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1. Introduction

Let M be a compact oriented 3-manifold with µ toroidal boundary
components, π = π1(M) its fundamental group, and assume that its
interior admits a complete hyperbolic metric. Then the Riemannian vol-
ume Vol(M) given by this metric is finite and it is a topological in-
variant of M by the Mostow–Prasad rigidity theorem. The complete
hyperbolic structure also gives rise to a holonomy representation from π
to the isometry group PSL2(C) of hyperbolic 3-space H3 (see for ex-
ample [20, p. 139–152]). The latter lifts to a finite set of representa-
tions ρ0 : π → SL2(C); in this paper we will usually pick one of these
arbitrarily and call it the holonomy representation. In general the lifts
are not isomorphic to each other as representations of π but this does
not matter for our purposes here.

Another topological invariant of M is the combinatorial L2-tor-
sion τ (2)(M). It is defined in a manner similar to the classical combi-
natorial torsions but using a chain complex for the universal cover with
the action of the fundamental group, and the Fuglede–Kadison determi-
nants of equivariant operators. For hyperbolic manifolds it can be com-
puted using analytic means, by a result of Wolfgang Lück and Thomas
Schick [15]. It follows that

τ (2)(M) = e−
Vol(M)

6π .
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Given a linear representation of the fundamental group of M we can
use it to twist the chain complex, and for the holonomy representation
of a hyperbolic 3-manifold the result of Lück–Schick has been extended
in the PhD thesis of Benjamin Wasserman (see [22] where the corre-
sponding result is announced). In this paper we want to check that the
L2-torsion τ (2)(M,ρ) twisted by an SL2(C)-representation ρ is well de-
fined, at least near the holonomy. We study the properties of the func-
tion ρ 7→ τ (2)(M,ρ) defined on the SL2(C)-character variety. We will
discuss the extension of the formula in terms of volume below.

1.1. Well-definedness and regularity of the L2-torsion function.
For hyperbolic knot complements, such a twisted L2-torsion was defined
in Weiping Li and Weiping Zhang’s paper [10]. However, the nontrivi-
ality of this invariant was never addressed in this reference, as it is not
established there that the relevant complexes are of determinant class.
We remedy this and observe that in fact the argument used to check
well-definedness also implies the following result.

Theorem A. The twisted L2-torsion function

τ (2)(M,ρ) : X(M) R≥0

is real-analytic in an open neighbourhood U of a holonomy character [ρ0]
of M in its character variety X(M).

This result fits within a broader programme. In general, the question
of defining L2-torsions for twisted L2-chain complexes, and studying
their continuity in the twisting representation, is asked by Lück in [14]
(see e.g. Problem 10.11 there). It has been answered positively by Yi
Liu [11] in the “abelian” case: for coefficients coming from 1-dimensional
representations. Our result gives a partial answer to this problem in a
nonabelian setting.

Theorem A is local in character, that is, we do not have an explicit
description of the locus U . Our argument is not well suited for this pur-
pose, as we use a spectral gap condition to check the determinant class
condition (see Lemma 5.3) and we establish the latter through a continu-
ity argument. It would be interesting to prove this spectral gap directly
for all holonomies of cone-manifold structures; ideally the theorem would
be proved to hold on the whole Dehn surgery space (see [7]). On the rest
of the character variety we see no reason why there should be such a
spectral gap and we see no other way to check the determinant class
condition, outside of the dense subset of characters with values in Q,
where the determinant class holds by well-known arguments (see [13,
Chapter 13]).
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Let us say a few more words on the proof of Theorem A. As we
said above, the main ingredient is to establish a spectral gap for the
relevant operators. By a standard continuity argument we immediately
deduce this from the result for the holonomy representation, which was
essentially established by Nicolas Bergeron and Akshay Venkatesh in [1]
(under the name of “strong acyclicity”). The analyticity of τ (2)(M,ρ) in
this neighbourhood then follows from a general result, Lemma 3.6, which
seems standard but we could not find in the literature, and from the
regularity of the twisted Laplacians on the character variety, as operator-
valued functions.

1.2. The L2-torsion function and geometric invariants. In view
of the results of Lück–Schick and their extension it is natural to ask
whether there is a relationship between this kind of twisted L2-torsion
and the volume function Vol defined on X(M) (see also [12, p. 486]
and [10, p. 248]).

Using the relationship between the twisted L2-torsion and the volume
for the family of hyperbolic manifolds obtained by Dehn surgery on M
and a surgery formula, one might expect an expression of the L2-torsion
function as the volume function plus a sum of lengths of the length
functions Li, i = 1, . . . , µ, appearing in [16], which for our purposes can
be defined as follows: if ρ is the holonomy of a cone-manifold structure
on a Dehn filling of M , then Li(ρ) equals the length of the core curve of
the i-th cusp.

The surgery formula only computes the L2-torsion of some inter-
mediate cover of M , and we do not see how to extract enough infor-
mation on the L2-torsion of the universal cover from the latter. How-
ever, the Lück–Schick result and the continuity of τ (2)(M,ρ) imply that
log τ (2)(M,ρ) = − 11

12π Vol(ρ)+o(1) near the holonomy representation ρ0.

A corollary of the analyticity of the L2-torsion proved in Theorem A and
of [16, equation (3)] is the following first-order approximation:

(1) log τ (2)(M,ρ) = − 11

12π
Vol(ρ) +

11

24

µ∑
i=1

Li(ρ) +O(maxLi(ρ)2).

This can be deduced as follows. First, τ (2)(M,ρ0) = exp
(
− 11

12π Vol(M)
)
,

as follows from the Cheeger–Müller theorem of Wasserman [22] and the
computation of analytic L2-torsion by Bergeron–Venkatesh [1]. Now the
L2
i are local analytic parameters near the holonomy, the volume function

admits a Puiseux development of valuation 1/2, and the expansion in (1)
is the only one that is differentiable at ρ0 (this is the content of [16,
equation (3)]). Since the L2-torsion is analytic by Theorem A, it proves
equation (1).
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We do not know a closed formula for the twisted L2-torsion outside of
the holonomy representation and so we are not even able to determine
whether it is non-constant in a neighbourhood of the holonomy repre-
sentation. Computing higher-order terms in (1) would be an interesting
related question. Note that it follows from our Proposition 3.4(i) that

τ (2)(ρ) = e−
1
3π Vol(M) for unitary representations ρ, hence the torsion is

not constant on the whole character variety in general.

1.3. L2-torsion function for nonhyperbolic manifolds. Our defi-
nition of the twisted L2-torsion is rather general, and it can be considered
on the character variety of any 3-manifold. The main point is to ensure
that this invariant is not trivial (i.e. zero). To this purpose one needs to
check whether some delicate conditions hold, namely that the complex
under consideration is weakly acyclic and of determinant class. This is
achieved in several cases in this paper. Aside from hyperbolic manifolds,
we consider the case where N is a Seifert fibred manifold. We prove:

Proposition 1.1. Let N be a compact Seifert manifold. Let ρ be an
irreducible representation of π1(N). Then the complex C∗(N, ρ) is weakly
L2-acyclic and of determinant class, and τ (2)(N ; ρ) = 1.

