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Abstract: In this paper we set up the foundations around the notions of formal
differentiation and formal integration in the context of commutative Hopf algebroids

and Lie–Rinehart algebras. Specifically, we construct a contravariant functor from

the category of commutative Hopf algebroids with a fixed base algebra to that of
Lie–Rinehart algebras over the same algebra, the differentiation functor, which can

be seen as an algebraic counterpart to the differentiation process from Lie groupoids
to Lie algebroids. The other way around, we provide two interrelated contravariant

functors from the category of Lie–Rinehart algebras to that of commutative Hopf

algebroids, the integration functors. One of them yields a contravariant adjunction
together with the differentiation functor. Under mild conditions, essentially on the

base algebra, the other integration functor only induces an adjunction at the level

of Galois Hopf algebroids. By employing the differentiation functor, we also analyse
the geometric separability of a given morphism of Hopf algebroids. Several examples

and applications are presented.
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1. Introduction

We will describe the motivations behind the ideas of this work and give
an algebraic overview on the classical theory of differentiation and inte-
gration in the context of both algebraic and differential geometry. There-
after, we will briefly discuss the main results of this paper in sufficient
detail, aiming to make this summary, as far as possible, self-contained.
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1.1. Motivations and overviews. The main motivation behind the
research described in this paper is to provide foundational tools for the
formal development of differentiation and integration in the context of
Hopf algebroids and Lie–Rinehart algebras, both over the same base al-
gebra. Thus, we hereby propose to establish, in terms of contravariant
adjunctions, a relation between these two latter classes of objects, hop-
ing to leave a paved path for the study of integration problems in this
context. Our main results are presented as Theorems A and B of this
introduction, together with Theorem C as an application. The exposi-
tion also includes two appendices, where we offer alternative approaches
and/or clarifications on some topics we have discussed before in the text.

In the framework of Lie algebras and Lie groups, that is, in the do-
main of differential geometry, the notions of “differentiation” and “in-
tegration” are involved in the outstanding Lie’s third theorem. Classi-
cally, differentiation means assigning a finite-dimensional Lie algebra to
each Lie group (namely, its tangent vector space at the identity point).
Conversely, integration constructs a Lie group out of a given finite-
dimensional Lie algebra (in fact, a connected and simply connected Lie
group).

For affine group schemes, that is, in the context of algebraic geometry,
both notions are introduced in a similar way. Specifically, starting with
an affine group scheme G, one assigns to it the Lie algebra of all deriva-
tions from the associated Hopf algebra O(G) to the base field, taking as
a point the counit of the Hopf algebra structure of this ring (the iden-
tity point). This assignment is functorial and (by abuse of terminology)
can be termed the differentiation functor. Conversely, if a Lie algebra is
given, then the finite dual of its universal enveloping algebra acquires a
commutative Hopf algebra structure and so it leads in a functorial way
to an affine group scheme. This procedure might be called the (formal)
integration functor.

In a more general “algebraic way”, these two functors induce a con-
travariant adjunction between the category of Lie algebras and that of
commutative Hopf algebras. More precisely, if k denotes a ground field,
Liek and CHopfk denote, respectively, the categories of Lie k-algebras
and of commutative Hopf k-algebras, then we have a contravariant ad-
junction

(1) I : Liek
//
CHopfk : Loo

explicitly given as follows. For every Lie algebra L and Hopf algebra H,
we have I(L) = U(L)◦ (the finite, or Sweedler’s, dual Hopf algebra of
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the universal enveloping algebra1) and L(H) = Derk(H,kε) (the vector
space of derivations with coefficients in the H-module k via the counit ε
of H).

Thus, the unit and counit of adjunction (1) provide us with a more
conceptual way to relate Lie algebras with commutative Hopf algebras
(here playing the role of “groups” associated to them). Specifically, let
us denote by ΘL : L → L(I(L)) the unit at a Lie algebra L and by
ΨH : H → I(L(H)) the counit at a Hopf algebra H. Then it is known
from the literature that, in characteristic zero, ΘL is injective for any
finite-dimensional Lie algebra L (see Remark A.10 for a proof), while,
for an affine algebraic group G, ΨO(G) is injective if and only if G is
connected (see, e.g., [48, 0.3.1(g)]). It is noteworthy to mention that
ΘL is not an isomorphism even for some trivial finite-dimensional Lie
algebras. For example, in the case of the one-dimensional abelian Lie C-
algebra a, the Hopf algebra I(a) splits as a tensor product of two Hopf
algebras ([37, Example 9.1.7]) in such a way that it possesses at least two
linearly independent derivations with coefficient in C; whence Θa is not
surjective. However, over an algebraically closed field of characteristic
zero, if the given finite-dimensional Lie k-algebra L coincides with its
derived Lie algebra (i.e., L = [L,L], e.g. when L is semisimple), then
ΘL is surjective by [20, Theorem 6.1(3)], and so an isomorphism. As a
consequence, the restriction I ′ of the functor I : Liek → (CHopfk)op to
the full subcategory of all those finite-dimensional Lie algebras L such
that L = [L,L] is fully faithful. In view of [8, II, §6, no 2, Corollary 2.8,
p. 263] and [20, Theorem 3.1], when L = [L,L], L is an algebraic Lie
algebra, that is, L = Lie(G), the Lie algebra of a connected and simply
connected affine algebraic group G. It turns out that O(G) is a finitely
generated Hopf algebra, it is an integral domain, it has no proper affine
unramified extensions, L(O(G)) ∼= L, and, moreover, it can be identified
with I(L) (see [20, top of p. 57 and Theorem 4.1]). Therefore, if we
corestrict I ′ to its essential image (i.e., the full subcategory of all those
finitely generated Hopf algebras which are integral domains and have no
proper affine unramified extension and such that L(H) = [L(H),L(H)]),
it induces an anti-equivalence of categories. No less important is the fact
that the adjunction (1), when restricted to a certain class of real Hopf
algebras (see [1, Corollary 3.4.4, p. 162]), can be seen as a categorical
reformulation of Lie group differentiation and integration.

1This is also the commutative Hopf algebra constructed as the coend of the fiber
functor attached to the symmetric monoidal category of finite-dimensional L-repre-
sentations. It is called the algebra of representative functions on U(L) in [19, §2].
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Now, if we want to extend these constructions to a category wider
than that of groups (respectively commutative Hopf algebras), for exam-
ple that of groupoids (resp. commutative Hopf algebroids), then several
obstructions show up, specially in the construction of the integration
functor (or functors). For instance, it is well known (see [31, §3.5]) that
to each Lie groupoid one can attach “in a functorial way” a Lie alge-
broid (for the reader’s sake, we include some details in Appendix A.3),
but there are Lie algebroids which do not integrate to Lie groupoids.
However, we point out that there are conditions which guarantee inte-
grability (see e.g. [6] and [15]).

Along the same lines as before, if we want to think of a Hopf algebra,
instead of a (Lie) group, then the closest algebraic prototype of a (Lie)
groupoid is a commutative Hopf algebroid.2 However, in contrast with
the case of Lie groups,3 as far as we know, there is no functorial way to go
directly from the category of Lie groupoids to that of commutative Hopf
algebroids. Nevertheless, there is a well defined functor from the category
of Lie algebroids (over a fixed connected smooth real manifold M) to
the category of complete topological and commutative Hopf algebroids
(with C∞(M) as a base algebra), that is, formal affine groupoid schemes
(see [14] for the precise definition of these algebroids). It is noteworthy
that this functor passes through three constructions: The first one uses
the smooth global sections functor from Lie algebroids to Lie–Rinehart
algebras, the second resorts to the well known universal enveloping al-
gebroid functor that assigns to any Lie–Rinehart algebra (see §2.3 for
the definition) its universal (right) cocommutative Hopf algebroid, and
the third construction utilizes the notion of a convolution Hopf alge-
broid [14]. In this way, a notable observation due to Kapranov [25] says
that the module of smooth global sections of a given Lie algebroid (as
above) can be recovered as the subspace of continuous derivations (killing
the source map) of the attached convolution algebroid. In other words,
formal affine groupoid schemes give rise to an algebraic approach to the
Lie algebroids integration problem.

Finally, as implicitly suggested above, Lie–Rinehart algebras present
themselves as the algebraic counterpart of Lie algebroids and so they
become a natural substitute for Lie algebras (in §9.2, we give new ex-
amples of these objects). Moreover, by the foregoing, it is reasonable
to expect that Lie–Rinehart algebras and affine groupoid schemes are

2Note that Morita theory of Lie groupoids behaves in a similar way as for commutative
Hopf algebroids; see [13] for details.
3In this case for every Lie group we have, in a contravariant functorial way, the

commutative real Hopf algebra of smooth representative functions.
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closely related, although no adjunction connecting them and extending
the one stated in (1) is known in the literature. It is, then, natural to
look for an adjunction between the category of Lie–Rinehart algebras
(or Lie algebroids) and that of commutative Hopf algebroids (or affine
groupoid schemes), which could set up the bases of the formal differen-
tiation and integration processes in this context. The main achievement
of this paper is to solve this question in the affirmative. As we will see,
similar difficulties to those mentioned above show up in this setting.

1.2. Description of main results. We now give a detailed descrip-
tion of our main results. Let A be a commutative algebra over a ground
field k (usually of zero characteristic). Set CHAlgdA to be the category of
commutative Hopf algebroids with base algebra A and consider its full
subcategory GCHAlgdA whose objects are Galois4 (see §2.1 and §3.4).
The category of (right) cocommutative Hopf algebroids with base alge-
bra A is denoted by CCHAlgdA (see §2.2).

The first task in order to establish the notion of differentiation and in-
tegration in this context and in the sense described above is to construct
a contravariant functor from CCHAlgdA to CHAlgdA. There are two in-
terrelated ways to construct such a functor. The first one uses what is
known in the literature as the Tannaka reconstruction process, applied
to a certain symmetric monoidal category of modules (this was mainly
achieved in [12] and recalled in §3.3 for the reader’s sake). The second
way uses the Special Adjoint Functor Theorem (SAFT) applied to the
category of A-rings. The structure maps of the constructed commutative
Hopf algebroid (via SAFT) out of a cocommutative one, as well as its
universal property, are explicitly given in §4.2. The construction of these
contravariant functors is of independent interest and it constitutes our
first main result, stated below as a combination of Proposition 3.6 and
Theorem 4.14.5

Theorem A. Let A be a commutative algebra. Then there are two con-
travariant functors

(−)◦ : CCHAlgdA // CHAlgdA, (−)
•

: CCHAlgdA // CHAlgdA.

4The terminology “Galois” is motivated by the fact that it extends Galois theory of
commutative Hopf algebras, which in turn extends classical Galois theory.
5It is noteworthy to mention that for the universal enveloping Hopf algebroid VA(L)
of a given Lie–Rinehart algebra (A,L), the commutative topological Hopf algebroid

introduced in [27, §4.3] and [28, §3.4], and called the jet space of L, coincides nei-
ther with VA(L)◦ nor with VA(L)•. However, it coincides with the complete Hopf
algebroid constructed in [14, Proposition 3.17].
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Explicitly, take a (right) cocommutative Hopf algebroid (A,U) and con-
sider its convolution algebra (A,U∗). There are two commutative Hopf
algebroids (A,U◦) and (A,U•), which fit into a commutative diagram
of (A⊗A)-algebras:

(2)
U◦

ζ //

ζ̂ $$

U∗

U•
ξ

::

where ζ̂ is a morphism of commutative Hopf algebroids. Furthermore, the

map ζ̂ is an isomorphism either when U is a Hopf algebra (i.e., when
A = k) or when it has a finitely generated and projective underlying
(right) A-module.

In contrast to the classical situation, in diagram (2) neither ζ nor ξ
are necessarily injective. It seems that this injectivity forms part of the
structure of the Hopf algebroids involved. For instance, ζ is injective for
any pair (A,U) where A is a Dedekind domain, ξ is injective if and only

if its kernel is a coideal, and ζ̂ is an isomorphism if and only if (A,U•) is
a Galois Hopf algebroid. These and other properties are explored in full
detail in §4.1.

Now denote by LieRinA the category of all Lie–Rinehart algebras
over A.6 It is well known from the literature that there is a (covariant)
functor VA(−) : LieRinA → CCHAlgdA which assigns to any Lie–Rinehart
algebra its universal enveloping Hopf algebroid (details are expounded
in §2.3).

Our first main goal is to show, by employing Theorem A, that there
are functors:

L : CHAlgdop
A

// LieRinA; I ,I ′ : LieRinA // CHAlgdop
A ,

which are termed the differentiation and integration functors, respec-
tively, and to establish two adjunctions involving these functors. In the
notation of §5 below, we have that

L (H) = Derk
s(H, Aε) =

{
δ : H → A k-linear map | δ ◦ s = 0,

δ(uv) = ε(u)δ(v) + δ(u)ε(v), ∀u, v ∈ H
}
.

6When A = C∞(M) is the real algebra of smooth functions on a smooth real manifold,
then the category of Lie algebroids over M can be realized, via the global smooth
sections functor, as a subcategory of LieRinA. If, furthermore,M is compact, then, by

using the Serre–Swan theorem, one can show that the full subcategory of Lie–Rinehart
algebras over A whose underlying modules are finitely generated and projective of

constant rank is equivalent to that of Lie algebroids over M.
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This is referred to as the Lie–Rinehart algebra of a given commutative
Hopf algebroid (A,H) and its structure maps are explicitly expounded
in Lemma 5.12 and Proposition 5.13.

Mimicking [8, II, §4], we give an alternative construction of the differ-
entiation functor (Proposition A.4 in Appendix A.1), which can be seen
as an algebraic counterpart of the differentiation of Lie groupoids, and
we examine the case of an operation of an affine group scheme on an
affine scheme, providing several illustrative examples (see Appendix B
for more details). More examples are also expounded in §9.2, where we
provide full details of the computation of the Lie–Rinehart algebra of a
certain Malgrange Hopf algebroid. These examples arise from differential
Galois theory over the affine complex line. Moreover, we show that there
is a canonical morphism of Lie–Rinehart algebras between the latter and
the one given by the global sections of the Lie algebroid of the associated
invertible jet groupoid. In analogy with Lie groupoid theory, when the
affine scheme attached to A admits k-points, then we are able to recog-
nize the isotropy Lie algebras underlying the Lie algebroid L (H) as the
Lie algebras of the affine isotropy group schemes of the affine groupoid
scheme attached to (A,H). This is achieved in §9.1.

The fact that there are two integration functors I and I ′, which
in the classical case of commutative Hopf algebras and Lie algebras co-
incide, is mainly due to the existence of two different and interrelated
approaches in constructing the finite dual contravariant functor on not
necessarily commutative rings hereby explored. More precisely, the first
functor I is the composition of two functors I = (−)◦ ◦VA(−) and the
second integration functor I ′ decomposes as I ′ = (−)

• ◦VA(−), where
(−)◦ and (−)

•
are the functors stated in Theorem A. According to this

theorem, both integration functors are shown to fit into a commutative
diagram:

I (−)
ζVA(−) //

ζ̂VA(−)
&&

(VA(−))∗

I ′(−)
ξVA(−)

77

where, for every Lie–Rinehart algebra (A,L), the algebra (VA(L))∗ is the
convolution algebra of VA(L) endowed with its topological commutative
Hopf algebroid structure (see [14] for the precise notion). In the above
diagram, the natural transformation ζ is the one defined in equation (11),

ζ̂ is the lifting of ζ by the universal property (15), and ξ is the natural
transformation described in Lemma 4.4, where we also characterize the
injectivity of this map.
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The second main result of the paper is the following theorem, which is
presented here as a combination of Theorems 7.1 and 7.2 stated below.

Theorem B. Let A be a commutative algebra. Then there is a natural
isomorphism

HomCHAlgdA(H,I ′(L))
∼= // HomLieRinA(L,L (H)),

for any commutative Hopf algebroid (A,H) and Lie–Rinehart alge-
bra (A,L). That is, the integration functor I ′ is left adjoint to the dif-
ferentiation functor L .

Assume now that the map ζR of equation (11) is injective for every
A-ring R (e.g., when A is a Dedekind domain7). Then there is a natural
isomorphism

HomGCHAlgdA(H,I (L))
∼= // HomLieRinA(L,L (H)),

for any commutative Galois Hopf algebroid (A,H) and Lie–Rinehart al-
gebra (A,L). That is, the integration functor I is left adjoint to the
restriction of the differentiation functor L to the full subcategory of Ga-
lois Hopf algebroids.

The unit and the counit of the second adjunction are detailed in Ap-
pendix A.2. Given a Lie–Rinehart algebra (A,L), it is of particular inter-
est to consider the following commutative diagram involving both units
and stated in Proposition A.7 below:

L
ΘL //

Θ′L ))

L (VA(L)◦)

L (VA(L)
•
)

L (ζ̂)

OO

As a consequence of Theorem B, the commutative Hopf algebroid
(A,L (VA(L)

•
)) (hence its associated presheaf of groupoids) can be

thought of as the universal groupoid of the given Lie–Rinehart alge-
bra (A,L) with a universal morphism Θ′L : L → L (VA(L)

•
). In our

opinion, the question of whether ΘL or Θ′L is an isomorphism for a
specific (A,L) can be regarded as a first step towards the study of the
integrability of Lie–Rinehart algebras (i.e., the problem of integrating
Lie–Rinehart algebra8). Another question that Theorem B introduces is

7This is the case when A is the coordinate algebra of an irreducible smooth curve
over an algebraically closed field.
8This problem can be rephrased as follows: Given a Lie–Rinehart algebra (A,L)

where L is a finitely generated and projective A-module, under which conditions is
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the search for full subcategories of LieRinA and CHAlgdA for which the
previous adjunction restricts to an anti-equivalence of categories.

Let (A,H) be a commutative Hopf algebroid, set I = Ker(ε) for the
kernel of its counit and consider its quotient A-bimodule Q(H) := I/I2.
Then the Kähler module ΩsA(H) of (A,H) with respect to the source
map is shown to be given, up to a canonical isomorphism, by:

ΩsA(H)∼=sHt⊗A sQ(H), (ψs : Hs // ΩsA(H), [u � // u1 ⊗A πs(u2)]),

where ψs is the morphism that plays the role of the universal derivation
and πs : sH → sQ(H) is the left A-module morphism which sends u 7→
(u− s(ε(u))) + I2.

The subsequent one is the third aforementioned main result, which
deals with the notion of a separable morphism between commutative
Hopf algebroids with the same base algebra:

Theorem C. Let (id, φ) : (A,K)→ (A,H) be a morphism of commuta-
tive Hopf algebroids. Assume that Q(H) and Q(K) are finitely generated
and projective A-modules. The following assertions are equivalent:

(i) Q(φ) is split-injective.
(ii) L (φ) : L (H)→ L (K) is surjective.
(iii) Derk

s(φ,−) : Derk
s(H,−)→Derk

s(K, φ∗(−)) is surjective on each
component.

(iv) Derk
s(φ,H) : Derk

s(H,H)→ Derk
s(K,H) is surjective.

(v) H⊗K ΩsA(K)→ ΩsA(H) : h⊗K w 7→ hΩsA(φ)(w) is split-injective.

The assumptions made in this theorem are, of course, fulfilled when-
ever the total algebras H and K are regular.9 In analogy with the affine
algebraic groups [1, p. 196], a morphism of Hopf algebroids is called
separable if it satisfies one of the equivalent conditions in Theorem C.

Lastly, we would like to mention that the construction of the finite
dual for commutative Hopf algebroids, which are at least flat over the
base algebra, is also possible in principle. Thus, the construction of a con-
travariant functor from a certain full subcategory CHAlgdA to CCHAlgdA
is feasible in theory. Pushing the investigation further in this direction,
one can be tempted to construct, for instance, a certain analogue of the
hyperalgebra (or hyperalgebroid) for an affine algebraic k-groupoid and
subsequently establish results similar to [1, Theorems 4.3.13, 4.3.14] for
a flat commutative Hopf algebroid. We will not pursue this topic here
as, in our opinion, this deserves a separate research project.

there a commutative Hopf algebroid (A,H) such that L ∼= L (H) as Lie–Rinehart
algebras? See Remark 6.5, for more discussion.
9For instance, regular functions of an algebraic smooth variety.
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1.3. Notation and basic notions. Given a (hom-set) category C ,
the notation C ∈ C stands for: C is an object of C . Given two ob-
jects C,C ′ ∈ C , we sometimes denote by HomC (C,C ′) the set of all
morphisms from C to C ′. We work over a base field k (possibly of char-
acteristic zero). All algebras are k-algebras and the unadorned tensor
product ⊗ stands for the tensor product over k, ⊗k. Given an alge-
bra A, we denote by Ae = A ⊗ Aop its enveloping algebra. Bimodules
over algebras are understood to have a central underlying k-vector space
structure. As usual, the notations AMod, ModA, and AModA stand for
the categories of left A-modules, right A-modules, and A-bimodules, re-
spectively.

Given two algebras R, S and two bimodules RMS and RNS , for sim-
plicity, we denote by HomR−(M,N), Hom−S(M,N), and HomR−S(M,N)
the k-vector spaces of all left R-module, right S-module, and (R,S)-bi-
module morphisms from M to N , respectively. The left and right duals
of RMS are denoted by ∗M := HomR−(M,R) and M∗ := Hom−S(M,S),
respectively. These are (S,R)-bimodules and the actions are given as fol-
lows. For every r ∈ R, s ∈ S, f ∈ ∗M , and g ∈M∗, we have

sfr : M // R, (m
� // f(ms)r);

sgr : M // S, (m � // sg(rm)).
(3)

For two morphisms p, q : A → B of algebras, we shall denote by pB,
Bq, and pBq, the left A-module, the right A-module, and the A-bimodule
structure on B, respectively. In the event that only one algebra morphism
is involved, i.e., when p = q, for simplicity, we use the obvious notation:

AB, BA, and ABA.
For an algebra A, a left (or right) A-linear map stands for a mor-

phism of left (right) A-modules, while an A-bilinear map refers to a
morphism between A-bimodules. For such an algebra A, an A-ring is
an algebra extension A → R, or equivalently a monoid in the monoidal
category (AModA,⊗A, A). Given an A-ring R, we will denote by AR the
full subcategory of right R-modules whose underlying right A-modules
are finitely generated and projective.

The dual notion of an A-ring is that of an A-coring. Thus, an A-coring
is a comonoid in the monoidal category (AModA,⊗A, A) of A-bimodules.
That is, an A-bimodule C with two A-bilinear maps ∆: C→ C⊗A C (the
comultiplication, sending x to x1 ⊗A x2 with summation understood)
and ε : C → A (the counit) subject to the coassociativity and counital
constraints. A right C-comodule is a pair (M,%M ), where M is a right
A-module and %M : M → M ⊗A C is a right A-linear map which is
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compatible with ∆ and ε in a natural way (i.e., (%M⊗AC)◦%M = (M⊗A
∆)◦%M and (M⊗Aε)◦%M = idM ). There is an adjunction between right
A-modules and right C-comodules given on the one side by the forgetful
functor O : ComodC → ModA and on the other one by the functor −⊗A
C : ModA → ComodC (see e.g. [3, §18.10]). For a given A-coring C we
denote by AC the full subcategory of right C-comodules (M,%M ) such
that O(M,%M ) is a finitely generated and projective right A-module.
For a given A-coring (C,∆, ε) we have an A-ring structure on ∗C called
the left convolution algebra of C. This structure is given by

(4) (f ∗ g)(x) = g(x1f(x2)), 1∗C = ε, and (afb)(x) = f(xa)b

for all f, g ∈ ∗C, a, b ∈ A, and x ∈ C. Analogously, one can introduce the
right convolution algebra C∗ of C.

Remark 1.1. Recall that given two A-corings C and D we can consider
the new A-coring

C�D :=
C⊗D

Spank{acb⊗ d− c⊗ adb | a, b ∈ A, c ∈ C, d ∈ D}
which is a coring with respect to the structures

a(c� d)b = c� adb,
∆(c� d) = (c1 � d1)⊗A (c2 � d2),

ε(c� d) = εC(c)εD(d),

where the notation is the obvious one. We point out that C � D has
been obtained by applying [49, Theorem 3.10] to C and D endowed with
the T |S and the S|R-coring structures respectively, whose underlying
multi-module structures are given by (t⊗ s)c(t′ ⊗ s′) = tsct′s′ and (s⊗
r)d(s′ ⊗ r′) = s′rdsr′, where R = S = T = A and r, r′ ∈ R, s, s′ ∈ S,
t, t′ ∈ T , c ∈ C, and d ∈ D.

Remark 1.2. Notice that given an A-coring C, we may consider the A-cor-
ing Ccop with structures given by

(5) ∆(ccop)=(c2)cop⊗A(c1)cop, ε(ccop)=ε(c), and bccopa=(acb)cop,

where ccop denotes c ∈ C as seen in Ccop.

