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Abstract: In this work we present a general introduction to the Signorini problem

(or thin obstacle problem). It is a self-contained survey that aims to cover the main
currently known results regarding the thin obstacle problem. We present the theory

with some proofs, from the optimal regularity of solutions and classification of free

boundary points to more recent results on the non-regular part of the free boundary
and generic regularity.
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1. Introduction

The Signorini problem (also known as the thin or boundary obstacle
problem) is a classical free boundary problem that was originally studied
by Antonio Signorini in connection with linear elasticity [77, 78]. Sig-
norini himself originally called it the problem with ambiguous boundary
conditions, in reference to the fact that the solution of the problem at
each boundary point must satisfy one of two different possible bound-
ary conditions, and it is not known a priori which point satisfies which
condition.

Whereas the original problem involved a system of equations, its
scalar version gained further attention in the 1970’s due to its con-
nection to many other areas, which then led to it being widely stud-
ied by the mathematical community. In fact, in addition to elasticity,
lower-dimensional obstacle problems also appear in describing osmosis
through semi-permeable membranes as well as boundary heat control
(see, e.g., [31]). Moreover, they are often local formulations of fractional
obstacle problems, another important class of obstacle problems. Frac-
tional obstacle problems can be found in the optimal stopping problem
for Lévy processes, and can be used to model American option prices

This work has received funding from the European Research Council (ERC) under
Grant Agreement No 721675, and from the Swiss National Science Foundation under

SNF Grant 200021 182565.



4 X. Fernández-Real

(see [63, 24]). They also appear in the study of anomalous diffusion [11],
quasi-geostrophic flows [20], and the interaction energy of probability
measures under singular potentials [22]. (We refer to [72] for an exten-
sive bibliography on the applications of obstacle-type problems.) Finally,
thin obstacle problems also appear when studying the classical obstacle
problem [40, 41].

The aim of this survey is to offer the interested reader a short, self-
contained introduction to the thin obstacle problem and, in particular, to
the structure of the free boundary, involving some recent results in this
context. Other very interesting expository works in the field include [75,
26], together with the book [68, Chapter 9], which give in full detail the
proofs of existence and optimal regularity of solutions, as well as a study
of regular and singular free boundary points.

We believe that the current work complements well the previous ex-
pository works [68, 75, 26]. We present a different (and shorter) proof
of the classification of free boundary points and optimal regularity based
on the ideas of [17] and [73]: traditionally, optimal regularity is shown
by means of a monotonicity formula, and then, together with Almgren’s
monotonicity formula, the classification of free boundary points can be
established. Here, we skip the first step and are able to perform the
classification directly, without knowing the optimal regularity, and de-
duce a posteriori that the lowest possible homogeneity is 3

2 . We also
give an overview on more recent results for the thin obstacle prob-
lem ([7, 43, 37, 34, 23, 41]).

1.1. Structure of the survey. This work is organized as follows.
We start in Section 2 with a short motivation for the thin obstacle

problem taken from electrostatics. In Section 3 we introduce, without
giving proofs, the thin obstacle problem and the basic regularity results
for the solution. We refer the interested reader to [13, 68, 75, 26] for
the proofs of these results.

In Sections 4 and 5 we move on to the (first) classification of free
boundary points and the study of regular points. In these sections we
present some simple proofs which are different from [3, 6, 68, 75, 26].

We then move on to Section 6, in which we study singular points.
In order to keep the exposition simple, we assume the obstacle to be
zero (alternatively, analytic). We introduce the singular set for the thin
obstacle problem, we discuss a non-degenerate case in which regular
and singular points form the whole of the free boundary, we introduce
higher-order regularity results for the singular set, and we briefly mention
epiperimetric inequalities for the thin obstacle problem and their use in
showing regularity of the singular set. In Section 7 we introduce the rest
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of the free boundary, known as the set of Other points. Here we present
the known results for each of the components of this set, and give a
self-contained proof of the smallness of one of them.

In Section 8 we briefly discuss the case of C∞ obstacles and the pres-
ence, in this case, of a different type of free boundary point with infinite
frequency; and in Section 9 we introduce generic free boundary regular-
ity. We state the recent results in this direction, which show that even if
the free boundary could have a bad structure for certain configurations,
such situations are not common. We finish with a short summary of the
structure of the free boundary in Section 10.

2. A problem from elastostatics

Consider an elastic body Ω ⊂ R3, anisotropic and non-homogeneous,
in an equilibrium configuration, that must remain on one side of a fric-
tionless surface. Let us denote by u = (u1, u2, u3) : Ω → R3 the dis-
placement vector of the elastic body Ω constrained to be on one side of a
surface Π (in particular, the elastic body moves from the Ω configuration
to Ω +u(Ω)). We divide the boundary into ∂Ω = ΣD ∪ΣS . The body is
free (or clamped, u ≡ 0) at ΣD, whereas ΣS represents the part of the
boundary subject to the constraint, that is, ΣS = ∂Ω∩Π. Alternatively,
one can interpret ΣS itself as the frictionless surface that is constraining
the body Ω, understanding that only a subset of ΣS is actually exerting
the constraint on the displacement. This will be made clearer below.

Let us assume small displacements, so that we can consider the lin-
earized strain tensor

εij(u) =
1

2
(uixj + ujxi), 1 ≤ i, j ≤ 3.

Considering an elastic potential energy of the formW (ε)=aijkh(x)εijεkh,

for some functions aijhk(x) ∈ C∞(Ω) (where, from now on, we use the
Einstein notation of implicit summation over repeated indices), then the
stress tensor has the form

σij(u) = aijhk(x)εhk(u).

We also impose that aijhk are elliptic and with symmetry conditions

aijhk(x)ζijζhk ≥ λ|ζ|2 for all ζ ∈ Rn×n such that ζij = ζji,

aijhk(x) = ajihk(x) = aijkh(x), for x ∈ Ω.

Let us also assume that Ω is subject to the body forces f = (f1, f2, f3),
so that by the general equilibrium equations we have

∂σij(u)

∂xj
= f i in Ω, for i = 1, 2, 3.
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From the definitions of σ(u) and εij(u) above, this is a second-order
system, and from the definition of aijhk, it is elliptic. Thus, the displace-
ment vector satisfies an elliptic second-order linear system inside Ω. We
just need to impose boundary conditions on ΣS (the conditions on ΣD
are given by the problem; we can think of u ≡ 0 there).

Let us denote by n the outward unit normal vector to x ∈ ∂Ω. No-
tice that, by assumption, the stresses in the normal direction n on ΣS ,
σij(u)ni, must be compressive in the normal direction, and zero in the
tangential direction (due to the frictionless surface). That is,

σij(u)ninj ≤ 0 on ΣS ,(2.1)

σij(u)niτj = 0 on ΣS and for all τ ∈ Rn with τ · n = 0.

On the other hand, we have the kinematic contact condition, encoding
the fact that there exists a surface exerting a constraint and the body
cannot cross it (under small displacements, or assuming simply that Π is
a plane):

(2.2) u · n ≤ 0 on ΣS .

In fact, conditions (2.1)-(2.2) are complimentary, in the sense that

(2.3) (u · n) · (σij(u)ninj) = 0 on ΣS ,

and we are dividing ΣS into two regions: those where the body separates
from Π and those where it remains touching Π. That is, if there is an
active normal stress at a point x ∈ ΣS , σij(u(x))ni(x)nj(x) < 0, then
it means that the elastic body is being constrained by ΣS (o rΠ) at x,
and thus we are in the contact area and there is no normal displace-
ment, u(x) · n(x) = 0. Alternatively, if there is a normal displacement,
u(x)·n(x) < 0, it means that there is no active obstacle and thus no nor-
mal stress, σij(u(x))ni(x)nj(x) = 0. This is precisely what ambiguous
boundary condition means:

For each x ∈ ΣS we have that one of the following two conditions
holds:

(2.4) either

{
σij(u(x))ni(x)nj(x)≤0,

u(x) · n(x) = 0,
or

{
σij(u(x))ni(x)nj(x) = 0,

u(x) · n(x) < 0,

and a priori we do not know which of the conditions is being fulfilled at
each point. The Signorini problem is a free boundary problem because
the set ΣS can be divided into two different sets according to which of
the conditions (2.4) holds, and these sets are, a priori, unknown. The
boundary between the two sets is what is known as the free boundary.
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The previous is a strong formulation of the Signorini problem, which
assumed a priori that all solutions and data are smooth. In order to prove
existence and uniqueness, however, one requires the use of variational
inequalities with (convex) constraints in the set of admissible functions.

The first to approach existence and uniqueness from a variational
point of view was Fichera in [39]. We also refer to the work of Lions and
Stampacchia [61], where a general theory of variational inequalities was
developed, which later led to the scalar version of the Signorini problem
and its interpretation as a minimization problem with admissible func-
tions constrained to be above zero in certain fixed closed sets. Later,
in [31], Duvaut and Lions studied the problem and its applications to
mechanics and physics.

Finally, we refer to [54, 52] for more details of the strong and weak
formulation of the vectorial Signorini problem and its properties, and
to the more recent [2] for the optimal regularity of the solution and
regularity of the free boundary.

3. The thin obstacle problem

In this work we will focus our attention on the scalar version of the
Signorini problem from elasticity: our function u would correspond to
an appropriate limit in the normal components of the displacement vec-
tor un. Our obstacle ϕ adds generality to the problem, and would cor-
respond to the possible displacement of the frictionless surface ∂Ω while
performing u. (We refer the interested reader to [21, Example 1.5] for
a deduction of this fact.) As explained above, this problem also appears
in biology, physics, and even finance. Thus, from now on, functions are
scalar.

Let us denote

x = (x′, xn+1) ∈ Rn × R, B1 := {x ∈ Rn+1 : |x| < 1},
and B+

1 := B1 ∩ {xn+1 > 0}.

We say that u : B+
1 → R is a solution to the Signorini problem or thin

obstacle problem with smooth obstacle ϕ defined on B′1 := B1∩{xn+1 =
0}, and with smooth boundary data g on ∂B1 ∩ {xn+1 > 0}, if u solves

(3.1)



∆u = 0 in B+
1 ,

u = g on ∂B1 ∩ {xn+1 > 0},
∂xn+1

u · (u− ϕ) = 0 on B1 ∩ {xn+1 = 0},
−∂xn+1

u ≥ 0 on B1 ∩ {xn+1 = 0},
u− ϕ ≥ 0 on B1 ∩ {xn+1 = 0},
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where we also assume that the compatibility condition g ≥ ϕ on ∂B1 ∩
{xn+1 = 0} holds. Notice the analogy with the ambiguous compatibility
conditions (2.1)-(2.2)-(2.3) or (2.4): the set with Dirichlet conditions,
ΣD above, is ∂B1 ∩ {xn+1 > 0}, where u = g is imposed, whereas the
set with ambiguous boundary conditions, ΣS above, is now B′1. That is,
at each point x = (x′, 0) ∈ B′1 we have that

either

{
−∂xn+1u(x) ≥ 0,

u(x)− ϕ(x′) = 0,
or

{
−∂xn+1u(x) = 0,

u(x)− ϕ(x′) > 0.

An alternative way to write the ambiguous boundary conditions
in (3.1) is to impose a non-linear condition on B′1 involving u and ∂xn+1

u
as

(3.2)

{
∆u = 0 in B+

1 ,

min{−∂xn+1u, u− ϕ} = 0 on B1 ∩ {xn+1 = 0},

with u = g on ∂B1 ∩ {xn+1 > 0}. This is the strong formulation of the
Signorini problem.

In order to prove the existence (and uniqueness) of solutions, we need
to study the weak formulation of the problem: a priori, we do not know
any regularity for the solution.

Consider a bounded domain Ω ⊂ Rn, and a closed set C ⊂ Ω. Also
let φ : C(C)→ R be a continuous function. In [61], Lions and Stampac-
chia prove the existence and uniqueness of a solution to the variational
problem

(3.3) min
v∈K

ˆ
Ω

|∇v|2,

where K = {v ∈ H1
0 (Ω) : v ≥ φ on C}. Moreover, they show that this

solution is the smallest supersolution.
If C = Ω, (3.3) is also known as the (classical) obstacle problem:

finding the function with the lowest Dirichlet energy among all those
which lie above a fixed obstacle φ. This problem has been thoroughly
studied in the last 50 years (see [61, 55, 12, 16, 14, 80, 68] and
references therein), and we will sometimes refer to it also as the thick or
classical obstacle problem.

Our problem, (3.2), corresponds to the case when C is lower-dimen-
sional, with codimension 1. Notice that simple capacity arguments yield
that, if C has codimension 2 or higher, then the restriction of functions
in H1

0 to C does not have any effect on the minimization of the Dirich-
let energy, and thus we would simply be solving the classical Laplace
equation. This means that, in higher codimension, there is in general no
minimizer.
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Thus, (3.2) are the Euler–Lagrange equations of the variational prob-
lem

(3.4) min
v∈K∗

ˆ
B+

1

|∇v|2,

where

K∗={v∈H1(B+
1 ) : v=g on ∂B1∩{xn+1>0}, v≥ϕ on B1∩{xn+1 =0}}.

Notice that the expressions v = g on ∂B1 ∩ {xn+1 > 0} and v ≥ ϕ on
B1 ∩ {xn+1 = 0} must be understood in the trace sense. The existence
and uniqueness of a solution, as in [61], follows by classical methods:
take a minimizing sequence, and by lower semi-continuity of the Dirichlet
energy, and the compactness of the trace embeddings into H1, the limit
is also an admissible function. Uniqueness follows by strict convexity of
the functional.

In some cases, the thin obstacle problem is posed in the whole ball B1,
and thus we consider

(3.5)
min
v∈K∗∗

ˆ
B1

|∇v|2,

K∗∗ = {v ∈ H1(B1) : v = g on ∂B1, v ≥ ϕ on B1 ∩ {xn+1 = 0}},

for some function g ∈ C(∂B1). In this case, the Euler–Lagrange equa-
tions are formally

(3.6)


u ≥ ϕ on B1 ∩ {xn+1 = 0},
∆u = 0 in B1 \ ({xn+1 = 0} ∩ {u = ϕ}),
∆u ≤ 0 in B1,

with the added condition that u = g on ∂B1. Alternatively, making the
parallelism with (3.2), one could formally write

(3.7)

{
∆u = 0 in B1 \ {xn+1 = 0},
min{−∆u, u− ϕ} = 0 on B1 ∩ {xn+1 = 0},

understanding that ∆u is defined only in the distributional sense.