From Proposition 1.1 we deduce a JSJ formula for the twisted L2-tor-
sion:

Theorem B. Let M be a compact aspherical 3-manifold and N1, . . . , Nr
be the hyperbolic components in the JSJ decomposition of M . Let
ρ : π1(M) → SL2(C) be a representation such that, for any i, the com-

plex C
(2)
∗ (Ni, ρ|π1(Ni)) is L2-acyclic and of determinant class and that,

for any Seifert piece N ⊂ M , the restriction ρ|π1(N) is irreducible. We
have

τ (2)(M ; ρ) =

r∏
i=1

τ (2)(Ni; ρ).

In particular, if M is a graph manifold, then τ (2)(M ; ρ) = 1 for any
representation ρ that restricts to an irreducible representation on each
Seifert fibred piece.

The hypotheses in the theorem are somewhat unnecessary but give a
cleaner statement:

(i) We do not know whether it can happen that a hyperbolic piece is
not of determinant class; on the other hand we will see that Seifert
pieces always are.

(ii) If the representation is reducible on a Seifert piece, we can ex-
tract a formula from the proof which involves further factors (see
Remark 4.4 below).
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(iii) In principle it is possible to give a similar formula for the twisted
L2-torsion of any 3-manifold by decomposing it into prime mani-
folds, which are either elliptical (for which the torsion is a classical
Franz–Reidemeister torsion), S2 × S1 (for which the computation
is easy) or aspherical (for which the above result applies).

We also relate our invariant with its abelian cousin studied in [4] by
Jérôme Dubois, Stefan Friedl, and Wolfgang Lück, and treat the case of
unitary representations in Proposition 3.4.

We note that in general when M has a nontrivial JSJ decomposition it
is not clear whether there are representations to SL2(C) which satisfy the
hypotheses of the theorem, or indeed any representations with infinite
image.

Organization of the paper. Section 2 contains preliminary facts on
character varieties of hyperbolic manifolds. In Section 3 we recall the
general theory of L2-invariants, define the twisted L2-torsion, and state
various technical results. In Section 4 we prove Theorem B and Propo-
sition 1.1. Finally, in Section 5 we prove Theorem A.

Acknowledgements. We thank Thomas Schick for some useful sug-
gestions on the topic, and we are grateful to the anonymous referees for
their interesting remarks and suggestions. L. Bénard is partially funded
by the Research Training group 2491 “Fourier Analysis and Spectral
Theory”.

2. Preliminaries on character varieties and the volume
function

In this section we collect facts about the SL2(C)-character variety of a
hyperbolic 3-manifold. In Subsection 2.1 we define the character variety
in general, while in Subsection 2.2 we specialize to the case of hyperbolic
manifolds.

2.1. Character varieties. We refer to [19] for a survey of character
varieties in general. If Γ is a finitely generated group and G a com-
plex affine algebraic group, the representation variety R(Γ, G) is the
set Hom(Γ, G), which has the structure of an affine variety, whose defin-
ing equations are given by the relations defining Γ and by the defining
equations of G. The group G acts by conjugation on R(Γ, G); if G is re-
ductive, then the categorical quotient R(Γ, G)//G is a well-defined affine
algebraic variety. It is called the G-character variety of Γ and is denoted
by X(Γ, G). For a representation ρ ∈ R(Γ, G) we will denote its image
in X(Γ, G) by [ρ].
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In the sequel we will only consider the case G = SL2(C). The char-
acter variety X(Γ,SL2(C)) is not homeomorphic in general to the topo-
logical quotient R(Γ,SL2(C))/SL2(C); however, there is an SL2(C)-in-
variant open subset for which the two quotients coincide as we now
describe. Recall that a representation is irreducible if it does not ad-
mit a proper nonzero invariant subspace. Let R∗(Γ,SL(C)) be the sub-
set of irreducible representations, which is a Zariski-open subset of the
space R(Γ,SL2(C)). Orbits of SL2(C) on R∗(Γ,SL2(C)) are closed
and so its image X∗(Γ,SL2(C)) in X(Γ,SL2(C)) is homeomorphic to
R∗(Γ,SL2(C))/ SL2(C).

2.2. Character varieties of hyperbolic 3-manifolds. Now we re-
strict to the case of interest to us of studying X(π,SL2(C)), where
π = π1(M) is the fundamental group of an orientable hyperbolic mani-
fold with µ cusps. We will use the notations

R(M) = R(π,SL2(C)), X(M) = X(π,SL2(C)).

The complete hyperbolic structure of M corresponds to a holonomy rep-
resentation ρ0 : π → PSL2(C) such that M = ρ0(π)\H3. It is known
(see [2]) that this representation lifts to a representation ρ0 : π1(M) →
SL2(C), which we will also call the holonomy representation. There is
in general no unique choice for ρ0; we assume that an arbitrary one has
been made. It is an irreducible representation and we call its image [ρ0]
in X(M) the holonomy character.

We will need a way to work directly with representations rather than
characters, for which the following well-known lemma (see [17, Proposi-
tion 3.2]) will be useful.

Lemma 2.1. There exists a section of the projection R(M) → X(M)
which is real-analytic in a neighbourhood of the holonomy character [ρ0].

3. The L2-torsion

We introduce the twisted L2-torsion τ (2)(M,ρ) for unimodular repre-
sentations of 3-manifold groups. Twisted L2-torsions are considered in
a general context in [14] and we use this and the book [13] as a ref-
erence. In Subsection 3.1 we recall without proof all the results needed
to make the paper self-contained. In Subsection 3.2 we use this to de-
fine τ (2)(M,ρ). In Subsection 3.3 we give some useful properties and
some simple examples. Finally, in Subsection 3.4 we prove a regularity
lemma for the determinant which we will use in Section 5.
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3.1. L2-invariants. Let π be a discrete group and Cπ its group ring.
The reduced von Neumann algebra Nπ is the commutant of the left
action of Cπ on `2(π) in the algebra of bounded operators on the Hilbert
space `2(π) (see [13, Definition 1.1]). A finitely generated Hilbert Nπ-
module is a quotient of some `2(π)n by a closed Nπ-invariant subspace
([13, Definition 1.5]). There is a functor Λ from the category of based
free Cπ-modules to the category of Hilbert Nπ-modules ([14, p. 727]); it
can be defined as the L2-completion of M with respect to the basis g · b,
where b is an element of the Cπ-basis of M and g ∈ π. In the sequel we
will often make no distinction between M and ΛM or f and Λf .

For V a Hilbert Nπ-module we denote by BNπ(V ) the set of bounded
Nπ-equivariant operators on V . The subset of BNπ(V ) consisting of
bounded operators with bounded inverse is denoted by GLNπ(V ). We
also denote by trNπ the usual trace on BNπ(V ) if V is of finite type
(see [13, Definitions 1.2, 1.8]). For the definition of the L2-torsion we
need the definition of the Fuglede–Kadison determinant detNπ(A) of
a morphism A between two Hilbert Nπ-modules. If A is a positive
self-adjoint bounded operator in BNπ(V ) with trivial kernel, then the
operator log(A) is well-defined – but not bounded in general. If log(A)
is in BNπ(V ), the Fuglede–Kadison determinant of A can be computed
by the formula:

(2) detNπ(A) = exp(trNπ log(A)).

The operator log(A) is in BNπ(V ) if and only if A ∈ GLNπ(V ), which is
the main case we will consider in the sequel.