Let A be a commutative algebra; we denote by proj(A) the full subcat-
egory of the category of (one-sided, preferably right) A-modules whose
objects are finitely generated and projective. In addition, A being com-
mutative, these right A-modules will be considered as central A-bimod-
ules. For a given morphism of commutative algebras φ : A→ B we denote
by φ∗ : ModB → ModA the restriction functor between the categories of
right modules.
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2. Hopf algebroids and Lie–Rinehart algebras:
Definitions and examples

A Hopf algebroid can be naively thought of as a Hopf algebra over
a noncommutative ring. In the present paper we are going to focus on
the distinguished classes of commutative and cocommutative Hopf al-
gebroids (i.e., those that have a closer connection with algebraic and
differential geometry), instead of dealing with them in their full gener-
ality. Therefore, and for the sake of the unaccustomed reader, we will
recall in the present section the definitions of these objects together with
some significant examples, that is to say, the universal enveloping Hopf
algebroids of Lie–Rinehart algebras.

2.1. Commutative Hopf algebroids. We recall here from [42, Ap-
pendix A1] the definition of a commutative Hopf algebroid. We also
expound some examples which will be needed in the forthcoming sec-
tions.

A commutative Hopf algebroid over k is a cogroupoid object in the
category CAlgk of commutative k-algebras, or equivalently, a groupoid
in the category of affine schemes. Thus, a commutative Hopf algebroid
consists of a pair of commutative algebras (A,H), where A is the base
algebra and H is the total algebra with a diagram of algebra maps:

A
s //
t // Hεoo

S

��
∆ // H⊗A H,

where to perform the tensor product over A, the algebra H is considered
as an A-bimodule of the form sHt, i.e., A acts on the left through s
while it acts on the right through t. The maps s, t : A → H are called
the source and target respectively, and η := s ⊗ t : A ⊗ A → H , a ⊗
a′ 7→ s(a)t(a′) is the unit, ε : H → A the counit, ∆: H → H ⊗A H the
comultiplication, and S : H → H the antipode. These have to satisfy the
following compatibility conditions.

• The datum (sHt,∆, ε) has to be a coassociative and counital coal-
gebra in the category of A-bimodules, i.e., an A-coring. At the level
of groupoids, this encodes a unitary and associative composition
law between morphisms.
• The antipode has to satisfy S ◦ s = t, S ◦ t = s, and S2 = idH,

which encode the fact that the inverse of a morphism interchanges
source and target and that the inverse of the inverse is the original
morphism.
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• The antipode has to satisfy also S(h1)h2 = (t◦ε)(h) and h1S(h2) =
(s◦ε)(h), which encode the fact that the composition of a morphism
with its inverse on either side gives an identity morphism (the
notation h1 ⊗ h2 is a variation of Sweedler’s Sigma notation, with
the summation symbol understood, and it stands for ∆(h)).

Remark 2.1. Let us make the following observations on the above defi-
nition:

(1) Note that there is no need to require that ε ◦ s = idA = ε ◦ t, as it
is implied by the first condition.

(2) Since the inverse of a composition of morphisms is the reverse
composition of the inverses, the antipode S of a commutative
Hopf algebroid is an anti-cocommutative map. This means that
τ∆(S(u)) = (S ⊗A S)(∆(u)) in Hs ⊗A tH, explicitly, S(u1) ⊗A
S(u2) = S(u)2 ⊗A S(u)1 for all u ∈ H. Thus, S : sHt → tHs is an
isomorphism of A-corings.

A morphism of commutative Hopf algebroids is a pair of algebra maps
(φ0, φ1) : (A,H)→ (B,K) such that

φ1 ◦ s = s ◦ φ0, φ1 ◦ t = t ◦ φ0,
∆ ◦ φ1 = χ ◦ (φ1 ⊗A φ1) ◦∆, ε ◦ φ1 = φ0 ◦ ε,

S ◦ φ1 = φ1 ◦ S,
where χ : K ⊗A K →K ⊗B K is the obvious map induced by φ0, that
is, χ(h ⊗A k) = h ⊗B k. The category obtained in this way is denoted
by CHAlgdk, and if the base algebra A is fixed, then the resulting category
will be denoted by CHAlgdA.

Example 2.2. Here are some common examples of Hopf algebroids (see
also [9]):

(1) Let A be an algebra. Then the pair (A,A ⊗ A) admits a Hopf
algebroid structure given by s(a) = a⊗ 1, t(a) = 1⊗ a, S(a⊗ a′) =
a′ ⊗ a, ε(a ⊗ a′) = aa′, and ∆(a ⊗ a′) = (a ⊗ 1) ⊗A (1 ⊗ a′), for
any a, a′ ∈ A.

(2) Let (B,∆, ε,S ) be a Hopf algebra and A a right B-comodule al-
gebra with coaction A→ A⊗ B, a 7→ a(0) ⊗ a(1). This means that
A is a right B-comodule and the coaction is an algebra map (see
e.g. [37, §4]). Consider the algebra H = A ⊗ B with algebra ex-
tension η : A⊗ A→ H, a′ ⊗ a 7→ a′a(0) ⊗ a(1). Then (A,H) has a
Hopf algebroid structure known as a split Hopf algebroid :

∆(a⊗b)=(a⊗b1)⊗A(1A⊗b2), ε(a⊗b)=aε(b), S(a⊗b)=a(0)⊗a(1)S (b).



16 A. Ardizzoni, L. El Kaoutit, P. Saracco

(3) Let B be as in part (2) and A any algebra. Then (A,A⊗ B ⊗ A)
admits in a canonical way a Hopf algebroid structure. For a, a′ ∈ A
and b ∈ B, its structure maps are given as follows:

s(a) = a⊗ 1B ⊗ 1A, t(a) = 1A ⊗ 1B ⊗ a, ε(a⊗ b⊗ a′) = aa′ε(b),

∆(a⊗ b⊗ a′) = (a⊗ b1 ⊗ 1A)⊗A (1A ⊗ b2 ⊗ a′),
S(a⊗ b⊗ a′) = a′ ⊗S (b)⊗ a.

Notice that (1) may be recovered from (3) by considering B = k as a
Hopf k-algebra with a trivial structure.

2.2. Cocommutative Hopf algebroids. Next, we recall the defini-
tion of a cocommutative Hopf algebroid. It can be considered as a
revised (right-handed and cocommutative) version of the notion of a
×A-Hopf algebra as it appears in [45, Theorem and Definition 3.5]. How-
ever, to define the underlying right bialgebroid structure we preferred to
mimic [30] as presented in [2, Definition 2.2] (in light of [2, Theorem 3.1],
this is something we may do). See also [25, A.3.6] and compare with
[27, Definition 2.5.1] and [47, §4.1] as well.

A (right) cocommutative Hopf algebroid over a commutative algebra
is the datum of a commutative algebra A, a possibly noncommutative
algebra U , and an algebra map s = t : A→ U landing not necessarily in
the center of U , with the following additional structure maps:

• a morphism of right A-modules ε : U → A which satisfies

ε(uv) = ε(ε(u)v),

for all u, v ∈ U ;
• an A-ring map ∆: U → U ×A U , where the module

U ×A U :=

{∑
i

ui ⊗A vi ∈ UA ⊗A UA |
∑
i

aui ⊗A vi =
∑
i

ui ⊗A avi
}

is endowed with the algebra structure∑
i

ui ×A vi ·
∑
j

u′j ×A v′j =
∑
i,j

uiu
′
j ×A viv′j , 1U×AU = 1U ⊗A 1U ,

and the A-ring structure given by the algebra map 1: A → U ×A
U , (a 7→ a×A 1U = 1U ×A a);

subject to the conditions

• ∆ is coassociative, cocommutative in a suitable sense, and has ε as
a right and left counit;
• the canonical map

β : UA ⊗A AU // UA ⊗A UA; (u⊗A v � // uv1 ⊗A v2)
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is bijective, where we denote ∆(v) = v1⊗A v2 (summations under-
stood). As a matter of terminology, the map β−1(1 ⊗A −) : U →
UA ⊗A AU is the so-called translation map.

The first three conditions say that the category of all right U-modules
is in fact a symmetric monoidal category with tensor product given
by − ⊗A − (see the details below), and the forgetful functor to the
category of A-bimodules is strict monoidal. The last condition says that
this forgetful functor also preserves right internal hom functors. The
pair (A,U) is then referred to as a right cocommutative Hopf algebroid
over k. From now on the terminology cocommutative Hopf algebroid
stands for right ones.

The aforementioned monoidal structure is detailed as follows: Given
a cocommutative Hopf algebroid (A,U), the identity object is the base
algebra A, with right U-action given by a�u = ε(au). The tensor product
of two right U-modules M and N is the A-module MA ⊗A NA endowed
with the following right U-action:

(6) (m⊗A n) � u = (m � u1)⊗A (n � u2).

The symmetry is provided by the one in A-modules, that is to say, the
flip M ⊗A N → N ⊗AM is a natural isomorphism of right U-modules.
The dual object of a right U-module M whose underlying A-module is
finitely generated and projective is the A-module M∗ = Hom−A(M,A)
with the right U-action

ϕ � u : M // A, (m
� // ϕ(m � u−) � u+),

where u− ⊗A u+ = β−1(1 ⊗A u) (summation understood). It is easily
checked that, for every a ∈ A and u, v ∈ U , one has

(au)− ⊗A (au)+ = u− ⊗A au+,

au− ⊗A u+ = u− ⊗A u+a,

v−u− ⊗A u+v+ = (uv)− ⊗A (uv)+,

(1U )− ⊗A (1U )+ = 1U ⊗A 1U ,

(u−)1 ⊗A (u−)2 ⊗A u+ = (u+)− ⊗A u− ⊗A (u+)+,

u− ⊗A (u+)1 ⊗A (u+)2 = (u1)− ⊗A (u1)+ ⊗A u2,

u−u+ = ε(u)1U ,

(u−)− ⊗A (u−)+u+ = u⊗A 1U ,

u1(u2)− ⊗A (u2)+ = 1U ⊗A u.
Morphisms between cocommutative Hopf algebroids over the same

algebra A are canonically defined, and the resulting category is denoted
by CCHAlgdA.
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2.3. Lie–Rinehart algebras and the universal enveloping alge-
broid. Let A be a commutative algebra over a field k of character-
istic zero and denote by Derk(A) the Lie algebra of all linear deriva-
tions of A. Consider a Lie algebra L which is also an A-module and let
ω : L → Derk(A) be an A-linear morphism of Lie algebras. In honor
of Rinehart [43], the pair (A,L) is called a Lie–Rinehart algebra with
anchor map ω provided that

(7) [X, aY ] = a[X,Y ] +X(a)Y,

for all X,Y ∈ L and a, b ∈ A, where X(a) stands for ω(X)(a).
Apart from the natural examples (A,Derk(A)) (with anchor the iden-

tity map), another basic source of examples are the smooth global sec-
tions of a given Lie algebroid over a smooth manifold.

Example 2.3. A Lie algebroid is a vector bundle L →M over a smooth
manifold, together with a map ω : L → TM of vector bundles and a
Lie structure [−,−] on the vector space Γ(L) of global smooth sections
of L, such that the induced map Γ(ω) : Γ(L)→ Γ(TM) is a Lie algebra
homomorphism, and for all X,Y ∈ Γ(L) and any smooth function f ∈
C∞(M) one has

(8) [X, fY ] = f [X,Y ] + Γ(ω)(X)(f)Y.

Then the pair (C∞(M),Γ(L)) is obviously a Lie–Rinehart algebra. In
Appendix A.3, we give a detailed description, using elementary algebraic
arguments, of the Lie–Rinehart algebra attached to the Lie algebroid of
a given Lie groupoid.

Remark 2.4. The fact that the map Γ(ω) : Γ(L) → Γ(TM) in Exam-
ple 2.3 is a Lie algebra homomorphism is a consequence of the Jacobi
identity and of relation (8) (see e.g. [17, 18, 26]). Therefore, it should be
omitted from the definition of a Lie algebroid. Nevertheless, we decided
to keep the somewhat redundant definition above to make it easier for
the unaccustomed reader to see the parallel with Lie–Rinehart algebras.

As in the classical case of (cocommutative) Hopf algebras, primitive
elements of a (cocommutative) Hopf algebroid10 form a Lie–Rinehart
algebra. Compare with [5, Theorem 3.3.4], [27, Proposition 4.2.1], [36,
§2].11

10In fact, the claim is true in general for bialgebroids over a commutative base algebra,

but we are interested mainly in the particular case of cocommutative Hopf algebroids.
11In fact, in [36] the terminology used is R/k-bialgebra (as in [40]). Nevertheless,
as we will see, the universal enveloping algebra of a Lie–Rinehart algebra actually
inherits a Hopf algebroid structure in the sense of [45].
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Example 2.5 (Primitive elements as Lie–Rinehart algebra). Let (A,U)
be a cocommutative Hopf algebroid. An element X ∈ U is said to be
primitive if it satisfies

∆(X) = 1⊗A X +X ⊗A 1 and ε(X) = 0.

Notice that the second equality is a consequence of the first one and the
counitality property. The vector space of all primitive elements Prim(U)
inherits simultaneously an A-module and Lie algebra structure, where
the A-action descends from the right A-module structure of U . In fact,
the pair (A,Prim(U)) is a Lie–Rinehart algebra with anchor map:

ω : Prim(U) // Derk(A), (X � // [a � // −ε(t(a)X)]).

A morphism of Lie–Rinehart algebras f : (A,L)→ (A,K) is an A-lin-
ear and Lie algebra map f : L→ K which is compatible with the anchors.
That is, if the following diagram is commutative,

L
f //

ω &&

K

ω′xx
Derk(A)

the category so constructed will be denoted by LieRinA.
Next we give our main example of cocommutative Hopf algebroids.

The (right) universal enveloping Hopf algebroid of a given Lie–Rinehart
algebra (A,L) is an algebra VA(L) endowed with a morphism ιA : A →
VA(L) of algebras and a Lie algebra morphism ιL : L→ VA(L) such that

(9) ιL(aX)= ιL(X)ιA(a) and ιL(X)ιA(a)− ιA(a)ιL(X)= ιA(X(a))

for all a ∈ A and X ∈ L, which is universal with respect to this prop-
erty. In detail, this means that if (W,φA, φL) is another algebra with a
morphism φA : A → W of algebras and a morphism φL : L → W of Lie
algebras such that

φL(aX) = φL(X)φA(a) and φL(X)φA(a)−φA(a)φL(X) = φA(X(a)),

then there exists a unique algebra morphism Φ: VA(L) → W such that
Φ ιA = φA and Φ ιL = φL.

Apart from the well known constructions of [43] and [36], the uni-
versal enveloping Hopf algebroid of a Lie–Rinehart algebra (A,L) ad-
mits several other equivalent realizations. For instance, one can use
the smash product (right) A-bialgebroid A#Uk(L), as introduced by
Sweedler in [46], and quotient this algebra by a proper ideal, in order to
perform the universal enveloping of (A,L). In this paper we opted for the
following construction, which comes from [14]. Set η : L→ A⊗L; X 7→
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1A⊗X and consider the tensor A-ring TA(A⊗L) of the A-bimodule A⊗L.
It can be shown that

VA(L) ∼=
TA(A⊗ L)

J
,

where the two-sided ideal J is generated by the set

J :=

〈
η(X)⊗A η(Y )− η(Y )⊗A η(X)− η([X,Y ]),

η(X) · a− a · η(X)− ω(X)(a)

∣∣∣∣∣ X,Y ∈L, a∈A
〉
.

We have the algebra morphism ιA : A→ VA(L); a 7→ a+ J and the Lie
algebra map ιL : L → VA(L); X 7→ η(X) + J that satisfy the compat-
ibility condition (9). It turns out that VA(L) is a cocommutative right
Hopf algebroid overA with structure maps induced by the assignments

ε(ιA(a)) = a, ε(ιL(X)) = 0,

∆(ιA(a)) = ιA(a)×A 1VA(L) = 1VA(L) ×A ιA(a),

∆(ιL(X)) = ιL(X)×A 1VA(L) + 1VA(L) ×A ιL(X),

β−1(1VA(L) ⊗A ιA(a)) = ιA(a)⊗A 1VA(L) = 1VA(L) ⊗A ιA(a),

β−1(1VA(L) ⊗A ιL(X)) = 1VA(L) ⊗A ιL(X)− ιL(X)⊗A 1VA(L).

Remark 2.6. The primitive functor Prim: CCHAlgdA → LieRinA, assign-
ing to a cocommutative Hopf algebroid (A,U) the space Prim(U) and to
a morphism f : (A,U)→ (A,V) its restriction to the primitive elements,
admits as a left adjoint the functor VA : LieRinA → CCHAlgdA, which
assigns to a Lie–Rinehart algebra (A,L) its universal enveloping Hopf al-
gebroid VA(L) and to a morphism of Lie–Rinehart algebras f : (A,L)→
(A,K) the morphism of cocommutative Hopf algebroids VA(f) induced
by the universal property of VA(L). The unit L → Prim(VA(L)) of
the adjunction is given by the corestriction of the map ιL, while the
counit VA(Prim(U))→ U is given by the universal property of its domain
applied to the inclusion of Prim(U) in U . The verification is straightfor-
ward. For the analogue in the case of left bialgebroids we refer to [36,
Theorem 3.1] or [27, Proposition 4.2.3].

Remark 2.7. Given a Lie–Rinehart algebra (A,L), there exists the no-
tion of a left (A,L)-module; see e.g. [22, §1] and [43, §2]. As happens for
the universal enveloping algebra of an ordinary Lie algebra, the defini-
tion of the universal enveloping algebroid (U(A,L), A, L) is designed
in such a way that left (A,L)-modules bijectively correspond to left
U(A,L)-modules in a natural way. In fact, this correspondence turns
out to be an isomorphism of categories. In the present paper, working
with right cocommutative Hopf algebroids, we are interested in dealing
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with right modules over the universal enveloping algebroid associated
to a Lie–Rinehart algebra. As a consequence, we define right (A,L)-
modules to be left modules over (A,Lop,−ω), where (A,Lop) is the Lie–
Rinehart algebra with the same underlying A-module L, with opposite
bracket and opposite anchor map with respect to (A,L) (equivalently,
A-modules M with a morphism of Lie–Rinehart algebras from Lop to
the Atiyah algebra of M). They are in one-to-one correspondence with
right VA(L)-modules. Moreover,

(1) in general we have VA(L)∼=U(A,Lop)op(see [5, Proposition 2.1.12]);
(2) in the particular case of AL free, i.e., L = ⊕iAXi, we have that

U(A,L) with A and ′L given by ′L
(∑

i aiXi

)
:=
∑
i L(Xi)A(ai)

is the right universal enveloping algebra of (A,L) (symmetrically
for VA(L) on the other side).

It is worth pointing out, however, that our definition of a right repre-
sentation differs slightly from the one given in [23, p. 430]. The reason
for introducing this new one is threefold: first of all it is more symmetric,
secondly it ensures that A is a right representation as naturally as it is a
left one, that is to say, via the anchor map ω, and thirdly because with
this definition right representations correspond to right modules over the
right universal enveloping algebra in a natural way.

3. A dual for cocommutative Hopf algebroids

It is well known that, for Hopf algebras, the functor Derk
k(−,k) :

CHAlgop
k → Liek is right adjoint to the functor (U(−))◦ : Liek → CHAlgop

k ,
where CHAlgk and Liek denote the categories of commutative Hopf k-al-
gebras and Lie k-algebras, respectively. Indeed, this can be seen as the
composition of the two adjunctions (U,Prim) and ((−)◦, (−)◦), where U :
Liek → CCHAlgk is the universal enveloping functor, Prim : CCHAlgk →
Liek is the functor of primitive elements, and (−)◦ denotes the finite (or
Sweedler) dual. Since we plan to extend this construction to the Hopf
algebroid framework, we first need an analogue of the finite dual. This
section and the next one are devoted to this construction. In fact, by fol-
lowing two different but equally valid approaches, we will even provide
two such possible analogues.

3.1. Tannaka reconstruction process. Let A be a commutative al-
gebra and ω : A → proj(A) be a faithful k-linear functor (referred to as a
fiber functor), where A is a k-linear (essentially) small category. The im-
age ωP of an object P of A under ω will be denoted by P itself when no
confusion may arise. Given P,Q ∈ A, we denote by TPQ = HomA(P,Q)
the k-module of all morphisms in A from P to Q. The symbol TP is
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reserved to the ring (in fact, algebra) of endomorphisms of P . Clearly,
SP = End(PA) is a ring extension of TP via ω. In this way, every im-
age ωP of an object P ∈ A becomes canonically a (TP , A)-bimodule.

Consider now the Gabriel ringA attached toA and introduced in [16].
That is, the algebra A := ⊕P,Q∈ATPQ with enough orthogonal idempo-
tents and such that the multiplication of two composable morphisms
is their composition, otherwise is zero. Set Σ = ⊕P∈AP and Σ† =
⊕P∈AP ∗, direct sums of A-modules, and identify any element in P
(resp. in Q∗) with its image in Σ (resp. in Σ†). It turns out that Σ
is a unital (A, A)-bimodule while Σ† is a unital (A,A)-bimodule.

Now, let us recall from [11] the infinite comatrix A-coring associated
with the fiber functor ω : A → proj(A) which is given by the A-bimod-
ule R(A) := Σ† ⊗A Σ. Furthermore, it is clear that any object P ∈ A
admits (via the functor ω) the structure of a right R(A)-comodule, which
leads to a well defined functor χ : A → AR(A) (see §1.3 for the notation),
and that ω factors through the forgetful functor O : AR(A) → ModA
via χ, that is, ω = O ◦ χ.

Remark 3.1. The typical examples of the pairs (A,ω) which we will
deal with here are either the category AC of right C-comodules, for
a given A-coring C, which are finitely generated and projective as A-
modules with ω the forgetful functor, or the category AR of right R-
modules, for a given A-ring R, which are finitely generated and projec-
tive as A-modules and ω is the forgetful functor as well. For the sake
of simplicity, we will often denote by R(C) the coring R(AC). Simi-
larly, we set R◦ := R(AR). The latter construction induces a functor
(−)◦ : A-Rings→ (A-Corings)op, which was named the finite dual functor
in [12, §2.1]. It is noteworthy to mention that from its own construc-
tion it is not clear whether the functor (−)◦ is left adjoint to the func-
tor ∗(−) : (A-Corings)op → A-Rings which sends any A-coring C to its
right convolution algebra ∗C. In the next section we will provide, using
the Special Adjoint Functor Theorem (SAFT), a left adjoint of ∗(−) and
study some of its properties.

Assume now that A is a rigid symmetric monoidal category and ω is a
strict symmetric monoidal functor. Then one can endow the associated
infinite comatrix A-coring R(A) with a commutative (A ⊗k A)-algebra
structure. The multiplication is given as follows:

(p∗ ⊗A p) · (q
∗ ⊗A q) = (q∗ ? p∗)⊗A (q ⊗A p),

where for every ϕ ∈ P ∗ and ψ ∈ Q∗ we set

(ϕ ? ψ) : P ⊗A Q // A, (x⊗A y � // ϕ(x)ψ(y)).
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The unit is the algebra map A ⊗k A → R(A) which sends a ⊗ a′ →
la ⊗A a′, where la is the image of a by the isomorphism A ∼= A∗ and
as above we identify the identity object of A with its image A. Notice
that TA is a subring of A and does not necessarily coincide with the base
field k.

It turns out that (A,R(A)) with this algebra structure is actually a
commutative Hopf algebroid. The antipode is given by the map

S : R(A) // R(A), (p∗ ⊗A p
� // evp ⊗A p∗),

where evp is the image of p under the isomorphism of A-modules P ∼=
(P ∗)∗.

The above construction, which we may call Tannaka’s reconstruction
process, is in fact functorial. That is, if F : A → A′ is a given symmetric
monoidal k-linear functor such that

A F //

ω %%

A′

ω′xx
proj(A)

is a commutative diagram, then there is a morphism of Hopf algebroids
given by

(10) R(F) : Σ† ⊗A Σ // Σ† ⊗A′ Σ, (p∗ ⊗A p
� // p∗ ⊗A′ p),

which makes commutative the following diagram:

AR(A)
R(F)∗ //

O

$$

(A′)R(A′)

O′

ss

A F //

χ
99

ω

,,

A′
χ′

88

ω′

ww
proj(A)

where R(F)∗ is the restriction of the induced functor R(F)∗ :
ComodR(A) → ComodR(A′) sending any right R(A)-comodule (M,%M )
to the right R(A′)-comodule

M
%M // M ⊗A R(A)

M⊗AR(F) // M ⊗A R(A′),

and acting obviously on morphisms.
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Remark 3.2. It is noteworthy to mention that the underlying category A
is not assumed to be abelian nor does the subalgebra TA of A coincide
with the base field k. Thus we are not assuming that the pair (A,ω) is
a Tannakian category in the sense of [7]. The Hopf algebroids obtained
therefore have fewer properties than one constructed from the Tannakian
categories. One of these missing properties is, for instance, that the func-
tor χ : A → AR(A) is not necessarily an equivalence of categories, and
that the skeleton of the full subcategory AR(A) does not necessarily form
a set of small generators in the whole category of R(A)-comodules. Nev-
ertheless, the conditions we are taking on the pairs (A,ω) are sufficient
to allow the construction of §3.3 below.

