c ∼P d. Then
ac ∼P bc, bc ∼P bd, and ac ∼P bd, since ∼P is an equivalence relation.
Therefore, ∼P is a congruence and the canonical map π : T → T/P is a
homomorphism of pre-trusses. This completes the proof.

Corollary 3.15. Let N be a near-ring. Then P ⊆ N is an equivalence
class for a congruence on N if and only if P is a paragon in T(N).

Proof: Let us assume that P is an equivalence class for a congruence
on N , and let N̄ be the quotient near-ring with canonical homomorphism
π : N → N̄ . Since π is also a homomorphism of associated near-trusses,
that is, π : T(N)→ T(N̄), and P = π−1(P ), P is a paragon in T(N) by
Lemma 3.13.

In the opposite direction, assume that P is a paragon in T(N). Then
there exists a near-truss homomorphism π : T(N) → T(N)/P . Observe
that the triple (T(N)/P,+π(e), ·), where e is the neutral element of N ,
is a near-ring, since the image of a left absorber through a near-truss
homomorphism is a left absorber. Therefore π is also a homomorphism
of the retracted near-rings and P is an equivalence class of a congruence
given by π as P = π−1(P ).

Lemma 3.16. Let T(B) be a near-truss associated to a skew brace B
(with identity 1). Then P is a paragon in T(B) if and only if, for all
p ∈ P , P 1

p is an ideal in B.

Proof: Assume that P is a paragon in T(B). Then 1 ∈ P 1
p , (P 1

p ,+1) is

a normal subgroup of (B,+) as P 1
p is a normal sub-heap and +1 = +.

Since P 1
p is closed, for all a ∈ B and b ∈ P 1

p ,

ab− a = [ab, a1, 1] ∈ P 1
p and ba− a = [ba, 1a, 1] ∈ P 1

p .

Therefore, ba− ab = c ∈ P 1
p , and, using the skew brace distributive law,

a−1ba = a−1(c+ ab) = a−1c− a−1 + b ∈ P 1
p ,

since P 1
p is left-closed. This implies that a−1P 1

p a = P 1
p , that is, aP 1

p =

P 1
p a, and completes the proof that P 1

p is an ideal in B.

Conversely, if P 1
p is an ideal in B, then B/P 1

p is a skew brace by [8,

Lemma 2.3], and the canonical skew brace epimorphism π : B → B/P 1
p

induces a near-truss morphism π : T(B)→T(B/P 1
p ). Since P 1

p =π−1(P 1
p ),

P 1
p and consequently also P = (P 1

p )p1 are paragons by Lemma 3.13.
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Corollary 3.17. Let B be a skew brace; then P ⊆ B is an equivalence
class for some congruence on B if and only if P is a paragon in T(B).

Proof: The proof of the left to right implication is the same as in Corol-
lary 3.15. The other implication follows by Lemma 3.16.

To connect quotients of near-trusses with skew braces we need to
determine which paragons do not produce absorbers in the quotients.
To this end we introduce the notion of an ideal.

Definition 3.18. A normal sub-heap I of a pre-truss T is called a left
(resp. right) ideal if, for all t ∈ T and i ∈ I, ti ∈ I (resp. it ∈ I). If I is
both left and right ideal, then it is called an ideal. A proper left (resp.
right) ideal is said to be maximal if it is not strictly contained in any
proper left (resp. right) ideal.

Note that an ideal is a closed sub-heap, but this does not yet make it
into a paragon, since the equivalence classes of the corresponding sub-
heap relations need not be closed. Also note that if f : T → T ′ is a
homomorphism of pre-trusses, then the pre-image of an ideal in Im f is
an ideal in T and the image of an ideal in T is an ideal in Im f .

Lemma 3.19. If a left-closed normal sub-heap of a pre-truss contains a
left ideal, then it is a left ideal.

Proof: Let P be a left-closed normal sub-heap of T , and let I be a
left ideal such that I ⊆ P . Then, for all p ∈ P , t ∈ T , and i ∈ I,
tp = [[tp, ti, i], i, ti] ∈ P , since [tp, ti, i] ∈ P and ti, i ∈ I ⊆ P .

Lemma 3.20. Let T be a pre-truss and P be a paragon. Then T/P has
a left absorber if and only if there exist a ∈ P and t ∈ T such that P ta is
a left ideal.

Proof: The assertion follows from the fact that for every a ∈ P and t ∈ T ,
P ta = π(t), where π is the canonical surjection onto the quotient T/P .

Corollary 3.21. If I is a paragon that is a right ideal in a pre-truss T ,
then for all e ∈ T \ I and all a ∈ I, Iea is not a left ideal.

Proof: We know from Lemma 2.1 that T/I = T/Iea. Assume that I is
a right ideal and suppose that Iea is a left ideal. Then, by Lemma 3.20,
I is a right absorber in T/I and Iea is a left absorber in T/Iea. Hence
I = Iea. But e 6∈ I and e ∈ Iea, which yields a required contradiction and
completes the proof.
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Proposition 3.22. Let T be a unital near-truss.

(1) T is a near-truss associated to a skew brace if and only if T has
exactly one left ideal.

(2) T is a near-truss associated to a near-field if and only if T has a
left absorber and exactly two left ideals.

Proof: (1) Assume that T has exactly one left ideal. For all x ∈ T the
left ideal Tx := {tx | t ∈ T} has to be the whole of T (in particular if
T has at least two elements, then it has no left absorbers). Therefore,
there exists y ∈ T such that yx = 1 and y is a left inverse to x. As x is
an arbitrary element there exists x′ such that x′y = 1. Thus (x′y)x = x
and by associativity x′ = x. The conclusion is that y is the two-sided
inverse of x and the monoid (T, ·) is a group. Therefore, the near-truss T
is a brace-type near-truss (see [4, Corollary 3.10]).