The Fuglede–Kadison determinant is defined in general, and the equal-
ity above holds formally (see [13, Definition 3.11]). When the trace is−∞
the determinant is zero. If detNπ(A) > 0, then the operator A is said to
be of determinant class. Being of determinant class depends only on the
behaviour at 0 of the spectral density function of A; the simplest case is
when its Novikov–Shubin invariants (see [13, Definitions 2.8, 2.16]) are
positive.

Remark 3.1. It is difficult to know whether a morphism is of determinant
class. A notable exception occurs when π is virtually abelian; in this case
all morphisms between finitely generated Cπ-modules are of determinant
class, as follows from [13, Example 3.13] and [6, Lemma 1.8].

For many groups π, including all residually finite groups, so in par-
ticular all 3-manifold groups, if f is given by a matrix over the integral
group ring Zπ, then it is of determinant class (see [13, Chapter 13]). So
if ρ is defined over Q or even Q, we have τ (2)(M,ρ) 6= 0. However, when
π is nonabelian and the representation has transcendental coefficients it
is essentially completely open to give general criteria.



864 L. Bénard, J. Raimbault

A complex of Hilbert Nπ-modules (C∗, d∗) is L2-acyclic if its reduced
L2-homology ([13, Definition 1.17]) vanishes, that is, if Im(dp) is dense
in ker(dp−1). In this situation the combinatorial Laplace operators

(3) ∆p = dpd
∗
p+1 + dp+1d

∗
p

have zero kernel. They are always positive, and the complex (C∗, d∗) is
said to be of determinant class if all ∆p are of determinant class. Then

the L2-torsion τ (2)(C∗) ∈ ]0,+∞[ is defined by

(4) τ (2)(C∗)
2 =

n∏
p=0

detNπ(∆p)
(−1)pp.

We extend the definition of L2-torsion to all complexes by taking the
convention that τ (2)(C∗) = 0 if C∗ is not of determinant class.

3.2. Twisted L2-torsion for unimodular representations. Let M
be a finite CW-complex, π its fundamental group, and ρ : π → GL(E) a
finite-dimensional unimodular representation. There is a twisted chain
complex of C(π)-modules

C∗(M̃, ρ) = C∗(M̃)⊗C E,

where any element γ of the group π acts by γ ⊗ ρ(γ) on C(π) ⊗C E by
the right regular representation on the first factor times ρ acting on the

left on the second one; this is denoted by ηEC∗(M̃) in [14].

We choose a Cπ-basis for C∗(M̃), that is, an orientation and a lift to
the universal cover for each cell. We choose a basis for E as well, and we

get a complex of free based Cπ-modules. If its completion ΛC∗(M̃, ρ),

which we will rather denote by C
(2)
∗ (M,Nπ⊗ρ) in the rest of this paper,

is L2-acyclic, then we define the twisted L2-torsion of (M,ρ) by:

(5) τ (2)(M,ρ) = τ (2)(C
(2)
∗ (M,Nπ ⊗ ρ)).

Since the representation ρ is unimodular, it follows immediately from [14,
Theorem 6.7(1), Lemma 3.2(1)] that (5) does not depend on the choices

of bases for C∗(M̃) and E.

We are interested in the twisted L2-torsion as defined above for 3-man-
ifolds; however, in some occurences we will need the L2-torsion for more

general covers. The twisted L2-torsion of a cover M̂ → M associated
to a surjective morphism π → Λ is defined exactly as above, using the

chain complexes C∗(M̂) instead of C∗(M̃) and replacing the group ring
and von Neumann algebra Cπ, Nπ by CΛ, NΛ respectively. In this case

we will denote the complex by C
(2)
∗ (M,NΛ ⊗ ρ), and the L2-torsion

by τ (2)(M,NΛ⊗ ρ).
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3.3. Properties and first examples. The following basic fact follows
immediately from [14, Lemma 3.2(1)].

Lemma 3.2. Let ρ, ρ′ : π1(M) → SL2(C) be two conjugate representa-
tions. Then τ (2)(M,ρ) = τ (2)(M,ρ′).

The next well-known lemma (see for example [4, Lemma 3.1]) will be
useful to compute the L2-torsion of Seifert manifolds.

Lemma 3.3. Let

C∗ = 0 Cπk Cπk+l Cπl 0.A B

Let A′ ∈Mk,k(Cπ) and B′ ∈Ml,l(Cπ) be the square matrices obtained
from the k first lines of A and l last columns of B respectively. If A′, B′

are acyclic and of determinant class, then so is C∗ and moreover

τ (2)(C∗) = detNπ(A′)−1 detNπ(B′).

Proof: Consider the diagram

E∗y
C∗y
D∗

0 −−−−→ 0 −−−−→ Cπl B′−−−−→ Cπl −−−−→ 0y y ∥∥∥
0 −−−−→ Cπk A−−−−→ Cπk+l B−−−−→ Cπl −−−−→ 0∥∥∥ y y
0 −−−−→ Cπk A′−−−−→ Cπk −−−−→ 0 −−−−→ 0

where the vertical arrows in the middle are given by natural inclusions
and projections. This gives a short exact sequence of complexes 0 →
E∗ → C∗ → D∗ → 0 and it follows from the additivity of the L2-torsion
[13, Theorem 3.35(1)] (the terms on the right in this equation vanish
because of acyclicity and the fact that the determinants of the inclusions
and projections are 1) that C∗ is acyclic, of determinant class and

τ (2)(C∗) = τ (2)(D∗) · τ (2)(E∗).

Since the torsion of a complex with a single nonzero differential d is equal
to detNπ(d)(−1)p , where p is the degree of d, the result follows.

In some very special cases the computation of the L2-torsion is im-
mediate.
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Proposition 3.4.

(i) If M is hyperbolic and the representation ρ : π1(M) → SU(2) ⊂
SL2(C) is unitary, then

τ (2)(M,ρ) = τ (2)(M)2 = exp(−Vol(M)/3π).

(ii) Assume that H1(M) = Z, and let φ : π1(M)→ Z be a choice of an
abelianization map. If ρ : π1(M)→ SL2(C) is reducible, conjugated
to

ρ(γ) =

(
λφ(γ) ∗

0 λ−φ(γ)

)
for some λ ∈ C∗, then

τ (2)(M,ρ) = τ (2)(M,φ)(|λ|)τ (2)(M,φ)(|λ|−1),

where the abelian-twisted L2-torsion τ (2)(M,φ) is defined in [4].

Proof: Point (i) is a consequence of [14, Theorem 4.1(4)].
For (ii), observe that using Lemma 3.2 one can assume that ρ has the

triangular form above. It induces an exact sequence of π-modules

0 `2(π) `2(π)2 `2(π) 0 ,

where the π-actions are given by the representations λφ, ρ, λ−φ respec-
tively. Now we can apply [14, Lemma 3.3] and conclude since we have
the equality τ (2)(M,−φ)(|λ|) = τ (2)(M,φ)(|λ|−1).

3.4. Regularity under a spectral gap. Let V be a Hilbert space and
B(V ) the space of bounded linear operators on V . On B(V ) we will use
the operator norm defined by

‖|T‖| = sup
‖v‖=1

‖Tv‖.

Let S(V ) ⊂ B(V ) be the subspace of self-adjoint operators. By the spec-
tral theorem any self-adjoint operator T in S(V ) has a spectrum σ(T )
which is a closed subset of R. We will use the following lemma.