Remark 3.1. Notice that if g is even with respect to xn+1, the solution
to (3.6) is even as well, and we recover a problem of the form (3.2).
On the other hand, for general g, one can study the symmetrized func-
tion ū(x′, xn+1) = 1

2 (u(x′, xn+1) + u(x′,−xn+1)), which has the same
regularity and contact set as u. Thus, in order to study (3.6) one can
always assume that u is even in xn+1, and this is enough to study (3.2).
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Notice, also, that in (3.6) the condition ∆u ≤ 0 needs to be under-
stood in the sense of distributions. In fact, ∆u is a (non-positive) measure
concentrated on {u = 0}. We can explicitly compute it by taking any
test function φ ∈ C∞c (B1) even in xn+1,

−〈∆u, φ〉 = 2

ˆ
B+

1

∇u · ∇φ = 2 lim
ε↓0

ˆ
B+

1 ∩{xn+1≥ε}
∇u · ∇φ

= −2 lim
ε↓0

ˆ
B+

1 ∩{xn+1=ε}
∂xn+1uφ = −2

ˆ
B1∩{xn+1=0}

∂+
xn+1

uφ.

That is,

(3.8) ∆u = 2∂+
xn+1

uHn (B1 ∩ {xn+1 = 0}),

where ∂+
xn+1

u = limε↓0 ∂xn+1
u(x′, ε).

Remark 3.2. In the derivation of (3.8), apart from (3.6), we have also
used the integrability of ∇u, and the fact that the trace of the nor-
mal derivative is well defined. This follows because in fact, as we will
show later, the solution to the thin obstacle problem is Lipschitz, and is
continuously differentiable up to the obstacle.

Remark 3.3. Problem (3.5) can be seen as a first-order approximation
of the Plateau problem with a lower-dimensional obstacle, originally in-
troduced by De Giorgi [28], and which has also been studied more re-
cently [27, 45, 38]. Indeed, the Dirichlet functional corresponds to the
area functional (up to a constant) for flat graphs.

Finally, let us end this section by mentioning other possible construc-
tions of solutions. As mentioned above, the solution to the previous min-
imization problem can also be recovered as the smallest supersolution.
That is, the minimizer u to (3.5) equals the pointwise infimum

u(x) = inf
{
v(x) : v ∈ C2(B1), −∆v ≥ 0 in B1,

v ≥ ϕ on B1 ∩ {xn+1 = 0}, v ≥ g on ∂B1

}
,

the smallest supersolution above the thin obstacle. The fact that such
a function satisfies (3.6) can be proved by means of Perron’s method,
analogously to the Laplace equation.

As a final characterization of the construction of the solution, we refer
to penalization arguments. In this case there are two ways to penalize:

On the one hand, we can expand the obstacle and work with the clas-
sical obstacle problem. That is, we can consider as our obstacle ϕε(x) =
ϕ(x′)−ε−1x2

n+1 with ε > 0 very small, which is now defined in the whole
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domain B1. Then, the solutions to the thick obstacle problem with in-
creasingly thinner obstacles ϕε (letting ε ↓ 0), converging to our thin
obstacle, will converge to the solution to our problem. Alternatively, we
can even avoid the penalization step: the solutions to the thin obstacle
problem must coincide with the solution of the thick obstacle problem,
with obstacle ϕ̄ : B+

1 → R given by the solution to ∆ϕ̄ = 0 in B+
1 , ϕ̄ = ϕ

on B1 ∩ {xn+1 = 0}, ϕ̄ = g on ∂B1 ∩ {xn+1 > 0} (which can have
a hard wedge on {xn+1 = 0}). Notice that ϕ̄ itself is not the solution
to the thin obstacle problem since, a priori, it is not a supersolution
across {xn+1 = 0}.

On the other hand, we can penalize (3.2) by replacing the ambiguous
boundary condition on {xn+1 = 0}, by considering solutions uε with the
Neumann boundary condition uεxn+1

= ε−1 min{0, u−ϕ} on {xn+1 = 0}.
By letting ε ↓ 0, uε converges to a solution to our problem.

3.1. Relation with the fractional obstacle problem. Let us con-
sider the thin obstacle problem (3.2) posed in the whole Rn+1, for some
smooth obstacle ϕ : Rn → R with compact support. That is, we denote
Rn+1

+ = Rn+1 ∩ {xn+1 > 0} and consider a solution to

(3.9)



∆u = 0 in Rn+1
+ ,

u(x′, 0) ≥ ϕ(x′) for x′ ∈ Rn,
∂xn+1u(x′, 0) = 0 if u(x′, 0) > ϕ(x′),

∂xn+1u(x′, 0) ≤ 0 if u(x′, 0) = ϕ(x′),

u(x)→ 0 as |x| → ∞.

If we denote by ū : Rn → R the restriction of u to {xn+1 = 0}, then
we can simply reformulate the problem in terms of ū instead of u, given
that u is just the harmonic extension (vanishing at infinity) of ū to Rn+1

+ .
That is, by means of the Poisson kernel in the half-space,

u(x′, xn+1) = [P (xn+1, ·) ∗ u](x′) = cn

ˆ
Rn

xn+1ū(y′) dy′

(x2
n+1 + |x′ − y′|2)

n+1
2

for some dimensional constant cn. Thus, after a careful computation and
taking limits xn+1 ↓ 0, one obtains

−∂xn+1u(x′, 0) = cn PV

ˆ
Rn

ū(x′)− ū(y′)

|x′ − y′|n+1
dy′ =: (−∆)

1
2 ū(x′),

where the integral needs to be understood in the principal value sense.
Here we have introduced an integro-differential operator, acting on ū,
(−∆)

1
2 , known as the fractional Laplacian of order 1 (in the sense that

it is 1-homogeneous, (−∆)
1
2 (v̄(r·)) = r((−∆)

1
2 v̄)(r·)).
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Let us very briefly justify the choice of notation (−∆)
1
2 in terms of the

discussion above. Given a smooth (say, C2) function ū, (−∆)
1
2 ū is the

normal derivative of its harmonic extension. If one repeats this proce-
dure, and takes the harmonic extension of (−∆)

1
2 ū, it is simply ∂xn+1

u.

Thus, (−∆)
1
2 (−∆)

1
2 ū = ∂2

xn+1
u = −∆x′ ū, where we are using the fact

that ∆u = 0 (up to the boundary), and we denote ∆ = ∆′x + ∂2
xn+1

.

In all, problem (3.9) can be rewritten in terms of ū as

(3.10)


ū ≥ ϕ in Rn,
(−∆)

1
2 ū = 0 if u > ϕ,

(−∆)
1
2 ū ≥ 0 if u = ϕ,

ū(x′)→ 0 as |x′| → ∞,

which is the formulation of the classical (or thick) global obstacle prob-

lem, with obstacle ϕ and operator (−∆)
1
2 , also referred to as the frac-

tional obstacle problem. Notice that we are now considering a func-
tion ū that remains above the obstacle ϕ in the whole domain (compared
to before, where we only needed this condition imposed on a lower-
dimensional manifold).

Similarly, one can consider the fractional obstacle problem in a
bounded domain Ω ⊂ Rn with a (smooth) obstacle ϕ : Ω→ R by impos-
ing exterior boundary conditions with sufficient decay, ḡ : Rn \ Ω→ R,

(3.11)


ū ≥ ϕ in Ω,

(−∆)
1
2 ū = 0 in Ω ∩ {u > ϕ},

(−∆)
1
2 ū ≥ 0 in Ω ∩ {u = ϕ},

ū = ḡ in Rn \ Ω.

Thus, in order to study the solution to (3.11), by taking its harmonic
extension ū, it is enough to study the solutions to (3.2).

Finally, another characterization of the fractional Laplacian, (−∆)
1
2 ,

is via Fourier transforms. In this way, one can also characterize (up to a
constant) general fractional Laplacians of order 2s, with 0 < s < 1, as

F((−∆)sū)(ξ) = |ξ|2sF(ū)(ξ),

where F denotes the Fourier transform. The operator, which now has
order 2s, can be explicitly written as

(−∆)sū(x′) = cn,s PV

ˆ
Rn

ū(x′)− ū(y′)

|x′ − y′|n+2s
dy′.
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In this way, one can consider general obstacle problems with non-local
operator L = (−∆)s

(3.12)


ū ≥ ϕ in Ω,

Lū = 0 in Ω ∩ {u > ϕ},
Lū ≥ 0 in Ω ∩ {u = ϕ},
ū = ḡ in Rn \ Ω;

see, e.g., [79]. As we have seen, the fractional Laplacian (−∆)
1
2 can be

recovered as the normal derivative of the harmonic extension towards one
extra dimension (cf. (3.11)-(3.2)). Caffarelli and Silvestre showed in [19]
that the fractional Laplacian of order (−∆)s can also be recovered by
extending through suitable operators. Thus, if one considers the operator

Lau := div(|xn+1|a∇u), a = 1− 2s ∈ (−1, 1),

then the even a-harmonic extension of the solution ū to (3.12) (that is,
u with Lau = 0 in xn+1 > 0 and u(x′, xn+1) = u(x′,−xn+1)) solves
locally a problem of the type

(3.13)


u ≥ ϕ on B1 ∩ {xn+1 = 0},
Lau = 0 in B1 \ ({xn+1 = 0} ∩ {u = ϕ}),
Lau ≤ 0 in B1,

that is, a thin obstacle problem with operator La, or a weighted thin
obstacle problem (cf. (3.6)) with A2-Muckenhoupt weight.

It is for this reason that the weighted thin obstacle problem (3.13) is
often studied with a ∈ (−1, 1) (see [19, 18]). For the sake of simplic-
ity and readability, in this introduction we will always assume a = 0,
but most of the results mentioned generalize to any a ∈ (−1, 1) accord-
ingly, and therefore they also apply to solutions to the fractional obstacle
problem (3.12).

Fractional obstacle problems such as (3.12), as well as many of its
variants (with more general non-local operators, with a drift term, in
the parabolic case, etc.), have been a very prolific topic of research in
recent years (see [15, 67, 48, 25, 17, 8, 35, 4, 5] and references therein).
We refer the reader to the expository works [68, 75, 26] for a deeper
understanding of the fractional obstacle problem and its relation to the
thin obstacle problem.

3.1.1. The fractional Laplacian and Lévy processes. Integro-dif-
ferential equations arise naturally in the study of stochastic processes
with jumps, namely, Lévy processes. The research in this area is attract-
ing an increasing level of interest, from both an analytical and a proba-
bilistic point of view, among others, due to its applications to multiple
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areas: finance, population dynamics, physical and biological models, etc.
(See [31, 63, 24, 71, 72] and references therein.) Infinitesimal genera-
tors1 of Lévy processes are integro-differential operators of the form

Lu = b · ∇u+ tr(A ·D2u)

+

ˆ
Rn
{u(x+ y)− u(x)− y · ∇u(x)χB1

(y)}ν(dy),
(3.14)

for some Lévy measure ν such that
´

min{1, |y|2}ν(dy) < ∞. The sim-
plest (non-trivial) example of such infinitesimal generators is the frac-
tional Laplacian introduced above, which arises as an infinitesimal gen-
erator of a stable and radially symmetric Lévy process.

In particular, obstacle-type problems involving general integro-differ-
ential operators of the form (3.14) appear when studying the optimal
stopping problem for a Lévy process: consider a particle located at Xt

at time t ≥ 0, moving according to a Lévy process inside a domain Ω,
and let ϕ be a pay-off function defined in Ω, and ḡ an exterior condition
defined in Rn \ Ω. At any time we can decide to stop the process and
be paid ϕ(Xt) or wait until the particle reaches a region where ϕ has a
higher value. Moreover, if the particle suddenly jumps outside Ω, we get
paid ḡ(Xt). The goal is to maximize the expected value of the money
we are being paid. We refer the interested reader to the aforementioned
references as well as [69] and the appendix of [7] for the jump-diffusion
optimal stopping problem, as well as [58, 32, 36] for the local (Brownian
motion) case.

3.2. Regularity of the solution. Once existence and uniqueness are
established for solutions to (3.2), the next question that one wants to
answer is:

How regular is the solution u to (3.2)?

Regularity questions for solutions to the thin obstacle problem were
first investigated by Lewy in [59], where he showed, for the case n = 1,
the continuity of the solution of the Signorini problem. He also gave the
first proof related to the structure of the free boundary, by showing, also
in n = 1, that if the obstacle ϕ is concave, the coincidence set {u = ϕ}
consists of at most one connected interval.

The continuity of the solution for any dimension follows from classical
arguments. One first shows that the coincidence set {u = ϕ} is closed,

1The infinitesimal generator A of a stochastic process X = {Xt : t ≥ 0}, with
Xt ∈ Rn, is defined to act on suitable functions f : Rn → R as

A(f(x)) := lim
t↓0

Ex(f(Xt))− f(x)

t
.
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and then one uses the following fact for harmonic functions: if C ⊂ Ω is
closed, and ∆v = 0 in Ω\C and v is continuous on C, then v is continuous
in Ω.

Rather simple arguments also yield that, in fact, the solution is Lip-
schitz. Indeed, if one considers the solution u to the problem (3.6), and
we define h ∈ Lip(B1) as the solution to

∆h = 0 in B1 \ {xn+1 = 0},
h = −‖u‖L∞(B1) on ∂B1,

h = ϕ on B1 ∩ {xn+1 = 0},

then u is a solution to the classical (thick) obstacle problem with h
(which is Lipschitz) as the obstacle. Then, we just notice that solutions
to the thick obstacle problem with Lipschitz obstacles are Lipschitz,
so u is Lipschitz as well. This last step is not so immediate; we refer
the reader to [3, Theorem 1] or [33, Proposition 2.1] for two different
ways to conclude this reasoning. These first regularity properties were
investigated in the early 1970’s (see [9, 60, 53, 10, 50]).