Conversely, suppose that T = T(B) for a skew brace B and that there
exists a left ideal I ( T(B). Observe that if x ∈ I, then x−1x = 1 ∈ I,
therefore I = T . This contradicts the assumption that I 6= T . Thus T
has exactly one left ideal.

(2) Let us assume that T has a left absorber and exactly two left ideals.
Then there exists a near-ring R such that T = T(R); to be precise R is
the retract (T,+e, ·), where e is the left absorber. Seeking a contradiction,
suppose that R is not a near-field. Then there exists a left ideal {e} 6= I (
R; but I is also a left ideal of T(R), which contradicts the assumption
that T has only two left ideals. Therefore, R is a near-field.

Assume that T = T(F ), where F is a near-field, then 0 (the neu-
tral element for the addition in F ) is a left absorber in T . Suppose by
contradiction that T(F ) has a left ideal {0} 6= I ( T(F ). Consider, for
any a ∈ I, the ideal I0

a := {[b, a, 0] | b ∈ I}. The ideal I0
a is neither

equal to {0} nor to T , since the map [−, a, 0] is a bijection. Furthermore,
I0
a is an ideal in F , and hence F is not a near-field. This contradicts the

assumption that F is a near-field.

Lemma 3.23. Let T be a near-truss. If I is a paragon in T that is a
maximal left ideal, then T/I has no ideals different from a singleton set
and T/I.

Proof: Suppose that J 6= T/I is a left ideal in T/I that is not a singleton
set. Since I is a left absorber in T/I, for any element J ∈ J, JIJ is a
left ideal in T/I by the left distributive law. Hence, π−1(JIJ) is a left
ideal in T , where π : T → T/I is the canonical surjection. Moreover,
I ⊂ π−1(JIJ), since I ∈ JIJ . Therefore, since I is a maximal left ideal,
either I = π−1(JIJ), and hence JIJ = {I}, which implies that J = {J},
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or π−1(JIJ) = T , which implies in turn that J = T/I. Thus both cases
lead to a contradiction.

Although dividing by a paragon which is a maximal left ideal yields
a near-truss without proper left ideals, this near-truss always has an ab-
sorber. Therefore it is never a brace-type near-truss. The most straight-
forward idea to generalise maximality to paragons leads us to the follow-
ing definition:

Definition 3.24. Let T be a pre-truss. A left-closed (resp. right-closed)
normal sub-heap P ( T is said to be maximal if it is not contained in
any left-closed (resp. right-closed) sub-heap other than T . A paragon P is
said to be left maximal (resp. right maximal, maximal) if it is a maximal
left-closed (resp. right-closed, left- and right-closed) sub-heap.

Lemma 3.25. Let T be a near-truss or a skew truss and P be a left-
closed normal sub-heap. Then P is maximal if and only if, for all a ∈ P
and t ∈ T , P ta is a maximal left-closed normal sub-heap.

Proof: Note that by the normality of P and the left distributive law, all
the P ta are left-closed normal sub-heaps. Seeking a contradiction assume
that P is maximal and there exists a ∈ P and t ∈ T such that P ta is not
maximal. Then there exists a left-closed normal sub-heap Q such that
P ta ( Q ( T . Since τ ta is an isomorphism with the inverse τat , this implies
that P ( Qat ( T . Hence P is not maximal, contrary to the assumption.

The opposite implication is also easily deduced from the fact that
P = (P ta)at .

Remark 3.26. In the case of rings the notions of maximal ideals and max-
imal paragons coincide as every paragon P in the ring can be associated
to an ideal P 0

a for any a ∈ P and an absorber 0.

Lemma 3.27. Let T be a near-truss or a skew truss and P ⊆ T a left
maximal paragon; then T/P has no proper (i.e., different from singletons
and the whole of T/P ) left ideals.

Proof: By the definition of maximality of P , T/P has no proper left
paragons. Therefore it has no proper left ideals as a left ideal is a left
paragon.

Observe that by dividing a near-truss without left absorbers by a
paragon which is left maximal, one obtains a near-truss associated to
a skew brace. If the quotient is a skew brace, then it is a simple skew
brace, that is, it has no ideals in the sense of sub-braces different from
the skew brace itself and singleton subsets of it. Maximal paragons do
not characterise all the quotients which are brace-type near-trusses, since
there exist skew braces that are non-simple.
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Theorem 3.28. Let T be a unital near-truss and P be a paragon, and
let πP : T → T/P be the canonical epimorphism. Then T/P is a brace-
type near-truss if and only if, for all left ideals I ( T and a ∈ T/P ,
π−1
P (a) 6⊆ I.

Proof: Let us assume that T/P is a brace-type near-truss. Observe that
should π−1

P (a) ⊆ I for a left ideal I, then πP (I) would be a left ideal
in T/P . Thus, πP (I) = T/P , since T/P is a brace-type near-truss. On
the other hand, if c ∈ T \ I then πP (c) 6∈ πP (I). Indeed, should πP (c) ∈
πP (I), then there would exist i ∈ I and p ∈ P such that [c, i, p] ∈ P .
Thus, for all a ∈ π−1

P (a), [c, i, a] = [[c, i, p], p, a] ∈ π−1
P (a) ⊂ I and c ∈ I.

Therefore, I = T .
Now, assume that, for all left ideals I ( T and a ∈ T/P , π−1

P (a) 6⊆ I
and T/P is not a brace-type near-truss. Then there exists a left ideal J (
T/P . The pre-image π−1

P (J) ( T is a left ideal in T and, obviously, for

any j ∈ J, π−1
P (j) ⊆ π−1

P (J). This contradicts the assumption that, for

all a ∈ T/P , π−1
P (a) 6⊆ I, so T/P is a brace-type near-truss. The proof

is completed.