3.2. The zeta map and Galois corings. Let (A,R) be a ring over A
and consider its finite dual (A,R◦) constructed as in §3.1 from the
pair (AR,ω), where ω is the forgetful functor; see also Remark 3.1.
Then there is an (A,A)-bimodule map

(11) ζ := ζR : R◦ // R∗, (p∗ ⊗AR p
� // [r � // p∗(p r)]),

where the latter is the right A-linear dual of R endowed with its canonical
A-bimodule structure.

Remark 3.3. Notice that ζ should be more properly denoted by ζR if we
want to stress the dependence on R. Moreover, if f : S → R is an A-ring
map, then f∗ ◦ ζR = ζS ◦ f◦. Indeed,

ζS(f◦(ϕ⊗ARn))(s)
(10)
= ζS(ϕ⊗AS n)(s)=ϕ(nf(s)) = f∗(ζR(ϕ⊗ARn))(s)

for all s ∈ S, ϕ⊗AR n ∈ R
◦.

For the reader’s sake, we include here the subsequent result.

Lemma 3.4 ([12, 3.4]). The map ζ of (11) fulfils the following equalities
for every z ∈ R◦, x, y ∈ R:

(12)
ζ(z)(xy) = ζ(z1)(ζ(z2)(x)y), ζ(z)(1R) = ε(z),

and ζ(azb)(u) = aζ(z)(bu).

In contrast with the classical case of algebras over fields, the map ζ is
not known to be injective, unless some condition is imposed on the base
algebra A. For instance, if A is a Dedekind domain, then ζ is always in-
jective. Strong consequences of the injectivity of ζ were discussed in [12];
some of them can be seen as follows. In general, it is known that the
functor L : AR◦ → AR induced by the obvious functor AR◦ → A∗(R◦)
(see e.g. [3, §19.1]) and by the canonical map ηR : R → ∗(R◦) (where
ηR(r)(p∗ ⊗AR p) = p∗(pr) for every R-module P and all r ∈ R, p ∈ P ,
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p∗ ∈ P ∗) has a right inverse functor χ : AR → AR
◦

which sends each
right R-module P ∈ AR to the right R◦-comodule L(P ) with underlying
A-module P and coaction

% : P // P ⊗A R◦,
(
p
� //

∑
i

ei ⊗A (e∗i ⊗AR p)
)
,

where {ei, e∗i }i is any dual basis for P . If ζ is assumed to be injective,

then χ and L are mutually inverse and so AR is isomorphic to AR◦ (see
Remark 4.13). Now we give the notion of Galois corings.

Definition 3.5. Let (A,C) be a coring. Then (A,C) is said to be Galois
(or AC-Galois), if it can be reconstructed from the categoryAC , that is,
provided that the canonical map

can : Σ† ⊗AC Σ // C, (p∗ ⊗AC p
� // p∗(p(0))p(1)),

is an isomorphism of A-corings, where %P (p) = p(0)⊗Ap(1) is the C-coac-
tion on p ∈ P .

3.3. The finite dual of a cocommutative Hopf algebroid via
Tannaka reconstruction. Next we want to apply the Tannaka recon-
struction process to a certain full subcategory of the category of right
modules over a cocommutative Hopf algebroid. So take (A,U) to be
such a Hopf algebroid. Following the notation of §1.3, we denote by AU
the full subcategory of right U-modules whose underlying A-module is
finitely generated and projective, and by ω : AU → proj(A) the associ-
ated forgetful functor. Joining together the results from §2.2 and §3.1,
we get that the pair (AU ,ω) satisfies the necessary assumptions such
that the algebra (A,R(AU )) resulting from the Tannaka reconstruction
process is a commutative Hopf algebroid. It is this Hopf algebroid which
we refer to as the finite dual of (A,U) and we denote it by (A,U◦). The
subsequent result is contained in [12, Theorem 4.2.2]. Here we give the
main steps of its proof.

Proposition 3.6. Let A be a commutative algebra. Then the finite dual
establishes a contravariant functor

(−)◦ : CCHAlgdA // CHAlgdA

from the category of cocommutative Hopf algebroids to the category of
commutative ones.

Proof: Given a morphism φ : U → U ′ of cocommutative Hopf algebroids,
the restriction of scalars leads to a k-linear functor Fφ : AU ′ → AU which
commutes with the forgetful functor, that is, such that ω ◦ Fφ = ω′.
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Using the monoidal structure described in (6), it is easily checked that
Fφ is a strict symmetric monoidal functor. Therefore (see §3.1) we have
a morphism φ◦ : U ′◦ → U◦ of Hopf algebroids. The compatibility of (−)◦

with the composition law and the identity morphisms is obvious.

3.4. The zeta map and Galois Hopf algebroids. Let (A,U) be a
cocommutative Hopf algebroid and consider its right A-linear dual U∗,
regarded as an (A⊗A)-algebra with the convolution product induced by
the comultiplication ∆: UA → UA ⊗A UA, that is to say,

(f ∗ g)(u) = f(u1)g(u2), for every f, g ∈ U∗, u ∈ U .
The canonical A-bilinear map from §3.2

(13) ζ = ζU : U◦ // U∗, (p∗ ⊗AU p
� // [u � // p∗(p u)])

is an (A ⊗ A)-algebra map and it fulfils (12) for R = U . If ζ is injec-
tive, then there is an isomorphism of rigid symmetric monoidal cate-
gories AU◦ ∼= AU (see [12, Theorem 4.2.2]). The subsequent definition
is a particular instance of Definition 3.5.

Definition 3.7. A commutative Hopf algebroid (A,H) is called Ga-
lois (or AH-Galois) if its underlying A-coring is Galois in the sense of
Definition 3.5, i.e., if the canonical map

can : Σ† ⊗AH Σ // H, (p∗ ⊗AH p
� // s(p∗(p(0)))p(1)),

is an isomorphism of Hopf algebroids, where %P (p) = p(0) ⊗A p(1) is the
H-coaction on p ∈ P . The full subcategory of Galois commutative Hopf
algebroids with base algebra A is denoted by GCHAlgdA.

Remark 3.8. Let (A,U) be a cocommutative Hopf algebroid. When the
canonical map ζ : U◦ → U∗ is injective, the reconstructed object U◦ is
Galois (see [12, Proposition 3.3.3]). The inverse of the canonical map can
is provided by the assignment Σ† ⊗AU Σ → Σ† ⊗AU◦ Σ, p∗ ⊗AU p 7→
p∗⊗AU◦ p, employing the canonical isomorphism AU◦ ∼= AU . Later on, we
will recover the same isomorphism under an apparently weaker condition.
We also point out that this condition makes U◦ a Galois coring, even if
we replace U simply by an A-ring R (see e.g. Remark 7.3).

Example 3.9. Several well known Hopf algebroids are Galois, as the
following list of examples shows.

(1) Any commutative Hopf algebra over a field (i.e., a Hopf algebroid
with source equal to the target with base algebra a field) is Galois
Hopf algebroid.

(2) Let B → A be a faithfully flat extension of commutative algebras.
Then (A,A⊗B A) is a Galois Hopf algebroid.
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(3) Any Hopf algebroid (A,H) whose unit map η : A ⊗ A → H is
a faithfully flat extension of algebras is actually Galois. In other
words, any geometrically transitive Hopf algebroid is Galois; see [9]
for more details.

(4) The Adams Hopf algebroids as defined in [21] and studied in [44]
are Galois.

We point out that the first three cases are in fact a particular instance
of a more general result [11, Theorem 5.7], which asserts that any flat
Hopf algebroid whose category of comodules ComodH admits AH as a
set of small generators is a Galois Hopf algebroid.

4. An alternative dual via SAFT

In this section we propose a different candidate for the finite dual of
a given cocommutative Hopf algebroid. Its construction is based upon
the well known Special Adjoint Functor Theorem. We also establish a
natural transformation between this new contravariant functor and the
one already recalled in §3.3. As before, we start with the general setting
of rings.

4.1. Finite dual using SAFT: The general case of A-rings. Let A
be a commutative algebra. Consider the category AModA ofA-bimodules.
Then the functor (−)∗ : AModA → (AModA)op admits a right adjoint
∗(−) : (AModA)op → AModA, where M∗ = Hom−A(M,A) with an A-bi-
module structure as in (3). The latter functor induces a functor

(14) ∗(−) : (A-Corings)op // A-Rings,

where the category A-Rings stands for k-algebras R with an algebra map
A→ R (whose image is not necessarily in the center of R). The functor
of (14) is explicitly given as follows: Given an A-coring (C,∆, ε) we have
that the A-ring structure on ∗C is given as in (4). As a consequence of the
Special Adjoint Functor Theorem, the functor of equation (14) admits a
left adjoint

(−)
•

: A-Rings // (A-Corings)op;

see [41, Corollary 9].12 For future reference, let us retrieve explicitly the
A-ring morphism

η′R : R // ∗(R•), (r � // [z � // ξ(z)(r)])

(i.e., unit of the previous adjunction). Here ξ is as in the following remark.

12For the sake of completeness, let us point out that the quoted Corollary 9 treats
the case of noncommutative A too. The difference is that A-Rings should be replaced

by Aop-Rings. Nevertheless, since the noncommutative case goes beyond the purposes
of the present paper, we will not discuss it further.
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Remark 4.1. Given an A-ring R, the A-coring R• is uniquely deter-
mined by the following universal property: It comes endowed with an
A-bimodule morphism ξ : R• → R∗ which satisfies the analogue of
the relations (12) and if C is an A-coring endowed with a A-bimodule
map f : C → R∗ satisfying the same relations, then there is a unique

A-coring map f̂ : C → R• such that ξ ◦ f̂ = f . Conversely, notice that
given an A-coring map g : C → R•, the composition ξ ◦ g satisfies the
relations in (12). As a consequence, if g, g′ : C → R• are coring maps
such that ξ ◦ g = ξ ◦ g′, then g = g′.

Remark 4.2. For the reader’s sake, we show how the adjunction follows
from this universal property. Let R be an A-ring, let C be an A-coring,
and h : R → ∗C be a k-linear map. Denote by f : C → R∗ the map
defined by f(c)(r) = h(r)(c) for all r ∈ R and c ∈ C. We compute

h(bxa)(c) = f(c)(bxa) = f(c)(bx)a = af(c)(bx) = (af(c)b)(x),

(bh(x)a)(c)
(4)
= h(x)(cb)a = ah(x)(cb) = h(x)(acb) = f(acb)(x),

h(xy)(c) = f(c)(xy),

(h(x) ∗ h(y))(c)
(4)
= h(y)(c1h(x)(c2)) = (h(x)(c2)h(y))(c1)

= h(h(x)(c2)y)(c1) = f(c1)(f(c2)(x)y),

h(1R)(c) = f(c)(1R),

1C∗(c)
(4)
= ε(c).

Consequently, we see that h from R to ∗C is an A-ring morphism if and
only if f corresponds to h via the adjunction ((−)∗, ∗(−)) and satisfies the
conditions in (12). Since there is a 1-1 correspondence between these f ’s

and the f̂ ’s as above, we are done. Note also that given an A-ring
map h : R1 → R2, we can consider the A-bimodule map h∗ : R2

∗ → R1
∗.

If we pre-compose h∗ with ξ2 : R2
• → R2

∗, the map f := h∗ ◦ ξ2 satisfies
conditions (12) since f(z)(r) = ξ2(z)(h(r)) for all z ∈ R2

•, r ∈ R1, and h
is multiplicative, unital, and A-bilinear. As a consequence, the universal

property of R2
• yields a unique A-coring map h• := f̂ : R2

• → R1
• such

that ξ1 ◦ h• = h∗ ◦ ξ2.

Example 4.3 (The map zeta-hat). Let R and R◦ be as in §3.2 together
with the A-bimodule morphism ζ of equation (11). By Lemma 3.4 and
the universal property of R•, there is an A-coring morphism

(15) ζ̂ : R◦ // R•,
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such that ξ ◦ ζ̂ = ζ. In light of Remark 3.3, this induces a natural

transformation ζ̂ : (−)◦ → (−)
•
.

Lemma 4.4. Given an A-ring R and the canonical map ξR := ξ : R• →
R∗, we have that Ker(ξ) contains no nonzero coideals of R• (i.e., ξ is
cogenerating in the sense of [34, Definition 1.13]). In particular, ξ is
injective if and only if Ker(ξ) is a coideal of R•.

Proof: By definition, a coideal J of R• is an A-subbimodule such that
the quotient A-bimodule C := R•/J is an A-coring and the canonical
projection π : R• → C is an A-coring map. If J ⊆ Ker(ξ), then ξ factors
through a map ξ : C → R∗ such that ξ ◦ π = ξ. Any c ∈ C is of the
form π(x) for some x ∈ R•, so that

ξ(c1)(ξ(c2)(r)r′) = ξ(π(x)1)(ξ(π(x)2)(r)r′)

= ξ(x1)(ξ(x2)(r)r′)
(12)
= ξ(x)(rr′) = ξ(c)(rr′),

ξ(c)(1R) = ξ(x)(1R)
(12)
= εR•(x) = εC(c),

ξ(acb)(r) = ξ(aπ(x)b)(r) = ξ(π(axb))(r)

= ξ(axb)(r) = aξ(x)(br) = aξ(c)(br).

As a consequence of the universal property of R•, there exists a unique
A-coring map σ : C → R• such that ξ ◦σ = ξ. Now, ξ ◦σ ◦π = ξ ◦π = ξ,
so that the uniqueness in the universal property entails that σ◦π = idR• .
Since π is surjective, this forces π to be invertible, whence J = 0.

Next, we want to relate the two categories AR and AR• (see §1.3
for definition), but before we recall the following general construction
that has been and will be used more or less implicitly throughout the
paper. As a matter of notation, if BMA is a (B,A)-bimodule such that
MA is finitely generated and projective with dual basis {ei, e∗i }i, then
we are going to set

dbM : B // M ⊗AM∗,
(
b
� //

∑
i

bei ⊗A e∗i
)

and

evM : M∗ ⊗B M // A, (f ⊗B m � // f(m)).

Notice that db is B-bilinear while ev is A-bilinear and we have the iso-
morphism

β : HomD−B(M,N ⊗C P ) // HomC−B(N∗ ⊗D M,P ),

(g � // (evN ⊗C P ) ◦ (N∗ ⊗D g))
(16)
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for B, C, D algebras and DMB , DNC , CPB bimodules such that NC is
finitely generated and projective.

For every (B,A)-bimodule N we set

BCoacA(N,N ⊗A C) := {ρ ∈ HomB−A(N,N ⊗A C) | (N, ρ) ∈ AC}.

Lemma 4.5. For every (B,A)-bimodule N such that NA is finitely
generated and projective, the assignment βC : HomB−A(N,N ⊗A C) →
HomA−A(N∗ ⊗B N,C) of equation (16) induces an isomorphism

βC : BCoacA(N,N ⊗A C) // CoringA(N∗ ⊗B N,C)

natural in C.

Proof: By adapting [10, Proposition 2.7], one proves that βC induces βC .

A direct computation shows that β−1
C restricts to β

−1

C : CoringA(N∗ ⊗B
N,C)→ BCoacA(N,N ⊗A C), providing an inverse for βC .

Lemma 4.6. Let C be an A-coring, M an A-bimodule, and f : C →M
an A-bilinear map. The following are equivalent:

(i) (N ⊗A f) ◦ ρ = (N ⊗A f) ◦ ρ′ implies ρ = ρ′ for every ρ, ρ′ ∈
CoacA(N,N ⊗A C) and for every N ∈ proj(A);

(ii) f ◦α = f ◦β implies α = β for every α, β : E → C coring maps and
for every A-coring E with canE (split) epimorphism of corings;

(iii) f ◦ α = f ◦ β implies α = β for every α, β : N∗ ⊗B N → C coring
maps, for every algebra B and every bimodule BNA such that NA ∈
proj(A).

Proof: First of all, observe that (i) is equivalent to the same statement
but with ρ, ρ′ ∈ BCoacA(N,N ⊗A C), for every algebra B and every
bimodule BNA such that NA ∈ proj(A). To prove that (iii) is equivalent
to (i) consider the commutative diagram, for every N ∈ proj(A),

BCoacA(N,N ⊗A C)
βC //

� _

��

CoringA(N∗ ⊗B N,C)� _

��
HomB−A(N,N ⊗A C)

βC //

HomB−A(N,N⊗Af)

��

HomA−A(N∗ ⊗B N,C)

HomA−A(N∗⊗N,f)

��
HomB−A(N,N ⊗AM)

βR∗ // HomA−A(N∗ ⊗B N,M)

Since the horizontal arrows are isomorphisms, the vertical composition
on the right is injective (i.e., (iii) holds) if and only if the vertical com-
position on the left is (i.e., (i) holds).
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To prove the remaining implications, let us show first that C :=
N∗⊗B N is a coring with canC (split) epimorphism of corings, for every
algebra B and every bimodule BNA as in the statement. Notice that
N ∈ AC with coaction n 7→

∑
i ei⊗A (e∗i ⊗B n), where {ei, e∗i }i is a dual

basis for NA. Thus we may consider the composition

N∗⊗BN
(∗) // N∗⊗TNN

ιN // R(N∗⊗BN)
canC // N∗⊗BN,

f⊗Bn � //f⊗TN n
� //f⊗AC n

� //∑
if(ei)e

∗
i⊗Bn=f⊗Bn,

where (∗) is the isomorphism of [10, Lemma 3.9] and TN :=EndN
∗⊗BN(N).

This shows that canC is a (split) epimorphism of corings for every N
and B as above and hence (iii) follows from (ii).

Conversely, let us show that (iii) implies (ii). Let α, β, E be as in (ii)
such that f ◦ α = f ◦ β. Denote by π : ⊕N∈AE N∗ ⊗TN N → R(E) the
canonical projection and by jN : N∗ ⊗TN N → ⊕N∈AEN∗ ⊗TN N the
canonical injection. Then we have that

f ◦ α ◦ canE ◦ π ◦ jN = f ◦ β ◦ canE ◦ π ◦ jN

for every N ∈ AE . In light of the hypothesis and since ιN and π are
morphisms of corings, we have that α ◦ canE ◦ π ◦ ιN = β ◦ canE ◦ π ◦ ιN .
By the universal property of the coproduct, the surjectivity of π and the
fact that canE is a (split) epimorphism we get that α = β.

Corollary 4.7. For every A-ring R, the canonical morphism ξ : R• →
R∗ satisfies the equivalent properties of Lemma 4.6.

Proof: From the universal property of ξ (see Remark 4.1), it satisfies (ii)
of Lemma 4.6.

Remark 4.8. An open question at the present moment is whether ζ :R◦→
R∗ satisfies (ii) of Lemma 4.6 as well. Note that canR◦ is a split epi-
morphism of corings because canR◦ ◦ R(χ) = idR◦ . As we will see, an
affirmative answer would be equivalent to requiring that the induced

functor Aζ̂ : AR◦ → AR• is an isomorphism of categories.

Now, in one direction, we have that every object (M,%M ) in AR•

becomes a right R-module as follows:

(17) m.r = m(0)ξ(m(1))(r)
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for every m ∈ M and r ∈ R. Its underlying A-module coincides with
the image of (M,%M ) by the forgetful functor O : AR• → ModA. Clearly
this construction is functorial and so we have a functor

L′ : AR• // AR

such that

(18) L′ ◦ Aζ̂ = L.

Conversely, consider the functor

(19) χ′ := Aζ̂ ◦ χ : AR // AR• .

Notice that, since χ is a right inverse of L, we have

(20) L′ ◦ χ′ (19)
= L′ ◦ Aζ̂ ◦ χ (18)

= L ◦ χ = idAR .

Proposition 4.9. The functors L′ and χ′ establish an isomorphism
between the categories AR• and AR.

Proof: In light of (20), it is enough to prove that χ′ ◦ L′ = idR
•

A . Note
that, still by (20), we have L′ ◦ χ′ ◦ L′ = L′. From the latter equality
the thesis follows once it is proved that L′ is cancellable on the left.
Since L′ is always faithful, it remains to prove that it is injective on
objects. Observe that, for every M ∈ proj(A), the assignment m⊗A f 7→
[r 7→ mf(r)] yields an isomorphism of right A-modules M ⊗A R∗ →
HomA(R,M), which in turn induces a bijection

τ : HomA(M,M ⊗A R∗) // HomA(M ⊗A R,M);

ρ
� // [m⊗A r � // m(ρ)

0 m
(ρ)
1 (r)],

(21)

where we set m
(ρ)
0 ⊗A m(ρ)

1 = ρ(m) for every m ∈ M . Let (N, ρ) be an

object in AR• and consider L′(N, ρ). This is the A-module N endowed
with the R-action (17), i.e.,

m.r = m(0)ξ(m(1))(r)
(21)
= τ((N ⊗A ξ) ◦ ρ)(m⊗A r)

for every m ∈ N , r ∈ R. Denote it by µρ. Now, L′(N, ρN ) = L′(P, ρP )
if and only if (N,µρN ) = (P, µρP ), if and only if N = P and µρN = µρP .
Since N = P , we may consider ρN , ρP ∈ CoacA(N,N ⊗A R•) and since
τ is bijective and ξ satisfies (i) of Lemma 4.6, the relation µρN = µρP is
equivalent to ρN = ρP .
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Corollary 4.10. Let R be an A-ring. Then

(i) If ζ is injective, then R◦ is the largest Galois A-coring inside R∗

with respect to the property of equation (12).
(ii) R• is a Galois A-coring as in Definition 3.5 if and only if the

map ζ̂ : R◦ → R• of (15) is an isomorphism of A-corings.

Proof: By Proposition 4.9, we know that χ′ and L′ establish an isomor-
phism of categories AR ∼= AR

•
. Therefore, using the functor R of §3.1,

we have that R(χ′) is an isomorphism. We compute

(22) can′ ◦R(χ′)
(19)
= can′ ◦R(Aζ̂) ◦R(χ)

(can nat)
= ζ̂ ◦ can ◦R(χ) = ζ̂,

where can and can′ are the canonical morphisms of R◦ and R•, respec-
tively. Concerning (i), given a Galois A-coring C endowed with an in-
jective A-bimodule map f : C → R∗ satisfying the analogue of (12),

by Remark 4.1 there is a unique A-coring map f̂ : C → R• such that

ξ ◦ f̂ = f . Note that f̂ is necessarily injective. Consider the A-coring

map f ′ := R(χ′)−1 ◦R(Af̂ ) ◦ can−1
C : C → R◦. Then, by (22), we have

ζ̂◦f ′ = can′◦R(Af̂ )◦can−1
C = f̂ , so that f ′ is injective and hence R◦ is the

largest Galois A-coring inside R∗ with respect to the property of equa-
tion (12). The fact that R◦ is Galois follows from [12, Proposition 3.3.2]
together with the observation that can ◦R(χ) = idR◦ . Concerning (ii),
it follows from (22).

Remark 4.11. Assume that R is an A-ring which is finitely generated
and projective as a right A-module; then the map ψ : R∗ ⊗A R∗ →
(R ⊗A R)∗ given by ψ(f ⊗A g)(r ⊗A r′) = f(g(r)r′) is invertible, so
that we can define ∆ := ψ−1 ◦m∗ and ε : R∗ → A by ε(f) = f(1). As
a consequence, (R∗,∆, ε) is an A-coring. It is easy to check that the
identity map id: R∗ → R∗ fulfils (12). By the universal property of R•,

there exists a unique morphism îd: R∗ → R• of A-corings such that

ξ ◦ îd = id. Clearly, ξ ◦ îd◦ξ = ξ ◦ id, so that we get the equality of the A-

coring maps îd◦ξ = id. Thus ξ is invertible. On the other hand, we know
from [12, Corollary 3.3.5] that the map ζ : R◦ → R∗ of equation (11) is,
in a natural way, an isomorphism of A-corings. Therefore, the natural

transformation ζ̂− : (−)
◦ → (−)

•
, when restricted to A-rings with finitely

generated and projective underlying right A-modules, leads to a natural
isomorphism.