In general, we do not expect solutions to (3.6) to be better than
Lipschitz in the full ball B1. Indeed, across {xn+1 = 0} on contact
points, we have that normal derivatives can change sign, as seen by
taking the even extension to (3.2). Nonetheless, we are interested in the
regularity of the solution on either side of the obstacle. The fact that
normal derivatives jump is artificial, in the sense that it does not come
from the equations, but from the geometry of the problem. We see that
this is not observed in (3.2), where the solution could, a priori, be better
than Lipschitz, and neither does it appear when studying the solution
restricted to {xn+1 = 0}, as in the situations with the fractional obstacle
problem (3.11).

3.2.1. C1,α regularity. The first step to upgrade the regularity of
solutions to (3.2) was taken by Frehse in [46], where he proved that first
derivatives of u are continuous up to {xn+1 = 0} on either side, thus
showing that the solution is C1 in B+

1 , up to the boundary.

Later, in 1978, Richardson proved that solutions are C1,1/2 for n = 1
in [70], whereas, in parallel, Caffarelli showed in [13] that solutions to the
Signorini problem are C1,α for some small α > 0 up to the boundary on
either side (alternatively, tangential derivatives are Hölder-continuous).
In order to do that, Caffarelli showed the semi-convexity of the solution
in the directions parallel to the thin obstacle. We state this result here
for future reference, as well as the C1,α regularity, and we refer the
interested reader to [13, 68, 75, 26] for the proofs of these results.
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Proposition 3.4 ([13]). Let u be any weak solution to (3.2), and let
ϕ ∈ C1,1(B′1). Let e ∈ Sn be parallel to the thin space, e · en+1 = 0.
Then, u is semi-convex in the e direction. That is,

inf
B1/2

∂2
eeu ≥ −C(‖u‖L2(B1) + [∇ϕ]C0,1(B′1)),

for some constant C depending only on n.

As a (not immediate) consequence, Caffarelli deduced the C1,α regu-
larity of solutions.

Theorem 3.5 ([13]). Let u be any weak solution to (3.2), and let ϕ ∈
C1,1(B′1). Then, u ∈ C1,α(B+

1/2) and

‖u‖
C1,α(B+

1/2
)
≤ C

(
‖u‖L2(B+

1 ) + [∇ϕ]C0,1(B′1)

)
,

for some constants α > 0 and C depending only on n.

Remark 3.6. In fact, in [13] Caffarelli pointed out how to deal with other
smooth operators coming from variational inequalities with smooth co-
efficients. Thus, in (3.2) one could consider other divergence form op-
erators other than the Laplacian, with smooth and uniformly elliptic
coefficients.

Remark 3.7. A posteriori, one can lower the regularity assumptions on
the obstacle, the coefficients, and the lower-dimensional manifold. We
refer to [74] for a study in this direction, with C1,α obstacles, C0,α co-
efficients (in divergence form), and the thin obstacle supported on a
C1,γ manifold.

The fact that the regularity cannot be better than C1,1/2 is due to
the simple counter-example,

(3.15) u(x) = Re
(

(x1 + i|xn+1|)3/2
)
,

which in (x1, xn+1)-polar coordinates can be written as

ũ(r, θ) = r3/2 cos
(

3
2θ
)
.

The function u is a solution to the Signorini problem: it is harmonic
for |xn+1| > 0, the normal derivative ∂xn+1

vanishes at θ = 0, and it has
the right sign at θ = π.

It was not until many years later that, in [3], Athanasopoulos and
Caffarelli showed the optimal C1,1/2 regularity of the solution in all di-
mensions. That is, in the previous theorem α = 1

2 , and by the example
above, this is optimal. We leave the discussion of the optimal regular-
ity for the next section, where we deal with the classification of free
boundary points.
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Historically, the classification of the free boundary was performed
after having established the optimal regularity. In the next section we
show that this is not needed, and in fact one can first study the free
boundary, and from that deduce the optimal regularity of the solution.

4. Classification of free boundary points and optimal
regularity

The thin obstacle problem, (3.2) or (3.6), is a free boundary problem,
i.e., the unknowns of the problem are the solution itself, and the contact
set

Λ(u) := {x′ ∈ Rn : u(x′, 0) = ϕ(x′)} × {0} ⊂ Rn+1,

whose topological boundary in the relative topology of Rn, which we
denote by Γ(u) = ∂RnΛ(u) = ∂{x′ ∈ Rn : u(x′, 0) = ϕ(x′)} × {0}, is
known as the free boundary.

After studying the basic regularity of the solution, the next natural
step in understanding the thin obstacle problem is to study the structure
and regularity of the free boundary. This is also related to the optimal
regularity question presented above, since one expects that the worst
points in terms of regularity lie on the free boundary.

Let us suppose, for simplicity, that we have a zero obstacle problem,
ϕ ≡ 0. Notice that, if the obstacle ϕ is analytic, we can always reduce to
this case by subtracting an even harmonic extension of ϕ from the solu-
tion2. This is not possible under lower regularity properties (in particu-
lar, this does not include the case where ϕ ∈ C∞; see Section 8). More-
over, we will assume that we are dealing with an even solution (for
example, by imposing an even boundary datum; see Remark 3.1).

Our problem is

(4.1)


u ≥ 0 on B1 ∩ {xn+1 = 0},
∆u = 0 in B1 \ ({xn+1 = 0} ∩ {u = 0}),
∆u ≤ 0 in B1,

u is even in the xn+1 direction,

and the contact set is

Λ(u) = {(x′, 0) ∈ Rn+1 : u(x′, 0) = 0}.

2If the obstacle ϕ is analytic, then ϕ has a harmonic extension to B+
1 , and its even

extension in the whole B1 is harmonic as well. Thus, the function u − ϕ solves a

thin obstacle problem with zero obstacle. This is no longer true if ϕ is not analytic
(not even when ϕ ∈ C∞), and in such situations one needs to adapt the arguments.

However, the main ideas are the same.
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In order to study a free boundary point, x◦ ∈ Γ(u), one considers
blow-ups of the solution u around x◦. That is, one looks at rescalings of
the form

(4.2) ur,x◦(x) =
u(x◦ + rx)(ffl
∂Br(x◦)

u2
) 1

2

.

The limit of such rescalings, as r ↓ 0, gives information about the be-
haviour of the solution around the free boundary point x◦. Thus, classi-
fying possible blow-up profiles as r ↓ 0 around free boundary points will
help us to better understand the structure of the free boundary. Notice
that, by construction, the blow-up sequence (4.2) is trivially bounded
in L2(∂B1). To prove (stronger) convergence results, we need the se-
quence to be bounded in more restrictive spaces (say, in W 1,2), by taking
advantage of the fact that u solves problem (4.1).

In order to do that, a very powerful tool is Almgren’s frequency func-
tion. If we consider a solution u to the Signorini problem (4.1) and take
the odd extension (with respect to xn+1), we end up with a two-valued
map that is harmonic on the thin space (and has two branches). Almgren
studied in [1] precisely the monotonicity of the frequency function for
multi-valued harmonic functions (in fact, Dirichlet energy minimizers),
and thus it is not surprising that such a tool is also available in this
setting.

Let us define, for a free boundary point x◦ ∈ Γ(u),

N(r, u, x◦) :=
r
´
Br(x◦)

|∇u|2´
∂Br(x◦)

u2
.

We will denote N(r, u) whenever we take x◦ = 0. Notice that N(ρ, ur) =
N(rρ, u), where ur := ur,0 (see (4.2)). Then, we have the following.

Lemma 4.1. Let u be a solution to (4.1), and let us assume 0 ∈ Γ(u).
Then, Almgren’s frequency function

r 7→ N(r, u) =
r
´
Br
|∇u|2´

∂Br
u2

is non-decreasing. Moreover, N(r, u) is constant if and only if u is ho-
mogeneous.
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Proof: We sketch the proof very briefly (see [68, 75, 26] for more
details). By scaling (N(ρ, ur) = N(rρ, u)) it is enough to show that
N ′(1, u) ≥ 0. Let us denote

D(r, u) =
1

rn+1

ˆ
Br

|∇u|2 = r2

ˆ
B1

|∇u(r·)|2,

H(r, u) =
1

rn

ˆ
∂Br

u2 =

ˆ
∂B1

u(r·)2,

so that N(r, u) = D(r,u)
H(r,u) and N ′(1, u) = D(1,u)

H(1,u)

(D′(1,u)
D(1,u) −

H′(1,u)
H(1,u)

)
. Now

notice that

D′(1, u) = 2

ˆ
B1

∇u · ∇(x · ∇u) dx = 2

ˆ
∂B1

u2
ν − 2

ˆ
B1

∆u(x · ∇u) dx,

where uν denotes the outward normal derivative to B1. Since u is a so-
lution to the Signorini problem, either ∆u = 0 or u = 0 and ∆u > 0
(in which case, x · ∇u = 0 by C1 regularity of the solution). Thus, the
second term above vanishes. On the other hand, we have that H ′(1, u) =
2
´
∂B1

uuν and D(1, u) =
´
B1
|∇u|2 =

´
∂B1

uuν , where in the last equal-

ity we have used again that u solves the Signorini problem, and therefore
u∆u ≡ 0. Thus,

N ′(1, u) = 2
D(1, u)

H(1, u)

( ´
∂B1

u2
ν´

∂B1
uuν
−

´
∂B1

uuν´
∂B1

u2

)
≥ 0,

by the Cauchy–Schwarz inequality. Equality holds if and only if u is
proportional to uν on ∂Br for every r (that is, u is homogeneous).

In particular, as a consequence of Lemma 4.1 we have that λ :=
limr↓0N(r, u) = N(0+, u) is well defined. This value is known as the
frequency at a free boundary point.

From Lemma 4.1 we also have the following.

Lemma 4.2. Let u be a solution to (4.1), and let us assume 0 ∈ Γ(u).
Let λ := N(0+, u), and let

ψ(r) :=

 
∂Br

u2.

Then, the function r 7→ r−2λψ(r) is non-decreasing. Moreover, for ev-
ery ε > 0 there exists some r◦ = r◦(ε) such that if r < ρr ≤ r◦(ε) ≤ 1,

ψ(ρr) ≤ ρ2(λ+ε)ψ(r).
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Proof: Differentiating,

d

dr
(r−2λψ(r)) = 2r−2λ−n−1

{
r

ˆ
Br

|∇u|2 − λ
ˆ
∂Br

u2

}
≥ 0,

where we are also using the monotonicity of N(r, u) from Lemma 4.1.
On the other hand, choose r◦(ε) such that N(r◦, u) ≤ λ + ε. Then,

just by noticing that

(4.3) N(r, u) =
r

2

d

dr
logψ(r) ≤ λ+ ε

for r < ρr ≤ r◦ and integrating in (r, ρr) we get the desired result.

As a consequence of Almgren’s monotonicity formula we get the exis-
tence of a (homogeneous) blow-up limit around free boundary points, u0.
Notice that we are not claiming the uniqueness of this blow-up, but its
degree of homogeneity is independent of the sequence.

Corollary 4.3. Let u be a solution to (4.1), and let us assume 0 ∈ Γ(u).
Let us denote

ur(x) =
u(rx)(ffl

∂Br
u2
)1/2 .

Then, for any sequence rk ↓ 0 there exists a subsequence rkj ↓ 0 such
that

urkj → u0 strongly in L2
loc(Rn+1),(4.4)

∇urkj ⇀ ∇u0 weakly in L2
loc(Rn+1),(4.5)

urkj → u0 strongly in C1
loc(Rn+1

+ ),(4.6)

for some N(0+, u)-homogeneous global solution u0 to the thin obsta-
cle problem with zero obstacle, (4.1), and ‖u0‖L2(∂B1) = cn, for some

dimensional constant cn > 0. Moreover, u0 ∈ C1,α
loc ({xn+1 ≥ 0}) and

N(0+, u) > 1.

Proof: The proof of the strong convergence in L2 and weak conver-
gence in W 1,2 is a consequence of Lemma 4.1, which shows that the se-
quence urk is uniformly bounded in W 1,2(B1). Indeed, take any ball cen-
tred at the origin, BR ⊂ Rn. Then, using the notation from Lemma 4.2,ˆ

BR

|∇ur|2 =
r1−n

ψ(r)

ˆ
BrR

|∇u|2 ≤ Rn−1ψ(Rr)

ψ(r)
N(1, u) ≤ C(R)N(1, u),

where in the last step we are using that r is small enough together with
the second part of Lemma 4.2 with ε = 1. Also notice that ‖ur‖L2(∂B1) =

cn, so ur is bounded inW 1,2 for every compact set (again, by Lemma 4.2).
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The homogeneity of u0 comes from the fact that

N(ρ, u0) = lim
r↓0

N(ρ, ur) = lim
r↓0

N(rρ, u) = N(0+, u),

and Lemma 4.1. The strong convergence in C1 follows from the C1,α reg-
ularity estimates for the solution, Theorem 3.5, and it implies that
u0 ∈ C1,α

loc ({xn+1 ≥ 0}) solves the thin obstacle problem (4.1) in Rn+1,
and N(0+, u0) > 1.

And we can now classify blow-ups at free boundary points.

Theorem 4.4 (Classification of blow-ups). Let u be a solution to (4.1),
and let us assume 0 ∈ Γ(u). Let u0 denote any blow-up at 0 with homo-
geneity λ := N(0+, u). Then λ ∈

{
3
2

}
∪ [2,∞). Moreover, if λ = 3

2 , then
u0 is (after a rotation) of the form (3.15).

Proof: We need to determine the possible values λ = N(0+, u) in Corol-
lary 4.3 whenever λ < 2.

Thus, from now on, let us assume that 1 < λ < 2. We separate the
rest of the proof into two steps.

Step 1: Convexity of u0. Let us start by showing that u0 is convex in
the directions parallel to the thin space, and thus, in particular, the re-
striction u0|{xn+1=0} is convex. We do so by means of the semi-convexity
estimates from Proposition 3.4 applied to u0. Indeed, by rescaling Propo-
sition 3.4 to a ball of radius R ≥ 1 we get

R2 inf
BR/2

∂eeu0 ≥ −CR−
n
2 ‖u0‖L2(BR) = −CRλ‖u0‖L2(B1),

for some dimensional constant C, and for e · en+1 = 0, where in the
last equality we are using the λ-homogeneity of u0. That is, by letting
R→∞,

inf
BR/2

∂eeu0 ≥ −CRλ−2‖u0‖L2(B1) → 0, as R→∞.