Example 3.29. Let B be a skew brace and R a ring. One can consider
the product near-truss T(B)×T(R) with operation given by (b, r)(b′, r′)=
(bb′, rr′), for all (b, r), (b′, r′) ∈ T(B)×T(R). It is easy to check that, for
any ideal I in R, T(B)× I is an ideal in T(B)× T(R) and that for any
paragon P in T(B), P × I is a paragon in T(B)×T(R). Every paragon
of the form P × T(R) fulfils conditions in Theorem 3.28 and one easily
finds that (T(B)× T(R))/(P × T(R)) ∼= T(B)/P .

Example 3.30. Let T = 2Z+ 1 be the sub-truss of T(Z). The set P =
{2nm + 1 | m ∈ T} ⊂ T is a paragon and the quotient T/P is a brace-
type truss isomorphic to U(Z/2n+1Z), the sub-truss of all units in the
quotient ring Z/2n+1Z. To prove that this isomorphism holds it is first
of all helpful to notice that |T/P | = 2n = |U(Z/2n+1Z)|. Indeed, there
are as many classes in the quotient as odd numbers between 2nm + 1
and 2n(m + 2) + 1 (it is important to notice that, if m is odd, then
m+ 1 is even), so exactly 2n. Then the isomorphism is given by sending
2m+ 1 ∈ T/P to 2m + 1 mod 2n+1: this is evidently injective, so also
surjective since the two sets have the same size, and it is easily proven
to be a homomorphism.

4. Domains and completely prime paragons

The aim of this section is to introduce the notion of a completely
prime paragon. This, in analogy to the case of rings, should lead to a
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quotient pre-truss that is a domain, i.e., a pre-truss in which cancella-
tion properties hold. After describing such paragons, the next step is to
consider the Ore localisation for pre-trusses, which is the subject of the
following section. By inverting all elements of a domain we should obtain
a pre-truss without proper left ideals and with no absorbers, so if the
distributive law holds this will be a near-truss associated to a skew brace.
Let us start with the definition of a domain. When working with rings,
there is always an absorber which in many cases allows for simplification
of some conditions. Not all pre-trusses have an absorber (in fact, having
brace applications in mind, we are particularly interested in those that
do not have absorbers), so many of the well-known definitions need to
be in some sense generalised or stated without involving any absorber.
We begin with the definition of a regular element:

Definition 4.1. Let T be a pre-truss. An element a ∈ TAbs is said to
be left regular (resp. right regular) if, for all b 6= c,

(4.1) ab 6= ac (resp. ba 6= ca).

If a is both left and right regular then it is said to be regular.

Observe that conditions (4.1) can be written in a way that makes
them reminiscent of the closedness conditions (3.1) used in the definition
of a paragon. The statement that ac 6= ab is equivalent to saying that
[ac, ab, b] 6= b. Similarly, ba 6= ca is equivalent to saying that [ca, ba, b] 6=
b. This indicates that these conditions are closely related to the definition
of a paragon.

Lemma 4.2. Let T be a near-truss. Then a ∈ T is a left regular element
if and only if there exists an element c such that, for all b ∈ T \ {c},

(4.2) ab 6= ac.

Proof: If a is left regular then, for all c ∈ T and all b ∈ T \ {c}, the
inequality (4.2) holds, which implies the existence of c.

Assume that there exists c ∈ T such that, for all b 6= c, ab 6= ac. Thus
[ab, ac, ac′] = a[b, c, c′] 6= ac′, for all c′ ∈ T . Note that, for all c, c′ ∈ T ,
the map

[−, c, c′] : T \ {c} −→ T \ {c′}, b 7−→ [b, c, c′],

is a bijection. Therefore, for all t ∈ T \{c′}, at 6= ac′. By the arbitrariness
of c′, a is a left regular element. This completes the proof.

Lemma 4.3. Let R be a ring. Then a ∈ R is a regular element if and
only if a is a regular element in T(R).
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Proof: The equivalence will be proven for left regularity only, the right
regularity case being symmetric. Let us assume that a ∈ R is a regular
element. Then there is no b ∈ R \ {0} such that ab = 0. Thus, by
Lemma 4.2, if c = 0 in (4.2), then a is a regular element in T(R), since
a is regular in R.

Suppose that a is regular in T(R). Then ab 6= ac implies a(b− c) 6= 0.
Therefore, by substituting b = t + c, at 6= 0 for all t ∈ R \ {0}, which
completes the proof.

Now we are ready to introduce the definition of a domain in clear
analogy to the usual notion for rings.

Definition 4.4. A pre-truss T is called a domain if all elements of TAbs

are regular.

In view of Lemma 4.3, a ring R is a domain if and only if T(R) is a
domain.

Lemma 4.5. A near-truss T is a domain if and only if it satisfies the
cancellation property, that is, for all a ∈ TAbs and b, b′ ∈ T , each one of
the equalities ab = ab′ or ba = b′a implies that b = b′.

Proof: This follows immediately for the definitions of a regular element
and a domain.

Definition 4.6. Let T be a pre-truss. A non-empty paragon P ⊆ T is
said to be completely prime if, for all p ∈ P , a, b, c ∈ T ,

[ab, ac, p] ∈ P =⇒ P ap is an ideal or [b, c, p] ∈ P

and

[ba, ca, p] ∈ P =⇒ P ap is an ideal or [b, c, p] ∈ P.
Lemma 4.7. Let T be a pre-truss and P be a non-empty paragon. Then
P is completely prime if and only if, for all p ∈ P and t ∈ T , P tp is
completely prime.