Our next aim is to give a complete characterization of when the
functors L and χ establish an isomorphism between the categories AR◦

and AR, by analogy with Proposition 4.9.
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Theorem 4.12. The following are equivalent for ζ̂ : R◦ → R•:

(i) Aζ̂ is an isomorphism;

(ii) Aζ̂ is injective on objects;
(iii) L is an isomorphism;
(iv) L is injective on objects;

(v) CoringA(C, ζ̂) is bijective for every coring C whose canC is a split
epimorphism of corings;

(vi) CoringA(C, ζ̂) is injective for every coring C whose canC is a split
epimorphism of corings.

Remark 4.13. Observe that ζ injective (respectively a monomorphism

of corings) implies that ζ̂ is injective (respectively a monomorphism of
corings), which in turn implies (vi) of Theorem 4.12.

Proof of Theorem 4.12: The equivalences (i) ⇐⇒ (iii) and (ii) ⇐⇒ (iv)
follow immediately from (18) and Proposition 4.9. Obviously, (iii) implies
(iv). Conversely, since L is faithful and injective on objects, the implica-
tion follows from L◦χ◦L = L, which in turn follows from L◦χ = idAR .

Moreover, notice that Aζ̂ being injective on objects is equivalent to (i)

of Lemma 4.6 for f = ζ̂, which in turn is equivalent to (ii) of the
same lemma, that is to say, to (vi). Obviously (v) implies (vi). Con-
versely, assume (vi) and pick a g ∈ CoringA(C,R•). It induces a func-

tor Ag : AC → AR• and a diagram with commuting squares

R(AC)
R(Ag) //

canC

��

R(AR•)

can′

��

R(AR◦)
R(Aζ̂)oo

can

��
C

g
// R• R◦

ζ̂

oo

By assumption, there is a coring map σ : C → R(AC) such that canC ◦
σ = idC . Thus we may consider the coring map g̃ := can ◦ R(Aζ̂)−1 ◦
R(Ag)◦σ which satisfies ζ̂◦g̃ = g by definition. Therefore, CoringA(C, ζ̂)
is surjective as well.

4.2. The finite dual of cocommutative Hopf algebroids via
SAFT. In this subsection we use another general construction relying
on the Special Adjoint Functor Theorem (SAFT), in order to construct
another functor from the category of (right) cocommutative Hopf alge-
broids to the category of commutative ones. We also compare the two
functors constructed so far.
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Fix a commutative algebra A and consider as before the categories
CCHAlgdA and CHAlgdA of cocommutative and commutative Hopf al-
gebroids, respectively. The functor ∗(−) : A-Coringsop → A-Rings, as-
signing to each A-coring C the ring HomA−(C, A) with the convolution
product (4), admits a left adjoint, denoted by (−)

•
, in view of SAFT.

Consider the diagram

(23)

A-Rings
(−)• // A-Corings

CCHAlgdA

?�

OO

CHAlgdA

?�

OO

where the vertical functors are the canonical forgetful ones.

Theorem 4.14. The functor (−)
•

in diagram (23) induces a contravari-
ant functor

(−)
•

: CCHAlgdA // CHAlgdA.

Explicitly, given a cocommutative Hopf algebroid (A,U) and the canon-
ical A-bilinear map ξ : U• → U∗, the commutative Hopf algebroid struc-
ture of U• is uniquely determined by the following relations:

(24)

(ξ ◦ η)(a⊗ b)(u) = ε(bu)a,

ξ(xy)(u) = ξ(x)(u1)ξ(y)(u2),

ξ(S(x))(u) = ε(ξ(x)(u−)u+).

The datum (A,U•, ξ) fulfils the following universal property. Let (A,H)
be a commutative Hopf algebroid and f : H → U∗ an A ⊗ A-algebra
map satisfying (12), where the A ⊗ A-algebra structure of U∗ is given
by the convolution product and the unit is a ⊗ b 7→ [u 7→ ε(bu)a]. Then

the unique map f̂ : H → U• given by the universal property of U• as a
coring becomes a morphism of commutative Hopf algebroids.

Proof: Set Ae := A⊗A, the enveloping algebra, which we consider as a
commutative Hopf algebroid with base algebra A. By Remark 4.1, the
map f : Ae → U∗, given by the assignment a⊗ b 7→ [u 7→ ε(bu)a], yields
a unique A-coring map η : Ae → U• such that ξ ◦ η = f (recall that the
A-coring structure on Ae is the one given in Example 2.2). To introduce
the multiplication, we resort to the operation � recalled in Remark 1.1 in
the case C = D = U•. Then by Remark 4.1 again, the map h : U•�U• →
U∗, given by h(x� y)(u) = ξ(x)(u1)ξ(y)(u2) for all x, y ∈ U• and u ∈ U ,
gives rise to a unique A-coring map m : U•�U• → U• such that ξ◦m = h.
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Consider now the map λ : U∗ → U∗ defined by λ(α)(u) = ε(α(u−)u+).
Then the map f := λ ◦ ξ : U• → U∗, regarded as a morphism from U•cop

to U∗ (see Remark 1.2), induces by Remark 4.1 a unique A-coring map
S : U•cop → U• such that ξ ◦ S = f = λ ◦ ξ.

So far, we have defined a map η, a multiplication m, and a map S
satisfying the relations in (24). Let us check that these maps convert U•
into a commutative Hopf algebroid. One proves that, for a, b ∈ A and
x, y, z ∈ U•, the elements of the form

xy − yx, η(a⊗ b)x− axb, (xy)z − x(yz),

S(xy)−S(y)S(x), S(1U•)−1U• , S2(x)− x, S(x1)x2−η(1⊗ ε(x))

span anA-bimodule J which is a coideal of U• because (π⊗Aπ)∆(J ) = 0
and ε(J ) = 0, where π : U• → U•/J denotes the canonical projection
on the quotient. Moreover, it is contained in Ker(ξ) so that J = 0 in
view of Lemma 4.4. This proves that all the elements displayed above
vanish in U•. As a consequence, we get in addition that

• U• is commutative.
• The A-coring structure of U• is the one induced by η. Furthermore,

we deduce that η(a ⊗ b) = a1U•b, where 1U• := η(1 ⊗ 1). Thus it
follows easily that η(a⊗b)η(a′⊗b′) = η(aa′⊗bb′) for every a, b ∈ A.
Note also that 1U•x = η(1⊗ 1)x = x, so that m is unital.
• ∆ and ε are morphisms of algebras, since both m and η are mor-

phisms of A-corings.
• s, t are algebra maps as η is.

The compatibility of S with s and t follows from

S(η(a⊗ b)) = S(a1U•b)
(∗)
= bS(1U•)a = b1U•a = η(b⊗ a),

where in (∗) we used that S : U•cop → U•. Summing up (A,U•) is an
object in CHAlgdA.

Now let us check that (−)
•

is compatible with the morphisms. To
this end, let (A,H) be a commutative Hopf algebroid and f : H → U∗
an Ae-algebra map satisfying (12). The universal property of U• yields

a unique map f̂ : sHt → U• of A-corings such that ξ ◦ f̂ = f . By the

trick we used above, the elements f̂(1H) − 1U• and f̂(x)f̂(y) − f̂(xy)
for x, y ∈ H vanish in U• because they generate a coideal J which
is contained in Ker(ξ). We just point out that, by A-bilinearity of the

involved maps, ξ ◦ f̂ ◦ ηH = ξ ◦ ηU• and hence the equality of the coring

maps f̂ ◦ ηH = ηU• . Summing up, we showed that (id, f̂) is a morphism
of commutative bialgebroids. Since the compatibility with the antipodes



Diff and Int for Hopf and Lie Algebroids 37

comes for free, we conclude that f̂ is a morphism of commutative Hopf
algebroids.

Let (idA, φ) : (A,U1)→ (A,U2) be a morphism of cocommutative Hopf
algebroids. Apply the previous construction to f = φ∗ ◦ ξ2, once it is
observed that ξ2 is a morphism of A-rings in view of (24), that φ∗ is
so as well by a direct computation and that f satisfies (12) (see also

Remark 4.2). As a consequence f̂ , which is φ• by definition, becomes
a morphism of commutative Hopf algebroids. This leads to the stated
functor and finishes the proof.

Remark 4.15. Let (A,U) be a cocommutative Hopf algebroid over k and
consider both duals (A,U◦) and (A,U•) as commutative Hopf algebroids
over k.

(1) In view of the second claim in Theorem 4.14 and of (12), the canon-
ical map ζ : U◦ → U∗ given in (13) induces a unique morphism of

commutative Hopf algebroids ζ̂ : U◦ → U• such that ξ ◦ ζ̂ = ζ. If

A is a field, then ζ̂ is an isomorphism of Hopf algebras.
(2) If the underlying right A-module of U is finitely generated and

projective, then the map ζ̂ induces an isomorphism of commutative
Hopf algebroids (A,U◦) and (A,U•) (see also Remark 4.11).

(3) Consider an A-ring R and the map ψ : R∗⊗AR∗ → (R⊗AR)∗ given
by ψ(f ⊗A g)(r ⊗A r′) = f(g(r)r′). Given an A-coring C and an
A-bimodule map f : C → R∗ satisfying (12), for every x ∈ Ker(f)
and for all r, r′ ∈ R we have

0 = f(x)(rr′)
(12)
= ψ(f(x1)⊗A f(x2))(r ⊗A r′), 0 = f(x)(1R)

(12)
= ε(x).

Thus ε(Ker(f)) = 0. Moreover, if we assume ψ to be injective, we
also have (f ⊗A f)(∆(Ker(f))) = 0. These two equalities are very
close but not sufficient to claim that Ker(f) is a coideal of C. This
would be useful in the event that C = R• and f = ξ to deduce
that ξ is injective by Lemma 4.4.

The fact that Ker(f) is a coideal of C can be obtained under

a further assumption as follows. Write f as f̃ ◦ π, where π : C →
C/Ker(f) is the canonical projection and f̃ : C/Ker(f) → R∗ is

the obvious induced map. Then (f̃⊗A f̃)(π⊗Aπ)(∆(Ker(f))) = 0.

Thus, if we assume that f̃ ⊗A f̃ is injective, we can conclude that
(π ⊗A π)(∆(Ker(f))) = 0.

We finish this section with the following useful lemma.
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Lemma 4.16. Let (A,H) be a commutative Hopf algebroid and (A,U)
a cocommutative one. Then, there is a bijective correspondence between
the following sets of data:

(i) morphisms f̂ : H → U• of commutative Hopf algebroids;
(ii) morphisms f : H → U∗ of Ae-algebras satisfying (12);

(iii) morphisms h : U → ∗H of A-rings satisfying for all a, b ∈ A, u ∈ U ,
and x, y ∈ H

(25) h(u)(η(a⊗ b)) = ε(bu)a and h(u)(xy) = h(u1)(x)h(u2)(y).

Proof: From (ii) to (i) we go through the second part of Theorem 4.14.

From (i) to (ii) we compose f̂ with the canonical map ξ, which by (24)
is a morphism of Ae-algebras and satisfies (12). The correspondence is
bijective because of the universal property of U•. A direct computation
shows that we have a correspondence between A-bimodule maps f : H →
U∗ satisfying (12) and A-ring maps h : U → ∗H (see Remark 4.2). Thus
the correspondence between (ii) and (iii) is given by h(u)(x) = f(x)(u)
for all x, y ∈ H and u ∈ U , since relations (25) correspond to f being an
Ae-algebra map.

Remark 4.17. Let (A,L) be a Lie–Rinehart algebra and set (A,U) =
(A,VA(L)) and (A,H) = (A,VA(L)

•
) in Lemma 4.16. So, corresponding

to the identity morphism of commutative Hopf algebroids idVA(L)• , there
is a morphism of A-rings i : VA(L)→ ∗(VA(L)•) satisfying relations (25).
On generators it is explicitly given by:

(26) i : VA(L) // ∗(VA(L)•), (ιL(X) � // [z � // ξ(z)(ιL(X))]).

5. Differentiation in the Hopf algebroid framework

Given a commutative algebra A, the assignment that associates every
A-moduleM with the space Derk(A,M) of k-linear derivations on A with
coefficients in M gives a representable functor Derk(A,−) : ModA → Set
whose representing object is the so-called module of Kähler differentials
(or simply Kähler module) Ωk(A). In this section we are going to explore
these facts in the Hopf algebroid framework. In addition, we will see how
derivations on Hopf algebroids with coefficients in the base algebra are
related to Lie–Rinehart algebras and provide us with a contravariant
functor L : CHAlgdA → LieRinA, called the differential functor. This
functor can be seen as the algebraic counterpart of the construction of
a Lie algebroid from a Lie groupoid. Analysing the case of split Hopf
algebroids we will come across a construction described in [8] for affine
group k-scheme actions.
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5.1. Derivations with coefficients in modules. Next we fix a com-
mutative Hopf algebroid (A,H). All modules overH are right H-modules
and with central action, that is, the left action is the same as the right
action, in the sense that m.u = um, for every u ∈ H and m ∈M , a right
H-module. Let us denote by ModH the category of H-modules and their
morphisms. When we restrict to A via the unit map η, we will denote
by Ms and Mt the distinguished A-modules resulting from MH. In par-
ticular, for HH this means that we are considering Hs as an A-algebra
via the source map s, while Ht is an A-algebra via the target map t.

Definition 5.1. Let p : A → H and ϕ : H → H be algebra morphisms
and MH be an H-module. Set Mϕ := ϕ∗(M), the H-module obtained
by restriction of scalars via ϕ, i.e., m · u = m.ϕ(u) for all m ∈ M,u ∈
H. It is assumed to be an A-module via further restriction of scalars:
m · a = m.ϕ(p(a)). We define the following right H-module:

DerA(Hp,Mϕ) := {δ ∈ HomA(Hp,Mϕp) | δ(uv) = δ(u) · v + δ(v) · u
= δ(u).ϕ(v) + δ(v).ϕ(u) for all u, v ∈ H}

withH-action given by (δv)(u)=δ(u)·v for all u,v∈H, δ∈DerA(Hp,Mϕ).

Remark 5.2. Notice that the condition δ ∈ HomA(Hp,Mϕp) in the defi-
nition of DerA(Hp,Mϕ) in Definition 5.1 means that

δ(up(a)) = δ(u).ϕ(p(a))

for all a ∈ A, u ∈ H. Moreover, since the condition δ(uv) = δ(u) · v +
δ(v) · u for all u, v ∈ H implies that δ(1H) = 0, we have that δ(p(a)) =
δ(1H).ϕ(p(a)) = 0 for all a ∈ A, whence δ ◦ p = 0.

As a matter of notation, if we have p : A → H, an algebra map,
f : Ht → Hp, and g : Hs → Hp, two A-algebra maps, and δ : Hs → Mp

and λ : Ht →Mp, two A-linear morphisms, then we will set

(27)
(f ∗ g)(u) := f(u1)g(u2), (f ∗ δ)(u) := δ(u2).f(u1),

and (λ ∗ g)(u) := λ(u1).g(u2)

for every u ∈ H. Notice that the compatibility conditions with A are
required to have that every ∗-product above is well defined.
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Lemma 5.3. Let p, q : A→ H be algebra morphisms. Also let γ : Hq →
Hp, ϕ, β : Ht → Hp, and ψ, α : Hs → Hp be A-algebra morphisms. These
induce H-module morphisms

DerA(Ht,Mϕ) // DerA(Ht,Mϕ∗ψ)

δ
� // δ ∗ ψ,

DerA(Hs,Mα) // DerA(Hs,Mβ∗α)

δ � // β ∗ δ,

DerA(Hp,Mϕ) // DerA(Hq,Mϕγ)

δ � // δ ◦ γ.

(28)

Proof: The proof is simply a matter of checking that the assignments
are well defined and H-linear. Let us do this for the upper left one and
leave the others to the reader.

By definition (27) we have that (δ∗ψ)(u) = δ(u1).ψ(u2) for all u ∈ H.
For every a ∈ A, u, v ∈ H, we may compute directly

(δ ∗ ψ)(uv) = δ(u1).ϕ(v1)ψ(u2)ψ(v2) + δ(v1).ϕ(u1)ψ(u2)ψ(v2)

= (δ ∗ ψ)(u).(ϕ ∗ ψ)(v) + (δ ∗ ψ)(v).(ϕ ∗ ψ)(u),

(δ ∗ ψ)(ut(a)) = (δ ∗ ψ)(u).(ϕ ∗ ψ)(t(a)) + (δ ∗ ψ)(t(a)).(ϕ ∗ ψ)(u)

= (δ ∗ ψ)(u).(ϕ ∗ ψ)(t(a)) + δ(1H).ψ(t(a))(ϕ ∗ ψ)(u)

= (δ ∗ ψ)(u).(ϕ ∗ ψ)(t(a)),

((δv) ∗ ψ)(u) = (δv)(u1).ψ(u2) = δ(u1).vψ(u2)

= (δ ∗ ψ)(u).v = ((δ ∗ ψ).v)(u),

and this concludes the required checks.

Remark 5.4. Notice that the last morphism in (28) is a particular in-
stance of a more general result, claiming that for A-algebras p : A → H
and q : A → K every A-algebra morphism φ : H → K induces a natu-
ral transformation φ∗(DerA(K,M)) → DerA(H, φ∗(M)), (δ 7→ δ ◦ φ) in
H-modules.

Corollary 5.5. Let M be an H-module. For every p, q ∈ {s, t}, we set:

DerA(Hp,Mq) := DerA(Hp,Mqε) and

Derk
p(H,M) := DerA(Hp,MidH) = DerA(Hp,M).
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Then we have the following isomorphisms of H-modules:

Derk
t(H,M)

∼= // DerA(Ht,Ms)

δ � // δ ∗ S
γ ∗ idH γ,

�oo

Derk
s(H,M)

∼= // DerA(Hs,Mt),

δ
� // S ∗ δ

idH ∗γ γ,�oo

DerA(Hp,Mq)
∼= // DerA(Hq,Mq)

δ
� // δ ◦ S

γ ◦ S γ.�oo

(29)

Proof: Straightforward.

Let us denote by I := Ker(ε) the augmentation ideal of H. For every
p ∈ {s, t}, we have that u− p(ε(u)) ∈ I for all u ∈ H and hence

(30) v(u− p(ε(u))) + I2 = p(ε(v))(u− p(ε(u))) + I2

in I/I2 for all v ∈ H. We can define the surjective map associated to I

Hp
πp // I

I2

u � // (u− p(ε(u)) + I2)

which enjoys the following properties.

Lemma 5.6. Consider I/I2 as an H-module via (30). Then, for every
p ∈ {s, t} and u, v ∈ H, the map πp satisfies

(31) πp ◦ p = 0, πp(uv) = πp(u) p(ε(v)) + p(ε(u))πp(v).

In particular, πp ∈ Derk
p(H, I/I2) = DerA(Hp, (I/I2)p). Furthermore,

for every u, v ∈ H, we have

u1 ⊗A u2π
s(v) = u⊗A πs(v) ∈ sHt ⊗A s(I/I2),

πt(v)u1 ⊗A u2 = πt(v)⊗A u ∈ (I/I2)t ⊗A sHt.
(32)
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Moreover, the maps

ψs : sHt //
sHt ⊗A s

(
I
I2

)
, [u � // u1 ⊗A πs(u2)];

ψt : sHt //
(
I
I2

)
t

⊗A sHt, [u � // πt(u1)⊗A u2]

(33)

are well defined left and right A-module morphisms, respectively.

Proof: The properties in (31) follow easily by the definition of πp. Con-
cerning (32), we have

u1⊗Au2π
s(v)

(30)
= u1⊗As(ε(u2))πs(v)=u1t(ε(u2))⊗Aπs(v)=u⊗A πs(v),

πs(v)u1⊗Au2
(30)
= πs(v)t(ε(u1))⊗Au2 =πs(v)⊗As(ε(u1))u2 =πs(v)⊗A u.

It is now clear that Derk
p(H, I/I2) = DerA(Hp, (I/I2)p) and that πp

belongs to this set. As a consequence, πp ∈ HomA(Hp, ((I/I2)p), whence
it makes sense to define ψs :=(sHt⊗Aπs)◦∆ and ψt :=(πt⊗AsHt)◦∆.

Now we show that, for every p, q ∈ {s, t}, DerA(Hp, (−)q) : ModH →
ModH is a kind of a representable functor.

Lemma 5.7. Given p, q, r ∈ {s, t} with p 6= q and M an H-module.
Then there is a natural isomorphism

DerA(Hp,Mq)
∼= // HomA

((
I
I2

)
p

,Mq

)
δ � // δ := [πp(u) � // δ(u)]

f ◦ πp f�oo

(34)

of H-modules.

Proof: First note that ε ∈ HomA(Hp, A) so that it makes sense to con-
sider the following diagram.

(35) Hp ⊗A Hp
mult //

ε⊗AH+H⊗Aε
// Hp

πp //
(
I
I2

)
p

.

Let us check that it is a coequalizer of A-modules. Let N be an A-module
and let δ ∈ HomA(Hp, N) such that uv − up(ε(v)) − p(ε(u))v ∈ Ker(δ)
for every u, v ∈ H.

0 // Ker(πp) // Hp
πp //

(
I
I2

)
p

// 0.

If u ∈ Ker(πp) (i.e., u− p(ε(u)) ∈ I2), then δ(u)
(δp=0)

= δ(u− p(ε(u))) ∈
δ(I2) ⊆ Ip(ε(I)) = 0 so that δ factors through a unique map δ : I/I2 →
N such that δ ◦ πp = δ.
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On the other hand, by Lemma 5.6, the map πp coequalizes the parallel
pair in the diagram above. Thus (35) is a coequalizer as claimed. Now,
for N = Mq it is clear that the maps δ ∈ HomA(Hp, N) coequalizing
the parallel pair in (35) are exactly the elements in DerA(Hp,Mq) so

that they bijectively correspond to the elements in HomA

(( I
I2

)
p
,Mq

)
by

the universal property of the coequalizer. This correspondence is clearly
H-linear and natural in M .

5.2. The Kähler module of a Hopf algebroid. Next, we investigate
the Kähler module of H and construct the universal derivation. The
linear dual of this module with values in the base algebra will have a
Lie–Rinehart algebra structure. This construction can be seen as the
algebraic counterpart of the geometric construction of a Lie algebroid
from a given Lie groupoid.13 If the Hopf algebroid we start with is a
split one, then we show that this construction already appeared in the
setting of affine group k-scheme actions [8]; see also Appendix B for
more details.

Keep the above notations. For instance, the underlying A-modules of
the H-module (I/I2) are denoted by (I/I2)p = p(I/I2), for every p ∈
{s, t}.
Proposition 5.8. For a Hopf algebroid (A,H) and a H-module M , there
is a natural isomorphism

Derk
s(H,M)

∼= // HomH

(
sHt ⊗A s

(
I
I2

)
,M

)
δ � // [u⊗A πs(v) � // uS(v1)δ(v2)]

[u � // u1 f(1⊗A πs(u2)] f�oo

of H-modules.

Proof: It follows from Corollary 5.5, Lemma 5.7, and the usual hom-
tensor adjunction.

Corollary 5.9. Let (A,H) be a Hopf algebroid. Then the Kähler mod-
ule ΩsA(H) of H with respect to the source map is, up to a canonical
isomorphism, given by:

ΩsA(H)∼=sHt ⊗A s

(
I
I2

)
, (ψs : Hs // ΩsA(H), [u

� // u1⊗Aπs(u2)]),

where ψs is the morphism of equation (33) and now becomes the universal
derivation.

13In Appendix A.3 we will review the latter construction, from a slightly different

point of view.
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Proof: It is clear that, if we take M := sHt⊗A s

( I
I2

)
in Proposition 5.8,

then the map corresponding to f := id is exactly the morphism ψs so
that ψs ∈ Derk

s
(
H, sHt ⊗A s

( I
I2

))
.

Remark 5.10. The analogue of Corollary 5.9 holds for t as well, in
the sense that we have an isomorphism of H-modules Derk

t(H,M) ∼=
HomH((I/I2)t ⊗A sHt,M) which makes ΩtA(H) ∼= (I/I2)t ⊗A sHt the
Kähler module with respect to the target. The universal derivation turns
out to be the morphism ψt of (33).

Next, we give another example of a Lie–Rinehart algebra attached to
a given Hopf algebroid. Recall that the A-coring structure on H is given
on the bimodule sHt and that a leftH-comodule is a left A-module N to-
gether with a coassociative and counital left A-linear coaction ρN : AN →
sHt⊗AAN . One can consider the distinguished leftH-comodule (sH,∆).
The usual adjunction between sHt⊗A− : AMod→ HComod and the for-
getful functor O : HComod→ AMod leads to a bijection

(36) θ : ∗H // EndH(H), (α � // [u � // u1t(α(u2))]),

where EndH(H) denotes the endomorphism ring of the left H-comod-
ule (sH,∆). It is, in fact, an A-ring via the ring map

A // EndH(H), (a
� // [a · idH : u

� // ut(a)]).