Hence, u0 is convex in the directions tangential to the thin space.

Step 2: Degree of homogeneity of u0. Let us now consider Λ(u0) ⊂
{xn+1 = 0} the contact set for u0, which is a convex cone, from the
convexity and homogeneity of u0.

If Λ(u0) has empty interior (restricted to the thin space), then ∂xn+1
u0

is a harmonic function in {xn+1 > 0}, identically zero on the thin space,
and (λ − 1)-homogeneous. In particular, from the sublinear growth at
infinity, ∂xn+1u0 ≡ 0 everywhere, and thus u0 ≡ 0, a contradiction.
Hence, Λ(u0) has non-empty interior on the thin space.
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Let us denote by e ∈ Sn−1 a direction contained in the interior
of Λ(u0) (in particular, e · en+1 = 0). Let us define w1 := ∂−eu0, and
w2 := −∂xn+1

u0 for xn+1 ≥ 0, and w2 := ∂xn+1
u0 for xn+1 < 0. Notice

that since u0 is even and ∂xn+1u0 = 0 whenever u0 > 0 on the thin
space, w2 is continuous across {xn+1 = 0}. Moreover, w1 and w2 are
(λ− 1)-homogeneous functions, harmonic in {xn+1 6= 0}.

Notice that w1 = 0 in Λ(u0). In particular, for any x◦ ∈{xn+1 = 0},
x◦+te ∈Λ(u0) for t ∈R large enough (since Λ(u0) is a cone with non-
empty interior and e is a direction contained in it). Thus, from the
convexity of u0, w1 has to be monotone along x◦ + te, and thus w1 ≥ 0
on the thin space. Since w1 is (λ − 1)-homogeneous (i.e., it has sublin-
ear growth), and is non-negative on the thin space, there is a unique
(λ− 1)-homogeneous harmonic extension that coincides with w1 (by the
Poisson kernel), and it is non-negative as well. Hence, w1 ≥ 0 in Rn+1.

In addition, w2 ≥ 0 on the thin space as well (since u0 solves the thin
obstacle problem), and it has sublinear growth at infinity. That is, its
harmonic extension is itself, and thus w2 ≥ 0 in Rn+1. Moreover, notice
that w2 = 0 in {xn+1 = 0} \Λ(u0) (in particular, w1w2 ≡ 0 on {xn+1 =
0}), and that w2 is harmonic in {w2 > 0} ∩ {xn+1 = 0}. Indeed, w2 is

continuous and {w2 > 0} ∩ {xn+1 = 0} = Λ̊(u0). In particular, u0 is
locally C2 up to the thin space around {w2 > 0}∩{xn+1 = 0}, and since

∆u0 = 0 up to the thin space, we get ∂2
xn+1

u0 = 0 in Λ̊(u0), implying

that ∂xn+1w2 is continuous through {w2 > 0} ∩ {xn+1 = 0} and hence
w2 is harmonic there.

On the one hand, we have that the restriction of w1 to the unit sphere
must be the first eigenfunction of the Dirichlet problem for the spherical
Laplacian with zero data on ∂B1 ∩ Λ(u0) (since it is non-negative), and
it has homogeneity λ − 1. On the other hand, the restriction of w2 to
the unit sphere must be the first eigenfunction with zero data on ∂B1 ∩
({xn+1 = 0} \ Λ(u0)), and it has the same homogeneity λ − 1. Since
Λ(u0) is a (convex) cone, it is contained in a half-space (of {xn+1 =
0}), and therefore {xn+1 = 0} \ Λ(u0) contains a half-space. Since the
corresponding homogeneities are the same (i.e., λ− 1), by monotonicity
of eigenvalues with respect to the domain we must have that, after a
rotation, Λ(u0) and its complement are equal, and hence, they are half-
spaces themselves. The homogeneity for the half-space in this situation
is 1

2 , so λ = 3
2 , and the corresponding eigenfunction is

u0(x) = Re
(
(x1 + i|xn+1|)3/2

)
,

as we wanted to see.

As a consequence of the previous result, we have a dichotomy for free
boundary points.
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Proposition 4.5 (Classification of free boundary points and optimal
regularity). Let u be a solution to (4.1). Then, the free boundary can be
divided into two sets,

Γ(u) = Reg(u) ∪Deg(u).

The set of regular points,

Reg(u) :=
{
x◦ ∈ Γ(u) : N(0+, u, x◦) = 3

2

}
,

and the set of degenerate points,

Deg(u) := {x◦ ∈ Γ(u) : N(0+, u, x◦) ≥ 2}.

Moreover, u ∈ C1,1/2(B+
1 ) with

(4.7) ‖u‖
C1,1/2(B+

1/2
)
≤ C‖u‖L∞(B1)

for some C depending only on n, and the set of regular points is open
(in the relative topology of the free boundary).

Proof: The classification result is an immediate consequence of Corol-
lary 4.3 and Theorem 4.4.

For the optimal regularity, we observe that by Corollary 4.3, since the
sequence ur is uniformly bounded in r, for x◦ ∈ Γ(u),

(4.8) ‖u‖L∞(Br)(x◦) ≤ C

( 
∂Br(x◦)

u2

) 1
2

≤ C‖u‖L∞(B1)r
3
2 ,

where in the last inequality we are using Lemma 4.2, together with the
fact that, by Theorem 4.4, N(0+, u, x◦) ≥ 3

2 . This establishes a uniform
growth of the solution around free boundary points. Combined with
interior estimates for harmonic functions, this yields that u is C1,1/2 on
the thin space, and thus u ∈ C1,1/2(B+

1 ) with estimates in B+
1/2.

Indeed, take y∈{xn+1 = 0}∩{u > 0}∩B3/4, and let r=dist(y,Γ(u))=
dist(y, y◦) for some y◦ ∈ Γ(u). Then u is harmonic in Br(y), and by
harmonic estimates together with (4.8) applied at B2r(y◦)

‖∇x′u‖L∞(Br/2(y)) ≤ Cr−1‖u‖L∞(Br(y))

≤ Cr−1‖u‖L∞(B2r(y◦)) ≤ C‖u‖L∞(B1)r
1
2 .

(4.9)

Next, for y1, y2 ∈ {xn+1 = 0} ∩B3/4 we want to obtain the bound

(4.10) |∇x′u(y1)−∇x′u(y2)| ≤ C‖u‖L∞(B1)|y1 − y2|
1
2

to get C1,1/2 regularity of u on the thin space. Notice that, since∇x′u=0
on {xn+1 = 0}∩{u= 0}, we can assume that y1, y2 ∈{xn+1 = 0} ∩ {u >
0} ∩B3/4.
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Let us suppose r=dist(y1,Γ(u))≥dist(y2,Γ(u)). Then, if dist(y1, y2)≤
r
2 , and since u is harmonic in Br(y1), by harmonic estimates we have

|∇x′u(y1)−∇x′u(y2)|
|y1 − y2|1/2

≤ [∇x′u]C1/2(Br/2(y1))

≤ Cr−1/2‖∇x′u‖L∞(Br(y1)) ≤ C‖u‖L∞(B1),

where in the last step we have used (4.9). Else, if dist(y1, y2) ≥ r
2 ,

from (4.9) and dist(y2,Γ(u)) ≤ r,
|∇x′u(y1)−∇x′u(y2)| ≤ |∇x′u(y1)|+ |∇x′u(y2)|

≤ C‖u‖L∞(B1)r
1/2 ≤ C‖u‖L∞(B1)|y1 − y2|1/2.

In all, (4.10) always holds, and u is C1,1/2 on {xn+1 = 0}. By standard
harmonic estimates, its harmonic extension to B+

1 is also C1,1/2 with
estimates up to the boundary {xn+1 = 0}, which gives (4.7).

Finally, we note that the functions Γ(u) 3 x 7→ N(r, u, x) contin-
uous for every r > 0 fixed, and are monotone non-decreasing in r >
0 (for x fixed). Thus, N(0+, u, x) = infr>0N(r, u, x) is the infimum
of a family of continuous functions, and therefore it is upper semi-
continuous. In particular, if Deg(u) 3 xk → x◦, then N(0+, u, x◦) ≥
lim supk→∞N(0+, u, xk) ≥ 2, and thus x◦ ∈ Deg(u). The set of de-
generate points is closed, and the set of regular points is open (in the
relative topology of the free boundary).

5. Regular points

We have shown that the free boundary can be divided into two dif-
ferent sets: regular points and degenerate points, according to the value
of the frequency.

As we will show next, the set of regular points is so called because
the free boundary is smooth around them, [6].

Let 0 be a regular free boundary point, and consider the rescalings

(5.1) ur(x) =
u(rx)(ffl
∂Br

u2
) 1

2

.

Since 0 is a regular point, by Theorem 4.4, there exists some sequence rj ↓
0 such that, up to a rotation,

(5.2) urj → u0 := Re
(
(x1 + i|xn+1|)3/2

)
strongly in C1(B+

1/2).

Notice that, on the thin space, u0 is a half-space solution of the form

u0(x′, 0) = c(x1)
3/2
+ . In particular, the free boundary is a hyperplane
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(in {xn+1 = 0}) and thus smooth. We want to show that the smooth-
ness of the free boundary in the limit is inherited by the approximating
sequence urj , for j large enough.

Let us start by showing a sketch of the proof of the fact that the free
boundary is Lipschitz. In the following proposition, C(e1, θ) denotes a
cone in the tangential directions with axis e1 and opening θ > 0, that is,

C(e1, θ) := {τ ∈ Rn+1 : τn+1 = 0, τ · e1 ≥ cos(θ)‖τ‖}.

Proposition 5.1. Let u be a solution to (4.1), and suppose that the
origin is a regular free boundary point, i.e. 0 ∈ Reg(u). Suppose also
that (5.2) holds.

Then, for any fixed θ◦ > 0, there exists some ρ > 0 such that

(5.3) ∂τu ≥ 0 in Bρ, for all τ ∈ C(e1, θ◦).

In particular, the free boundary is Lipschitz around regular points. That
is, for some neighbourhood of the origin, Γ(u) is the graph of a Lipschitz
function x1 = f(x2, . . . , xn) in {xn+1 = 0}.

Sketch of the proof: We use that ∂τurj is converging to ∂τu0 uniformly
in B1/2. Notice that, by assumption, ∂τu0 ≥ 0, and in fact, ∂τu0 ≥
c(θ◦, σ) > 0 in {|xn+1| > σ}.

Thus, from the uniform convergence, for any σ > 0 there exists some
r◦ = r◦(θ◦, σ) such that, if rj ≤ r◦,

(5.4)
∂τurj ≥ 0 in B3/4 \ {|xn+1| ≥ σ},
∂τurj ≥ c(θ◦) > 0 in B3/4 \

{
|xn+1| ≥ 1

2

}
.

Moreover, from the optimal C1, 12 regularity of solutions,

(5.5) ∂τurj ≥ −cσ
1
2 in B3/4 ∩ {|xn+1 ≤ σ}.

Combining (5.4)-(5.5) with the fact that ∆(∂τurj ) = 0 in B1 \Λ(urj ),
and ∂τurj = 0 on Λ(urj ), by comparison principle arguments we deduce
that there exist some σ◦ = σ◦(θ◦) such that if σ < σ◦, ∂τurj ≥ 0 in B1/2

(see [6, Lemma 5] for a proper justification of this step). In particular,
there exists some ρ (depending only on θ◦, but also depending on the
regular point) such that ∂τuρ ≥ 0 in B1. Thus, (5.3) holds.

We finish by showing that (5.3) implies that the free boundary is
Lipschitz. We do so by considering the two (half) cones

Σ± := ±C(e1, θ◦) ∩Bρ/2.

Notice that, since 0 ∈ Γ(u), u(0) = 0, and from u ≥ 0 on {xn+1 = 0}
together with (5.3) we must have u ≡ 0 on Σ−, so Σ− ⊂ {u = 0}.
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On the other hand, suppose that y◦ ∈ Σ+ is such that u(y◦) = 0.
Again, by (5.3) and the non-negativity of u on the thin space, we have
u ≡ 0 on y◦−C(e1, θ◦). But notice that, since y◦ ∈ Σ+, 0 ∈ y◦−C(e1, θ◦),
that is, 0 is not a free boundary point. A contradiction. Therefore, we
have that u(y◦) > 0, so Σ+ ⊂ {u > 0}.

Thus, the free boundary at 0 has a cone touching from above and
below, and therefore it is Lipschitz at the origin. We can do the same at
the other points around it, so that the free boundary is Lipschitz.

In fact, the previous proof not only shows that the free boundary is
Lipschitz, but by letting θ◦ ↓ 0 we are showing that it is basically C1

at 0. In order to upgrade the regularity of the free boundary around
regular points we use the following boundary Harnack principle.

Theorem 5.2 (Boundary Harnack principle [6, 30]). Let Ω ⊂ {xn+1 =
0}∩B1 be any open set on the thin space, and let v1, v2 ∈ C(B1) satisfying
∆v1 = ∆v2 = 0 in B1 \ Ω. Assume, moreover, that v1 and v2 vanish
continuously on Ω, and v1, v2 > 0 in B1 \ Ω. Then, there exists some
α > 0 such that v1

v2
is α-Hölder-continuous in B1/2 \ Ω up to Ω.

As a consequence, we can show that the Lipschitz part of the free
boundary is, in fact, C1,α.

Theorem 5.3 (C1,α regularity of the free boundary around regular
points). Let u be a solution to (4.1). Then, the set of regular points Reg(u)
is locally a C1,α (n− 1)-dimensional manifold.

Proof: We apply Theorem 5.2 to the right functions. By Proposition 5.1
we already know that around regular points the free boundary is a Lip-
schitz (n− 1)-dimensional manifold.

Let us suppose 0 is a regular point. Take τ̄ = 1√
2
(e1 + ei) with i ∈

{2, . . . , n}, and notice that in Bρ such that (5.3) holds (with θ◦ = π/4) we
have that v1 := ∂e1u and v2 := ∂τ̄u are positive harmonic functions, van-
ishing continuously on Ω := Λ(u)∩Bρ, by Proposition 5.1. Thus, v1/v2 is
Hölder-continuous, which implies that ∂eiu/∂e1u is Hölder-continuous,
up to Λ(u), in Bρ.