Proof: Let us assume that P is a completely prime paragon and let p ∈ P
and t ∈ T . We know that P tp is a paragon (see comment that follows

Definition 3.9). Then, for all a, b, c ∈ T and q ∈ P , [ab, ac, [q, p, t]] ∈ P tp
implies [[ab, ac, [q, p, t]], t, p] = [ab, ac, q] ∈ P , since (P tp)pt = P . Thus,

P aq is an ideal or [b, c, q] ∈ P . In view of (P tp)a[q,p,t] = P aq , the first option

is equivalent to (P tp)a[q,p,t] being an ideal and the second to [b, c, [q, p, t]] ∈
P tp. Hence P tp fulfils the left condition to be a completely prime paragon.

Analogously one can prove that P tp satisfies the right condition. There-

fore, P tp is a completely prime paragon.
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Unsurprisingly, the distributive laws yield simplification of the defini-
tion of a completely prime paragon.

Lemma 4.8. Let T be a skew truss and P be a paragon. Then P is
completely prime if and only if there exists p ∈ P such that, for all
a, d ∈ T ,

[ad, ap, p] ∈ P =⇒ P ap is an ideal or d ∈ P

and

[da, pa, p] ∈ P =⇒ P ap is an ideal or d ∈ P.

Proof: It is sufficient to observe that, for every b ∈ T , [b, c, p] can be
substituted by some d ∈ T since [−, c, p] : T → T is a bijection with the
inverse given by [−, p, c] : T → T . Hence, if b = [d, p, c], d = [[d, p, c], c, p],
and so

[ab, ac, p] = [a[d, p, c], ac, p] = [ad, ap, p]

and

[ba, ca, p] = [[d, p, c]a, ca, p] = [da, pa, p],

by the distributive laws and the axioms of a heap. This completes the
proof.

Lemma 4.9. If P ( T is a completely prime paragon in a pre-truss T ,
then, for all p ∈ P and for all left (right) absorbers a, a′ ∈ T , P ap = P a

′

p .

Proof: Let a be a left absorber. For all b, c ∈ T and p ∈ P , [ba, ca, p] =
[a, a, p] = p ∈ P , so P ap is an ideal or [b, c, p] ∈ P . The second option is
equivalent to b ∼P c, for all b, c ∈ T . Observe, though, that since P 6= T ,
there exist b, c ∈ T such that b 6∼P c. Therefore, P ap is an ideal and
a ∈ T/P is an absorber. From the fact that if a truss has an absorber

then it has only one left absorber one concludes that P ap = P a
′

p , for all
left absorbers a, a′.

Theorem 4.10. Let T be a pre-truss. Then P is a completely prime
paragon if and only if T/P is a domain.

Proof: We write a for the class of a in T/P . The pre-truss T/P is a
domain if and only if, for all a, b, c ∈ T/P , ab = ac implies that b = c or
a is an absorber. The equality ab = ac amounts to the existence of p ∈ P
such that [ab, ac, p] ∈ P . Observe that b = c if and only if [b, c, p] ∈ P ,
and a is an absorber if and only if P ap is an ideal. The proof proceeds
analogously for the right cancellation property.
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Remark 4.11. Every paragon in a near-truss T(B) associated to a skew
brace B is completely prime.

Corollary 4.12. Let R be a ring. An ideal I is completely prime in R
if and only if I is a completely prime paragon in T(R).

Proof: Let us assume that I is a completely prime ideal in R. Then, for
all a, b ∈ R and absorber 0 ∈ I,

[ab, a0, 0] = ab ∈ I =⇒ a ∈ I or b ∈ I.
Thus, if a ∈ I, then Ia0 = I is an ideal, and hence I is a completely prime
ideal in T(R).

Conversely, assume that I is a completely prime paragon in T(R).
For all a, b ∈ T(R),

ab = [ab, a0, 0] ∈ I =⇒ Ia0 is an ideal or b ∈ I.
Observe that Ia0 is an ideal if and only if a ∈ I. Therefore, I is a com-
pletely prime ideal in R. This completes the proof.

Lemma 4.13. Let f : T → T ′ be a morphism of pre-trusses. If P is a
completely prime paragon in Im f , then f−1(P ) is a completely prime
paragon in T .

Proof: By Lemma 3.13, f−1(P ) is a paragon. For all a, b, c ∈ T and
p ∈ f−1(P ), if [ab, ac, p] ∈ f−1(P ), then

f([ab, ac, p]) = [f(a)f(b), f(a)f(c), f(p)] ∈ P.

This implies that P
f(a)
f(p) is an ideal or f([b, c, p]) = [f(b), f(c), f(p)] ∈ P .

Therefore, [b, c, p] ∈ f−1(P ) or P
f(a)
f(p) is an ideal. Let us assume that

z ∈ f−1(P
f(a)
f(p) ) = {x ∈ T | ∃q ∈ P s.t. f(z) = [q, f(p), f(a)]}.

Then f(z) = [q, f(p), f(a)], for some q ∈ P and

f([z, a, p]) = [f(z), f(a), f(p)] = q ∈ P.

Hence z = [[z, a, p], p, a] ∈ f−1(P )ap and f−1(P
f(a)
f(p) ) ⊆ f−1(P )ap. There-

fore, f−1(P )ap ⊆ f−1(P
f(a)
f(p) ) and, by Lemma 3.19, f−1(P )ap is an ideal.

This completes the proof.

We conclude this section with an example of a completely prime
paragon and the corresponding quotient domain.

Example 4.14. Let O(x) be the set of all polynomials in Z[x] in which
the sum of the coefficients is odd. One can easily check that O(x) is a
sub-monoid of the multiplicative monoid Z[x] and a sub-heap of Z[x]
with the standard operation [p, q, r] = p − q + r. All this means that
O(x) is a (commutative) truss.
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Take any t0, t1 ∈ O(x) and define

P (t0, t1) := {p ∈ O(x) | (t1 − t0) divides (p− t0)}.
Then P (t0, t1) is a paragon in O(x) and it is a completely prime paragon
provided that t1 − t0 is irreducible in Z[x].