Lemma 3.5. The function S(V ) → R defined by T 7→ inf σ(T ) is con-
tinuous.

Proof: It also follows from the spectral theorem that

(6) inf σ(T ) = inf
v∈V \{0}

〈Tv, v〉
‖v‖2

= inf
‖v‖=1

〈Tv, v〉.

Since T ∈ S(V ) is bounded we have that inf σ(T ) = λ > −∞. Let ε > 0.
Then for any v ∈ V with ‖v‖ = 1 we have 〈Tv, v〉 ≥ λ. If ‖|S − T‖| < ε,
then for all such v we have 〈Sv, v〉 ≥ 〈Tv, v〉 − ‖Sv − Tv‖ by Cauchy–
Schwarz and the right-hand side is then at least λ−ε. Together with (6)
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this proves that σ is lower-continuous. On the other hand there exists
a w ∈ V , ‖w‖ = 1, such that 〈Tw,w〉 ≤ λ + ε. For S as above we have
〈Sw,w〉 ≤ 〈Tw,w〉 + ‖Sw − Tw‖ ≤ λ + 2ε so σ(S) ≤ λ + 2ε. With (6)
this proves that σ is upper-continuous.

Let S>0(V ) be the set of bounded self-adjoint operators A ∈ S(V )
such that inf σ(A)> 0, and let S>0

Nπ(V ) = S>0(V ) ∩ BNπ(V ). By Lem-
ma 3.5, the set S>0

Nπ(V ) is an open subset in SNπ(V ).
It is an open question to determine exactly the domain of continuity

in BNπ(V ) of the Fuglede–Kadison determinant. However, it is a general
principle that it is “as regular as possible” on the open subset GLNπ(V );
we will use an instance of this that is valid in the real-analytic category.

The space BNπ(V ) is a Banach space for the norm operator, as a
norm-closed subspace of B(V ). If U ⊂ Rn is an open subset and E a
Banach space, we say that a function A : U → E is real-analytic if it
admits an expression as a convergent power series in the neighbourhood
of every x ∈ U .

We will use the usual notations: for an n-tuple of integers α = (α1, . . . ,
αn) and x ∈ Rn, let |α| =

∑
i αi and xα = xα1

1 · · ·xαnn .
The former real-analyticity condition can be conveniently formulated

as follows: for every x ∈ U there exists a sequence (aα) ∈ ENn and r0 > 0

such that
∑
α ‖aα‖Er

|α|
0 < +∞ and for any v ∈ Rn such that |vi| < r0

for 1 ≤ i ≤ n (that is, ‖v‖∞ < r0) we have A(x+ v) =
∑
α∈Nm aαv

α.

Lemma 3.6. Let V be a Hilbert-Nπ-module of finite type, U an open sub-
set of Rn, and A : U → S>0

Nπ(V ) a real-analytic map. Then the map x 7→
detNπ A(x) is a real-analytic function on U .

Proof: We see from (2) that we need to prove that the function x 7→
trNπ log(A(x)) is real-analytic. This will follow immediately from the
two following points:

(a) If ` is a continuous linear form on a Banach space B and x 7→ T (x)
a real-analytic map U → B, then x 7→ `(T (x)) is real-analytic.

(b) If I ⊂ R, f is a real-analytic function with a power series expansion
which converges on I, and σ(A(x)) ⊂ I for all x ∈ U , then x 7→
f(A(x)) is real-analytic. Note that f = log satisfies this assumption
for any I ⊂ ]0,+∞[.

Let us prove (a): write
∑
α∈Nn Tαv

α a convergent power series with
a positive radius of convergence for T , then by continuity of ` the se-
ries

∑
α `(Tα)vα converges as well, and it equals the image of the former

by the linear map ` on the domain of convergence.
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Now we prove (b): let f(t) =
∑
k ckt

k be a power series expression
for f : I ⊂ R → R, let x ∈ U , and let

∑
α∈Nn aαv

α be the power series
expansion for A(x+ v), which converges for ‖v‖∞ ≤ r1 for some r1 > 0.

We denote M =
∑
α∈Nn ‖aα‖Br

|α|
1 .

Assuming a0 = 0 for convenience, we want to show that the formal

series
∑
k≥0 ck

(∑
α∈Nn aαv

α
)k

is convergent in a neighbourhood of v =

0. Let r0 be the radius of convergence for
∑
k ckt

k; then for ‖v‖∞ <
r1r0/M we have that

∑
α∈Nn ‖aα‖B |vα| < r0 by convexity.

For those v the series
∑
k |ak|

(∑
α∈Nn ‖aα‖B|vα|

)k
converges; in other

words the power series
∑
k≥0 ak

(∑
α∈Nn aαv

α
)k

is absolutely convergent
in a neighbourhood of 0.

4. Seifert manifolds and JSJ decomposition

In this section we prove Theorem B from the introduction, whose
statement we recall here. Note that a similar statement, with a much
simpler proof, also holds for torsions with unitary coefficients.

Theorem 4.1. Let M be a compact aspherical 3-manifold and N1, . . . , Nr
be the hyperbolic components in the JSJ decomposition of M . Let ρ :
π1(M)→ SL2(C) be a representation such that for any Seifert piece N ⊂
M the restriction ρ|π1(N) is irreducible, and for every hyperbolic piece
C∗(Ni,Nπ1(Ni)⊗ ρ|π1(Ni)) is of determinant class. Then we have

τ (2)(M ; ρ) =

r∏
i=1

τ (2)(Ni; ρ).

In particular, if M is Seifert or more generally a graph manifold, then
τ (2)(M ; ρ) = 1.

Proof: Since M is aspherical it is in particular irreducible and we can
perform a JSJ decomposition of M . Its JSJ components are either hyper-
bolic or Seifert fibred manifolds. The theorem then follows immediately
from the following two claims:

(a) If N1, N2 are compact with toric boundary and N is a gluing of N1,
N2 along a collection of incompressible boundary components, then

τ (2)(N, ρ) = τ (2)(N1, ρ|π1(N1))τ
(2)(N2, ρ|π1(N2)).

(b) For any ρ : π1(N) → SL2(C), if N is Seifert (compact with toric

boundary components), then the complex C
(2)
∗ (N,Nπ1(N)⊗ρ|π1(N))

is L2-acyclic and of determinant class. Moreover, if ρ is an irre-
ducible representation of π1(N), then τ (2)(N ; ρ) = 1.
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Let N = N1 ∪ N2 as in the statement of claim (a) and T1, . . . , Tr the
boundary tori along which N1 and N2 are glued to each other. Let π =

π1(N), for X = N1, N2, Tj we denote by C
(2)
∗ (X, ρ) the twisted complex

of Hilbert Nπ-modules associated to the preimage of X in the universal

cover Ñ . Since the Tj are incompressible, this preimage is a disjoint

union of copies of X̃. By the restriction law [14, Theorem 6.7(6)] we
have that

τ (2)(C
(2)
∗ (X, ρ)) = τ (2)(X, ρ|π1(X))

for those X. As we have an exact sequence

0 −−−→
⊕r

j=1 C
(2)
∗ (Tj , ρ) −−−→ C

(2)
∗ (N1, ρ)⊕ C(2)

∗ (N2, ρ)

−−−→ C
(2)
∗ (N, ρ) −−−→ 0

it follows by using the gluing formula [14, Theorem 6.7(3)] that

τ (2)(N, ρ) =
τ (2)(N1, ρ|π1(N1)) · τ (2)(N2, ρ|π1(N2))∏r

j=1 τ
(2)(Tj , ρ|π1(Tj))

.