As a consequence, there exists a unique A-ring structure on ∗H such that
θ becomes an A-ring homomorphism and it is explicitly given by

A // ∗H, (a � // [u � // ε(u)a]),

α ∗ β : ∗H // A, (u
� // α(u1t(β(u2))).

(37)

Remark 5.11. Let us make the following observations.

(1) Notice that the ∗H of equation (37) is not the convolution algebra
of the A-coring sHt as defined in (4), but it is its opposite.

(2) The A-bimodule structure on ∗H is explicitly given, for all a, b ∈ A,
u ∈ H, by

(a ·α · b)(u) = ((aε) ∗α ∗ (bε))(u) = aε(u1t(α(u2t(bε(u3))))) = aα(ut(b)).

(3) One may also consider the adjunction between −⊗AsHt : ModA →
ComodH and the forgetful functor O : ComodH → ModA. By re-
peating the foregoing procedure for the distinguished H-comod-
ule (Ht,∆) one may endow H∗ with an A-ring structure with prod-
uct

(38) (f ∗′ g)(u) = f(s(g(u1))u2).
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However, this turns out to be isomorphic as an A-ring to ∗H
via ∗H → H∗, (f 7→ f ◦ S) in light of (2) of Remark 2.1. Indeed,
for all f, g ∈ ∗H, u ∈ H we have ε(S(u)) = ε(u) and

((f ◦ S)∗′(g ◦ S))(u)
(38)
= (f ◦ S)(s((g ◦ S)(u1))u2)=f(S(u2)t(g(S(u1))))

= f(S(u)1t(g(S(u)2)))
(37)
= ((f ∗ g) ◦ S)(u).

In this direction, notice that Derk
s(H,H) admits a Lie k-algebra

structure given by the commutator bracket. We can consider the (left)

A-submodule of EndH(H) defined by

DerH
s(H,H) := EndH(H) ∩Derk

s(H,H)

= {δ ∈ Homk(H,H) | δ ◦ s = 0, δ(uv) = δ(u)v + uδ(v),

∆(δ(u)) = u1 ⊗A δ(u2) for every u, v ∈ H},

which inherits from Derk
s(H,H) a Lie k-algebra structure.

From now on, we will denote by Aε the H-module with underlying
A-module A and action via the algebra map ε. Notice that (with the
conventions introduced at the beginning of §5.1) As = At = A, since we
know that ε ◦ s = ε ◦ t = id. Thus, there is only one A-module structure
on Derk

s(H, Aε), given by

a δ : H // Aε, (u
� // aδ(u)).

Lemma 5.12. The isomorphism θ of equation (36) induces an isomor-
phism θ′ of A-modules which makes commutative the following diagram:

∗H θ // EndH(H)

∗
(
I
I2

)
∼= //

∗(πs)
66

Derk
s(H, Aε)

θ′ //
?�

OO

DerH
s(H,H)
?�

OO

Moreover, Derk
s(H, Aε) admits a Lie k-algebra structure with bracket

(39) [δ, δ′] :=δ∗δ′−δ′∗δ :H //Aε, (u
� // δ(u1t(δ

′(u2))−δ′(u1t(δ(u2))),

which turns θ′ into an isomorphism of Lie k-algebras, and this structure
can be transferred to ∗

( I
I2

)
in a unique way making ∗(πs) an inclusion

of Lie k-algebras.
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Proof: Note that θ−1(δ) = ε ◦ δ for every δ ∈ EndH(H) so that it is
clear that θ−1(DerH

s(H,H)) ⊆ Derk
s(H, Aε). On the other hand, given

δ ∈ Derk
s(H, Aε), for every a ∈ A and u, v ∈ H, we have

θ(δ)(s(a)) = s(a)1t(δ(s(a)2)) = s(a)t(δ(1)) = 0,

∆(θ(δ)(u)) = ∆(u1t(δ(u2))) = u1 ⊗A u2t(δ(u3)) = u1 ⊗A θ(δ)(u2),

and

θ(δ)(uv) = u1v1t(δ(u2v2)) = u1v1t(δ(u2)ε(v2) + ε(u2)δ(v2))

= u1t(δ(u2))v1t(ε(v2)) + u1t(ε(u2))v1t(δ(v2))

= θ(δ)(u)v + uθ(δ)(v).

Therefore, θ(Derk
s(H, Aε)) ⊆ DerH

s(H,H). It is now clear that θ in-
duces an isomorphism

θ′ : Derk
s(H, Aε) // DerH

s(H,H)

making the right square diagram in the statement commutative. Since
θ(δ ∗ δ′) = θ(δ) ◦ θ(δ′) and DerH

s(H,H) is a Lie subalgebra of EndH(H)
we get that Derk

s(H, Aε) becomes a Lie subalgebra of ∗H with bracket
defined as in the statement. Since Derk

s(H, Aε) = Derk
A(Hs, As), we

can apply Lemma 5.7 to complete the diagram with the commutative
triangle in the statement.

In contrast with the Hopf algebra case, the Lie algebra Derk
s(H, Aε)

admits a richer structure, namely a Lie–Rinehart algebra one. The an-
chor map is provided as follows.

Proposition 5.13. Let (A,H) be a Hopf algebroid. Then we have that
the pair (A,Derk

s(H, Aε)) is a Lie–Rinehart algebra with anchor map

Derk
s(H, Aε)

ω:=Derk
s(t,Aε) // Derk(A)

δ
� // δ ◦ t.

(40)

Proof: The map ω is clearly a well defined A-linear map. Let us check
that it is also a Lie k-algebra map. Take δ, δ′ ∈ Derk

s(H, Aε) and an
element a ∈ A, then

(δ ∗ δ′)(t(a))
(37)
= δ(t(a)1t(δ

′(t(a)2)) = δ(t(δ′(t(a)))) = (δ ◦ t)((δ′ ◦ t)(a))

so that (δ ∗ δ′) ◦ t = (δ ◦ t) ◦ (δ′ ◦ t) and hence

ω([δ, δ′]) = [δ, δ′] ◦ t=(δ ∗ δ′−δ′ ∗ δ) ◦ t=(δ ◦ t)◦(δ′ ◦ t)−(δ′ ◦ t) ◦ (δ ◦ t)
= ω(δ)ω(δ′)− ω(δ′)ω(δ) = [ω(δ), ω(δ′)].
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Therefore, ω([δ, δ′]) = [ω(δ), ω(δ′)]. We still have to show that ω satisfies
equation (7). So take a ∈ A and δ, δ′ as above. Then, for any element u ∈
H, we have

[δ, aδ′](u) = δ(u1t(aδ
′(u2)))− aδ′(u1t(δ(u2)))

= δ(u1t(a)t(δ′(u2)))− a(δ′ ∗ δ)(u)

= δ(t(a))ε(u1t(δ
′(u2))) + ε(t(a))δ(u1t(δ

′(u2))− a(δ′ ∗ δ)(u)

= δ(t(a))δ′(u) + a(δ ∗ δ′)(u)− a(δ′ ∗ δ)(u)

= a(δ ∗ δ′ − δ′ ∗ δ)(u) + δ(t(a))δ′(u)

= a[δ, δ′](u) + ω(δ)(a)δ′(u).

This implies that [δ, aδ′] = a[δ, δ′] +ω(δ)(a)δ′ and the proof is complete.

Remark 5.14. One can perform another construction of a Lie–Rinehart
algebra from a given Hopf algebroid (A,H) by interchanging s with t;
however, the result will be the same up to a canonical isomorphism. In
fact, by resorting to (2) of Remark 2.1, Corollary 5.5, and (3) of Re-
mark 5.11, one may prove that there is an isomorphism of Lie–Rinehart
algebras

Derk
s(H, Aε)

∼= // Derk
t(H, Aε), (δ � // δ ◦ S),

where the anchor map for the latter is ω′ := Derk
t(s,Aε).

Example 5.15. Let (H,m, u,∆, ε, S) be a commutative Hopf k-algebra
and let (A,µ, η, ρ) be a left H-comodule commutative algebra, that is:
an algebra in the monoidal category of left H-comodules which is com-
mutative as a k-algebra. By the left-hand version of (2) in Example 2.2,
we know that H := H ⊗ A is a split Hopf algebroid with its canonical
algebra structure (i.e., (x⊗ a)(y ⊗ b) = xy ⊗ ab) and

ηH(a⊗ b) = a−1 ⊗ a0b, ∆H(x⊗ a) = (x1 ⊗ 1)⊗A (x2 ⊗ a),

εH(x⊗ a) = ε(x)a, S(x⊗ a) = S(x)a−1 ⊗ a0.

Notice that tensoring by A over k induces an anti-homomorphism of Lie
algebras

τ : Derk(H,kε) // Derk
t(H, AεH); [δ � // δ ⊗A].



48 A. Ardizzoni, L. El Kaoutit, P. Saracco

Indeed,

(δ ⊗A)(xy ⊗ ab)=δ(xy)ab = δ(x)ε(y)ab+ ε(x)δ(y)ab

=(δ ⊗A)(x⊗ a)εH(y ⊗ b)+εH(x⊗ a)(δ ⊗A)(y ⊗ b),
[τ(δ), τ(δ′)](x⊗ a)=(τ(δ) ∗ τ(δ′))(x⊗ a)− (τ(δ′) ∗ τ(δ))(x⊗ a)

=τ(δ)(s(τ(δ′)(x1 ⊗ 1))(x2 ⊗ a))

− τ(δ′)(s(τ(δ)(x1 ⊗ 1))(x2 ⊗ a))

=δ′(x1)τ(δ)(x2 ⊗ a)− δ(x1)τ(δ′)(x2 ⊗ a)

=δ′(x1)δ(x2)a−δ(x1)δ′(x2)a=τ(δ′ ∗ δ−δ ∗ δ′)(x⊗a).

Consider now the composition

(41) Derk(H,kε)
τ // Derk

t(H, AεH)
ω // Derk(A),

where ω(δ) := Derk
t(s,AεH)(δ) = δ ◦ s is the anchor map of the Lie–

Rinehart algebra Derk
t(H, AεH). For every δ ∈ Derk(H,kε), it follows

by a direct check that for all a ∈ A

ω(τ(δ))(a) = τ(δ)(a−1 ⊗ a0) = δ(a−1)a0.

Let us see now that the anti-homomorphism of Lie algebras of equa-
tion (41) already appeared in [8] in geometric terms. To this end, no-
tice that H and A give rise to an affine k-group G := CAlgk(H,−)
and an affine k-scheme X := CAlgk(A,−), respectively. Hence the map
in (41) becomes the anti-homomorphism of Lie algebras Lie(G)(k) →
Derk(Ok(X )) (see [8, II, §4, no 4, Proposition 4.4, p. 212]). For the sake
of completeness, we include such a construction in Appendix B and we
show that these two anti-homomorphisms of Lie algebras are essentially
the same. What we have just shown is that the map (41) descends from
the anchor map of the Lie–Rinehart algebra Derk

t(H, AεH) of (A,H).

5.3. The differential functor and base change. Below we show
that the construction performed in Proposition 5.13 is functorial. We
also discuss the compatibility of this construction with the base ring
change.

Proposition 5.16. Fix a commutative algebra A. Then the correspon-
dence

L : CHAlgdA // LieRinA, (H // L (H) := Derk
s(H, Aε))

establishes a contravariant functor from the category of commutative
Hopf algebroids with base algebra A to the category of Lie–Rinehart al-
gebras over A.
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Proof: Let φ : H → K be a morphism in CHAlgdA. We need to check
that the map

(42) Lφ : L (K) // L (H), (δ � // δ ◦ φ)

is a morphism of Lie–Rinehart algebras. This map is clearly an A-linear
and a Lie algebra morphism. Thus, we only need to check that it is com-
patible with the anchor, which is immediate as the following argument
shows. For a ∈ A and δ ∈ L (H), we have ω(Lφ(δ)) = Lφ(δ) ◦ tH =
δ ◦ φ ◦ tH = δ ◦ tK = ω(δ).

The functor L will be referred to as the differential functor. Notice
that since the notion of a morphism of Lie–Rinehart algebras over dif-
ferent algebras is not always possible (mainly due to the problem of con-
necting Derk(A) and Derk(B) in a natural way), the differential functor
cannot be defined on maps of Hopf algebroids with different base alge-
bras. Let us analyse this situation closely.

Let (φ0, φ1) : (A,H)→ (B,K) be a morphism of Hopf algebroids and
consider the associated extended morphism of Hopf algebroids (id, φ) :
(B,B⊗AH⊗AB)→ (B,K), where φ(b⊗A u⊗A b′) = sK(b)φ1(u)tK(b′).
Also define the map κ : H → B⊗AH⊗AB, which maps u to 1⊗Au⊗A1,
and note that φ ◦ κ = φ1. Denote by Bφε the H-bimodule B with action
given by the algebra extension φ0ε : H → B.

In what follows, by abuse of notation, we will denote by ∗f the pre-
composition with a morphism f , i.e., the map g 7→ g ◦ f . The domain
and codomain of this map will be clear from the context. Similarly, we
will use the notation ∗f for g 7→ f ◦ g. In this way, we have the following
linear maps:

∗(φ0) :=Derk
s(H, φ0) : Derk

s(H, Aε) // Derk
s(H, Bφε)

(δ � // φ0 ◦ δ),

Lφ=∗φ :=Derk
s(φ,B) : Derk

s(K, Bε) // Derk
s(B ⊗A H⊗A B,Bε)

(δ
� // δ ◦ φ),

∗κ :=Derk
s(κ,B) : Derk

s(B ⊗A H⊗A B,Bε) // Derk
s(H, Bφε)

(δ � // δ ◦ κ),

∗t :=Derk
s(t, B) : Derk

s(H, Bφε) // Derk(A,B)

(γ
� // γ ◦ t).
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Proposition 5.17. Let (φ0, φ1) : (A,H)→ (B,K) be as above. Then we
have a commutative diagram of A-modules

(43)

Derk
s(K, Bε)

∗φ //

∗(φ1)

))

Derk
s(B⊗AH⊗AB,Bε)

ω //

∗κ

��

Derk(B)

∗(φ0)

��
Derk

s(H, Aε)
∗(φ0) // Derk

s(H, Bφε)
∗t // Derk(A,B)

where the right-hand square is Cartesian. Moreover, ∗φ is a map of Lie–
Rinehart algebras.

Proof: We only show that the square is Cartesian. Define τ : B → B⊗A
H⊗A B : b 7→ 1⊗A 1⊗A b. Then κ(t(a)) = 1⊗A t(a)⊗A 1 = 1⊗A 1⊗A
φ0(a) = τ(φ0(a)) so that κ◦t = τ ◦φ0. Note that ω = ∗τ := Derk(τ,B) so
that ∗t◦ ∗κ = ∗(κ ◦ t) = ∗(τ ◦ φ0) = ∗(φ0)◦ ∗τ and the square commutes.
Hence we have the diagonal map

(∗κ,∗τ) : Derk
s(B⊗AH⊗AB,Bε) // Derk

s(H, Bφε) ×
Derk(A,B)

Derk(B),

(δ � // (∗κ(δ), ∗τ(δ))).

Let us check that this map is invertible. Take δ ∈ Derk
s(B ⊗A H ⊗A

B,Bε). Then

δ(b⊗A u⊗A b′) = bδ(κ(u)τ(b′)) = bδ(κ(u))b′ + bφ0(ε(u))δ(τ(b′))

so that δ(b⊗A u⊗A b′) = bδ1(u)b′ + bφ0(ε(u))δ2(b′), where we set δ1 :=
δ ◦κ = ∗κ(δ) and δ2 := δ ◦ τ = ∗τ(δ). Thus the map (∗κ, ∗τ) is injective.
It is also surjective as any pair (δ1, δ2) in its codomain is an image of

δ :B⊗AH⊗AB // Bε, (b⊗Au⊗Ab′ � // bδ1(u)b′+bφ0(ε(u))δ2(b′)).

This is a well defined map thanks to the equality ∗t(δ1) = ∗(φ0)(δ2).
Furthermore, it is clear that δ◦s = 0 and one shows that δ is a derivation
as follows. For every b, b′, c, c′ ∈ B and u, v ∈ H, we have

δ((b⊗Au⊗Ab′)(c⊗Av⊗Ac′))=δ(bc⊗A uv ⊗A b′c′)
=bcδ1(uv)b′c′ + bcφ0(ε(uv))δ2(b′c′)

=bc(δ1(u)φ0(ε(v)) + φ0(ε(u))δ1(v))b′c′

+bcφ0(ε(u))φ0(ε(v))(δ2(b′)c′ + b′δ2(c′))

=(bδ1(u)b′ + bφ0(ε(u))δ2(b′))cφ0(ε(v))c′

+bφ0(ε(u))b′(cδ1(v)c′ + cφ0(ε(v))δ2(c′))

=δ(b⊗A u⊗A b′)ε(c⊗A v ⊗A c′)
+ε(b⊗A u⊗A b′)δ(c⊗A v ⊗A c′).
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Note that ∗κ ◦ ∗φ = ∗(φ ◦ κ) = ∗(φ1) so that the triangle drawn in the
statement commutes. Since ∗φ = Lφ, we have that ∗φ is by Proposi-
tion 5.16 a morphism of Lie–Rinehart algebras and this completes the
proof.

Remark 5.18. As one can expect, there is no hope in general of obtaining
a morphism of Lie–Rinehart algebras which could relate Derk

s(K, Bε)
with Derk

s(H, Aε) in diagram (43). Even if we extended the A-mod-
ule Derk

s(H, Aε) to the B-module Derk
s(H, Aε)⊗A B, then one would

still have to endow this B-module with a Lie–Rinehart algebra structure
over B, which is not always feasible. Nevertheless, if we assume that

∗(φ0) : Derk
s(H, Aε)→ Derk

s(H, Bφε) is a split epimorphism, i.e., that
there is some map γ such that ∗(φ0) ◦ γ = id, then ∗(φ0) ◦ (γ ◦ ∗(φ1)) =
∗(φ1) = ∗κ ◦ ∗φ so that γ ◦ ∗(φ1) : Derk

s(K, Bε) → Derk
s(H, Aε) com-

pletes the diagram, but it is not clear which kind of morphism it is.

6. Integration functors in the Lie–Rinehart algebra
framework

In this section we construct functors from the category of Lie–Rinehart
algebras to the category of commutative Hopf algebroids over a fixed
commutative base algebra A. These functors are termed the integration
functors. There are in fact two ways of constructing the integration func-
tor depending on which dual we are using, that is, depending on which
contravariant functors we will use: (−)

◦
or (−)

•
. Nevertheless, as we

will see in the forthcoming section, the first one will lead (under some
conditions on the base algebra) to an adjunction only when restricted to
Galois Hopf algebroids, while the second one gives an adjunction to the
whole category of commutative Hopf algebroids.

Lemma 6.1. Let A be a commutative algebra. Then there are contravari-
ant functors

I := (−)◦ ◦ VA : LieRinA // CHAlgdA, (L // VA(L)◦),

I ′ := (−)
• ◦ VA : LieRinA // CHAlgdA, (L // VA(L)

•
)

together with a natural transformation ∇ := ζ̂VA : I → I ′.

Proof: VA is the functor of Remark 2.6, (−)
◦

and (−)
•

are those of

Proposition 3.6 and Theorem 4.14 respectively, and ζ̂ is the natural
transformation of Example 4.3.

Let (A,L) be a Lie–Rinehart algebra and consider its universal en-
veloping Hopf algebroid (A,VA(L)). Attached to this datum, there are
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then two commutative Hopf algebroids (A,VA(L)◦) and (A,VA(L)
•
) and

one can apply the differentiation functor to these objects and obtain two
more Lie–Rinehart algebras. In fact there is a commutative diagram:

(A,L)
ΘL //

Θ′L ))

(A,L (J (L)))

(A,L (J ′(L)))

L (∇L)

OO

of morphisms of Lie–Rinehart algebras, where Θ and Θ′ are natural
transformations explicitly given in Appendix A.2. The following is a
corollary of Theorem 4.12.

Proposition 6.2. Assume that ∇ of Lemma 6.1 is a monomorphism of
corings on every component. Then,

HomCHAlgdA(H,∇L) : HomCHAlgdA(H,I (L)) // HomCHAlgdA(H,I ′(L))

is a bijection for every commutative Hopf algebroid (A,H) such that
canH is a split epimorphism of A-corings and for every Lie–Rinehart
algebra (A,L).

Proof: Since∇L= ζ̂VA(L), the equivalent conditions of Theorem 4.12 hold.

In particular, CoringA(H,∇L) is bijective and hence HomCHAlgdA(H,∇L)
is injective. Moreover, consider g ∈ HomCHAlgdA(H,I ′(L)). By bijectiv-
ity of CoringA(H,∇L) there exists a f ∈ CoringA(H,I (L)) such that

ζ̂VA(L) ◦ f = g.

Since (A,H) is a commutative Hopf algebroid, its multiplication mH :
H⊗H → H factors through a A-bilinear morphism mH : H�H → H and
since ∆H and εH are algebra morphisms we get that mH is a morphism
of corings. Analogously, also mI (L) is a morphism of corings. Since f is
a morphism of corings as well, it induces a coring map f � f : H�H →
I (L)�I (L), where � is recalled in Remark 1.1. From the computation

ζ̂VA(L) ◦ f ◦mH = g ◦mH = mI ′(L) ◦ (g � g)

= mI ′(L) ◦ (ζ̂VA(L) � ζ̂VA(L)) ◦ (f � f)

= ζ̂VA(L) ◦mI (L) ◦ (f � f)

and the fact that ζ̂VA(L) is a monomorphism of corings, we get that

f ◦mH = mI (L) ◦ (f � f) so that f is multiplicative. We also have that

ζ̂VA(L)◦f ◦ηH = g◦ηH = ηI ′(L) = ζ̂VA(L)◦ηI (L) and since ηH and ηI (L)

are morphisms of corings we get as above that f ◦ ηH = ηI (L).
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Finally, since SH : Hcop → H, where Hcop has the structure as in (5),
is easily checked to be a morphism of corings, from the computation

ζ̂VA(L)◦f ◦SH=g◦SH=SI ′(L)◦g=SI ′(L)◦ζ̂VA(L)◦f= ζ̂VA(L)◦SI (L)◦f

we deduce that f ◦SH = SI (L) ◦f . We have thus proved that f is a mor-
phism of commutative Hopf algebroids and hence that HomCHAlgdA(H,∇L)
is surjective as well.

We now give a criterion for the existence of a morphism (A,L) →
(A,L (H)) of a Lie–Rinehart algebra.

Lemma 6.3. Let (A,L) be a Lie–Rinehart algebra and (A,H) a commu-
tative Hopf algebroid. Assume that there is a morphism σ̃ : L→ L (H) =
Derk

s(H, AεH) of Lie–Rinehart algebras. The map σ : VA(L)→ ∗H given
by σ ◦ ιA(a) = aεH, for every a ∈ A, and σ ◦ ιL(X) = −σ̃(X), for
every X ∈ L, is an A-ring map which satisfies the equalities of equa-
tion (25). That is, for all a, b ∈ A, u ∈ VA(L), and x, y ∈ H, we have

σ(u)(η(a⊗ b)) = εV(ιA(b)u)a and σ(u)(xy) = σ(u1)(x)σ(u2)(y).

Proof: Define φA : A→ ∗H sending a to the map aεH and φL : L→ ∗H
which sends X to −σ̃(X). By the universal property of VA(L) there
exists a unique algebra morphism σ : VA(L)→ ∗H such that σ ◦ ιA = φA
and σ ◦ ιL = φL. Since φA gives the A-ring structure of ∗H, we have that
σ is an A-ring map. Notice that

(44) σ((ιA(a)u)(x) = (aσ(u))(x)
(4)
= σ(u)(xt(a))

for all u ∈ VA(L), x ∈ H, a ∈ A. Let us check that σ fulfils (25).
To this end, let us denote by B the subset of the elements u ∈ VA(L)
such that relations (25) hold for all a, b ∈ A and x, y ∈ H. By means
of (44) it is straightforward to check that ιA(a)u, uv, 1VA(L), ιL(X) ∈ B
for every a ∈ A, X ∈ L, and u, v ∈ B. Therefore, in light of the fact
that VA(L) is generated as an A-ring by the images of ιA and ιL, we
deduce that VA(L) ⊆ B. Summing up, VA(L) = B and hence σ satisfies
relations (25), for all u ∈ VA(L).

Lemma 6.4. Let (A,L) be a Lie–Rinehart algebra with anchor map
ω :L → Derk(A) and take U = VA(L). Then there is a bijective corre-
spondence between the following sets of data:

(i) morphisms h : VA(L)→ ∗H of A-rings satisfying (25);

(ii) morphisms h̃ : L → Derk
s(H, Aε) = L (H) of Lie–Rinehart alge-

bras.
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Proof: Given h : VA(L) → ∗H as in (i), we define h̃(X) := −h(ιL(X)),

for any X ∈ L. The latter is left A-linear so that h̃(X) ∈ Derk
s(H, Aε)

in view of the following computation:

h̃(X)(xy) = −h(ιL(X))(xy)

(25)
= −h(ιL(X))(x)h(1VA(L))(y)− h(1VA(L))(x)h(ιL(X))(y)

= h̃(X)(x)ε(y) + ε(x)h̃(X)(y).