Proof: Clearly, if p− t0, q − t0, and r − t0 are divisible by t1 − t0, then
so is [p, q, r]− t0 = p− q+ r− t0. Hence P (t0, t1) is a sub-heap of O(x).
Note that t0 ∈ P (t0, t1), and hence, for all p ∈ P (t0, t1) and q ∈ O(x),

[qp, qt0, t0]− t0 = qp− qt0 = q(p− t0).

Therefore, [qp, qt0, t0]=[pq, t0q, t0]∈P (t0, t1), which means that P (t0, t1)
is a paragon.

Now assume that c = t1−t0 is irreducible in Z[x], and take a, b ∈ O(x),
for which there exists p ∈ P (t0, t1) such that [ab, ap, p] ∈ P (t0, t1), that
is, c | a(b − t0). Since c is irreducible, then either c | (b − t0), in which
case b ∈ P (t0, t1), or c | a, that is, there exists q ∈ Z[x] such that a = cq.
In this case,

P (t0, t1)ap = {r − p+ cq | r ∈ P (t0, t1)}.
Thus P (t0, t1)ap contains all elements of O(x) divisible by c (since c |
(r−p), for all r, p ∈ P (t0, t1)), and hence it is an ideal in O(x). Combined
with the commutativity of O(x), Lemma 4.8 yields that P (t0, t1) is a
completely prime paragon.

Note that in general in the situation described in Example 4.14,

a = b ∈ O(x)/P (t0, t1) if and only if (t1 − t0) | (a− b).
So, for example, take t0 = x and t1 = x2 + x + 1. Then c = t1 − t0 =
x2 + 1 is an irreducible polynomial in Z[x] and O(x)/P (x, x2 + x + 1)
is a domain that can be identified with the sub-truss O(i) of the truss
(ring) of Gaussian integers Z[i], defined as

O(i) = {m+ ni | m+ n is odd}.

5. Skew braces of fractions

To summarise, up to now we have introduced the notions of a do-
main and a completely prime paragon, so that as long as we start with a
pre-truss that has a completely prime paragon we can quotient out by it
and obtain a domain. The next and most important step is to introduce
localisation for pre-trusses. As the main goal of this section is to pro-
duce braces from near-trusses we will consider near-trusses without left
absorbers and we will focus on localisation in the entire near-truss (to
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construct a “brace of fractions”) following Ore’s classic construction [10].
First observe that since not every ring can be localised the same is true
for trusses. Following [10] we start by defining a regular pre-truss.

Definition 5.1. A pre-truss T is said to be left regular if T is a domain
and it satisfies the left Ore condition, that is, for all x, y ∈ TAbs, there
exist r, s ∈ TAbs such that rx = sy.

In other words, a pre-truss is left (resp. right) regular if and only if
TAbs is a left Ore set. Next, we define the fraction relation on TAbs×T ,
by

(b, a) ∼ (b′, a′) if and only if there exist β, β′ ∈ TAbs,

s.t. βb = β′b′ and βa = β′a′.

This is an equivalence relation by the same arguments as in [10, Sec-
tion 2]. The equivalence class of (b, a) is denoted by a

b and called a

fraction, and the quotient set TAbs × T/∼ is denoted by Q(T ).

Theorem 5.2 (Ore localisation for regular pre-trusses). Let T be a left
regular pre-truss. Then Q(T ) is a pre-truss with the following operations:

(a) For all a
b ,

a′

b′ ,
a′′

b′′ ∈ Q(T ), the ternary operation is defined by

(5.1)

[
a

b
,
a′

b′
,
a′′

b′′

]
:=

[β1a, β2a
′, β3a

′′]

β1b
=

[β1a, β2a
′, β3a

′′]

β2b′
=

[β1a, β2a
′, β3a

′′]

β3b′′
,

where β1, β2, β3 are any elements of TAbs such that β1b = β2b
′ =

β3b
′′.

(b) For all a
b ,

a′

b′ ∈ Q(T ),

(5.2)
a

b
· a
′

b′
:=

γa′

γ′b
,

where γ, γ′ ∈ TAbs are such that γb′ = γ′a.

Furthermore, (Q(T )Abs, ·) is a group. We will call Q(T ) the pre-truss of
(left) fractions of T .

Proof: We follow closely the proof of [10, Theorem 1]. The multiplica-
tion of fractions (5.2) is defined in such a way that a

b can be interpreted

as b−1a. Since it relies entirely on the properties of the semigroup (T, ·),
the arguments of the proof of [10, Theorem 1] (with no modification,
apart from the conventions) yield that (Q(T ), ·) is a semigroup.
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It remains to be proven that Q(T ) is a heap. In fact, by the Ore
condition we may assume that all fractions in the definition of the ternary
operation (5.1) on Q(T ) have a common denominator, so that

(5.3)

[
a

b
,
a′

b
,
a′′

b

]
=

[βa, βa′, βa′′]

βb
,

since in this case we can choose β := β1 = β2 = β3. Thus it suffices to
prove that (5.3) is well defined, as then the heap axioms for T will imply
the corresponding axioms for the derived operation (5.3). We proceed in
two steps. First, we show that the formula (5.3) does not depend on the
choice of β; in the second stage we will prove that it is also independent
of the choice of the representatives a, b for the class a

b .

Choose another element s ∈ TAbs such that[
a

b
,
a′

b
,
a′′

b

]
=

[sa, sa′, sa′′]

sb
.

There exist g, g′ ∈ TAbs such that gβb = g′sb, which implies

gβ = g′s,

since T is a domain. Therefore,

g[βa, βa′, βa′′] = g′[sa, sa′, sa′′], gβb = g′sb.