In Lemma 4.2 below we show that the L2-torsion of a 2-torus with coef-
ficients in any local system is 1 so τ (2)(Tj , ρ|π1(Tj)) = 1 for all j and we
finally obtain the formula in claim (a).

Claim (b) is a subcase of the more general Proposition 4.3 that we
prove below. The arguments are essentially lifted from [9] and adapted
to the L2 setting.

We now prove a lemma on tori used in the proof above and which we
will also need to deal with Seifert manifolds. It could be deduced from
general Poincaré duality but we prefer to give a more explicit proof.

Lemma 4.2. Let ρ : Z2 → SL(V ) be any unimodular representation,
Λ an infinite group, and Z2 → Λ a surjective morphism. Then the com-

plex C
(2)
∗ (T2,NΛ ⊗ ρ) is L2-acyclic and of determinant class, and its

torsion τ (2)(T2,NΛ⊗ ρ) = 1.

Proof: The determinant class condition is always satisfied (see Re-
mark 3.1). So we need to compute the torsion and show it equals 1.

First we reduce to the case where ρ is semisimple. Let m, ` be gen-
erators for π1(T2). As ρ(m) and ρ(`) commute they are triagonaliz-
able with Jordan blocks of the same shape. It follows that there ex-
ists a sequence gn ∈ SL(V ) such that ρn(`) := gnρ(`)g−1

n and ρn(m) :=
gnρ(m)g−1

n converge to a pair of commuting semisimple elements ρ∞(`),
ρ∞(m) ∈ SL(V ). By Lemma 3.2 we have τ (2)(T2, ρ) = τ (2)(T2, ρn). It fol-
lows from the formula for the Fuglede–Kadison determinant over abelian
groups that ρ 7→ τ (2)(T2, ρ) is continuous. So τ (2)(T2, ρ) = τ (2)(T2, ρ∞).



870 L. Bénard, J. Raimbault

We can now assume ρ to be semisimple, so we can decompose ρ ∼=⊕dim(V )
j=1 χj , where χj are 1-dimensional. It follows that τ (2)(T2, ρ) =∏
j τ

(2)(T2, χj) so we can just assume that ρ is 1-dimensional.

Now the complex whose L2-torsion we have to compute is just

0 `2(Z2) `2(Z2)2 `2(Z2) 0 ,
d1 d0

with the boundary operators given by the following matrices over the
group ring:

d1 =

(
1− `⊗ ρ(`)

1−m⊗ ρ(m)

)
,

d0 =
(
m⊗ ρ(m)− 1 `⊗ ρ(`)− 1

)
.

It is immediate that the complex is L2-acyclic, and it follows from
Lemma 3.3 that the torsion is equal to detNΛ(1− `⊗ ρ(`))−1 detNΛ(1−
`⊗ ρ(`)) = 1.

Proposition 4.3. Let N be a compact Seifert manifold. Let ρ be an
irreducible representation of π1(N). Then the complex C∗(N, ρ) is weakly
L2-acyclic and of determinant class, and τ (2)(N ; ρ) = 1.

Before starting the proof, let us recall some facts about oriented Seifert
fibred spaces (see [8]). In a Seifert fibred space N with boundary a union
of k tori, there is a finite number of exceptional fibres F1, . . . , Fr, each of
which is given with a pair of integers (pi, qi). We denote by Ti a tubular
neighbourhood of a singular fibre Fi, which is homeomorphic to a solid
torus. The manifold N \ (T1 ∪ · · · ∪ Tr) is an S1-bundle on a surface
with k + r boundary components. The obstruction for this bundle to
be trivial can be concentrated in the neighbourhood of a single regular
fibre F0 with neighbourhood T0, so that N \ (T0 ∪ T1 ∪ · · · ∪ Tr) is
homeomorphic to the product N0 = Sg,k+r+1×S1 of a surface of genus g
with k + r + 1 boundary components, and the fibration twists b times
around T0.

If the surface S is orientable, we have the following presentation for
the fundamental group of N :

(7) π1(N) = 〈a1, b1, . . . , ag, bg, c1, . . . , ck, f0, . . . , fr, h

| hx=xh∀x∈π1(N), fpii h
qi =1, [a1, b1] · · · [ag, bg]c1 · · · ckf0 · · · fr=1〉,

where the ai, bi are standard generators of the surface group, the ci rep-
resent the boundary curves of the surface which do not bound a fibre,
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and fi represents a curve on the surface such that fi × S1 ' ∂Ti. Addi-
tionally (p0, q0) = (1,−b), and finally h denotes the class of the generic
fibre.

Proof: Weak acyclicity and the determinant class property follow from
the explicit computation we will make for the complexes involved. Lem-
ma 4.2 yields

τ (2)(∂Ti,Nπ1(Ti)⊗ ρ|π1(∂Ti)) = 1.

Applying the multiplicativity formula for the L2-torsion we get

τ (2)(N, ρ) = τ (2)(N0,Nπ1(N0)⊗ ρ|π1(N0))

r∏
i=0

τ (2)(Ti, ρ|π1(Ti)).

First we will prove that τ (2)(Ti, ρ|π1(Ti)) = 1 for any index i = 0, . . . , r,

and then that τ (2)(N0,Nπ1(N)⊗ ρ|π1(N0)) = 1.
Since ρ is irreducible and h is central in π1(N), necessarily ρ(h) =

± Id, and it follows that for each i, the generator `i of π1(Ti) has finite
order through ρ. In particular its eigenvalues λi, λ

−1
i are unitary complex

numbers, and the operator 1 − `i ⊗ ρ(`i) : `2(π1(Ti))
2 → `2(π1(Ti))

2

has Fuglede–Kadison determinant equal to 1. Since Ti retracts onto the
circle `i, its L2-torsion is τ (2)(Ti, ρπ1(Ti)) = detNπ1(Ti)(1−`i⊗ρ(`i))

−1 =
1, and the first assertion is proved.

Now N0 retracts onto a 2-complex Y , which is a product of a circle
with a bouquet of 2g+k+r circles indexed by a1, b1, . . . , ag, bg, c1, . . . , ck,
f1, . . . , fr (the generator f0 does not appear thanks to the last relation
in π1(N)).

By the same computation as in [9, Proof of Proposition 4.2] the dif-
ferentials in the π1(N)-complex C∗(Y,Nπ1(N)⊗ ρ|π1(Y )) are given by

A=(a1⊗ρ(a1)−1 · · · bg⊗ρ(bg)−1 c1⊗ρ(c1)−1 · · · fr⊗ρ(fr)−1h⊗ρ(h)−1)

and

B =



1− h⊗ ρ(h) 0 · · ·

0
. . .

. . .
...

. . .
. . .