We finish by noticing that, if we take x ∈ {xn+1 = 0} such that
u(x) = t, then ν(x) denotes the unit normal vector to the level set {u =
t} on the thin space, where

νi(x) :=
∂eiu

|(∂e1u, . . . , ∂enu)|
=

∂eiu/∂e1u(
1 +

∑n
i=2(∂eiu/∂e1u)2

)1/2 .
Thus, ν = (ν1, . . . , νn) is Hölder-continuous. In particular, by letting t ↓
0 we obtain that the normal vector to the free boundary is Hölder-
continuous, and therefore the free boundary is C1,α in Bρ/2.
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It is possible to keep iterating a higher-order boundary Harnack prin-
ciple to obtain higher-order free boundary regularity estimates around
regular points. Hence, Theorem 5.2 also has a higher-order analogy.

Proposition 5.4 (Higher-order boundary Harnack principle [29]). Let
Ω ⊂ {xn+1 = 0} ∩ B1 be a Ck,α domain on the thin space for k ≥ 1,
and let v1, v2 ∈ C(B1) satisfying ∆v1 = ∆v2 = 0 in B1 \ Ω. Assume,
moreover, that v1 and v2 vanish continuously on Ω, and v2 > 0 in B1\Ω.
Then, v1

v2
is Ck,α in B1/2 \ Ω up to Ω.

Moreover, if U0(x′) =
√

dist(x′,Ω), and v1 is even in xn+1, then v1
U0

is Ck−1,α in B′1/2 \ Ω up to Ω.

And from the higher-order boundary Harnack principle we can deduce
higher-order regularity of the free boundary (at regular points).

Corollary 5.5 (C∞ regularity of the free boundary around regular
points). Let u be a solution to (4.1). Then, the set of regular points Reg(u)
is locally a C∞ (n− 1)-dimensional manifold.

Proof: Follows analogously to the proof of Theorem 5.3 by using Propo-
sition 5.4 instead of Theorem 5.2.

We refer to [56] for an alternative approach to higher regularity (that
yields, in fact, that the free boundary is analytic).

As a consequence of the previous results we also get an expansion
around regular points, proving that, up to lower-order terms, the solution
behaves like the half-space solution. In particular, this next theorem
proves the uniqueness of blow-ups.

Theorem 5.6 (Expansion around regular points). Let u be a solution
to (4.1), and let us assume 0 ∈ Reg(u). Then, there exists some c > 0
and some α > 0 such that

u(x) = cu0(x) + o
(
|x| 32 +α

)
,

where u0 is the blow-up of u at 0 (i.e., u0(x) = Re((x1 + i|xn+1|)3/2) up
to a rotation in the thin space).

Proof: Here we use the second part of Proposition 5.4. By taking τ ∈
Sn∩{xn+1 = 0} and v1 = ∂τu (a tangential derivative to the thin space),
by Proposition 5.4 applied with Ω = Λ(u) (the contact set) we have

∂τu

U0
∈ Cα



28 X. Fernández-Real

in the thin space, for some fixed α > 0 (coming from the boundary Har-
nack), outside the contact set and up to the free boundary. In particular,∣∣∣∣∂τuU0

(x′)− c0
∣∣∣∣ ≤ C|x′|α

=⇒ |∂τu(x′)− c0U0(x′)| ≤ CU0(x′)|x′|α ≤ C|x′| 12 +α,

for some constant c0 = ∂τu
U0

(0). We recall that U0(x′) =
√

dist(x′,Ω).

By the C1,α regularity of the free boundary, there exists some cτ such
that U0 − cτ∂τu0 = o(|x| 12 +α′) for some α′ > 0, where u0 is the blow-up
at 0. Thus, we have that

|∂eiu(x′)− ci∂eiu0(x′)| ≤ C|x′| 12 +α′ .

From the local uniform convergence ∂τur → ∂τu0 we must have ci = c ≥
0 for all i = 1, . . . , n in the previous expression, where

c = lim
r↓0

r−
3
2

( 
∂Br

u2

) 1
2

.

Thus,

|∇x′u(x′)− c∇x′u0(x′)| ≤ C|x′| 12 +α′ .

Since ∇x′u(0) = ∇x′u0(0) = 0, by integrating the previous expression
we deduce

|u(x′)− cu0(x′)| ≤ C|x′| 32 +α′ .

By harmonic estimates, this inequality also holds outside the thin space.
Now, if c = 0, it means that the frequency at 0 is at least 3

2 + α′. This
contradicts 0 being a regular point, and thus c > 0. This concludes the
proof.

We finish by noticing the uniqueness of blow-ups at regular points.

Corollary 5.7 (Uniqueness of blow-ups at regular points). Let u be a
solution to (4.1), and let us assume 0 ∈ Reg(u). Then, up to a rotation,

u(r ·)
r

3
2

→ cu0 as r ↓ 0,

locally uniformly, for some c > 0. Here, u0(x) = Re((x1 + i|xn+1|)3/2).

Proof: This is a direct consequence of Theorem 5.6.

Notice that in the previous result we are adapting the blow-up se-
quence to the type of point we are dealing with. In particular, the corre-
sponding blow-up obtained above is a constant multiple of the blow-up
obtained with the sequence (5.1).
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6. Singular points

In the classical (or thick) obstacle problem, all points of the free
boundary have frequency 2, and thus the classification of free bound-
ary points must be performed differently: regular points are those such
that the contact set has positive density, whereas singular points are
those where the contact set has zero density.

This motivates the definition of a singular point. Whereas it is not
true that all points of positive density belong to the set Reg(u) as defined
above, one can characterize the points with zero density.

Let us start by defining the set of singular points, which was originally
studied by Garofalo and Petrosyan in [47]. Let u denote a solution to
the thin obstacle problem (4.1), then we define

(6.1) Sing(u) :=

{
x ∈ Γ(u) : lim inf

r↓0

Hn(Λ(u) ∩Br(x))

Hn(Br(x) ∩ {xn+1 = 0})
= 0

}
,

where we recall that Λ(u) denotes the contact set and Hn(E) denotes
the n-dimensional Hausdorff measure of a set E.

The first result in this direction involves the characterization of such
points.

Proposition 6.1 (Characterization of singular points [47]). Let u be a
solution to (4.1). Then, the set of singular points (6.1) can be equivalently
characterized by

Sing(u) = {x ∈ Γ(u) : N(0+, u, x) = 2m, m ∈ N}.
That is, singular points are those with even frequency.

Proof: Let us suppose that 0 ∈ Sing(u) according to definition (6.1), and
take a sequence rj ↓ 0 such that

(6.2)
Hn(Λ(u) ∩Brj )

Hn(Brj ∩ {xn+1 = 0})
→ 0.

Consider the sequence urj , and after taking a subsequence if nec-
essary, let us assume urj → u0 uniformly in B1. Notice that ∆urj is a
non-positive measure supported on Λ(urj ). By assumption, Hn(Λ(urj )∩
B1) → 0. Thus, since urj converges uniformly to u0, u0 has Laplacian
concentrated on a set with zero harmonic capacity, and thus it is har-
monic.

By Theorem 4.4, u0 is a global homogeneous solution to the thin
obstacle problem, with homogeneity κ := N(0+, u). In particular, being
homogeneous and harmonic, it must be a polynomial. Moreover, since
ur is even with respect to {xn+1 = 0}, so is u0. Thus, u0 is a non-zero,
harmonic polynomial, even with respect to {xn+1 = 0}, and non-negative
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on the thin space. Its homogeneity must be even, and thus κ = 2m for
some m ∈ N.

Suppose now that 0 ∈ Γ(u) is such that N(0+, u) = 2m for some m ∈
N. Take any blow-up of u at zero, u0. Then u0 is a global solution to the
thin obstacle problem, with homogeneity 2m. As a consequence u0 must
be harmonic everywhere, and thus a homogeneous harmonic polynomial
(we refer to [64, Lemma 7.6] or [47, Lemma 1.3.4] for a proof of this
fact).

Now, since u0 is a non-zero even homogeneous harmonic polynomial,
and is non-zero on the thin space (by Cauchy–Kovalevskaya), Hn({u0 =
0} ∩ {xn+1 = 0}) = 0. Thus, from the uniform convergence urj → u0,
we must have that (6.2) holds.

Thus, the set of singular points consists of those points with even
homogeneity. It is then natural to define

Γλ(u) := {x ∈ Γ(u) : N(0+, u, x) = λ},
so that

Sing(u) =
⋃
m∈N

Γ2m(u) =: Γeven(u).

In fact, singular points present a particularly good structure. At sin-
gular points of order 2m, the solution to the thin obstacle problem is
2m times differentiable (in the sense of (6.3) below) and in particular,
the blow-up is unique (see Remark 6.3 below), and belongs to the set

P2m :={p : ∆p=0, x·∇p=2mp, p(x′, 0)≥0, p(x′, xn+1)=p(x′,−xn+1)},
2m-homogeneous harmonic polynomials, non-negative on the thin space.
That is, the following result from [47], which we will not prove, holds.

Theorem 6.2 (Uniqueness of blow-ups at singular points [47]). Let u
be a solution to (4.1). Let x◦ ∈ Γ2m(u) for some m ∈ N. Then, there
exists a non-zero polynomial px◦ ∈ P2m such that

(6.3) u(x) = px◦(x− x◦) + o(|x− x◦|2m).

In particular, the blow-up at 0 is unique. Moreover, the map x◦3Γ2m(u) 7→
px◦ is continuous.

Remark 6.3. In the proof of the previous result, one defines px◦ at a free
boundary point x◦ of frequency 2m as

(6.4) px◦(x) := lim
r↓0

u(x◦ + rx)

r2m
.

Then px◦ is well defined, and it is sometimes called the blow-up or first
blow-up at singular points. The blow-up px◦ is a (non-zero) multiple of



The Thin Obstacle Problem: A Survey 31

the blow-up obtained by the sequence (5.1). From now on, when referring
to the blow-up at a singular point we refer to the one obtained by (6.4),
which is uniquely determined.

The proof of the previous theorem is based on Weiss and Monneau-
type monotonicity formulas, whereby if u has a singular point of order 2m
at the origin, the following functions are non-decreasing:

(6.5) r 7→W2m(r, u) :=
1

rn−1+4m

ˆ
Br

|∇u|2 − 2m

rn+4m

ˆ
∂Br

u2

and (as a consequence)

r 7→M2m(r, u, p2m) =
1

rn+2m

ˆ
∂Br

(u− p2m)2

for all p ∈ P2m and 0 < r < 1. From here, in [47] the authors establish
first non-degeneracy at singular points (which, in particular, yields that
(6.4) is non-zero), and then the uniqueness of a blow-up. The continuity
with respect to the point then follows by a compactness argument.

Theorem 6.2 establishes a connection between singular points and
their blow-ups. This also allows different singular points to be separated
according to “how big” the contact set is around them. We already know
it has zero Hn-density. In fact, the contact set around singular points
has the same “size” as the translation-invariant set of the blow-up (see
(6.6) below). Thus, we can establish a further stratification within the
set of singular points, according to the size of the translation-invariant
set (which is a subspace) of the blow-up.

Given a solution u to the thin obstacle problem (4.1), and given x ∈
Γ(u), let us denote by px any blow-up of u at x. In particular, if x is a
singular free boundary point, px ∈ P2m (defined as (6.4) in Remark 6.3)
is uniquely determined by the result above.

Let us denote by L(p) the translation-invariant set for p, where p is a
blow-up,

L(p):={ξ ∈ Rn+1 : p(x+ ξ) = p(x) for all x ∈ Rn+1}
= {ξ ∈ Rn+1 : ξ · ∇p(x) = 0 for all x ∈ Rn+1},

(6.6)

where we recall that blow-ups p are homogeneous. Then, if we denote

(6.7) Γ`2m := {x ∈ Γ2m : dimL(px) = `}, ` ∈ {0, . . . , n− 1},

we have

Sing(u) = Γeven(u) =
⋃
m∈N

Γ2m =
⋃
m∈N

n−1⋃
`=0

Γ`2m.
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As a consequence of Theorem 6.2, combined with the Whitney ex-
tension theorem and the implicit function theorem, one can prove the
following result regarding the structure of the singular set.

Theorem 6.4 ([47]). Let u be a solution to (4.1). Then, the set Γ`2m(u)
(see (6.7)) for ` ∈ {0, . . . , n−1} is contained in a countable union of C1

`-dimension manifolds.

Notice that the fact that each stratum of the singular set is contained
in a countable union of manifolds (rather than a single manifold) is
unavoidable: there could be accumulation of lower-order points (say, of
order 2) to higher-order points (say, of order 4). We refer the reader to
the original papers, as well as [68, 75, 26], for the proofs of the previous
statements.

The previous result can also be applied to the whole singular set:
Sing(u) can be covered by a countable union of C1 (n− 1)-dimensional
manifolds. The fact that the manifold is C1 is due to the expansion
of the solution (6.3). In [34], Jhaveri and the author show higher-order
expansions at singular points x◦ ∈ Γ2m(u), analogous to (6.3), as

(6.8) u(x) = px◦(x− x◦) + qx◦(x− x◦) + o(|x− x◦|2m+1)

for some (2m+1)-homogeneous harmonic polynomial qx◦ . Expansions of
the form (6.8) hold at almost every singular point, and thus, analogously
to the previous case we obtain a structure result that holds for all singular
points up to a lower-dimensional set:

Theorem 6.5 ([34]). Let u be a solution to (4.1). Then, there exists
a set E ⊂ Sing(u) of Hausdorff dimension at most n − 2 such that
Sing(u) \E is contained in a countable union of C2 (n− 1)-dimensional
manifolds.

6.1. The non-degenerate case. So far we have been studying the
thin obstacle problem with zero obstacle. When solving for an (even)
boundary datum

g ∈ C0(∂B1), g(x′, xn+1) = g(x′,−xn+1)

the problem looks like

(6.9)


u ≥ 0 on B1 ∩ {xn+1 = 0},
∆u = 0 in B1 \ ({xn+1 = 0} ∩ {u = 0}),
∆u ≤ 0 in B1,

u = g on ∂B1.
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We had reduced to this problem from (3.2) by subtracting the har-
monic even extension of the analytic obstacle ϕ. Alternatively, from (6.9)
we can reduce to the case of zero boundary data by subtracting the har-
monic extension of g from the unit ball. Thus, we obtain a problem of
the form

(6.10)


v ≥ ϕ on B1 ∩ {xn+1 = 0},
∆v = 0 in B1 \ ({xn+1 = 0} ∩ {v = ϕ}),
∆v ≤ 0 in B1,

v = 0 on ∂B1,

that is, a thin obstacle problem with obstacle ϕ. Problems (6.9) and
(6.10) are the same when

(6.11)

{
∆ϕ = 0 in B1,

ϕ = −g on ∂B1,
and v = u+ ϕ.