Consequently,
[βa, βa′, βa′′]

βb
=

[sa, sa′, sa′′]

sb
,

which shows the independence of the formula (5.3) of the choice of β.
To prove that the ternary operation (5.1) does not depend on the

choice of the representatives in each equivalence class, let (b, a), (b′, a′),
(b′′, a′′), (d, c), (d′, c′), (d′′, c′′) ∈ TAbs × T be such that

a

b
=
c

d
,
a′

b′
=
c′

d′
,
a′′

b′′
=
c′′

d′′
,

and consider

(5.4)

[
a

b
,
a′

b′
,
a′′

b′′

]
=

[β1a, β2a
′, β3a

′′]

β1b
,

[
a

b
,
a′

b′
,
c′′

d′′

]
=

[s1a, s2a
′, s3c

′′]

s1b
,

for suitable β1, β2, β3, s1, s2, s3 ∈ TAbs. Then there exist g, g′ ∈ T , such
that

gβ1b = gβ2b
′ = gβ3b

′′ = g′s1b = g′s2b
′ = g′s3d

′′,

and, since T is a domain,

gβ1 = g′s1, gβ2 = g′s2.



706 T. Brzeziński, S. Mereta, B. Rybo lowicz

Thus both fractions in equation (5.4) are equal if and only if gβ3a
′′ =

g′s3c
′′. Observe, however, that since g′s3d

′′ = gβ3b
′′, gβ3a

′′ = g′s3c
′′ as

a′′

b′′ = c′′

d′′ . Therefore, [
a

b
,
a′

b′
,
a′′

b′′

]
=

[
a

b
,
a′

b′
,
c′′

d′′

]
.

The remaining equalities[
a

b
,
a′

b′
,
c′′

d′′

]
=

[
a

b
,
c′

d′
,
c′′

d′′

]
and

[
a

b
,
c′

d′
,
c′′

d′′

]
=

[
c

d
,
c′

d′
,
c′′

d′′

]
are proven in a similar way. This completes the proof that the defini-
tion of the ternary operation (5.1) does not depend on the choice of
representatives.

Finally, observe that if a is an absorber, then the class a
b is an absorber

and it is obviously unique. One can easily check that the class b
b for

b ∈ TAbs is a neutral element of (Q(T )Abs, ·) and that if a ∈ TAbs then a
b

is a two-sided inverse to b
a . Thus (Q(T )Abs, ·) is a group. This completes

the proof of the theorem.

From the fact that one can find a common denominator to any system
of fractions one can observe that additional properties of T are carried
over to Q(T ).

Proposition 5.3. Let T be a regular pre-truss.

(1) If T is Abelian, then so is Q(T ).
(2) If T is a near-truss, then Q(T ) is a near-truss.
(3) If T is a skew truss, then Q(T ) is a skew truss.

Proof: It is sufficient to consider heap operations of fractions with a
common denominator, that is, those given by the formula (5.3). State-
ment (1) follows immediately from (5.3).

If T is a near-truss, then[
a

b
,
a′

b
,
a′′

b

]
=

[βa, βa′, βa′′]

βb
=
β[a, a′, a′′]

βb
=

[a, a′, a′′]

b
.

Take any c
d ,

a
b ,

a′

b ,
a′′

b ∈ Q(T ) and γ, γ′ ∈ TAbs such that γb = γ′c, and
compute

c

d
·
[
a

b
,
a′

b
,
a′′

b

]
=
c

d
· [a, a′, a′′]

b
=
γ[a, a′, a′′]

γ′d
=

[γa, γa′, γa′′]

γ′d

=

[
γa

γ′d
,
γa′

γ′d
,
γa′′

γ′d

]
=

[
c

d
· a
b
,
c

d
· a
′

b
,
c

d
· a
′′

b

]
.

Hence the left distributive law holds, and this proves statement (2).
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To prove (3) we take c
d ,

a
b ,

a′

b ,
a′′

b ∈ Q(T ) and γ, γ′ ∈ TAbs such that
γd = γ′[a, a′, a′′]. Then[

a

b
,
a′

b
,
a′′

b

]
· c
d

=
[a, a′, a′′]

b
· c
d

=
γc

γ′b
.

On the other hand, using the definitions (5.1) and (5.2) and the right
distributivity in T , we obtain[

a

b
· c
d
,
a′

b
· c
d
,
a′′

b
· c
d

]
=

[
γ1c

γ′1b
,
γ2c

γ′2b
,
γ3c

γ′3b

]
=

[s1γ1, s2γ2, s3γ3]c

s1γ′1b
,

where s1, s2, s3, γ1, γ2, γ3, γ
′
1, γ
′
2, γ
′
3 ∈ TAbs are such that

(5.5) γ′1a = γ1d, γ′2a
′ = γ2d, γ′3a

′′ = γ3d, s1γ
′
1 = s2γ

′
2 = s3γ

′
3.

Let h, h′ ∈ TAbs be such that

(5.6) hγ′ = h′s1γ
′
1.

Then, using the distributive laws in T , (5.5), and (5.6), we find

hγd = hγ′[a, a′, a′′] = [hγ′a, hγ′a′, hγ′a′′]

= [h′s1γ
′
1a, h

′s1γ
′
1a
′, h′s1γ

′
1a
′′] = h′[s1γ

′
1a, s2γ

′
2a
′, s3γ

′
3a
′′]

= h′[s1γ1d, s2γ2d, s3γ3d] = h′[s1γ1, s2γ2, s3γ3]d.

The right cancellation property yields

hγ = h′[s1γ1, s2γ2, s3γ3],

which in view of (5.6) implies that

γc

γ′b
=

[s1γ1, s2γ2, s3γ3]c

s1γ′1b
.

Therefore, also the right distributive law holds in the near-truss Q(T ).

The construction of the truss of quotients is universal in the following
sense.