0 · · · 1− h⊗ ρ(h)
1− a1 ⊗ ρ(a1) 1− b1 ⊗ ρ(b1) · · · 1− fr ⊗ ρ(fr)

 .
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By Lemma 3.3 the L2-torsion of the complex

0 −−−→ L2(π1(N))2g+k+r B−−−→ L2(π1(N))2g+k+r+1

A−−−→ L2(π1(N)) −−−→ 0

is equal to detNπ1(N)(B
′) detNπ1(N)(A

′)−1, where

B′ =

1− h⊗ ρ(h) 0 0

0
. . . 0

0 0 1− h⊗ ρ(h)


is the (2g+ k+ r)× (2g+ k+ r) matrix obtained by keeping all but the
last line of B and

A′ = (1− h⊗ ρ(h))

is the matrix obtained by deleting all but the last column of A. Both
of these Fuglede–Kadison determinants equal 1. So τ (2)(Y,Nπ1(N) ⊗
ρ|π1(Y )) = 1, and by homotopy invariance [14, Theorem 6.7(2)] it follows

that τ (2)(N0,Nπ1(N) ⊗ ρ|π1(N0)) = 1 as well, and it proves the second
assertion and finishes the proof of Proposition 4.3 in this case.

It remains to deal with the case where S is not orientable; this can
be done following a similar scheme as above (see [9] for the classical
case). A simpler argument in our setting is to apply the orientable case
to the double cover associated to π1(N) → π1(S) → Z/2 and use the
multiplicativity of the twisted L2-torsion in covers [14, Theorem 6.7(5)].

Remark 4.4. If ρ is not irreducible, then the arguments above are still
valid except that the image ρ(h) of the generic fibre can have any complex
number as an eigenvalue, hence detNπ1(N)(1−h⊗ρ(h)) is not necessarily
equal to 1. In general, denoting by λρ an eigenvalue of ρ(h) of modulus ≥
1, we have

(8) τ (2)(N, ρ) = |λρ|
2g+k+r−2−

r∑
i=1

1
pi .

For example, if M(p, q) is the complement of the (p, q)-torus knot, we
have

τ (2)(M(p, q), ρ) = |λρ|1−
1
p−

1
q ,

since in this case M(p, q) is a fibration on a disk with two singular fibres
with singularities (p, 1) and (q, 1). Note that this can also be computed
directly by a simpler method analogous to [5], using the following pre-
sentation of the knot group π1(M(p, q)) = 〈a, b | ap = bq〉.
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Proof of Remark 4.4: With the same matrices as in the proof of Propo-
sition 4.3, we just have to compute the determinants involved. First we
carefully compute the core curves of the solid tori Ti. For given index i =
0, . . . , r, a meridian of the solid torus Ti is given by the null-homotopic
curve fpii h

qi ; see (7). Hence a longitude `i is given by `i = fnii hmi for

mi pi−ni qi = 1. Now the eigenvalues of ρ(`i) are λ
±1/pi
ρ , and we obtain

detNπ1(N)(1− `i ⊗ ρ(`i)) = |λρ|1/pi ,

detNπ1(N)(B
′) = |λρ|2g+k+r,

detNπ1(N)(A
′) = |λρ|,

and the result (8) follows from

τ2)(N, ρ) =
detNπ1(N)(B

′)

detNπ1(N)(A′)
∏r
i=0 detNπ1(N)(1− `i ⊗ ρ(`i)

.

Finally, we note that for reducible representation ρ the element
ρ
(∏

i[ai, bi]
)

has trace ±2. In the case that N has empty boundary
(k = 0), if b 6= 0 in (7), then the eigenvalues of ρ(h) must lie on the
unit circle.

5. Twisted L2-torsion for hyperbolic manifolds

In this section we conclude the proof of Theorem A, whose statement
we recall here:

Theorem 5.1. The twisted L2-torsion function

τ (2)(M,ρ) : X(M) R

is real-analytic in an analytic neighbourhood U of any lift [ρ0] of the
holonomy representation of M in the character variety X(M).

In Subsections 5.1 and 5.2 we give alternative definitions for the
L2-torsion τ (2)(M,ρ), which allow us to work with operators on a fixed
Hilbert space (Lemma 5.2) and for which we have a spectral gap (Lem-
ma 5.3) that allows us to apply Lemma 3.6 to deduce Theorem A. We
give the proof of Lemma 5.3 in Subsection 5.3, using comparison with
the analytic L2-invariants and the spectral gap property of the holonomy
representation established in [1, Lemma 4.1].
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5.1. Combinatorial Laplacians.

Lemma 5.2. There exists a graded Hilbert Nπ-module V = V0⊕· · ·⊕V3

and functions Dp : R(M) → HomNπ(Vp, Vp−1), p = 1, . . . , 3, which are
regular in a Zariski neighbourhood of ρ0 in R(M) and such that for

every ρ the complex (V∗, D∗(ρ)) is isomorphic to C
(2)
∗ (M,Nπ ⊗ ρ).

In particular, if we set Ap = D∗pDp +Dp+1D
∗
p+1, then ρ 7→ Ap(ρ) are

analytic in a neighbourhood of ρ0 and we have

(9) τ (2)(M,ρ) =

3∏
p=1

detNπ(Ap(ρ))p(−1)p .

Proof: We set
Lp = Cp(M̃)⊗C C2,

where π acts by γ ·(e⊗v) = (γe)⊗v. We choose an arbitrary Cπ-base Bp
for Cp(M̃); then Lp is isomorphic (as a Cπ-module) to Cp(M̃)⊗C2 with
diagonal action (as introduced in Subsection 3.2) via the map Ip(ρ) : γe⊗
v 7→ γe⊗ρ(γ)v for e ∈ B, γ ∈ π. Choosing any base of C2 we get a basis

of Lp, and the completion Vp = ΛLp is isomorphic to C
(2)
p (M,Nπ ⊗ ρ)

(see also [14, Lemma 1.1]).
Let ∂p be the differentials of C∗(M,Nπ⊗ρ), which are given by ∂p(e⊗

v)=∂pe⊗v. The corresponding boundary maps of V∗ are given byDp(ρ)=

I−1
p−1(ρ)∂pIp(ρ). The coefficients of Ip(ρ) in the Cπ-bases of L∗, C∗(M̃)⊗
C2 are rational functions of ρ because they depend only on the coeffi-
cients of a finite number of ρ(γ), so the first part of the lemma is proved.

Obviously Ap = I−1
p ∆pIp and (9) follows.

5.2. L2-torsion.

5.2.1. L2-cochain complexes. We define in the same way as in Sub-
section 3.2 the L2-cochain complexes C∗(2)(M,Nπ ⊗ ρ) as the comple-

tion of the complex C∗(M̃) ⊗ C2 with diagonal action and similarly
for C∗(2)(∂M,Nπ⊗ρ). The relative L2-cochain complex C∗(2)(M,∂M,Nπ⊗
ρ) is then defined by the exact sequence

0 −−−→ C∗(2)(M,∂M,Nπ ⊗ ρ) −−−→ C∗(2)(M,Nπ ⊗ ρ)

i∗−−−→ C∗(2)(∂M,Nπ ⊗ ρ|∂M ) −−−→ 0.

We denote by ∆p
rel : C

p
(2)(M,∂M,Nπ ⊗ ρ) → Cp(2)(M,∂M,Nπ ⊗ ρ) the

combinatorial Laplacians of the complex C∗(2)(M,∂M,Nπ⊗ρ). The cru-

cial point for us is then the following, which we prove in the next sub-
section.
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Lemma 5.3. There exists λ0 > 0 and a neighbourhood U of the holo-
nomy such that for all [ρ] ∈ U , for all p = 0, . . . , 3, we have σ(∆p

rel(ρ)) ⊂
]λ0,+∞[.