In this setting, we say that problem (6.10) with ϕ ∈ C3,1(B1∩{xn+1 =
0}) is non-degenerate if

(6.12) ∆x′ϕ ≤ −c◦ < 0 in B1 ∩ {xn+1 = 0} ∩ {ϕ > 0}, ∅ 6= {ϕ > 0},

where ∆x′ denotes the Laplacian in the first n coordinates (Laplacian
along the thin space). The last condition above is to avoid having a
non-active obstacle. Alternatively, in terms of problem (6.9) we have

(6.9) is non-degenerate
def.⇐⇒ ϕg :

{
∆ϕg = 0 in B1,

ϕg = −g on ∂B1

satisfies (6.12).

In particular, when we deal with concave obstacles, our problem is
non-degenerate. In [7], Barrios, Figalli, and Ros-Oton show that, under
this non-degeneracy assumption, we have a better characterization of
free boundary points.

Theorem 6.6 ([7]). Let u be a solution to (6.9), and suppose that the
non-degeneracy condition (6.12) holds. Then, there exists a constant c̄
(depending on c◦) such that for any x◦ ∈ Γ(u) ∩B1/2,

sup
Br(x◦)

u ≥ c̄ r2,

for all r ∈
(
0, 1

4

)
. In particular, if (6.12) holds, then

Γ(u) = Reg(u) ∪ Γ2(u),

i.e., the free boundary consists only of regular points and singular points
of order 2.



34 X. Fernández-Real

Proof: We prove the result for v satisfying (6.10) and the proof follows
by the transformation (6.11) with ϕ = ϕg as in (6.12).

Let us define for x̄ = (x̄′, 0) ∈ B1/2 ∩ {xn+1 = 0} ∩ {v > ϕ}

wx̄(x′, xn+1) = v(x′, xn+1)− ϕ(x′)− c◦
2n+ 2

(|x′ − x̄′|2 + x2
n+1),

where c◦ is the constant in (6.12). Notice that, since ∆v = 0 outside the
contact set Λ(v),

∆wx̄ = −∆x′ϕ− c◦ ≥ 0, in Br(x̄) \ Λ(v).

On the other hand, wx̄(x̄′, 0) > 0 and w < 0 on Λ(v). By the maximum
principle, we must have sup∂Br(x̄) wx̄ > 0. Letting x̄ → x◦ ∈ Γ(u) we
deduce

sup
∂Br(x◦)

wx◦ ≥ 0,

which implies the desired result.
Finally, since the growth at the free boundary is at least quadratic,

there cannot be any blow-up at a free boundary point with homogeneity
greater than 2.

In this case, therefore, the non-regular part of the free boundary con-
sists exclusively of singular points of order 2. In particular, in Theo-
rem 6.4 we have instead a single C1 `-dimensional manifold covering
(locally) the whole of Γ`2(u). We can also establish a more refined ver-
sion of Theorem 6.5,

Theorem 6.7 ([34]). Let u be a solution to (4.1), and suppose that the
non-degenerate condition (6.12) holds. Then,

(i) Γ0
2(u) is isolated in Sing(u) = Γ0

2(u) ∪ · · · ∪ Γn−1
2 (u).

(ii) There exists an at most countable set E1 ⊂ Γ1
2(u) such that Γ1

2(u)\
E1 is locally contained in a single 1-dimensional C2 manifold.

(iii) For each ` ∈ {2, . . . , n − 1}, there exists a set Em ⊂ Γ`2(u) of
Hausdorff dimension at most ` − 1 such that Γ`2(u) \ E` is locally
contained in a single `-dimensional C2 manifold.

6.2. An alternative approach to regularity: the epiperimetric
inequality. A modern and prolific tool to tackle regularity questions
for the free boundary in the thin obstacle problem has been the use of
epiperimetric inequalities. Let us very briefly introduce the concept and
some interesting consequences. In particular, we present a very recent
result in which this technique is used to improve Theorem 6.4 to an
explicit modulus of continuity for the normal to the manifold containing
singular points.
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In order to study singular points (and deduce Theorem 6.4) Garofalo
and Petrosyan prove in [47] the monotonicity of the Weiss energy along
sequences of blow-ups, thus generalizing the Weiss monotonicity formula
originally introduced in the classical obstacle problem (see [80]). In par-
ticular, they show that if 0 is a free boundary point of order λ (cf. (6.5),
where only even frequencies were involved) and u is a solution to the
thin obstacle problem (4.1), then the Weiss boundary-adjusted energy

Wλ(r, u) :=
1

rn−1+2λ

ˆ
Br

|∇u|2 − λ

rn+2λ

ˆ
∂Br

u2

satisfies that r 7→ Wλ(r, u) is non-decreasing for r ∈ (0, 1). More pre-
cisely, we have that

d

dr
Wλ(r, u) =

2

rn+1+2λ

ˆ
∂Br

(x · ∇u− λu)2.

The Weiss energy at scale r is related to the speed of convergence
of a solution to its blow-up (or, as seen in the previous expression, the
closeness to a λ-homogeneous function), and thus it is not surprising
that a detailed study of this energy could lead to a better understanding
of free boundary points.

A quantification of the value of Wλ(r, u) (the type of convergence
as r ↓ 0) leads to a better understanding of free boundary points of that
given frequency. This quantification can be made by means of epiperi-
metric inequalities.

For example, at regular points (namely, when the blow-up is 3
2 -homo-

geneous), one can prove that, for some (explicit) dimensional constant κ,
if c ∈ H1(B1) and z is 3

2 -homogeneous, z = c on ∂B1, even (in xn+1)
and non-negative on the thin space, then there exists some v even and
non-negative on the thin space with v = c on ∂B1 such that

W 3
2
(1, v) ≤ (1− κ)W 3

2
(1, z),

namely, we have an explicit improvement of homogeneity3. This is called
an epiperimetric inequality, and from here the convergence of Wλ(r, u)
can be quantified (in this case, it decays like a power as r ↓ 0) and one
can deduce the free boundary regularity at regular points. (See [42, 49,
23].) This approach is the one used, for example, in [49, 48] in order to
prove regularity of the free boundary at regular points for the variable
coefficient thin obstacle problem, and for the fractional obstacle problem

3The epiperimetric inequality can be presented in different statements. The statement
presented here is the one by Colombo, Spolaor, and Velichkov, [23], and similar
statements with extra assumptions can also be found in [42, 49].
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with subcritical drift, respectively; and in [76] even in the context of the
parabolic version of the thin obstacle problem.

In [23], Colombo, Spolaor, and Velichkov are able to establish, for the
first time, an epiperimetric inequality that is valid at all singular points.
In particular, they establish a logarithmic-type epiperimetric inequality
at even frequency points: under the previous assumptions on c and z
but with homogeneity 2m (instead of 3

2 ), there exists some h even, non-
negative on the thin space, and with h = c on ∂B1 such that

W2m(1, h) ≤W2s(1, z)(1− κm|W2m(z)|γ),

where κm is a dimensional constant that depends also on m, and γ =
n−1
n+1 . This is called a logarithmic-type epiperimetric inequality, since it
can only lead to logarithmic decay for the Weiss energy. The proof of
this result in [23] is done by a direct method: the authors are able to
construct a competitor h from the Fourier decomposition of the trace
of c (or z).

From here, they quantify the convergence of the rescaling of u to
its blow-up (with a logarithm), and as a consequence, they are able to
establish an explicit modulus of continuity for the map x◦ 3 Γ2m(u) 7→
px◦ appearing in Theorem 6.2. Proceeding with the Whitney extension
theorem as in the proof of Theorem 6.4 they are able to establish the

C1,log−ε◦ regularity4 of the covering manifolds:

Theorem 6.8 ([23]). Let u be a solution to (4.1). Then, the set Γ`2m(u)
(see (6.7)) for ` ∈ {0, . . . , n − 1} is contained in a countable union of

C1,log−ε◦ `-dimension manifolds.

Their use of the logarithmic-type epiperimetric inequality does not
end here; see Theorem 7.6 below for another interesting consequence of
their result.

7. Other points

The free boundary contains, in general, other points different from
regular and singular. Even in two dimensions (n = 1) one can perform
the simple task of manually classifying all the possible homogeneities
that a homogeneous solution to the thin obstacle problem (with zero
obstacle) can present (see [43, Proposition A.1]).

4We say that a manifold is C1,log−ε◦ if the normal derivative has as a modulus of

continuity (up to a constant) σ(t) = log−ε◦ (1/t) for some ε◦ > 0 fixed.
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Indeed, for n = 1, homogeneous solutions to the thin obstacle problem
must have homogeneity belonging to the set{

2m, 2m− 1

2
, 2m+ 1

}
m∈N

.

Solutions with homogeneity 2m are harmonic polynomials, non-nega-
tive on the thin space. On the other hand, homogeneous solutions with
homogeneity 2m− 1

2 or 2m+ 1 are of the form

Re
(
(x1 + i|x2|)2m− 1

2

)
and Im

(
(x1 + i|x2|)2m+1

)
, for m ∈ N.

Notice that when the homogeneity is 2m− 1
2 we have half-space solutions

on the thin space. Indeed, in this case, solutions restricted to x2 = 0 are

of the form u(x1, 0) = (x1)
2m−1/2
+ .

Given that no other homogeneities can appear in dimension 2, one can
show that, in any dimension, the previous homogeneities comprise the
whole of the free boundary, up to a lower-dimensional set. It is for this
reason that we separate the possible homogeneities of the free boundary
as

(7.1) Γ(u) = Γ3/2(u) ∪ Γeven(u) ∪ Γodd(u) ∪ Γhalf(u) ∪ Γ∗(u),

where Γ3/2(u) = Reg(u) are regular points; Γeven(u) = Sing(u) are singu-
lar points; Γodd(u) denotes the set of points with odd homogeneity 2m+1
for m ∈ N; Γhalf(u) are the points with homogeneity 2m+ 3

2 for m ∈ N;
and Γ∗(u) are the rest of the possible free boundary points (in particu-
lar, Γ∗(u) = ∅ if n = 1, and we will see that dimH(Γ∗(u)) ≤ n − 2 in
general).

7.1. The set Γodd(u). The free boundary points belonging to Γodd(u)
are those with odd homogeneity 2m+1 for m ∈ N. They are analogous to
the singular set, in the sense that in this case points belonging to Γodd(u)
can also be characterized via the density of the contact set: these points
have density 1.

They are not known to exist (no single example has been constructed
so far). Notice that the homogeneous solutions presented above vanish
identically on the thin space, and thus they do not have a free boundary.

In fact, in dimension n = 1, if such a point existed its blow-up would
be of the form

(7.2) Im
(
(x1 + i|x2|)2m+1

)
, for m ∈ N.

(Think, for example, of the x2-even extension of the harmonic polynomial
x3

2 − 3x2
1x2 for x2 ≥ 0.) However, solutions of the form (7.2) have non-

vanishing normal derivative on the thin space outside the origin, whereas
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a free boundary point can be approximated by points with vanishing
normal derivative. By finding the blow-up along the sequence of points
with vanishing normal derivative, from the C1 convergence of blow-ups
we reach a contradiction: free boundary points with odd homogeneity do
not exist in dimension n = 1.

The set of points belonging to Γodd(u) has been studied in a recent
work by Figalli, Ros-Oton, and Serra [41, Appendix B], and previously
in [43].

Proposition 7.1 (Characterization of points in Γodd(u)). Let u be a
solution to (4.1). Then, the set of points with odd homogeneity, Γodd(u),
can be equivalently characterized by

(7.3) Γodd(u) :=

{
x ∈ Γ(u) : lim sup

r↓0

Hn(Λ(u) ∩Br(x))

Hn(Br(x) ∩ {xn+1 = 0})
= 1

}
,

that is, points with odd homegeneity are those where the contact set has
density 1.

Proof: Let us suppose that 0 ∈ Γ(u) fulfills definition (7.3), that is, we
can take a sequence rj ↓ 0 such that

(7.4)
Hn(Λ(u) ∩Brj )

Hn(Brj ∩ {xn+1 = 0})
→ 1.

Consider the sequence urj (defined by (5.1)), and after taking a sub-
sequence if necessary, let us assume urj → u0 uniformly in B1. In partic-
ular, u0 vanishes identically on the thin space. Since it is homogeneous,
and harmonic on xn+1 > 0, it must be a polynomial. It cannot have
even homogeneity, since by the discussion on singular points it would
have zero density. Thus, it is a homogeneous harmonic polynomial with
odd homogeneity in xn+1 ≥ 0 (extended evenly in the whole space). No-
tice also that it cannot be linear (on each side) because the minimum
possible homogeneity is 3

2 .
On the other hand, suppose that 0 ∈ Γ(u) is such that N(0+, u) =

2m+ 1 for some m ∈ N. Take any blow-up of u at zero, u0. Then u0 is a
global solution to the thin obstacle problem, with homogeneity 2m+ 1.
Let us define the global (homogeneous) solution to the thin obstacle
problem given by P ,

P (x) =

n∑
j=1

Im((xj + i|xn+1|)2m+1,
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so that ∂+
xn+1

P < 0 in {xn+1 = 0} \ {0}. Using (3.8), we obtain that for

any test function Ψ = Ψ(|x|) (so that ∇Ψ = Ψ′(|x|) x
|x| ),

2

ˆ
{xn+1=0}

∂+
xn+1

PΨu0 =

ˆ
∆PΨu0 = −

ˆ
(∇P · ∇u0Ψ +∇P · ∇Ψu0)

=

ˆ
(P∆u0Ψ + P∇u0 · ∇Ψ− u0∇P · ∇Ψ)

=

ˆ (
P∇u0 · x

Ψ′(|x|)
|x|

− u0∇P · x
Ψ′(|x|)
|x|

)
=0,

where we have used that P∆u0 ≡ 0 everywhere, and∇u0·x = (2m+1)u0,
∇P · x = (2m + 1)P . Since u0 ≥ 0 on the thin space, and ∂+

xn+1
P < 0

outside the origin on the thin space, we deduce u0 ≡ 0 on the thin space.
As a consequence, u0 must be harmonic everywhere, vanishing on

the thin space. Thus, it is a homogeneous harmonic polynomial with
degree 2m + 1. In particular, ∂xn+1

u0 is a non-zero 2m-homogeneous

polynomial on Rn+1
+ . From the C1 convergence of urj → u0 (that is, the

uniform convergence of ∂xn+1urj to ∂xn+1u0) we deduce (7.3).