Proposition 5.4. Let T be a regular pre-truss. Then

(1) For any b ∈ TAbs,

ιb : T −→ Q(T ), a 7−→ ba

b
,

is a monomorphism of semigroups, and it is a monomorphism of
trusses provided T is a near- or skew truss.
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(2) If T is a unital pre-truss then ι1 is a monomorphism of unital
trusses. Furthermore, for any brace-type near-truss B and any uni-
tal truss homomorphism f : T → B, there exists a unique unital

truss homomorphism f̂ : Q(T ) → B rendering the following dia-
gram commutative:

T
ι1 //

f ��

Q(T )

f̂}}
B

Proof: (1) Since T is regular, ιb is an injective map. For all a, a′ ∈ T ,

ιb(aa
′) =

baa′

b
and ιb(a) · ιb(a′) =

ba

b
· ba
′

b
=
γba′

γ′b
,

where γ, γ′ are such that γb = γ′ba. Take any β, β′ ∈ T such that
βb = β′γ′b. Then

βbaa′ = β′γ′baa′ = β′γba′,

which means that ιb(aa
′) = ιb(a) · ιb(a′), as required.

In the case of a near- or skew truss, that ιb is a homomorphism of
trusses follows by (5.3) and the left distributive law.

(2) The monomorphism of semigroups ι1 preserves the heap operation
since 1 is the multiplicative identity in T .

Assume that f : T → B is a unital homomorphism of trusses and, for
all fractions a

b ∈ Q(T ), define

f̂ : Q(T ) −→ B,
a

b
7−→ f(b)−1f(a).

This is well defined since two fractions a
b and a′

b′ are identical if and only
if there are β, β′ such that βa = β′a′ and βb = β′b′, in which case

f̂

(
a

b

)
= f(b)−1f(a) = f(b)−1f(β)−1f(β)f(a)

= f(βb)−1f(βa) = f(β′b′)−1f(β′a′) = f(b′)−1f(a′) = f̂

(
a′

b′

)
,

by the multiplicativity of f . By the same token, for all a
b ,

a′

b′ ∈ Q(T ),

f̂

(
a

b
· a
′

b′

)
= f̂

(
γa′

γ′b

)
= f(γ′b)−1f(γa′) = f(b)−1f(γ′)−1f(γ)f(a′),
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where γ, γ′ ∈ T are such that γb′ = γ′a. Applying f to both sides of this
equality and using the multiplicative property of f we obtain

f(γ′)−1f(γ) = f(a)f(b′)−1,

and hence

f̂

(
a

b
· a
′

b′

)
= f(b)−1f(a)f(b′)−1f(a′) = f̂

(
a

b

)
f̂

(
a′

b′

)
,

that is, f̂ is a homomorphism of multiplicative groups. To check that

f̂ is a heap morphism it is enough to consider fractions with a common
denominator and then

f̂

([
a

b
,
a′

b
,
a′′

b

])
= f(b)−1[f(a), f(a′)f(a′′)]

= [f(b)−1f(a), f(b)−1f(a′)f(b)−1f(a′′)]

=

[
f̂

(
a

b

)
, f̂

(
a′

b

)
, f̂

(
a′′

b

)]
,

by the fact that f is a heap homomorphism and the left distributive law

in B. That f̂ ◦ ι1 = f follows by the unitality of f .
Suppose that there exists a unital truss homomorphism ĝ : Q(T )→ B

such that ĝ ◦ ι1 = f . Note that

(5.7)
a

b
=

1

b
· a

1
.

In particular,

1 = ĝ

(
1

1

)
= ĝ

(
1

b
· b

1

)
= ĝ

(
1

b

)
f(b),

where the last equality follows by the splitting assumption ĝ ◦ ι1 = f .

Hence ĝ
(

1
b

)
= f(b)−1 and the equality ĝ = f̂ follows by the multiplica-

tivity of ĝ and equations (5.7).

The following corollary provides one with a method for constructing
skew braces, which might be considered as one of the main results of this
paper.

Corollary 5.5. If T is a regular near-truss without an absorber, then
Q(T ) is a brace-type near-truss, that is, for all b ∈ T , the retract of Q(T )
at b

b with the product (5.2) is a skew brace.

Proof: Observe that if T has no absorbers then Q(T ) has no absorbers
either. Indeed, suppose that there exists a

b ∈ Q(T ) such that, for all cd ∈
Q(T ), c

d ·
a
b = a

b . Since T has no absorbers, it has at least two elements,
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and hence in particular we may consider c 6= d. Then there exist γ, γ′ ∈
T , such that γa

γ′d = γa
γb and γ′c = γb. Thus γa

γ′d = γa
γ′c , so there exist β, β′ ∈

T such that βγ′d = β′γ′c and βγa = β′γa. By regularity, β = β′ and c =
d, which is the required contradiction. Therefore, a

b is not an absorber
for all a, b ∈ T . Now, since Q(T ) is a group with multiplication and
identity b

b , the retract of Q(T ) in b
b is a skew brace by [4, Remark 3.13].

Note in passing that if T satisfies the same assumptions as in Corol-
lary 5.5, but there exists an absorber in T , then Q(T ) is associated to a
near-field.

Example 5.6. Let us consider the sub-truss 2Z + 1 of T(Z). It is a
domain satisfying the Ore condition, thus it is a regular truss and we can
localise it in itself. Since 2Z+1 is commutative, the construction is much
simpler than the one presented in the proof of Theorem 5.2. One can
easily check that Q(2Z + 1) = 2Z+1

2Z+1 :=
{

2p+1
2q+1 | p, q ∈ Z

}
. The two-sided

brace associated to this truss is the retract in 1, i.e., the triple (Q(2Z +
1), [−, 1,−], ·).