Since ιL is a right A-linear Lie algebra map and h is an A-ring mor-

phism, we get that h̃ is a right A-linear Lie algebra map, more precisely

h̃(aX) = h̃(X)a (since we are taking L as a left A-module). Moreover,
by Proposition 5.13,

ω(h̃(X))(a) = h̃(X)(t(a)) = −h(ιL(X))(t(a))

= −h(ιL(X))(1Ha)
(4)
= −(ah(ιL(X)))(1H)

= −h(ιA(a)ιL(X))(1H)
(25)
= −ε(ιA(a)ιL(X))

(9)
= ε(ιA(ω(X)(a))− ιL(X)ιA(a)) = ω(X)(a).

Conversely, start with h̃ : L → Derk
s(H, Aε) = L (H) as in (ii). By

applying Lemma 6.3, we know that there is an A-ring map h : VA(L)→
∗H as in (i). The bijectivity of the correspondence between the set of
maps as in (i) and those of (ii) is easily checked.

Remark 6.5. Let (A,H) be a Hopf algebroid and consider the canonical
map g : VA(L (H))→ ∗H, which corresponds by Lemma 6.4 to − idL (H)

(in the above notation this means that g̃ = − idL (H)). By Lemma 5.12,
we have an algebra morphism h := θ ◦ g : VA(L (H))→ Endk(H). Let us
consider the canonical injective maps

iA : A // Endk(H), (a � // [u′ � // ut(a)]),

iL (H) : L (H) // Endk(H), (δ � // [u � // u(1)t(δ(u(2)))])

of algebras and Lie algebras, respectively. Denote by V the sub-k-algebra
of Endk(H) generated by the images of iA and iL (H). The isomor-
phism stated in Lemma 5.12 shows that V is the subalgebra of the
algebra of differential operators of H generated by A and the deriva-
tions of H which are right H-colinear and kill the source map. Clearly
the maps iA and iL (H) satisfy the equalities of equation (9). Moreover,
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h◦ iL (H) = ιL (H) and h◦ iA = ιA. Therefore, h : VA(L (H))→ Endk(H)
is the unique morphism arising from the universal property of the en-
veloping algebroid and, as a consequence, we have that it factors through
the inclusion V ⊂ Endk(H). In contrast with the classical case of Lie k-al-
gebras (k is of characteristic zero), it is not clear here if the map h is
injective or not. Nevertheless, we believe that the first step in studying
the problem of integrating a Lie–Rinehart algebra involves the analysis
of the A-algebra map h.

7. Differentiation as a right adjoint functor of the
integration functor

Now that we have collected all the required constructions and no-
tions, we can extend the duality between commutative Hopf algebras
and Lie algebras given by the differential functor to the framework of
commutative Hopf algebroids, as we claimed at the very beginning of §3.

Theorem 7.1. Let us keep the notations of Lemma 6.1. There is a
natural isomorphism

HomCHAlgdA(H,I ′(L))
∼= // HomLieRinA(L,L (H)),

for any commutative Hopf algebroid (A,H) and any Lie–Rinehart alge-
bra (A,L). That is, the integration functor I ′ : LieRinA → CHAlgdop

A is
left adjoint to the differentiation functor L : CHAlgdop

A → LieRinA.

Proof: The natural isomorphism is constructed as follows. Given a mor-
phism of commutative Hopf algebroids φ : H → I ′(L) = VA(L)

•
, we

have by Lemmas 4.16 and 6.4 the following Lie–Rinehart algebra map:
Lφ : L → Derk

s(H, Aε) sending X 7→ [u 7→ −ξ(φ(u))(ιL(X))]. As was
shown in those lemmas, this is a bijective correspondence, which is clearly
a natural morphism.

Notice that, by Theorem 7.1, we always have the map

HomCHAlgdA(H,I (L))
HomCHAlgdA

(H,∇L)
// HomCHAlgdA(H,I ′(L))

∼= // HomLieRinA(L,L (H)),

(45)

induced by the natural transformation ∇ = ζ̂VA of Lemma 6.1. Under
some additional hypotheses, this becomes an isomorphism as well.
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Theorem 7.2. Let A be a commutative algebra for which the map ζR
of equation (11) is injective for every A-ring R (e.g., A is a Dedekind
domain). Then there is a natural isomorphism

HomGCHAlgdA(H,I (L))
∼= // HomLieRinA(L,L (H)),

for any commutative Galois Hopf algebroid (A,H) and Lie–Rinehart al-
gebra (A,L). That is, the integration functor I : LieRinA → GCHAlgdop

A

is left adjoint to the differentiation functor L : GCHAlgdop
A → LieRinA.

Proof: First of all, in light of Remark 3.8 we know that I (L) is a
commutative Galois Hopf algebroid, whence the statement makes sense.
Moreover, since GCHAlgdA is a full subcategory of CHAlgdA, we have
HomGCHAlgdA(H,I (L)) = HomCHAlgdA(H,I (L)). In light of Proposi-
tion 6.2, the injectivity of ζVA(L) implies that HomCHAlgdA(H,∇L) is

bijective and hence, by Theorem 7.1, (45) is a bijection as well.

Remark 7.3. Observe that in Theorem 7.2 we may replace the cate-
gory GCHAlgdA with the subcategory of CHAlgdA of all those commu-
tative Hopf algebroids whose canonical map is a split epimorphism of
corings, once we have noticed that I (L) = VA(L)◦ is always in this
category because can ◦R(χ) = idR◦ for every R. In addition, the injec-

tivity of ζR for every A-ring R can be replaced by asking ζ̂ to be either
injective or a monomorphism of corings on every component. Notice also
that these requirements on ζ̂ implies that χ is an isomorphism in view
of Theorem 4.12. Hence, by the foregoing, can is invertible and so R◦ is
a Galois coring for every R.

When we restrict to the category of commutative Hopf algebras, that
is, assuming that A is the base field k (the source is equal to the target in
such a case, since all Hopf algebroids are over k), we have the following
well known adjunction (recall from Remark 4.15(3) that I = I ′).

Corollary 7.4. There is a natural isomorphism HomCHAlgk(H,I (L)) ∼=
HomLiek(L,L (H)), for any commutative Hopf algebra H and Lie alge-
bra L. That is, the integration functor I : Liek → CHAlgop

k is left adjoint
to the differentiation functor L : CHAlgop

k → Liek.

8. Separable morphisms of Hopf algebroids

We conclude the theoretical part of the paper by finding equivalent
conditions to the surjectivity of the morphism Lφ : Derk

s(K, A) →
Derk

s(H, A) induced by a Hopf algebroid map φ : (A,H) → (A,K).
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Inspired by [1, Theorem 4.3.12], we also suggest a definition of a sep-
arable morphism between commutative Hopf algebroids based on this
characterization.

Let (A,H) be a commutative Hopf algebroid. Consider the cate-
gory ModH as in §5.1. Let us denote by RH : ModH → ModH the func-
tor given by RH(M) := Derk

s(H,M) on objects and by RH(f) = ∗f on
morphisms. Let I = Ker(ε) and set Q(H) := s(I/I2). Given a morphism
of commutative Hopf algebroids (id, φ) : (A,K) → (A,H), the universal
property of the coequalizer (35) applied to K gives a unique A-module
map Q(φ) : Q(K)→ Q(H) such that Q(φ) ◦πsK = πsH ◦φ. In this way we
get a functor

Q(−) : CHAlgdA // ModA.

Note that the morphism φ⊗A Q(φ) : K⊗A Q(K)→ H⊗A Q(H) yields a
morphism ΩsA(φ) : ΩsA(K)→ ΩsA(H) by Corollary 5.9.

Remark 8.1. We know that RH(M) ∼= HomH(ΩsA(H),M) from Propo-
sition 5.8, whence RH admits a left adjoint, namely LH = −⊗HΩsA(H).
Notice that ΩsA(H) ∼= H ⊗A Q(H) as H-modules by Corollary 5.9 and
A⊗H ΩsA(H) ∼= Q(H) as A-modules. Therefore RH preserves small col-
imits if and only if ΩsA(H) is finitely generated and projective as an
H-module, and if and only if Q(H) is finitely generated and projective
as an A-module.

Theorem 8.2. Let (id, φ) : (A,K)→ (A,H) be a morphism of commuta-
tive Hopf algebroids. Assume that Q(H) and Q(K) are finitely generated
and projective A-modules. The following assertions are equivalent:

(i) Q(φ) is split-injective.

(ii) Lφ is surjective.

(iii) Derk
s(φ,−) : Derk

s(H,−)→Derk
s(K, φ∗(−)) is surjective on each

component.

(iv) Derk
s(φ,H) : Derk

s(H,H)→ Derk
s(K,H) is surjective.

(v) H⊗K ΩsA(K)→ ΩsA(H) : h⊗K w 7→ hΩsA(φ)(w) is split-injective.

Proof: To prove the equivalence between (i) and (ii), observe that Q(φ)
is a split monomorphism of A-modules if and only if ∗(Q(φ)) : ∗(Q(H))→
∗(Q(K)) is a split epimorphism of A-modules. However, as Q(K) is
finitely generated and projective, ∗(Q(K)) is finitely generated and pro-
jective as well, and hence requiring ∗(Q(φ)) to split is superfluous. By
Lemma 5.12, the map ∗(Q(H)) → L(H) which assigns to every f the
composition f ◦ πsH is an isomorphism of A-modules. In view of the
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relation Q(φ) ◦ πsK = πsH ◦ φ and the definition (42) of Lφ we have that
the following diagram commutes

∗(Q(H))

∗(Q(φ))

��

∗(πsH) // L(H)

Lφ
��

∗(Q(K)) ∗(πsK)
// L(K)

so that ∗(Q(φ)) is an epimorphism of A-modules if and only if Lφ is. The
implications from (iii) to (ii) and (iv) are obtained by evaluating the nat-
ural transformation Derk

s(φ,−) on Aε andH respectively. To prove that
(ii) implies (iii), consider the following diagram for every M ∈ ModH.

M⊗ADerk
s(H, Aε)

id //

ςH

��

M⊗ADerA(Hs, At)
∼=

(34)
// M⊗AHomS(Q(H), At)

∼=
��

Derk
s(H,M) ∼=

(29) // Derk
A(Hs,Mt) ∼=

(34) // HomA(Q(H),Mt)

The nondashed vertical arrow is the map m ⊗A f 7→ [q 7→ mtf(q)],
which is invertible because Q(H) is finitely generated and projective. As
a result we get the dashed vertical isomorphism ςH given by m⊗A δ 7→
[u 7→ mu1tδ(u2)], which is clearly H-linear (with respect to the action of
H on M) and natural in H. This naturality implies that Derk

s(φ,M)
is an epimorphism whenever Lφ is. To show the implication from (iv)
to (ii), notice that the above naturality implies in particular thatH⊗ALφ
is an epimorphism of A-modules. Now since Lφ can be recovered from
H ⊗A Lφ by applying the functor A ⊗H −, it is an epimorphism as
well. Finally, observe that the map in (v) can be easily identified with
H⊗K Q(φ) since ΩsA(K) ∼= K⊗A Q(K) and analogously for H. Now it is
clear that (i) implies (v) and the other implication follows by applying
the functor A⊗H −, and this finishes the proof.

Remark 8.3. Assume thatH and K are ordinary commutative Hopf alge-
bras over A = k and also integral domains such that G := CAlgk(H,k)
and E := CAlgk(K,k) are connected affine algebraic k-groups. Notice
that any one of these algebras is smooth and then both Q(H) and Q(K)
are finite-dimensional k-vector spaces. Let ϕ := CAlgk(φ,k) : G → E.
By resorting to the notation of [1, 3.1], we have that dϕ = Lφ. There-
fore, in view of [1, Theorem 4.3.12], the separability of the morphism ϕ
can be rephrased at the level of commutative Hopf algebroids by re-
quiring that the morphism φ satisfies the equivalent conditions of Theo-
rem 8.2. In this way, a morphism of commutative Hopf algebroids with
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smooth total algebras may be called a separable morphism when it sat-
isfies one of the equivalent conditions of Theorem 8.2.

9. Some applications and examples

This section illustrates some of our theoretical constructions elabo-
rated in the previous sections.

9.1. The isotropy Lie algebra as the Lie algebra of the isotropy
Hopf algebra. In analogy with Lie groupoid theory, we will show here
that the isotropy Lie algebra of the Lie–Rinehart algebra of a given Hopf
algebroid coincides, up to a canonical isomorphism, with the Lie algebra
of the isotropy Hopf algebra.

Let (A,H) be a commutative Hopf algebroid whose character groupoid
is not empty. This amounts to the assumption A(k) = CAlgk (A,k) 6= ∅,
that is, CAlgk (A,−) admits k-points. Take a point x ∈ A(k), and con-
sider the isotropy Hopf k-algebra (k,Hx) at the point x. By definition
(see [9, Definition 5.1] and [12, Example 1.3.5]), Hx = kx ⊗A H ⊗A
kx is the base extension Hopf algebroid of (A,H) along the algebra
map x : A → k (the notation kx means that we are considering k as
an A-algebra via x). The Lie algebra of the commutative Hopf alge-
bra (k,Hx) is by definition the k-vector space Derk(Hx,kxε).

On the other hand, for a given point x ∈ A(k), we set

(46) L (H)x := {δ ∈ Dersk(H,kxε) | δ ◦ t = 0}.14

These are vectors in the fiber X (k)x of the vector bundle X (k) at
the point x, which are killed by the anchor (40); in the notation of
Appendix A.1 and equation (52), this is the vector space X `(k)x. The
vector space L (H)x, x ∈ A(k), is referred to as the isotropy Lie algebra
of the Lie algebroid L (H). The terminology is justified by the following
result.

Proposition 9.1. Let (A,H) be a commutative Hopf algebroid over k
with A(k) 6= ∅. Then

(i) for a given point x ∈ A(k), the k-vector space L (H)x of equa-
tion (46) admits a Lie algebra structure whose bracket is given by

[δ, δ′] : H // kxε, (u � // (δ(u1)δ′(u2)− δ′(u1)δ(u2)));

14By abuse of notation we employ L (H) the Lie–Rinehart algebra of (A,H) in this
equation. However, this can be justified using the identification of the A-module of
global sections Γ(X ) with L (H), as stated in Proposition A.4.
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(ii) there is an isomorphism of Lie algebras given by

∇ : L (H)x // L (Hx) = Derk(Hx,kxε),

(δ � // [1⊗A u⊗A 1 � // δ(u)]).
(47)

Proof: (ii) The map ∇ is a well defined k-linear morphism, since any
vector in L (H)x is an A-linear map with respect to both source and
target. The inverse of ∇ sends any derivation γ ∈ L (Hx) to the deriva-
tion γπx, where πx : H → Hx is the canonical algebra map sending u 7→
1kx ⊗A u ⊗A 1kx . Now, it is easy to check that the bracket of L (Hx)
induces the one in (i) via ∇.

9.2. The Lie–Rinehart algebra of Malgrange Hopf algebroids.
In this final subsection we compute the Lie–Rinehart algebras of some
Hopf algebroids which arise from differential Galois theory over differ-
ential Noetherian algebras. Inspired by [32, 33, 38] and [50], some of
these Hopf algebroids were introduced and described in [12]. We also
construct a morphism from the Lie–Rinehart algebra of one those Hopf
algebroids to the one arising from the global smooth sections of the Lie
algebroid of the invertible jet groupoid attached to this Hopf algebroid.

Let us consider the polynomial complex algebra A=C[X] and {x0, yn |
n ∈ N} a set of indeterminates. For a given element p ∈ A, we denote
by ∂p its derivative, where ∂ := ∂/∂X is the differential of A. Consider
the Hopf algebroid (A,H) over C, where

H := C
[
x0, y0, y1, . . . , yn, . . . ,

1
y1

]
is the polynomial C-algebra, and where the structure maps are given as
follows.

The source and the target are given by:

s : A // H, (X
� // x0 :=x) and t : A // H, (X

� // y0 :=y).

The comultiplication is:

(48)

sHt
∆ //

sHt ⊗A sHt,

∆(x) = x⊗A 1, ∆(y) = 1⊗A y,

∆(yn)=
∑

(k1,k2,...,kn)
k1+2k2+···+nkn=n

n!

k1! · · · kn!

((y1

1!

)k1
(y2

2!

)k2

· · ·
(yn
n!

)kn)

⊗Ayk1+k2+···+kn , for n ≥ 1
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(see [12, §5.6] for the symbols in the sum). Thus, for n = 1, 2, 3, 4, the
image by ∆ of the variables yn’s reads as follows:

∆(y1) = y1 ⊗A y1,

∆(y2) = y2 ⊗A y1 + y2
1 ⊗A y2,

∆(y3) = y3 ⊗A y1 + 3y1y2 ⊗A y2 + y3
1 ⊗A y3,

∆(y4) = y4 ⊗A y1+4y3y1 ⊗A y2+6y2y
2
1 ⊗A y3+3y2 ⊗A y2+y4

1 ⊗A y4, . . .

Lastly, the counit is given by:

sHt
ε // A,

ε(x) = X, ε(y) = X, ε(yn) = δ1,n, for every n ≥ 1.

An explicit formula for the antipode S : sHt → tHs can be found in [12,
§5.6].

Proposition 9.2. Consider the above Hopf algebroid (A,H) over the
complex numbers. Then the Lie–Rinehart algebra L (H) of (A,H) has
as underlying A-module the free module AN whose anchor map is

ω : AN // DerC(A), (a := (an)n∈N
� // (p 7→ a0∂p))

and the bracket is defined as follows. For sequences a and b as above,
the sequence [a, b] is given by:

[a, b]0 = a0∂b0 − b0∂a0,

[a, b]1 = a0∂b1 − b0∂a1,

[a, b]2 = a2b1 − b2a1 + a0∂b2 − b0∂a2,

[a, b]n =

n∑
i=1

(
n

i

)
(aibn−i+1 − bian−i+1) + (a0∂bn − b0∂an), for n ≥ 3.

Proof: Let δ be an element in L (H) = DersC(H, Aε), then δ is entirely
determined by the sequence of polynomials (δ(x0), δ(y0), δ(y1), . . . ).
Since we know that δ(x0) = 0, we have a sequence

(δ(y0), δ(y1), δ(y2), . . . ) ∈ AN.

Namely, we know that any such δ satisfies the following equalities:

(49) δ(y−1
1 ) = −δ(y1), δ(yji ) = 0, for every i, j ≥ 2,

and δ(p(y0)) = δ(y0)
∂p(x0)

∂x0
.

The last equality gives us the anchor map. Now, for the bracket we
need to involve the comultiplication of equation (48) and the formula
of equation (39). For lower cases, that is, for n = 1, 2, one uses these
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formulae directly. As for n ≥ 3, one should observe, using equations (49),
that when applying the rule (39) to the comultiplication (48), the only
terms which survive in the sum are the summands corresponding to the
n-tuples

(n, 0, . . . , 0), (n− i, 0, . . . , 0, 1︸︷︷︸
i-th

, 0, . . . , 0), for 2 ≤ i ≤ n,

which give the summands claimed in the bracket [a, b]n.

The C-algebra H is in fact a differential algebra, whose differential is
given by:

H δ // H,
δ(x) = 1, δ(y) = y1, δ(yn) = yn+1, for n ≥ 1.

Thus, we have

δ =
∂

∂x
+

∞∑
i=0

yi+1
∂

∂yi
.

A Malgrange Hopf algebroid over C with base A is a Hopf algebroid
of the form (A,H/I), where I is a Hopf ideal which is also a differential
ideal (i.e., δ(I) ⊆ I). For instance, the ideal I = 〈yn〉n≥2 is clearly
a differential ideal and H/I ∼= C[x, y, z±1], which is a Hopf algebroid
with base A and grouplike elements z±1. It can be identified with the
polynomial algebra (A ⊗C A)[z±1], whose presheaf of groupoids is the
induced groupoid of the multiplicative group by the affine line (see [9]
for this general construction).

The following corollary is immediate.

Corollary 9.3. Let (A,H/I) be a Malgrange Hopf algebroid with base A.
Then the Lie–Rinehart algebra L (H/I) is a sub-Lie–Rinehart algebra
of L (H). Precisely, an element δ ∈ L (H) belongs to L (H/I), if and
only if δ(I) = 0.

For instance, by Proposition 9.2, we have that L (H/I) = A × A,
where I = 〈yn〉n≥2 is the Lie–Rinehart algebra with anchor (a0, a1) 7→
(p 7→ a0∂p) and the bracket is given by

[(a0, a1), (b0, b1)] = (a0∂b0 − b0∂a0, a0∂b1 − b0∂a1).

Remark 9.4. The Hopf algebroid (A,H) is the direct limit of the Hopf
algebroids (A,Hr), r ∈ N, where Hr is the subalgebra of H generated
up to the variable yr, that is, we have H = lim−→Hr. Applying the dif-
ferentiation functor L , we obtain a projective limit of Lie–Rinehart
algebras L (H) = lim←−L (Hr).
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In the remainder of this subsection we will relate the Lie–Rinehart
algebra of (A,H) and the Lie–Rinehart algebra of the (polynomial)
global sections of the Lie groupoid attached to the varieties associated
to the pair of algebras (A,H). To this end, consider the invertible jet
groupoid attached to (A,H). This, by definition [33], is the Lie groupoid
(J∗(AC1),AC1), where AC1 is the complex affine line and J∗(AC1) ⊆
AC1 × (AC1)N is defined by the points (x0, y0, y1, . . . , yn, . . . ) ∈ AC1 ×
(AC1)N with y1 6= 0. In other words, this groupoid is the character
groupoid of the Hopf algebroid (A,H); see [9] for this definition. Denote
by E the Lie algebroid of this Lie groupoid (see Appendix A.3 below).
Then, one can show that there is a morphism L (H) → Γ(E) of Lie–
Rinehart algebras, where Γ(E) is the A-module of global sections of the
Lie algebroid E . This claim will be achieved in the forthcoming steps.

First let us denote by

H(C)=CAlgC(H,C)'J∗(A1
C) s∗ //

t∗ // A(C)=CAlgC(A,C)'A1
Cε∗oo

the structure maps of this groupoid, where the source and the target
are, respectively, the first and second projections, and the identity map
coincides with the map x 7→ (x, x, 1, 0, . . . ); see [33]. Here we are con-
sidering H(C) and A(C) as algebraic varieties whose ring of polynomial
functions coincides with H and A, respectively. In this way the elements
of H and A are considered as polynomial functions from H(C) and A(C)
to C, respectively.

We know that the fibers of E are of the form Ker(Txs
∗), for x ∈ A1

C.
Specifically, given a point x ∈ A1

C, we identify it with the associated alge-
bra map x : A→ C sending X 7→ x. In this way, the notation Cx stands
for C considered as an extension algebra of A via x, and the identity
arrow of the object x is ε∗(x) = xε : H → C. The same notations will be
employed for J∗(A1

C). Now, for any point x ∈ A1
C, a derivation d in the

vector space Ker(Txs
∗) is nothing but an element d ∈ DerC(H,Cε∗(x))

such that ds = 0. Therefore, we have the following identifications of
vector spaces:

Ker(Txs
∗) = {d ∈ DerC(H,Cε∗(x)) | ds = 0}

= DersC(H,Cxε) = X (C)x, for every x ∈ A1
C,

where the X (C)x’s are the fibers of the presheaf of equation (52) at the
base field C. This gives us the identification of vector bundles E = X (C).

On the other hand, any (polynomial) section of the vector bundle X(C)
can be extended “uniquely”, as follows, to a (polynomial) section of the
vector bundle ∪g∈H(C) DersC(H,Cg). This extension is the same as the
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one given in Proposition A.3 of the Appendix. Taking a section {δx}x∈A1
C

of X (C),15 we set

δ̃g : H // Cg, (u
� // g(u1)δgt(u2)), for every g ∈ H(C).

These are called left invariant sections tangent to the fiber of s. For
a fixed polynomial function u ∈ H, we have a polynomial function

δ̃−(u) : H(C) → C sending g 7→ δ̃g(u), which we identify with its im-
age in H. This function satisfies the following equalities:16

(50) δ̃−(s(a)) = 0, (̃aδ)−(u) = t(a)δ̃−(u), xε(δ̃−(u)) = δx(u),

for every a ∈ A, u ∈ H, and x ∈ A1
C. Furthermore, there is a derivation

of H, defined by u 7→ δ̃−(u). Namely, for every point g ∈ H(C) and two
polynomial functions u, v ∈ H, we have

δ̃−(uv)(g) = δ̃g(uv) = g(u1v1)δgt(u2v2)

= g(u1)g(v1)(gtε(u2)δgt(v2) + δgt(u2)gtε(v2))

= g(u1)g(v1)gtε(u2)δgt(v2) + g(u1)g(v1) δgt(u2)gtε(v2)

= g(u) g(v1)δgt(v2) + g(u1)δgt(u2)g(v)

= g(u)δ̃−(v)(g) + δ̃−(u)(g)g(v)

= u(g)δ̃−(v)(g) + δ̃−(u)(g)v(g).