We also have a result analogous to Theorem 6.2 at odd-frequency
points. Let us start by defining for m ≥ 1

Q2m+1 :=
{
q solution to the thin obstacle problem (4.1) in Rn+1,

x · ∇q = (2m+ 1)q, q(x′, xn+1) = q(x′,−xn+1)
}
,

namely, the set of (2m+ 1)-homogeneous even solutions to the thin ob-
stacle problem (notice that by the proof of Proposition 7.1, in particular,
q(x′, 0) ≡ 0). Then, we have

Theorem 7.2 (Uniqueness of blow-ups at odd-frequency points [41]).
Let u be a solution to (4.1). Let x◦ ∈ Γ2m+1(u) for some m ∈ N. Then,
there exists a non-zero qx◦ ∈ Q2m+1 such that

(7.5) u(x) = qx◦(x− x◦) + o(|x− x◦|2m+1).

In particular, the blow-up at 0 is unique. Moreover, the set Γ2m+1(u) is
(n− 1)-rectifiable.

The (n−1)-rectifiability of the set Γ2m+1(u) had already been proved
in [57, 43]; see Theorem 7.5 below.

Remark 7.3. In order to establish this result, one needs to show first
a non-degeneracy property around points belonging to Γ2m+1(u) analo-
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gous to the one in the case of singular points. As a consequence, one can
then define

qx◦(x) := lim
r↓0

u(x◦ + rx)

r2m+1
,

which is a non-zero element of Q2m+1. As in Remark 6.3, qx◦ is a (non-
zero) multiple of the blow-up obtained by the sequence (5.1), and one can
then define qx to be the blow-up or first blow-up at points x ∈ Γ2m+1(u).

7.2. The set Γhalf(u). The free boundary points belonging to Γhalf(u)
are those with homogeneity 2m+ 3

2 for m ∈ N.
They do exist: the homogeneous solutions are themselves examples

of solutions to the thin obstacle problem with free boundary points be-
longing to Γhalf(u). While they are currently not completely understood,
they seem to exhibit a similar behaviour to regular points. However, the
fact that they are not an open set (in the free boundary) makes it harder
to study regularity properties of the free boundary around them.

There are not many results for points belonging to Γhalf. The following
proposition shows that points in Γhalf(u) can present a behaviour similar
to that of regular points, but the converse is not true: we still do not
know whether the set Γhalf is regular.

Proposition 7.4 ([37]). Given a C∞ domain Ω ⊂ B1∩{xn+1 = 0}, and
m ∈ N, there exists ϕ ∈ C∞, and g ∈ C0(∂B1), such that the solution u
to the thin obstacle problem (3.6) with obstacle ϕ and boundary data g
has contact set Λ(u) = Ω, and all the points of the free boundary Γ(u)
have frequency 2m+ 3

2 .

The proof of this proposition is an explicit construction based on a
previous result by Grubb [51].

On the other hand, epiperimetric inequalities (see Subsection 6.2)
have been used to get some regularity properties for this set for n = 1:
in [23] the authors prove a classical epiperimetric inequality at points
in Γhalf(u) in dimension n = 1, which gives C1,α decay of the solution
and uniqueness of blow-ups in this case.

Finally, the only general result that establishes some regularity for
the whole of the free boundary in the thin space (and, in particular,
for Γhalf(u)) is the following recent result by Focardi and Spadaro [43]
(based on the general approach introduced by Naber and Valtorta in [65,
66]), which shows the Hn−1-rectifiability of the free boundary for the
thin obstacle problem. As a consequence, the set Γhalf(u) is always con-
tained in the countable union of C1 manifolds, up to a set of zero
(n − 1)-dimensional Hausdorff measure. The same result had also been
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proved by Krummel and Wickramasekera in [57] in the context of two-
valued harmonic functions5.

Theorem 7.5 ([57, 43]). Let u be a solution to (4.1). Then the free
boundary Γ(u) is (n−1)-rectifiable. That is, there exists at most countably
many C1 (n− 1)-dimensional manifolds Mi such that

Hn−1

(
Γ(u) \

⋃
i∈N

Mi

)
= 0,

where Hn−1 denotes the (n− 1)-dimensional Hausdorff measure.

7.3. The set Γ∗(u). We denote by Γ∗(u) the rest of the free bound-
ary points, that is, points with homogeneity not belonging to the set{

2m, 2m+ 1, 2m− 1
2

}
m∈N,

(7.6)

Γ∗(u) :=

{
x◦∈Γ(u) : N(0+, u, x◦)∈(2,∞)\

⋃
m∈N

{
2m, 2m+1, 2m− 1

2

}}
.

Currently it is not known whether such points exist, that is, which of
the frequencies from the set

{
3
2

}
∪ [2,∞) are admissible, although it is

conjectured that the set Γ∗(u) is empty, at least in low dimensions.
The only result in this direction comes from the study of the epiperi-

metric inequality by Colombo, Spolaor, and Velichkov, introduced in
Subsection 6.2. In particular, they are able to show, by means of their
logarithmic-type epiperimetric inequality at singular points, that even
frequencies are isolated in the set of admissible frequencies: points with
order close to 2m do not exist (except for singular points themselves),
where this closeness can be quantified with an explicit constant.

Theorem 7.6 ([23]). Let u be a solution to the thin obstacle problem
with zero obstacle,

(7.7)


u ≥ 0 on B1 ∩ {xn+1 = 0},
∆u = 0 in B1 \ ({xn+1 = 0} ∩ {u = 0}),
∆u ≤ 0 in B1,

u = g on ∂B1.

5After a transformation, the thin obstacle problem is a particular case of a two-valued
harmonic function. Therefore, rectifiability of the free boundary for the thin obstacle
problem can also be deduced from [57].
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Let Γλ(u) denote the points of frequency λ > 0. Then,

Γλ(u) = ∅ for every λ ∈
⋃
m∈N

((2m− cm, 2m+ cm) \ {2m}),

for some constants cm > 0 depending only on m and n.

Understanding whether epiperimetric inequalities exist at other fre-
quencies, and in particular, establishing quantitative epiperimetric in-
equalities at other frequencies, can help in determining whether they are
admissible or not.

The goal of the rest of the subsection is to prove that, if the set Γ∗(u)
exists, then it is lower-dimensional. That is, we will show the following
proposition, stating that points of frequency κ ∈ (2,∞) \

{
2m, 2m +

1, 2m+ 3
2

}
m∈N are (n−2)-dimensional for all solutions to the thin obstacle

problem, which corresponds to [43, Theorem 1.3]. We provide, however,
a different proof, by means of a dimension reduction argument due to
White [81].

Proposition 7.7. Let u be a solution to the thin obstacle problem with
zero obstacle, (7.7). Let us define Γ∗(u) ⊂ Γ(u) by (7.6). Then

dimH Γ∗(u) ≤ n− 2.

Moreover, if n = 2, Γ∗(u) is discrete.

In this proposition, dimH denotes the Hausdorff dimension of a set
(see [62]).

In order to prove this result, we will need two lemmas. We will use
the notation ux◦(x) for x◦ ∈ Γ(u) to denote translations. That is, we
denote

ux◦(x) = u(x′ + x′◦, xn+1),

so that, in particular, N(r, u, x◦) = N(r, ux◦).

Lemma 7.8. Let u be a solution to the thin obstacle problem (7.7). Let
Γ∗(u) be as in (7.6).

Let y◦ ∈ Γ∗(u). Then, for every ε > 0 there exists some δ > 0 such
that for every ρ ∈ (0, δ] there exists an (n−2)-dimensional linear subspace
Ly◦,ρ of Rn × {0} such that

{x ∈ Bρ(y◦) ∩ {xn+1 = 0} : N(0+, ux) ≥ N(0+, uy◦)− δ}
⊂ {x : dist(x, y◦ + Ly◦,ρ) < ερ}.
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Proof: Let us denote η = N(0+, uy◦) ∈ (2,∞)\
{

2m, 2m+1, 2m+ 3
2

}
m∈N.

Let us proceed by contradiction. Suppose that there exist ε > 0, and
sequences δk ↓ 0 and ρk ↓ 0 such that

(7.8) {x ∈ Bρk(y◦) ∩ {xn+1 = 0} : N(0+, ux) ≥ η − δk}
6⊂ {x : dist(x, y◦ + L) < ερk}

for every (n− 2)-dimensional linear subspace L of Rn × {0}.
In particular, if we denote uy◦r = uy◦(r ·) and dr = r−n/2‖ux◦‖L2(∂Br),

then uy◦ρk/dρk converges, up to subsequences, to some v◦, a global solution
to the thin obstacle problem with zero obstacle, homogeneous of degree η.
Let us denote by L(v◦) the invariant set in Rn×{0} of v◦. In particular, it
is a subspace of dimension at most n−2 (this follows since 2-dimensional
homogeneous solutions to the thin obstacle problem have homogeneity
belonging to

{
2m, 2m+ 1, 2m− 1

2

}
m∈N). As an abuse of notation, let us

take as L(v◦) any (n−2)-dimensional plane containing the invariant set.
Now, by assumption (7.8) and choosing L = L(v◦), for every k ∈ N

there exists some xk ∈ Bρk(y◦) ∩ {xn+1 = 0} with N(0+, uxk) ≥ η − δk
such that dist(xk, y◦ + L(v◦)) ≥ ερk.

Let us denote zk=ρ−1
k (xk−y◦)∈B1(0), and notice that dist(zk,L(v◦))≥

ε. By scaling, we know that

N(0+, uxk) = N(0+, uy◦ρk(·+ zk)).

Moreover,

d−1
ρk
uy◦ρk → v◦ uniformly in compact sets as k →∞.

Thus,

η − δk ≤ N(0+, uxk) = N(0+, uy◦ρk(·+ zk)) = N(0+, d−1
ρk
uy◦ρk(·+ zk)),

and by the upper semi-continuity of the frequency function (and after
taking a subsequence such that zk → z ∈ B1(0)) we get that

N(0+, v◦(·+ z)) ≥ η,

for some z ∈ B1(0) such that dist(z, L(v◦)) ≥ ε. Since v◦ is η-homo-
geneous, N(0+, v◦(· + z)) ≥ η implies that z belongs to the invari-
ant set of v◦ (see, for instance, [43, Lemma 5.2]). This contradicts
dist(z, L(v◦)) ≥ ε, and we are done.

The following is a very general and standard lemma. We give the proof
for completeness. We thank B. Krummel, from whom we learned this
proof.
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Lemma 7.9. There exists β : (0,∞) → (0,∞) with β(t) → 0 as t ↓ 0,
such that the following holds true.

Let ε > 0. Let A ⊆ Rn such that for each y ∈ A and ρ ∈ (0, ρ◦) there
exists a j-dimensional linear subspace Ly,ρ of Rn for which

A ∩Bρ(y) ⊂ {x : dist(x, y + Ly,ρ) < ερ}.

(Note that we do not claim that Ly,ρ is unique.) Then Hj+β(ε)(A) = 0.

Proof: Let β(t) = n+ 1− j for t ≥ 1/8 and observe that Hn+1(A) = 0.
Thus it suffices to consider ε ∈ (0, 1/8).

By a covering argument, after rescaling and translating, we may as-
sume that A ⊆ B1(0) and 0 ∈ A. By assumption, there exists a sub-
space L0,1 such that

A ∩B1(0) ⊂ {x : dist(x, y + L0,1) < ε}.

We now cover L0,1 by a finite collection of balls {B2ε(zk)}k=1,2,...,N where
zk ∈ L0,1 for each k and N ≤ C(j)ε−j . Observe that {B2ε(zk)}k=1,2,...,N

covers {x : dist(x, y + L0,1) < ε} and thus it covers A ∩ B1(0) as well.
Now discard the balls that do not intersect A, and for the remaining
balls let yk ∈ A∩B2ε(zk), so that {B4ε(yk)}k=1,2,...,N covers A∩B1(0),
yk ∈ A, N ≤ C(j)ε−j , and N(4ε)j+β ≤ C(j)εβ . Choose β = β(ε) so
that C(j)εβ ≤ 1/2.

Now observe that we can repeat this argument with B4ε(yk) in place
of B1(0) to get a new covering {B(4ε)2(yk,l)}l=1,2,...,Nk of A∩B4ε(yk) with

Nk(4ε)j+β < 1/2. Thus {B(4ε)2(yk,l)}k=1,2,...,N, l=1,2,...,Nk covers A with

yk,l ∈ A and
∑N
k=1Nk(4ε)2·(j+β) < (1/2)2. Repeating this argument for

a total of p times, we get a finite covering of A by M balls centred on A,
radii equal to (4ε)p (recall 4ε ≤ 1

2 ), and M(4ε)p(j+β) < (1/2)p. Thus

Hj+β(4ε)p(A) ≤ C(1/2)p for every integer p = 1, 2, 3, . . . Letting p→∞, we

get Hj+β(ε)(A) = 0.

Thus, we can prove Proposition 7.7 directly.

Proof of Proposition 7.7: We want to show that Γ∗(u) has Hausdorff
dimension at most n − 2. Let ε > 0 and define, for i ∈ N, Gi to be the
set of all points x◦ ∈ Γ∗(u) such that the conclusion of Lemma 7.8 holds
true with δ = 1/i. In particular, by Lemma 7.8 we have Γ∗(u) =

⋃
iGi.