Similarly, the truss O(x) of integer polynomials with coefficients sum-
ming up to odd numbers considered in Example 4.14 is regular with
no absorbers, and hence it can be localised to a brace-type truss of the
following rational functions:

Q(O(x)) =
O(x)

O(x)
:=

{
p(x)

q(x)
| p(x), q(x) ∈ O(x)

}
.

As yet another example we can consider the truss O(i) constructed
as a special case of Example 4.14. Again this is a commutative domain
satisfying the Ore condition and with no absorbers, and hence

Q(O(i)) =

{
m+ ni

p+ qi
| m+ n and p+ q are odd integers

}

=

{
m

2p+ 1
+

n

2q + 1
i | p, q ∈ Z, m+ n is an odd integer

}
.

The example of odd fractions described above is a special case of a
more general construction.

Example 5.7. Let Tn(Z) denote the set of all n × n-matrices over Z
with odd entries on the diagonal and even off-diagonal entries. That is,

Tn(Z) = {(aij)ni,j=1 | aii ∈ 2Z + 1 and aij ∈ 2Z, i 6= j}.
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(1) Tn(Z) endowed with the matrix multiplication and the standard
heap operation [a,b, c] = a − b + c is a unital regular truss with
no absorbers.

(2) The brace-type truss of fractions Q(Tn(Z)) can be identified with
the set Tn(Q) of n × n-matrices over the rational numbers with
diagonal entries made by the odd fractions (that is, fractions of
both the numerator and denominator odd, Q(2Z + 1)) and with
fractions with even numerator and odd denominator as off-diagonal
entries. That is,

Q(Tn(Z))∼=Tn(Q) :=

{
(qij)

n
i,j=1 | qii∈

2Z + 1

2Z + 1
and qij ∈

2Z
2Z + 1

, i 6=j

}
.

It is clear that the set Tn(Z) is closed under the described heap oper-
ation. That it is closed also under the matrix multiplication follows from
an observation that in the product formula for the off-diagonal entries
the sum involves the products of numbers of which at least one is even,
while for the diagonal entry there is a single odd summand consisting of
the product of matching diagonal entries. Obviously Tn(Z) has no ab-
sorber, as the zero matrix is not an element of Tn(Z). Since the identity
matrix has the prescribed form, Tn(Z) is unital. The other statements
of Example 5.7 can be justified by the following (elementary) lemma.

Lemma 5.8. For all a ∈ Tn(Z),

(1) The determinant det(a) is an odd number.
(2) The matrix of cofactors ā of a and hence also its transpose āt are

elements of Tn(Z).

Proof: Let ai,j denote the matrix obtained from a by removing the i-th
row and the j-th column. Note that ai,i ∈ Tn−1(Z) and that ai,j , i 6= j,
has one row of even numbers.

The first statement is proven by induction on the size n of the ma-
trices. For n = 1 the statement is obviously true. Assuming that the
statement is true for k we calculate the determinant of a ∈ Tk+1(Z) by
expanding by the first row. Since a1,1 is an element of Tk(Z), det(a1,1)
is odd by inductive assumption. In the expansion of det(a) this is multi-
plied by the first entry a11 of a and thus it gives an odd number. All the
remaining summands involve products of other entries of the first row,
which are even. Hence the sum of all terms in the expansion is odd, as
required.

The diagonal entries of ā are given by det(ai,i), which are odd by
statement (1). Off-diagonal entries (−1)i+j det(ai,j) are even since one
row of each of ai,j , i 6= j, consists entirely of even numbers. The trans-
position statement is obvious.
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With this lemma at hand we can now prove that Tn(Z) is a domain
satisfying the Ore condition. Since we can embed Tn(Z) into a ring of
matrices, the statement ab = ac, for some a,b, c ∈ Tn(Z) is equivalent
to the statement that a(b− c) = 0, hence

0 = a(b− c) = āta(b− c) = det(a)(b− c),

which implies that b = c, since det(a) 6= 0 by Lemma 5.8(1). The regu-
larity of the other side of each a ∈ Tn(Z) can be proven in a symmetric
way.

To prove the Ore condition we take any a,b ∈ Tn(Z) and set

r = ab̄t and s = det(b)1.

Both these matrices are elements of Tn(Z) by Lemma 5.8, and they
satisfy the Ore condition sa = rb. Hence, Tn(Z) is a left regular (in fact
also right regular by similar arguments) truss.

For any element q ∈ Tn(Q) we write q for the product of all de-
nominators in entries of q. This is an odd number and thus obviously
qq ∈ Tn(Z). In particular, in view of Lemma 5.8, det(qq) is an odd
number and its matrix of cofactors is an element of Tn(Z). This in turn
implies that the inverse of q is an element of Tn(Z) divided by an odd
number, hence an element of Tn(Q). Consequently, Tn(Q) is a group with
respect to multiplication of matrices. In order to identify Tn(Q) with the
truss of fractions Q(Tn(Z)) we will explore the universal property de-
scribed in Proposition 5.4(2). Thus consider a brace-type skew truss B
and a homomorphism of unital trusses f : Tn(Z)→ B and set

f̂ : Tn(Q) −→ B, q 7−→ f(q1)−1f(qq).

Note that this definition does not depend on the way the fractions in q
are represented, as the multiplication of the numerator and a denomina-
tor of an entry by a common (odd) factor results in multiplying both q
and q by the same factor which will cancel each other out in the formula

for f̂ , by the multiplicative property of f . Since q1 is a central element
in Tn(Z), f(q1)−1 is central in the image of f and, combined with the

multiplicative property of f , this implies that f̂ is a homomorphism of

(multiplicative) groups. That f̂ is a homomorphism of heaps follows by

the distributivity. Obviously, f̂ ◦ ι1 = f and is a unique such morphism.
By the uniqueness of universal objects, Tn(Q) is isomorphic to the truss
of fractions Q(Tn(Z)).
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