5.2.2. Poincaré duality. We follow the references [13] (see the proofs
of Theorems 1.36(3) and 3.93(3)) and [14, Theorem 6.7(7)]. There is

a homotopy equivalence P∗ : C∗(M̃) → C3−∗(M̃, ∂M̃) between the un-
twisted chain and relative cochain complexes; a construction is given in
the proof of Theorem 2.1 in [21]. We can extend it by the identity to a
homotopy equivalence

P∗ : C
(2)
∗ (M,Nπ ⊗ ρ) C3−∗

(2) (M,∂M,Nπ ⊗ ρ)

between the completed twisted complexes. By [13, Theorem 2.19] it fol-
lows that they have the same Novikov–Shubin invariants. In particular,
∆p(ρ) has a spectral gap for any ρ ∈ U (where U is the neighbourhood
of ρ0 given by Lemma 5.3).

5.2.3. Proof of Theorem A. We have that the relative cochain com-
plex C∗(2)(M,∂M,Nπ ⊗ ρ) is of determinant class for ρ in the neigh-

bourhood U given by Lemma 5.3. By Poincaré duality (see preceding

paragraph) we get that C
(2)
∗ (M̃, ρ) is of determinant class and that for

ρ ∈ U , inf σ(∆p(ρ)) > 0, and by Lemma 5.2 we get that (V∗, D∗(ρ)) are
of determinant class and the Ap(ρ) have a spectral gap for ρ ∈ U .

The hypotheses of Lemma 3.6 are thus satisfied by [ρ] 7→ Ap(ρ), where
ρ belongs to the section of the map R(M)→ X(M) given by Lemma 2.1.
It follows that the functions [ρ] 7→ detNπ Ap(ρ) are real-analytic in U
and so is the L2-torsion by (9).

5.3. Proof of Lemma 5.3.

5.3.1. Preliminaries on analytic L2-invariants. In this subsection
we define the twisted analytic Laplacian operators and derive some of
their properties. For our purposes here we need only consider twisting
by the holonomy representation ρ0 but the discussion can be adapted to
deal with any ρ.

We consider the trivial rank 2 bundle H3×C2 with the π1(M)-action

γ · (x̃, v) = (γ · x̃, ρ0(γ) v)

for any γ∈π1(M), x̃∈H3, v∈C2, and the associated complex Ω∗c(H3,C2)
of compactly supported, C2-valued forms on H3 with the natural Γ-equi-
variant differential dp : Ωp(H3,C2)→ Ωp+1(H3,C2). On the bundle H3×
C2 we choose an arbitrary SL2(C)-invariant norm, which amounts to
choosing a norm on C2 above a base point.
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The spaces Ωpc(H3,C2) admit a Hermitian product associated with
this metric on H3 × C2. We will use a uniform notation for various
spaces of differential forms associated with this inner product: if X is
a manifold, a prefix R before Ωp(X, ρ) indicates that we consider the
completion associated to ρ of the p-forms with coefficients in the trivial
bundle and regularity R. For example, L2Ωp stands for square-integrable
forms and H lΩp for Sobolev spaces; note that these Hilbert spaces and
their Nπ-module structure depend on ρ. The norm on any RΩp(X, ρ)
will be denoted by ‖ · ‖R. For the Sobolev spaces from here on, an inte-
ger l > dimM = 3 is fixed.

The Hodge Laplacian ∆p on the space L2Ωp(H3, ρ) is defined as
follows: if d∗p is the formal adjoint of dp, then the operator defined

by ∆p = d∗pdp + dp+1d
∗
p+1 on the space Ωpc(H3,C2) of compactly sup-

ported smooth forms extends to a unique essentially self-adjoint oper-
ator on the completion L2Ωp(H3, ρ). This operator has a well-defined
spectrum σ(∆p) and it follows from (6) that we have
(10)

inf σ(∆p)=min

(
inf

ω∈Ωpc (H3,C2)\{0}

‖dpω‖2L2

‖ω‖2L2

, inf
ω∈Ωp+1

c (H3,C2)\{0}

‖dp+1ω‖2L2

‖ω‖2L2

)
.

The following result essentially follows from [1, Lemma 4.1]; we give a
short justification as this reference nominally covers only compact locally
symmetric spaces. To be more specific: the statement of [1, Lemma 4.1]
is given only for the discrete spectrum but the argument also applies
to the continuous spectrum. This is justified by the fact that the repre-
sentations in the packets contributing to the spectrum on p-forms also
satisfy the condition HomK(∧pp∗ ⊗ C2, ·) 6= 0 which is the only point
used to give a lower bound on the Casimir eigenvalue in loc. cit. As rig-
orously justifying this would take too much time and preliminaries we
give a suboptimal bootstrap argument below.

Lemma 5.4. There exists δ > 0 such that for the holonomy ρ0 and
0 ≤ p ≤ 3 we have σ(∆p(ρ0)) ⊂ [δ,+∞[.

Proof: The standard representation of SL2(C) on C2 satisfies the hy-
potheses of [1, Lemma 4.1]. Hence there exists a δ > 0 such that
σ(∆p

M (ρM )) ≥ δ for any closed hyperbolic 3-manifoldM , where ρM is the
holonomy representation of M and ∆p

M (ρM ) the Laplacian on p-forms
with coefficients of the associated C2-bundle over M with the Hermitian
metric descended from that described above on H3.

Now let Mn be a tower of coverings of a fixed closed hyperbolic man-
ifold such that the injectivity radius inj(Mn) goes to infinity. Let µn
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be the spectral density measure of ∆p
M (ρM ); it is an atomic measure

by the spectral theorem in Riemannian geometry and by the preced-
ing paragraph it is supported on the interval [δ,+∞[ for all n. Now it
follows from the lemma in the proof of [1, Theorem 4.5] that the mea-
sures µn/Vol(Mn) weakly converge to the spectral measure µ of ∆p(ρ0).

More precisely, the lemma states (in our notation) that for fixed t > 0

we have that
∫
Mn

(tr(e−t∆
p
Mn

(ρMn ))− tr(e−t∆
p(ρ0))) dVol goes to 0. The

integrals of the heat kernels can be rewritten using the spectral measures
of ∆p

Mn
(ρMn

) and ∆p(ρ0) and we get that for any t > 0 we have that∫ +∞
0

e−tλ dµn(λ)/Vol(Mn) converges to
∫ +∞

0
e−tλ dµ. The latter implies

weak convergence of the measures since the functions λ 7→ e−tλ are dense
in uniform convergence on compact subsets. See also [3, Theorem 1.1],
whose proof extends to our setting using [1, Lemma 3.8].

In particular, if ϕ is any continuous function supported in ] − δ, δ[,
we have that 0 =

∫
ϕdµn/Vol(Mn) →

∫
ϕdµ and so the latter also

vanishes, which means that ∆p(ρ0) has no spectrum in ]− δ, δ[.