Therefore, we have

(51) δ̃−(uv) = uδ̃−(v) + δ̃−(u)v.

Next, we describe the anchor map and the bracket of Γ(E). Given a
section δ ∈ Γ(E), its anchor at a given polynomial a ∈ A is defined as the
polynomial function ω(δ)(a) : A1

C → C sending x 7→ δx(t(a)). As for the
bracket, taking two sections δ, γ, we set the section x 7→ [δ, γ]x, defined
by

[δ, γ]x : H // Cxε, (u � // (δx(γ̃−(u))− γx(δ̃−(u)))).

15Here we are assuming that, for every u ∈ H, the function x 7→ δx(u) is polynomial,

where x ∈ A1
C, or equivalently, each of the functions x 7→ δx(x0), δx(y0), δx(y1),

. . . , δx(yn), . . . , is polynomial.
16For the sake of clarity, aδ : x 7→ x(a)δx and uδ̃−(v) : g 7→ g(u)δ̃g(v).
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Taking u, v ∈ H, we compute

[δ, γ]x(uv) = δx(γ̃−(uv))− γx(δ̃−(uv))

(51)
= δx(uγ̃−(v) + γ̃−(u)v)− γx(uδ̃−(v) + δ̃−(u)v)

= xε(u)δx(γ̃−(v)) + δx(u)xε(γ̃−(v)) + xε(γ̃−(u))δx(v)

+ δx(γ̃−(u))xε(v)− xε(u)γx(δ̃−(v))− γx(u)xε(δ̃−(v))

− xε(δ̃−(u))γx(v)− γx(δ̃x(u))xε(v)

(50)
= xε(u)[δ, γ]x(v) + [δ, γ]x(u)xε(v).

Thus [δ, γ]x ∈ DersC(H,Cxε). It is not hard now to check that this bracket
endows Γ(E) with a Lie algebra structure and it is compatible with the
anchor map, that is, satisfies equation (7). This completes the Lie–
Rinehart algebra structure of Γ(X (C)) = Γ(E).

The desired morphism of Lie–Rinehart algebras L (H) → Γ(E) is
now deduced as follows. Using the isomorphism of Proposition A.4 in
conjunction with the canonical map

Γ(X ) // Γ(X (C)), (τ
� // τC)

of Lie–Rinehart algebras, we obtain a morphism L (H) ∼= Γ(X ) −→
Γ(X (C)) = Γ(E) of Lie–Rinehart algebras.

Remark 9.5. Given (A,H) as above we already observed that the fibers
of E are of the form Ker(Txs

∗) = DersC(H,Cxε), for x ∈ A1
C. As explained

in Remark A.1, we can consider in the category of augmented algebras
the cokernel

A
s // H

π(x) // H(x)
// C,

where A has augmentation x, while H has augmentation x◦ε. Note that,
by construction, H(x) is the quotient of H by the ideal 〈s(a)− x(a)1H |
a ∈ A〉. By the remark quoted above we get an isomorphism of vector
spaces

DersC(H,Cxε) ∼= Derk(H(x),Cεx),

where εx : H(x) → C is the unique algebra map such that εx◦π(x) = x◦ε.
Since we know that

CAlgC(H(x),C) ∼= {g ∈ H(C) | g(s(a)− x(a)1H) = 0, ∀ a ∈ A}
= {g ∈ H(C) | s∗(g) = g ◦ s = x} = H(C)x,

then H(x)
∼= kx⊗A sH is the coordinate algebra of the subvariety H(C)x

known as the left star of the point x in the groupoid H(C). Further-
more, the morphism of Hopf algebroids πx : H → Hx, where (C,Hx)
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is, as in §9.1, the isotropy Hopf algebra of H at the point x, factors
throughout the morphism π(x), leading to a morphism of augmented

C-algebras H(x) → Hx.17 Applying the derivations functor DerC(−,C)
to this latter morphism gives rise to the canonical injection of Lie alge-
bras

L (H)x
(47)
= {δ ∈ DersC(H,Cxε) | δ ◦ t = 0} �

� // DersC(H,Cxε).

Notice that all these observations are valid for any Hopf algebroid (A,H)
over k such that A(k) 6= ∅.

Appendix A. The functorial approach, the units of the
adjunctions, and Lie groupoids

In this section we provide an alternative construction of the differ-
ential functor L constructed in §5.3. This is done by mimicking the
differential calculus on affine group schemes [8, II, §4] parallel to the
construction of a Lie algebroid from a Lie groupoid. Moreover, we pro-
vide an alternative (direct) construction of the unit of the adjunction in
Theorem 7.2. Finally, we also revisit the construction of the Lie algebroid
of a Lie groupoid from an algebraic point of view.

The following remark will be used throughout the appendices.

Remark A.1. Recall that the category Alg+
k of augmented algebras has

as objects the pairs (A, ε), where A is an algebra and ε : A → k is a
distinguished algebra map, called an augmentation, and as morphisms
the algebra maps that preserve the augmentation. Analogously, the cat-
egory of coaugmented coalgebras Coalg+

k has as objects the pairs (C, g),
where C is a coalgebra and g is a distinguished grouplike element in C
and as morphisms the coalgebra maps that preserve the grouplike el-

ements. The duality (−)∗:Coalgk
// Algopk : (−)◦oo induces a duality be-

tween Coalg+
k and (Alg+

k )op, namely (C, g)∗=(C∗, g∗),where g∗ : C∗ → k
is the evaluation at g, and (A, ε)◦ = (A◦, ε). In addition, we have an
adjunction between the category of vector spaces Veck and Coalg+

k given

by the functor P : Coalg+
k → Veck sending every (C, g) to P(C, g) := {c ∈

C | ∆(c) = c ⊗ g + g ⊗ c} and its left adjoint sending V to (k ⊕ V, 1k),
where ∆(v) = v ⊗ 1k + 1k ⊗ v for every v ∈ V .

Note that by composing the right adjoints we get P((A, ε)◦) =
P(A◦, ε) = Derk(A,kε). As a consequence, the functor (Alg+

k )op → Veck

17This algebra map is nothing but the canonical surjective map: C
[
x0, y0, y1, y2,

. . . , 1
y1

]
/〈x0 − x〉 → C

[
X, y1, y2, . . . ,

1
y1

]
/〈X − x〉.
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sending every (A, ε) to Derk(A,kε) is a right adjoint. In particular, it
preserves kernels once we have observed that Alg+

k has (k, idk) as a zero
object. By the existence of this zero object, given a morphism of aug-
mented k-algebras s : A0 → A1 we can consider in Alg+

k the cokernel

A0
s // A1

π // A2
// k,

which is defined as the coequalizer of the pair (s, u1◦ε0) in the category of
algebras with the induced augmentation. Here we denote by εi : Ai → k
the augmentations and by ui : k → Ai the units. By the foregoing, we
get the following kernel of vector spaces:

0 // Derk(A2,kε2)
π∗ // Derk(A1,kε1)

s∗ // Derk(A0,kε0).

Summing up, π∗ induces an isomorphism

Derk(A2,kε2)∼=Ker(s∗)={δ1∈Derk(A1,kε1) | δ1 ◦s=0}=Dersk(A1,kε1).

A.1. The functorial approach to the differential functor. Let us
introduce some useful notation. Given two algebras T and R we de-
note by T (R) := CAlgk(T,R) the set of all algebra maps from T to R,
and by CAlgk the category of all commutative algebras. To any com-
mutative Hopf algebroid (A,H) one associates the presheaf of groupoids
H : CAlgk → Grpds assigning to an algebra R ∈ CAlgk the groupoid

H1(R) := H(R)
s //
t // A(R) := H0(R)ιoo

whose structure is given as follows: For any g ∈ H(R), x ∈ A(R), we
have s(g) = gs, t(g) = gt, ιx = xε, g−1 = gS, and if gs = g′t for some
other g′ ∈ H(R), then g.g′ : H → R sends u 7→ g′(u1)g(u2).

Let us define the following functor:

(52) X : CAlgk
// Sets,

(
R � //

⊎
x∈A(R)

Derk
s(H, Rxε)

)
,

where
⊎

denotes the disjoint union of sets. For eachR∈CAlgk, X (R) can
be seen as a bundle (in the sense of [24, Definition 1.1, Chapter 2])
of H-modules over H0(R) with canonical projection πR : X (R)→ A(R)
sending δ ∈ Derk

s(H, Rxε) to x. Now, X is a functor as for any mor-
phism f : R → T , the map X (f) : X (R) → X (T ) is fiberwise defined
by composition with f . This makes π : X → H0 a natural transforma-
tion.

Following [8], let us consider the trivial extension algebra R[~] of a
given algebra R, that is, ~2 = 0, together with the canonical algebra
injection i : R → R[~], r 7→ (r, 0). Denote by p : R[~] → R the algebra
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projection to the first component and by p′ : R[~]→ R the R-linear pro-
jection to the second component. Then we have a morphism of groupoids
H (p) : H (R[~])→H (R). For a fixed x ∈ A(R), we set

Dx(R) := {γ ∈ H(R[~]) | p′γs = 0, pγ = xε}.

Clearly, any arrow γ ∈ Dx(R) belongs to the kernel of H (p), i.e., {γ ∈
H1(R[~]) | H1(p)(γ) ∈ ι(H0(R))}. Furthermore, if we denote γ̃ := p′γ,
then γ̃ becomes a xε-derivation, in the sense that

γ̃(uv) = xε(u)γ̃(v) + γ̃(u)xε(v),

for every u, v ∈ H. Each of the fibers Dx(R) is a k-vector space as follows:

λγ := (xε, λγ̃), γ+γ′ := (xε, γ̃+γ̃′), for every λ ∈ k, and γ, γ′ ∈ Dx,

where the notation is the obvious one for diagonal morphisms. We have
then constructed a functor

D : CAlgk
// Sets,

(
R

� //
⊎

x∈A(R)

Dx(R)

)
,

where for any morphism f : R → T , the map D(f) : D(R) → D(T ) is
fiberwise defined by composition with (f, f). The functor D is naturally
isomorphic to X . Namely, the isomorphism is fiberwise given by

Dx(R) // Derk
s(H, Rxε), (γ

� // γ̃);

Derk
s(H, Rxε) // Dx(R), (δ � // (xε, δ)).

Under this isomorphism, the elements of X (R), for a given algebra R,
can be seen as arrows in the groupoid H (R[~]), although, contrary to
the classical situation, they only form a subcategory and not necessarily
a subgroupoid. Let us show that the set X `(R) of loops in the cate-
gory X (R) is a groupoid-set in the following sense (for the definition of
a groupoid-set; see e.g. [9]).

An element δ∈X (R) belongs to X `(R) provided that it also satisfies
the equation δt = 0. Thus, δ is a xε-derivation which kills both source
and target and we can write

X ` : CAlgk
// Sets,

(
R � //

⊎
x∈A(R)

Derk
s,t(H, Rxε)

)
.

It is easily checked that X ` is a functor. What we are claiming is that
X ` with the structure map given by the restriction of π is actually
an H -set, in the sense of presheaves of groupoids. Taking the natural
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transformations π : X ` → H0 and t : H1 → H0, consider the fiber
product

X `
π×tH1 : CAlgk

// Sets,

(R
� // X `(R)πR×tH1(R)={(δ, g)∈X `(R)×H1(R) |

gt = πR(δ)}).

Given an element (δ, g) ∈X `(R)πR×tH1(R), we define the conjugation
action as

(53) δ . g : H // Rgsε, (u � // g(u(1))δ(u(2))g(S(u(3)))).

Notice that this map is well defined as

δ(s(a)ut(b)) = x(a)δ(u)x(b)

and

g(ut(a)) = g(u)g(t(a)) = g(u)πR(δ)(a) = g(u)x(a)

for every a, b ∈ A, u ∈ H, where δ ∈ Derk
s(H, Rxε). The following is the

desired claim.

Lemma A.2. For every algebra R ∈ CAlgk, the pair (X `(R), πR) is
a right H (R)-set with action given by conjugation as in (53). Further-
more, this is a functorial action, that is, (X `, π) is a right H -functor.

Proof: It is straightforward to show that δ . g belongs to X (R) with
projection gs ∈ A(R), where x = πR(δ) = gt. The rest of the first claim
is clear.

Now let f : R→ S be an algebra map. If δ ∈X `(R) with πR(δ) = x,
then clearly πS(X (f)(δ)) = fx. On the other hand, the diagram

X `(R)πR ×t H1(R) //

X `(f)πR×tH1(f)

��

X `(R)

X `(f)

��
X `(S)πR ×t H1(S) // X `(S)

commutes, which means that X `(f) is a right H -equivariant map. This
shows that the natural transformation X `

π ×t H1 → X ` defines effec-
tively a right H -action on X `.

Viewing X as a bundle over H0, one can define its module of sections
as follows:

Γ(X ) = {τ ∈ Nat(H0,X ) | π ◦ τ = id}.
This is a vector space, whose operations are defined fiberwise.
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On the other hand, for any algebra R ∈ CAlgk, we may consider the
following bundle:

Y (R) =
⊎

g∈H1(R)

Derk
s(H, Rg)

πR // H1(R).

When R runs in CAlgk, Y gives a functor, and one can consider as
before its vector space of sections Γ(Y ).

Proposition A.3. Let Γ(X ) and Γ(Y ) be as above. Then we have the
following properties:

(i) For any algebra map f : R → S in CAlgk, any object x ∈ H0(R)
and any τ ∈ Γ(X ), we have:

(54) x ◦ τA(idA) = τR(x), f ◦ τR(x) = τS(fx).

In particular, we have

ε ◦ τH(t) = τA(idA) and xε(u(1)τH(t)(u(2))) = τR(x)(u),

for every x ∈H0(R) and u ∈ H.
(ii) Both Γ(X ) and Γ(Y ) admit an A-module structure given as fol-

lows:

(a .τ)R(x) = x(a) .τR(x), (a .α)R(g) = gt(a) .αR(g),

for R in CAlgk, x ∈H0(R), g ∈H1(R), and for every τ ∈ Γ(X ),
α ∈ Γ(Y ), and a ∈ A.

(iii) The map

Γ(X )
Σ // Γ(Y )

τ � //


ΣτR : H1(R) // X (R)

g � // ΣτR(g) :H // Rg

u
� // g(u(1))τR(gt)(u(2))

 ,
where R ∈ CAlgk and g ∈ H1(R), is a monomorphism of A-mod-
ules. Thus, any section of X extends uniquely to a section of Y .

Proof: Part (i) follows from the naturality of τ . Part (ii) is straightfor-
ward. As for part (iii), let us first check that Σ is a well defined map. Take
τ ∈ Γ(X ), g ∈H1(R), and set x = gt. By using the fact that τR(x) is a
derivation, one easily checks that ΣτR(g) ∈ Derk

s(H,Rg). Assume we are
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given τ, τ ′ ∈ Γ(X ) such that Σ(τ) = Σ(τ ′). Then, for every g ∈H1(R),
we have that

g(u(1))τR(gt)(u(2)) = g(u(1))τ
′
R(gt)(u(2))

for every u ∈ H. Now, take an arbitrary x′ ∈ H0(R) and set g = x′ε.
Hence, for every u ∈ H, we obtain

x′ε(u(1))τR(x′)(u(2)) = x′ε(u(1))τ
′
R(x′)(u(2)) +3 τR(x′)(sε(u(1))u(2))

= τ ′R(x′)(sε(u(1))u(2)) +3 τ ′R(x′) = τR(x′).

Therefore τ = τ ′ and Σ is injective. The fact that Σ is A-linear is imme-
diate and this finishes the proof.

Proposition A.4. Let (A,H) be a Hopf algebroid with associated
presheaf H and consider the bundle (X , π) as given in (52). Then we
have a bijection

∇ : Γ(X ) // Derk
s(H, Aε), (τ

� // τA(idA)).

In particular, the A-module of global sections Γ(X ) admits a unique
Lie–Rinehart algebra structure in such a way that ∇ becomes an isomor-
phism of Lie–Rinehart algebras. Explicitly, for any R∈CAlgk the bracket
[τ, τ ′]R : H0(R)→X (R) and the anchor ω′ are respectively given by

H
[τ,τ ′]R(x) // Rxε

u � // τR(x)(u(1) τ
′
H(t)(u(2)))− τ ′R(x)(u(1) τH(t)(u(2))),

Γ(X )
ω′ // Derk(A)

τ � // τA(idA) ◦ t.

Proof: In light of the Yoneda lemma, we have a bijection∇:Nat(H0,X )∼=
X (A) sending every natural transformation η ∈ Nat(H0,X ) to ∇(η) :=
ηA(idA). It turns out that this bijection restricts to ∇ : Γ(X ) ∼= X ′(A),
where X ′(A) = {δ ∈X (A) | πA(δ) = idA}. By definition of πA, we have
πA(δ) = idA for every δ ∈ Derk

s(H, Aε) so that X ′(A) = Derk
s(H, Aε).
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This induces on Γ(X ) the given Lie–Rinehart algebra structure since
for τ, σ ∈ Γ(X ), R ∈ CAlgk, x ∈H0(R), a ∈ A, and u ∈ H we have

([τ, σ]R(x))(u) = (∇−1([∇(τ),∇(σ)])R(x))(u)

= (∇−1([τA(idA), σA(idA)])R(x))(u)

= (x ◦ [τA(idA), σA(idA)])(u)

(39)
= x(τA(idA)(u(1)t(σA(idA)(u(2)))))

− x(σA(idA)(u(1)t(τA(idA)(u(2)))))

(54)
= τR(x)(u(1)σH(t)(u(2)))− σR(x)(u(1)τH(t)(u(2))),

ω′(τ)(a) = ω(∇(τ))(a) = ω(τA(idA))(a)
(40)
= τA(idA)(t(a)).

This concludes the proof.

Remark A.5. By mimicking Proposition A.4, we get a bijection ∇` :
Γ(X `)→ Derk

s,t(H, Aε), induced by ∇ of the same proposition, where
Γ(X `) is the A-module of global sections of the bundle X ` and
Derk

s,t(H, Aε) is the A-module of k-algebra derivations δ : H → Aε such
that δs = δt = 0, which in turn is the kernel of the anchor map given in
equation (40). Consider the so-called total isotropy Hopf algebroid H` :=
H/〈s−t〉 ofH and denote by π : H → H` the canonical projection.18 Note
that given a symmetric A-bimodule M (i.e., am = ma for all a ∈ A,
m∈M) we have an isomorphism HomA−(H`,M) = HomA−A(H`,M)→
HomA−A(H,M) given by pre-composition by π. This isomorphism in-
duces an isomorphism Derk

s(H`,Mε`) ∼= Derk
s,t(H,Mε). As a conse-

quence, Γ(X `) is isomorphic to the Lie–Rinehart algebra L (H`) of H`.
If x∈A(k), then the fiber X `(k)x = Derk

s,t(H,kxε) of the bundle X `(k)
coincides by (46) with the isotropy Lie algebra L (H)x of L (H). On the
other hand, since Derk

s,t(H,kxε) ∼= Derk
s(H`,kxε) = L (H`)x we get

that X `(k)x ∼= L (H`)x.

Remark A.6. Note that the isomorphism ∇ of Proposition A.4 can be
adapted to get an isomorphism ∇′ : Γ(Y ) → Derk

s(H,H). Via these
isomorphisms, one can see that the morphism Σ from Proposition A.3
corresponds to a morphism Derk

s(H, Aε) → Derk
s(H,H), whose core-

striction to its image is θ′ of Lemma 5.12. This also clarifies why Σ is
injective.

18Here 〈s− t〉 stands for the Hopf ideal generated by the set {s(a)− t(a)}a∈A. More-
over, the Hopf A-algebra H` is considered as a Hopf algebroid with base algebra A
with source equal to the target.
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A.2. Units of the adjunction between differentiation and inte-
gration. Here we give an explicit description of the unit and counit of
the adjunction proved in §7.

Proposition A.7. Let (A,L) be a Lie–Rinehart algebra. Then there is
a natural transformation

ΘL : L // Derk
s(VA(L)◦, Aε) = L I (L),

(X � // [z � // −ζ(z)(ιL(X))])
(55)

of Lie–Rinehart algebras. Moreover, this morphism factors as follows
and leads to

(56)

L
ΘL //

Θ′L ))

Derk
s(VA(L)◦, Aε)

Derk
sVA(L)

•
, Aε)

L (ζ̂)

OO

a commutative diagram of Lie–Rinehart algebras, where Θ′L is the map
which corresponds, by using the bijection of Lemma 6.4, to the A-ring
morphism i : VA(L)→ ∗(VA(L)

•
) defined in equation (26).

Proof: By Lemma 6.4, Θ′L is a morphism of Lie–Rinehart algebras. By

Proposition 5.16, we know that L (ζ̂) is Lie–Rinehart as well. As a

consequence, ΘL := L (ζ̂) ◦ Θ′L is a morphism of Lie–Rinehart alge-
bras. It remains to check that it behaves as in (55). By using (ii) of

Lemma 6.4, we know that Θ′L = ĩ. Therefore, for any X ∈ L, we have

ΘL(X) = L (ζ̂)(Θ′L(X)) = Θ′L(X)◦ ζ̂ = ĩ(X)◦ ζ̂ = −i(ιL(X))◦ ζ̂ and so,

by (26), we get ΘL(X)(z) = −(ξ ◦ ζ̂)(z)(ιL(X)) = −ζ(z)(ιL(X)).

Now, consider (A,H) a commutative Hopf algebroid and let VA(L (H))
be the universal algebroid of the Lie–Rinehart algebra (A,L (H)) of
derivations of H. Take an object (V, %V ) in the full subcategory AH
(that is, a right H-comodule such that VA is finitely generated and pro-
jective19), then we have a map

λV : L (H) // Endk(V )

δ � // [v � // −v(0)δ(v(1))].
(57)

19Actually this assumption is not needed for the next construction.
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Proposition A.8. Let (A,H) be as above. Then the map (57) induces
a right VA(L (H))-module structure on V . Moreover, this establishes a
symmetric monoidal functor

∇ : AH // AVA(L (H)), ((V, %V ) // (V, λV ))

which commutes with the fiber functor, and so we obtain

R(∇) : Σ† ⊗AH Σ // Σ† ⊗AVA(L (H))
Σ = VA(L (H))◦,

a morphism of commutative Hopf algebroids. Furthermore, there is a
natural transformation

ΩH : H can−1
// Σ† ⊗AH Σ

R(∇) // Σ† ⊗AVA(L (H))
Σ = VA(L (H))◦

whenever H is a Galois Hopf algebroid.

Proof: Let us check first that λ := λV is an anti-Lie algebra map. So
take v ∈ V and δ, δ′ ∈ L (H). We compute on the one hand

λ([δ, δ′])(v) = −v(0)[δ, δ
′](v(1))

= −v(0)(δ(v(1)t(δ
′(v(2))))− δ′(v(1) t(δ(v(2))))),

and on the other hand

[λ(δ), λ(δ′)](v) = λ(δ)(λ(δ′)(v))− λ(δ′)(λ(δ)(v))

= −λ(δ)(v(0) δ
′(v(1))) + λ(δ′)(v(0) δ(v(1)))

= v(0)(δ(v(1) t(δ
′(v(2))))− δ′(v(1) t(δ(v(2))))),

which implies that λ([δ, δ′]) = −[λ(δ), λ(δ′)]. Let us denote by la ∈
Endk(V ) the A-action on V by a. So, for every v ∈ V , a ∈ A, and
δ ∈ L (H), we have that

(la ◦ λ(δ)−λ(δ) ◦ la)(v) = −av(0)δ(v(1)) + v(0)δ(v(1)t(a))

= −av(0)δ(v(1))+v(0)δ(v(1))a+v(0)ε(v(1))δ(t(a))

= v δ(t(a)) = lω(δ)(a)(v),

so that λ(δ) ◦ la − la ◦ λ(δ) = l−ω(δ)(a). Summing up, V is a right rep-
resentation of L (H) and, by the universal property of VA(L (H)), this
implies that there is an algebra map VA(L (H)) → Endk(V )op which
makes V a right VA(L (H))-module. This defines the functor ∇ on the
objects. This functor acts on arrows as the identity, that is, ∇(f) = f for
every H-colinear map f : V → V ′. The fact that f is VA(L (H))-linear
may be proved by mimicking the argument of the proof of the second
claim in Lemma 6.3: Take B ⊆ VA(L (H)) such that f(vb) = f(v)b for
all b ∈ B and show that B = VA(L (H)). Monoidality of ∇ comes as
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follows: Both tensor products are modeled on ⊗A and the subsequent
computation

λV⊗AW (δ)(v ⊗A w) = −(v(0) ⊗A w(0))δ(v(1)w(1))

= −(v(0) ⊗A w(0))(ε(v(1))δ(w(1)) + δ(v(1))ε(w(1)))

= v ⊗A λV (δ)(w) + λW (δ)(v)⊗A w
= v ⊗A w ιL (H)(δ) + v ιL (H)(δ)⊗A w
= (v ⊗A w) ∆(ιL (H)(δ))

shows that the action on ∇(V ⊗A W ) coincides with the diagonal one.
The identity object A has the action λA : L (H) → Endk(A)op given
by λ(δ)(a) = −a(0) δ(a(1)) = −δ(t(a)). Therefore λA = −ω, the anchor
described in Proposition 5.13. The rest of the proof of the first statement
follows from the construction performed in §3.1.