For each q ∈ N, define

Gi,q = {x◦ ∈ Gi : (q − 1)/i < N(0+, ux◦) ≤ q/i}.
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Observe that Γ∗(u) =
⋃
i,q Gi,q, and for every x◦ ∈ Gi,q, N(0+, ux◦) −

1/i ≤ (q − 1)/i so that we have

Gi,q ⊂ {y : N(0+, uy) > N(0+, ux◦)− 1/i}

so that, by Lemma 7.8, for every ρ ∈ (0, 1/i] there exists an (n− 2)-di-
mensional linear subspace Lx◦,ρ of Rn × {0} such that

Gi,q ∩Bρ(x◦) ⊂ {x : dist(x, x◦ + Lx◦,ρ) < ερ}.

Now, by Lemma 7.9 with A = Gi,q (taking ρ◦ = 1/i uniform on Gi,q),

Hn−2+β(ε)(Gi,q) = 0. Hence Hn−2+β(ε)(Γ∗(u)) = 0. Since ε is arbitrary,
for all β > 0 we have Hn−2+β(Γ∗(u)) = 0, and thus Γ∗(u) has Hausdorff
dimension at most n− 2.

It follows that Γ∗(u) is discrete for n − 2, by similar arguments in a
standard way.

8. C∞ obstacles

Let us now suppose that the obstacle ϕ ∈ C∞(B′1) is not analytic,
and that therefore we cannot reduce to the zero obstacle situation. Our
problem is then

(8.1)


u ≥ ϕ on B1 ∩ {xn+1 = 0},
∆u = 0 in B1 \ ({xn+1 = 0} ∩ {u = ϕ}),
∆u ≤ 0 in B1,

where, as before, we assume that our solution is even in the xn+1 variable.
Let us assume that 0 is a free boundary point, 0 ∈ ∂Rn{u = ϕ}.

Given τ ∈ N≥2, let us consider the τ -order expansion of ϕ(x′) at 0, given
by Qτ (x′). In particular, (ϕ−Qτ )(x′) = O(|x′|τ+1). Let Qhτ (x′, xn+1) be
the unique even harmonic extension of Qτ to B1. Let us now define

ū(x′, xn+1) := u(x′, xn+1)− ϕ(x′) +Qτ (x′)−Qhτ (x′, xn+1).

Then, ū solves the zero thin obstacle problem with a right-hand side,
ū ≥ 0 on B1 ∩ {xn+1 = 0},
∆ū = f in B1 \ ({xn+1 = 0} ∩ {u = ϕ}),
−∆ū ≥ f in B1,

where

f(x) = ∆x′(Qτ (x′)− ϕ(x′)) = O(|x′|τ−1).
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Since |f | ≤M |x′|τ−1 and ‖∇u‖L∞(B1/2) ≤M for some constant M >
0, we can consider the generalized frequency formula,

Φτ (r, ū) :=(r+CMr
2)
d

dr
log max{H(r), rn+2τ}, where H(r) :=

ˆ
∂Br

ū2,

(cf. (4.3)) and the constant CM depends only on the dimension and M .
Then, there exists some rM > 0 such that Φτ (r, ū) is non-decreasing
for 0 < r < rM . In particular, Φτ (0+, ū) is well defined and

n+ 3 ≤ Φτ (0+, ū) ≤ n+ 2τ

(see [18, 47]). We say that the origin is a free boundary point of or-
der κ < τ if Φτ (0+, ū) = n+2κ (in particular, as before, κ ≥ 3

2 ). If κ = τ ,
we say that the origin is a free boundary point of order at least τ . At this
point, all the theory developed above for regular free boundary points
and singular points also applies to the situation where there are non-
analytic (i.e., non-zero) obstacles, by using the new generalized frequency
formula. Notice that this theory can be developed even if the obstacle ϕ
has lower regularity than C∞.

Finally, we say that the origin is a free boundary point of infinite
order if it is of order at least τ for all τ > 0. Notice that this set of free
boundary points has not appeared until now, as it did not exist in the
zero obstacle case, because in that case the frequency is always finite.

Intuitively, in the thin obstacle problem (8.1) a point is of order κ
when the solution u detaches from the obstacle at order κ on the thin
space.

Thus, the free boundary for solutions to the thin obstacle problem
with ϕ ∈ C∞(B′1), (8.1), can be split as

Γ(u) = Γ3/2(u) ∪ Γeven(u) ∪ Γodd(u) ∪ Γhalf(u) ∪ Γ∗(u) ∪ Γ∞(u),

(cf. (7.1)), where the new set Γ∞(u) denotes the set of free boundary
points with infinite order.

The set of points in Γ∞(u) can be very wild. In fact, the following
holds.

Proposition 8.1 ([37]). Let C ⊂ B′1/2 ⊂ Rn be any closed set. Then,

there exists an an obstacle ϕ ∈ C∞(B′1) and a non-trivial solution u
to (8.1) such that Λ(u) ∩B1/2 = {u = ϕ} ∩B1/2 = C.

Proof: Take any obstacle φ̄ ∈ C∞(Rn) such that supp φ̄ b B1/8

(
3
4e1

)
,

with φ̄ > 0 somewhere, and take the non-trivial solution to (8.1) with
obstacle φ̄.

Notice that u > φ̄ inB′1/2 (in particular, u ∈ C∞(B1/2)). Let fC : B′1→
R be any C∞ function such that 0 ≤ fC ≤ 1 and C = {fC = 0}.
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Now let η ∈ C∞c (B′5/8) such that η ≥ 0 and η ≡ 1 in B′1/2. Consider,

as a new obstacle, ϕ = φ̄ + η(u − φ̄)(1 − fC) ∈ C∞(B′1/2). Notice that

u− ϕ ≥ 0. Notice also that for x′ ∈ B1/2, (u− ϕ)(x′) = 0 if and only if
x′ ∈ C. Thus, u with obstacle ϕ gives the desired result.

That is, the contact set can, a priori, be any closed set. In particular,
the free boundary can have arbitrary Hausdorff dimension (n − ε for
any ε > 0). It is worth mentioning that the points constructed like this
do not exert a force as an obstacle (that is, the Laplacian around them
vanishes).

9. Generic regularity

We have seen that, in general, the non-regular (or degenerate) part
of the free boundary can be of the same size as the regular part (or even
larger, in the case of C∞ obstacles). This is not completely satisfactory,
since we only know how to prove smoothness of the free boundary around
regular points.

It is for this reason that generic regularity results are specially inter-
esting: even if there exist solutions where degenerate points are larger
than regular points, we will see that this is not true for a generic solu-
tion. That is, for almost every solution, the free boundary is smooth up
to a lower-dimensional set. Let us start by defining what we mean by
“almost every” solution.

Let ϕ ∈ C∞(B′1) and let g ∈ C0(∂B1) even with respect to xn+1. Let
λ ∈ [0, 1], and let uλ be the solution to

(9.1)


uλ ≥ ϕ on B1 ∩ {xn+1 = 0},
∆uλ = 0 in B1 \ ({xn+1 = 0} ∩ {u = ϕ}),
∆uλ ≤ 0 in B1,

uλ = g + λ on ∂B1.

That is, we consider the set of solutions {uλ}λ∈[0,1] with a fixed ob-
stacle ϕ by raising the boundary datum by λ. Alternatively, we could
raise (or lower) the obstacle, or just make small perturbations (mono-
tone) of the boundary value. We say that a property holds for almost
every solution if it holds for a.e. λ ∈ [0, 1] for any such construction of
solutions.

Now notice that since points of order κ detach from the obstacle with
power κ, when raising the boundary datum, the larger κ is, the faster the
free boundary disappears (and thus, the less common that type of point
is). As a consequence, by establishing a quantitative characterization of
this fact together with a GMT lemma (coming from [41]), one can show
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the following proposition. We recall that, given a solution v to a thin
obstacle problem (8.1), we denote by Γ≥κ(v) the set of free boundary
points of order (or frequency) greater than or equal to κ.

Proposition 9.1 ([37]). Let ϕ ∈ C∞(B′1) and let g ∈ C0(∂B1) even
with respect to xn+1. Let {uλ}λ∈[0,1] the family of solutions to the thin
obstacle problem (9.1). Then,

• If 3 ≤ κ ≤ n + 1, the set Γ≥κ(uλ) has Hausdorff dimension at
most n− κ+ 1 for almost every λ ∈ [0, 1].
• If κ > n+ 1, the set Γ≥κ(uλ) is empty for all λ ∈ [0, 1] \ Eκ, where
Eκ has Hausdorff dimension at most n

κ−1 .

• The set Γ∞(uλ) is empty for all λ∈ [0, 1]\E, where E has Minkowski
dimension equal to 0.

That is, we show that, from frequency 3, the higher the frequency, the
rarer the points are. This is not unexpected: roughly speaking, around
points of frequency κ the solution u detaches like a power κ from zero.
The higher the value of κ, the less space we have to fit such points for
many λ (or heights).

On the other hand, by means of a Monneau-type monotonicity for-
mula one can also show that the set

⋃
λ∈[0,1] Γ2(uλ) (union of singular

points of order 2 for all λ ∈ [0, 1]) is contained in a countable union of
(n−1)-dimensional C1 manifolds. This result is interesting in itself: from
Theorem 6.4 we knew that for each fixed λ∗, Γ2(uλ∗) is contained in the
union of (n− 1)-dimensional C1 manifolds. We now claim that, in fact,
we can consider all Γ2(uλ) for λ ∈ (0, 1), and this is still contained in the
union of (n − 1)-dimensional C1 manifolds (in some sense, Monneau’s
monotonicity formula does not care which λ we are at).

As a consequence, the singular set cannot be too large for too many λ∈
(0, 1), and we have:

Proposition 9.2 ([37]). Let ϕ ∈ C∞(B′1) and let g ∈ C0(∂B1) even
with respect to xn+1. Let {uλ}λ∈[0,1] the family of solutions to the thin
obstacle problem (9.1).

Then, Γ2(uλ) has dimension at most n− 3 for a.e. λ ∈ [0, 1].

And finally, combining Proposition 9.1, Proposition 9.2, and Propo-
sition 7.7, we get the generic regularity theorem we wanted:

Theorem 9.3 ([37]). Let ϕ ∈ C∞(B′1) and let g ∈ C0(∂B1) even with
respect to xn+1. Let {uλ}λ∈[0,1] the family of solutions to the thin obsta-
cle problem (9.1).

Then, the set Deg(uλ) has Hausdorff dimension at most n − 2 for
a.e. λ ∈ [0, 1].
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In particular, the free boundary is smooth up to a lower-dimensional
set, for almost every solution.

The previous theorem also holds true for obstacles with lower regular-
ity. In fact, in the proof of the result, only C3,1 regularity of the obstacle
is really used.

10. Summary

Let us finish with a summary of the known results for the solutions
to the thin obstacle problem.

Let ϕ ∈ C∞(B′1) and consider an even solution to the thin obstacle
problem, with obstacle ϕ,

(10.1)


u ≥ ϕ on B1 ∩ {xn+1 = 0},
∆u = 0 in B1 \ ({xn+1 = 0} ∩ {u = ϕ}),
∆u ≤ 0 in B1.

Then, the solution u is C1,1/2 on either side of the obstacle. That is,
there exists a constant C depending only on n such that

‖u‖C1,1/2(B+
1/2

) + ‖u‖C1,1/2(B−
1/2

) ≤ C(‖ϕ‖C1,1(B′1) + ‖u‖L∞(B1)).

Moreover, if we denote by Λ(u) := {u = ϕ} the contact set, the
boundary of Λ(u) in the relative topology of Rn, ∂RnΛ(u), is the free
boundary, and can be divided into two sets

Γ(u) = Reg(u) ∪Deg(u),

the set of regular points,

Reg(u) :={x=(x′, 0)∈Γ(u) :0<cr3/2≤ sup
B′r(x′)

(u−ϕ)≤Cr3/2, ∀r∈(0, r◦)},

and the set of non-regular points or degenerate points,

Deg(u) := {x = (x′, 0) ∈ Γ(u) : 0 ≤ sup
B′r(x′)

(u− ϕ) ≤ Cr2, ∀r ∈ (0, r◦)}.

Alternatively, each of the subsets can be defined according to the order
of the blow-up (the frequency) at that point. In fact, the set of regular
points are those whose blow-up is of order 3

2 , and the set of degenerate
points are those whose blow-up is of order κ for some κ ∈ [2,∞].

The free boundary can be further stratified as

(10.2) Γ(u) = Γ3/2 ∪ Γeven ∪ Γodd ∪ Γhalf ∪ Γ∗ ∪ Γ∞,

where:

• Γ3/2 = Reg(u) is the set of regular points. It is an open (n − 1)-
dimensional subset of Γ(u), and it is C∞ (see [6, 56, 29]).
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• Γeven =
⋃
m≥1 Γ2m(u) denotes the set of points whose blow-ups

have even homogeneity. Equivalently, they can also be character-
ized as those points of the free boundary where the contact set
has zero density, and they are often called singular points. They
are contained in the countable union of C1 (n − 1)-dimensional
manifolds; see [47]. Generically, however, points in Γ2(u) have di-
mension at most n − 3, and points in Γ2m(u) have dimension at
most n− 2m for m ≥ 2; see [37].
• Γodd =

⋃
m≥1 Γ2m+1(u) is, a priori, at most (n − 1)-dimensional

and it is (n − 1)-rectifiable (see [57, 43, 41]), although it is not
known whether it exists. Generically, Γ2m+1(u) has dimension at
most n− 2m; see [37].
• Γhalf =

⋃
m≥1 Γ2m+3/2(u) corresponds to those points with blow-

ups of order 7
2 , 11

2 , etc. They are much less understood than regular
points, although in some situations they have a similar behaviour.
The set Γhalf is an (n− 1)-dimensional subset of the free boundary
and it is a (n − 1)-rectifiable set (see [43, 57, 44]). Generically,
the set Γ2m+3/2(u) has dimension at most n− 2m− 1/2.
• Γ∗ is the set of all points with homogeneities κ ∈ (2,∞), with κ /∈ N

and κ /∈ 2N− 1
2 . This set has Hausdorff dimension at most n− 2,

so it is always small.
• Γ∞ is the set of points with infinite order (namely, those points at

which u − ϕ vanishes at infinite order). For general C∞ obstacles
it could be a huge set, even a fractal set of infinite perimeter with
dimension exceeding n − 1. When ϕ is analytic, instead, Γ∞ is
empty. Generically, this set is empty; see [37].
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