5.3.2. Comparison of analytic and combinatorial invariants for
the holonomy. The main step in the proof of Lemma 5.3 is now to
prove the spectral gap for the representation ρ = ρ0. We compare the

spectra of Laplace operators on the complex C∗(2)(M̃, ∂M̃,Nπ ⊗ ρ) and

on the Sobolev complexes H l−∗Ω∗(H3, ρ) using Whitney maps. Our ar-
guments are essentially those leading to [13, Lemma 2.71], which we
adapt to the twisted setting. We will use the notation ‖·‖`2 for the norm

on the cochain complex C
(2)
∗ (M̃, ∂M̃,Nπ ⊗ ρ), and ‖ · ‖x̃ for the norm

of the fibre above a point x̃ in H3.
First we recall the definition of Whitney maps. Using the analogous

of Lemma 5.2 for cohomology, we use a different – although isomorphic –
model for the cochain complex C∗(M,Nπ⊗ρ). We see it as the comple-

tion of the complex C∗(M̃)⊗C2 but with action γ·(f⊗v) = (γf)⊗(ρ(γ)v)

and differentials d(f ⊗ v) = (df)⊗ v. If we fix a Cπ-basis of Cp(M̃), the
map γf ⊗ v 7→ γf ⊗ ρ(γ)v gives an isomorphism of Cπ-complexes from
our former model to this one. We choose a smooth partition of unity ec
on M , indexed by vertices c of the triangulation, and we lift it to M̃ .
The important property that we require is that ec has its support con-
tained in the open simplices adjacent to c. Then, if fσ is the cochain
with value 1 on σ and 0 on other simplices, we define

W p(fσ ⊗ v) = p!
∑
c∈σ

ωσ,c ⊗ v,
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where ωσ,c is defined by the usual formula: if c0, . . . , cp are the vertices
of σ ordered according to orientation, ωσ,ci = (−1)ieci ·

∧
j 6=i decj . The

form W pfσ ⊗ v is supported in the open star of σ; in particular it is

compactly supported in M̃ \ ∂M̃ if σ is not contained in ∂̃M .

Thus restricting W defines a map C∗(M̃, ∂M̃)⊗C2 → C∞c Ω∗(H3,C2),
and a direct computation (see [23, p. 140]) shows that it is a chain map
– note that in the model we use here, on both sides the differentials satisfy
d(f ⊗ v) = df ⊗ v, d(ω ⊗ v) = dω ⊗ v, so we can use this computation
as it is for our twisted case. This map from a Cπ-module of finite rank
extends to a bounded chain map

W : C∗(2)(M,∂M,Nπ ⊗ ρ) H l−∗Ω∗(H3, ρ).

To prove our claim about the spectral gap of C∗(2)(M̃, ∂M̃, ρ) it suffices

to prove the following inequalities: there exists C, c > 0 such that for

all p and any cochain φ ∈ Cp(2)(M̃, ∂M̃,Nπ ⊗ ρ) we have

(11) c‖φ‖`2 ≤ ‖W pφ‖Hl−p ≤ C‖φ‖`2 .

Indeed, if this holds, then for any φ the Rayleigh quotient ofW pφ satisfies

‖d(W pφ)‖Hl−p−1

‖W pφ‖Hl−p
=
‖W p(dφ)‖Hl−p−1

‖W pφ‖Hl−p
≤ (c−1C)

‖dφ‖`2
‖φ‖`2

and by Lemma 5.4 and (10) it follows that we must have
‖dφ‖`2
‖φ‖`2

≥
c
C δ. As (10) also applies to the combinatorial Laplacian we get that
inf σ(∆p

rel) ≥
c
C δ. This will prove Lemma 5.3 for the holonomy represen-

tation ρ0, after we show inequality (11).
Since W is bounded, the content of (11) is the lower bound c‖φ‖`2 ≤

‖W pφ‖Hl−p , which we will now prove. First we note (see [18, Section 7])
that on the image of W p the Sobolev and L2-norms are equivalent, so
it suffices to show that c‖φ‖L2 ≤ ‖W pφ‖L2 . To do so, for a p-simplex σ

in M̃ = H3 let Ũσ be the maximal open subset of H3 on which
∑
c∈σ ec =

1 and no ec vanishes for c ∈ σ. This is nonempty, and we have Ũσ∩Ũτ = ∅
if τ 6= σ is another p-simplex. In addition, if σ = [c0, . . . , cp], replacing
every instance of ec0 in W p(fσ ⊗ v) with

(
1 −

∑p
i=1 eci

)
⊗ v (which is

valid on Ũσ by definition), we get that

W p(fσ ⊗ v) = (dec1 ∧ · · · ∧ decp)⊗ v on Ũσ;

in particular it does not vanish there and so the integral of its norm on Ũσ
is strictly positive. As there are only finitely many p-simplexes modulo π
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and the maps eγc are π-equivariant we get that there exists a > 0 such
that

(12) ‖W p(fσ ⊗ v)‖L2(Uσ) ≥ a inf
x̃∈Ũσ

‖v‖x̃

for all σ.
Let ‖ · ‖ be the norm on C2, and B the Cπ-basis of C∗(M̃), that were

used to define the norm ‖ · ‖`2 on C∗(2)(M̃, ∂M̃,Nπ ⊗ ρ). For any σ let

γσ be the element of π such that γ−1
σ σ belongs to B. Then by definition

‖fσ⊗v‖`2 = ‖ρ(γσ)−1v‖. As the Ũσ are relatively compact andB is finite,
there is some a′ (independent of σ) such that inf x̃∈Ũσ ‖v‖x̃ > a′‖v‖ for

all σ ∈ B. As x̃ 7→ ‖v‖x̃ is π-invariant, it follows that for any σ we have

inf
x̃∈Ũσ

‖v‖x̃ > a′‖ρ(γ−1)v‖ = a′‖fσ ⊗ v‖`2 .

With (12) we finally get that

‖W p(fσ ⊗ v)‖L2(Uσ) ≥ a′′‖fσ ⊗ v‖`2

for a′′ = aa′ > 0 and all σ. Now if φ is an arbitrary relative cochain, we
can write it as

φ =
∑
σ

bσfσ ⊗ vσ

so that we have

‖φ‖2`2 =
∑
σ

b2σ‖fσ ⊗ vσ‖2`2 .

As the Ũσ are disjoint we get that

‖W p(φ)‖2L2 ≥
∑
σ

‖W p(φ)‖2L2(Uσ)

=
∑
σ

‖W p(fσ ⊗ v)‖2L2(Uσ)

≥ (a′′)2
∑
σ

b2σ‖fσ ⊗ v‖2`2 = (a′′)2‖φ‖2`2 ,

where the inequality on the second line follows from the fact thatW p(fτ⊗
v) vanishes identically on Ũσ whenever τ 6= σ, and the one on the third
follows from the previous inequality. The last line is the inequality we
were after.
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5.3.3. Conclusion of the proof of Lemma 5.3. By Lemma 5.2 and

the isomorphisms V∗ → C
(2)
∗ (M̃,Nπ ⊗ ρ) → C∗(2)(M̃, ∂M̃,Nπ ⊗ ρ)

the matrices of the operators ∆p(ρ) have coefficients which vary con-
tinuously for [ρ] in their domain of definition D. In particular, each

map ∆p
rel : D → B(Cp(2)(M̃, ∂M̃,Nπ⊗ρ)) is continuous for the operator

norm. Lemma 5.3 then follows from Lemma 3.5 since it holds at [ρ0] by
Subsubsection 5.3.2 and Lemma 5.4.
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