Lastly, the naturality of Ω is proved as follows. Given a morphism
φ : H → H′ of Galois Hopf algebroids, then on the one hand we have a
commutative diagram

AH′ ∇′ //

O

""

AVA(L (H′))

O′

rr

AH ∇ //

φ∗
::

ω

,,

AVA(L (H))

VA(L (φ))∗
66

ω′

uu
proj(A)

which leads to a commutative diagram

Σ† ⊗AH Σ
R(∇) //

R(φ∗)

��

I L (H)

I L (φ)∗=R(VA(L (φ))∗)

��
Σ† ⊗AH′ Σ

R(∇′) // I L (H′)

On the other hand we have, by definition of the functor R, a commuta-
tive diagram

Σ† ⊗AH Σ
canH //

R(φ∗)
��

H

φ

��
Σ† ⊗AH′ Σ

canH′ // H′
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Putting together the two diagrams leads to the naturality of Ω and it
finishes the proof.

A.3. The Lie–Rinehart algebra of a Lie groupoid. Revisited.
Here we provide an algebraic approach to the construction of a Lie alge-
broid, or Lie–Rinehart algebra, from a given Lie groupoid. This approach
unifies in fact the definition given in [31, §3.5] and the one in [4]. We also
discuss the injectivity of the unit of the adjunction between integration
and differentiation functors; see Appendix A.2.

We will employ the following notations. Consider a diagram of com-

mutative R-algebras B
x−→ C

y−→ D, where R denotes the field of real
numbers. As usual, we denote

DerxR(C,Dy) := {γ ∈ DerR(C,Dy) | γ ◦ x = 0}.

Given a connected smooth real manifold M, for each point x ∈ M,
we denote by x itself the algebra map C∞(M) → R sending p 7→
p(x). The global smooth sections of the tangent vector bundle TM =
∪x∈MDerR(C∞(M),Rx) of M are identified with the C∞(M)-module
of derivations of C∞(M) as follows: Taking a section δ ∈ Γ(TM), we
have a derivation

C∞(M) // C∞(M), (p
� // [x � // δx(p)]);

see [39, §9.38]. Let us consider a Lie groupoid

G : G1
s //
t // G0,ιoo

where G1 is assumed to be a connected smooth real manifold and s, t
are surjective submersions. This leads to a diagram of (geometric [39,
Definition 3.7]) smooth real algebras

C∞(G0) s∗ //
t∗ // C∞(G1).ι∗oo

The left star of a point x∈ G0 is by definition the (sub)manifold Gx =
{g ∈ G1 | s(g) = x} of G1; denote by τx : Gx ↪→ G1 the correspond-
ing embedding. Notice that we have a disjoint union G1 =

⊎
x∈G0

Gx.
For an object x ∈ G0, we have the following surjective R-linear map:
Txs : Tι(x)G1 → TxG0, so we can set Ex := Ker(Txs) and then consider
the vector bundle E = ∪x∈G0Ex. Each fiber Ex is then identified with

R-vector space Ders
∗

R (C∞(G1),Rι(x)), thus, Ex = Ders
∗

R (C∞(G1),Rι(x)).
There is another vector bundle F whose fibers at a point x ∈ G0 are

given by the R-vector space

Fx = Tι(x)(Gx) = DerR(C∞(Gx),Rι(x)).
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Lemma A.9. We have an isomorphism of R-vector spaces

ηx : DerR(C∞(Gx),Rι(x)) // Ders
∗

R (C∞(G1),Rι(x)),

(γx
� // [p � // γx(pτx)])

(58)

induced by τ∗x : C∞(G1)→ C∞(Gx), p 7→ pτx.

Proof: Recall that, by hypothesis, s : G1 → G0 is a surjective submersion.
In particular, in light of [29, Corollary 5.14], for example, Gx = s−1(x)
is a closed embedded submanifold of G1 with local (in fact, global)
defining map s itself. Thus, as a consequence of [29, Proposition 5.38],
for any h ∈ Gx we have that ThGx = Ker(Ths : ThG1 → Ts(h)G0).
In particular, DerR(C∞(Gx),Rι(x)) = Tι(x)Gx = Ker(Tι(x)s : Tι(x)G1 →
Tsι(x)G0), where the second identification is given through the inclusion
Tι(x)τx : Tι(x)Gx → Tι(x)G1 induced by τx.

As a consequence we get an isomorphism of vector bundles η : F → E
and hence an isomorphism of C∞(G0)-module η := Γ(η) : Γ(F)→ Γ(E).
There are two morphisms of C∞(G0)-modules:

(59) ωE : Γ(E) // DerR(C∞(G0)), (δ
� // [a � // δ−(at)])

and ωF := ωE ◦ η. Recall that, by the foregoing, we can identify Γ(T G0)
with DerR(C∞(G0)). By means of this identification one can check that
the morphism of vector bundles Tt : E → T G0 induced by the R-linear
maps Txt : Tι(x)G1 → TxG0 is such that ωE = Γ(Tt). Clearly, ωF =
Γ(Tt ◦ η).

Given an arrow g ∈ G1, we have the right multiplication action Rg :
Gt(g) → Gs(g), h 7→ hg (this, by the Lie groupoid structure of G, is a
diffeomorphism). Now, fix an object x ∈ G0, a function q ∈ C∞(Gx),

and a global section γ∈Γ(F), then we have a smooth function
→
γ−(q) ∈

C∞(Gx) given by

→
γ−(q) : Gx // R, (h � // →γ h(q) := γt(h)(qRh));

see [31, Corollary 3.5.4]. The derivation
→
γ− : C∞(Gx)→ C∞(Gx) satisfies

the following equalities:

(60) (
→
aγ)− = τ∗x (t∗(a))

→
γ−,

→
γ ι− = γ−, for all a ∈ C∞(G0),

where (aγ)x = a(x)γx and (b
→
γ−)h = b(h)

→
γ h for every x ∈ G0, a ∈

C∞(G0), b ∈ C∞(Gx), h ∈ Gx. In this way, for a given pair of sections
(γ, γ′) ∈ Γ(F)× Γ(F), we have the following smooth global section:

[γ, γ′]x : C∞(Gx) // Rι(x), (q � // γx(
→
γ′−(q))− γ′x(

→
γ−(q))).
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Namely, since ι(x) ∈ Gx, for two functions p, q ∈ C∞(Gx) we may com-
pute

[γ, γ′]x(pq) = γx(
→
γ′−(pq))− γ′x(

→
γ−(pq))

= γx(p
→
γ′−(q) +

→
γ′−(p)q)− γ′x(p

→
γ−(q) +

→
γ−(p)q)

= p(ι(x))γx(
→
γ′−(q)) + γx(p)

→
γ′ι(x)(q) +

→
γ′ι(x)(p)γx(q)

+ γx(
→
γ′−(p))q(ι(x))− γ′x(p)

→
γ ι(x)(q)− p(ι(x))γ′x(

→
γ−(q))

− γ′x(
→
γ−(p))q(ι(x))−→γ ι(x)(p)γ

′
x(q)

= p(ι(x))[γ, γ′]x(q) + [γ, γ′]x(p)q(ι(x))

+ γx(p)
→
γ′ι(x)(q) +

→
γ′ι(x)(p)γx(q)

− γ′x(p)
→
γ ι(x)(q)−

→
γ ι(x)(p)γ

′
x(q)

(60)
= p(ι(x))[γ, γ′]x(q) + [γ, γ′]x(p)q(ι(x)),

which shows that ([γ, γ′]x)x∈G0
∈ Γ(F). Furthermore, for a given a ∈

C∞(G0), we have

[γ, aγ′]x(q) = γx(
→

(aγ′)−(q))− a(x)γ′x(
→
γ−(q))

(60)
= γx(τ∗x (t∗(a))

→
γ′−(q))− a(x)γ′x(

→
γ−(q))

= τ∗x (t∗(a))(ι(x))γx(
→
γ′−(q))

+ γx(τ∗x (t∗(a)))
→
γ′ι(x)(q)− a(x)γ′x(

→
γ−(q))

(60)
= a(x)[γ, γ′]x(q) + ωF (γ)(a)(x)γ′x(q),

for every function q ∈ C∞(Gx). Thus, for every function a ∈ C∞(G0), we
have

[γ, aγ′] = a[γ, γ′] + ωF (γ)(a)γ′

as an equality in Γ(F). This completes the structure of the Lie alge-
broid (F,G0), and the Lie–Rinehart algebra structure of (Γ(F), C∞(G0)).
This Lie algebroid is known in the literature as the Lie algebroid of the
Lie groupoid G.

Now, we come back to the vector bundle (E ,G0). We can endow it with
a Lie algebroid structure via the isomorphism η. The bracket on Γ(E) is
given by

[δ, δ′]x : C∞(G1) // Rι(x), (b � // δx(
→
δ′−(b))− δ′x(

→
δ −(b)))
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and the anchor is the map ωE of equation (59). In fact, concerning the
bracket we can compute

ηx([γ, γ′]x)(p) = [γ, γ′]x(pτx) = γx(
→
γ′−(pτx))− γ′x(

→
γ−(pτx))

(∗)
= γx(

→
η(γ′)−(p)τx)− γ′x(

→
η(γ)−(p)τx)

= η(γ)x(
→

η(γ′)−(p))− η(γ′)x(
→
η(γ)−(p))

= [η(γ), η(γ′)]x(p),

where (∗) follows from the equality
→
η(γ)−(p)τx =

→
γ−(p ◦ τx), which

descends from

(
→
η(γ)−(p)τx)(h) =

→
η(γ)−(p)(τx(h)) = η(γ)t(τx(h))(p ◦Rτx(h))

= η(γ)t(h)(p ◦Rτx(h)) = ηt(h)(γt(h))(p ◦Rτx(h))

= γt(h)(p ◦Rτx(h) ◦ τt(h)) = γt(h)(p ◦ τx ◦Rh)

= (
→
γ−(p ◦ τx))(h).

With these structures, we get that η : Γ(F)→ Γ(E) is an isomorphism
of Lie–Rinehart algebras, where η = Γ(η) and η is fiberwise given by
equation (58).

Lastly, applying the differentiation functor of §5.3 and using the nat-
ural transformation of equation (55) together with the commutative dia-
gram of equation (56), we obtain a commutative diagram of Lie–Rinehart
algebras over A := C∞(G0)

(61)

DersR(VA(Γ(F))◦, Aε)
L I (η) // DersR(VA(Γ(E))◦, Aε)

Γ(F)
η

//

ΘΓ(F)

;;

Θ′Γ(F)

��

Γ(E)

ΘΓ(E)

::

Θ′Γ(E)

��
DersR(V•A(Γ(F)), Aε)

L (ζ̂)

KK

L I ′(η) // DersR(VA•(Γ(E)), Aε)

L (ζ̂)

KK

whose horizontal arrows are isomorphisms of Lie–Rinehart algebras.

Remark A.10. In the case of Lie groups, the map Θ of diagram (61)
is injective. In fact this map is injective for any finite-dimensional Lie
algebra. Namely, taking a finite-dimensional Lie k-algebra L, we have,
as in Proposition A.7, the map ΘL : L → Derk(Uk(L)◦,kε) given by
the evaluation X 7→ [f 7→ f(X)], where Uk(L)◦ is the finite dual Hopf
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algebra of the universal enveloping algebra of L. Since, in light of [37,
p. 157], Uk(L)◦ is dense in Uk(L)∗ (here the topology is the linear one),
Uk(L) is a proper algebra in the sense of [1, p. 78], so ΘL is injective.
Furthermore, in light of [20, Theorem 6.1], for k an algebraically closed
field of characteristic zero ΘL is bijective if and only if L = [L,L].

Now if G is a compact Lie group, then G ∼= CAlgR(RR(G),R), the
character group of the commutative Hopf real algebra RR(G) of all repre-
sentative smooth functions on G. The Lie algebra Lie(G)=L (RR(G))=
DerR(RR(G),Rε) of G is then identified with the Lie algebra of the
primitive elements Lie(G) ∼= Prim(RR(G)◦) [1, §4, Section 3] of the
finite dual RR(G)◦. Denote by τ : UR(Lie(G)) ↪→ RR(G)◦ the canonical
monomorphism of cocommutative Hopf algebras. Then, we know by [35]
that the map

ˆ(−) : RR(G) // (RR(G)◦)∗, (% � // [f � // f(%))

factors through the inclusion RR(G)◦◦ ⊆ (RR(G)◦)∗. Therefore, the
map ΘLie(G) is a split monomorphism of Lie algebras, namely, with split-

ting map L (τ◦ ˆ(−)).
In the case of compact Lie groupoids (i.e., G0 is a compact smooth

manifold and each of the isotropy Lie groups of G is compact), it would
be interesting to study the injectivity of the map Θ either in the left-hand
or right-hand triangle in diagram (61).

Appendix B. The factorization of the anchor map of the
Lie–Rinehart algebra of a split Hopf algebroid

In this last appendix we show how the anti-homomorphism of Lie
algebras Lie(G)(k) → Derk(Ok(X )) of [8, II, §4, no 4, Proposition 4.4,
p. 212] becomes the map of equation (41). We also give some specific
cases of Example 5.15.

Recall that we have a commutative Hopf algebra H such that G =
CAlgk(H,−) and a left H-comodule commutative algebra A such that
X = CAlgk(A,−). The coaction ρ : A→ H ⊗A induces on X a G-oper-
ation CAlgk(H,R)×CAlgk(A,R)→ CAlgk(A,R), in the sense of [8, II,
§1, no 3, Définition 3.1, p. 160], which is an instance of

µB : CAlgk(H,R)× CAlgk(A,B) // CAlgk(A,B),

(f, g)
� // [a � // f(a−1)g(a0)]

for R ∈ CAlgk and every R-algebra B. Define

fR : CAlgk(H,R) // AutR(X ⊗R) : f
� // fR(f),
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where fR(f)B : CAlgk(A,B) → CAlgk(A,B) : g 7→ µB(f, g) and where
the functor X⊗R : CAlgR→Sets is simply the restriction of X to CAlgR.
The group AutR(X⊗R) is the group of natural isomorphisms in Nat(X⊗
R,X ⊗R).

Define the functor Aut(X ) : CAlgk → Sets by setting Aut(X )(R) :=
AutR(X ⊗ R) and for every morphism φ : S → R set Aut(X )(φ) :
Aut(X )(S)→Aut(X )(R) sending every natural transformation (τB)B∈ModS

to the natural transformation (τB)B∈ModR . Note that for every f ∈
CAlgk(H,S) and every g ∈ CAlgk(A,B) with B ∈ ModR, for all a ∈ A
we have that

(fS(f)B(g))(a) = f(a−1) ·g(a0) = ξ(f(a−1))g(a0) = (fR(ξ ◦f)B(g))(a).

As a consequence, fS(f)B = fR(ξ ◦f)B for all B ∈ ModR, which means
that fR is natural in R and hence we can write f : G → Aut(X ).

Now, recall that for every R-algebra B we have an isomorphism
CAlgk(A,B) ∼= CAlgR(A ⊗ R,B). As a consequence, AutR(X ⊗ R) ∼=
AutR(CAlgR(A ⊗ R,−)) and, in view of the Yoneda isomorphism,
AutR(CAlgR(A ⊗ R,−)) ∼= AutR(A ⊗ R)op. Summing up, we have a
group isomorphism

YR : AutR(X ⊗R) // AutR(A⊗R)op.

The composition of fR with YR yields a natural transformation

CAlgk(H,R)
fR // Aut(X )(R) = AutR(X ⊗R)

YR // AutR(A⊗R)op

acting, from the leftmost member to the rightmost, as

f � // [(a⊗ r) � // (a0 ⊗ f(a−1)r)]

(see [8, II, §1, no 2, 2.7, p. 153]). Set Ok := CAlgk(k[T ],−) : CAlgk →
Sets and Ok(X ) := Nat(X ,Ok) as in [8, I, §1, no 6, 6.1, p. 26]. In view
of the Yoneda lemma again, Ok(X ) ∼= A. Therefore, Derk(Ok(X )) ∼=
Derk(A).

If we write k(ε) := k[T ]/〈T 2〉, where ε := T + 〈T 2〉, for the k-al-
gebra of dual numbers, then Lie(G)(k) ⊆ CAlgk(H,k(ε)) as defined in
[8, II, §4, no 1, 1.2, p. 200] is the kernel of the group homomorphism
CAlgk(H,k(ε)) → CAlgk(H,k) given by composition with p1 : k(ε) →
k; [(a+ bε) 7→ a], i.e.,

Lie(G)(k) = {f : H // k(ε) | p1 ◦ f = ε}.
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Set p2 : k(ε)→ k; [(a+ bε) 7→ b]. Clearly,

Derk(H,kε) oo
∼= // Lie(G)(k)

δ
� // [(ε+ δε) : x

� // (ε(x) + δ(x)ε)]

p2 ◦ f f.
�oo

The functor f : G→Aut(X ) gives Lie(f)(k) : Lie(G)(k)→Lie(Aut(X ))(k)
by restriction of the morphism fk(ε) : G(k(ε))→ Aut(X )(k(ε)). Note that

Yk(ε)◦fk(ε) : CAlgk(H,k(ε)) // Autk(ε)(A(ε))op;

(f � // [(a+bε) � // (a0f(a−1)+b0f(b−1)ε)]).

Now, for every φ ∈ Lie(Aut(X ))(k), F ∈ Ok(X ), and S ∈ CAlgk one
may consider

DXφ (F)S := (X (S)
X (i1) // X (S(ε))

φS(ε) // X (S(ε))

FS(ε) // Ok(S(ε))
Ok(p2) // Ok(S)),

(62)

where i1 : S → S(ε); [s 7→ s]. Here we may apply φS(ε) because φ ∈
Lie(Aut(X ))(k) ⊆ Aut(X )(k(ε)) = Autk(ε)(X ⊗ k(ε)) and S(ε) is a k(ε)-
algebra. This defines a map

DXφ : Ok(X ) // Ok(X )

which turns out to be a k-derivation of the algebra Ok(X ) (cf. [8, II, §4,
no 2, 2.4, p. 203]). By considering the composition

$ :=(Derk(H,kε)
∼= // Lie(G)(k)

Lie(f)(k) // Lie(Aut(X ))(k)

DX− // Derk(Ok(X ))
∼= // Derk(A))

(63)

one gets the canonical morphism claimed at the beginning of this sub-
section. Let us compute explicitly how this composition acts on a δ ∈
Derk(H,kε). The first isomorphism associates the map ε+δε ∈ Lie(G)(k)
to δ. Set φ := Lie(f)(k)(ε + δε) = fk(ε)(ε + δε) ∈ Lie(Aut(X ))(k).
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Then DX− maps φ to DXφ ∈ Derk(Ok(X )). The last isomorphism in (63)

sends DXφ to the composition

A
∼= // Ok(X )

DXφ // Ok(X )
∼= // A,

a � // Fa = CAlgk(eva,−) � // DXφ (Fa) � // (DXφ (Fa)A(idA))(T ).

Here eva : k[T ]→ A is the unique algebra map sending T to a. Now, let
us compute explicitly

(DXφ (Fa)A(idA))(T )
(62)
= [(Ok(p2) ◦ FaA(ε) ◦ φA(ε) ◦ X (i1))(idA)](T )

= [(Ok(p2) ◦ FaA(ε) ◦ φA(ε))(i1)](T )

= [(Ok(p2) ◦ FaA(ε))(fk(ε)(ε+ δε)A(ε)(i1))](T )

= [(Ok(p2) ◦ FaA(ε))(µA(ε)(ε+ δε, i1))](T )

= [Ok(p2)(µA(ε)(ε+ δε, i1) ◦ eva)](T )

= (p2 ◦ µA(ε)(ε+ δε, i1) ◦ eva)(T ) = p2(µA(ε)(ε+ δε, i1)(a))

= p2((ε+ δε)(a−1)i1(a0)) = p2(ε(a−1)a0 + εδ(a−1)a0) = δ(a−1)a0.

Summing up, the canonical morphism is given by

$ : Derk(H,kε) // Derk(A) : δ � // [a � // δ(a−1)a0].

Thus $ = ω ◦ τ as in (41).
Now, let us give some examples of the factorization introduced in

Example 5.15.

Example B.1. IfA=k, then Derk
t(H,AεH)=Derk(H,kε) and Derk(A)=

0, whence ω = 0 = $ and τ is the identity.

Example B.2. Take A to be the Hopf algebra H itself with comodule
structure given by ∆ (this would correspond to the action of G on itself
by left multiplication). In this case, H = H ⊗H with

ηH(x⊗ y) = x1 ⊗ x2y, ∆H(x⊗ y) = (x1 ⊗ 1)⊗H (x2 ⊗ y),

εH(x⊗ y) = ε(x)y, S(x⊗ y) = S(x)y1 ⊗ y2,

and $ satisfies $(δ) : x 7→ δ(x1)x2 for every δ ∈ Derk(H,k), x ∈ H.
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Notice that the anchor map

ω : Derk
t(H, HεH) // Derk(H),

δ � // [x � // δ(x1 ⊗ x2) = δ(x1 ⊗ 1)x2]

admits an inverse, explicitly given by

ω−1 : Derk(H) // Derk
t(H, HεH)

d
� // [x⊗ y � // d(x1)S(x2)y],

whence the factorization of the morphism $ is trivial.
We recall20 that in this case $ induces an anti-isomorphism of Lie

algebras between Derk(H,kε) and the Lie subalgebra of Derk(H) formed
by the right invariant derivations, where a linear operator T : H → H
is said to be right invariant if it satisfies ∆ ◦ T = (T ⊗ H) ◦ ∆ (from
a geometric point of view, e.g. when H is the Hopf algebra of an affine
algebraic group G, this encodes the fact that T commutes with all the
right translation operators Tg : H → H given by (Tg(f))(h) = f(hg) for
all g, h ∈ G. See e.g. [51, §12.1]).

It is easy to check that for every δ ∈ Derk(H,kε), $(δ) is right invari-
ant. Conversely, if d ∈ Derk(H) is right invariant, then d(x)1 ⊗ d(x)2 =
d(x1)⊗ x2 and hence d(x) = εd(x1)x2 = $(εd)(x) for every x ∈ H.

Example B.3. Consider the obvious action of GL2(C) on C2. This
makes the coordinate ring A := C[X1, X2] of C2 a left comodule al-
gebra over the coordinate ring H := C[Zi,j , det(Z)−1] of GL2(C), where
det(Z) = Z1,1Z2,2−Z1,2Z2,1. Explicitly, the Hopf algebra structure on H
is given by

∆(Z1,1)=Z1,1 ⊗ Z1,1+Z1,2 ⊗ Z2,1, ∆(Z1,2)=Z1,1 ⊗ Z1,2+Z1,2 ⊗ Z2,2,

S(Z1,1)=
Z2,2

det(Z)
, S(Z1,2)=− Z1,2

det(Z)
,

∆(Z2,1)=Z2,1 ⊗ Z1,1+Z2,2 ⊗ Z2,1, ∆(Z2,2)=Z2,1 ⊗ Z1,2+Z2,2 ⊗ Z2,2,

S(Z2,1)=− Z2,1

det(Z)
, S(Z2,2)=

Z1,1

det(Z)
,

and ε(Zi,j) = δi,j for every i, j ∈ {1, 2}, while the comodule structure
on A is given by

ρ(X1) = Z1,1 ⊗X1 + Z1,2 ⊗X2, ρ(X2) = Z2,1 ⊗X1 + Z2,2 ⊗X2.

20See [8, II, §4, no 4, Proposition 4.6, p. 214] and, for example, [1, Corollary 4.3.2]

for the left-hand analogue.
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For every δ ∈ DerC(H,Cε), the morphism $ satisfies

$(δ)(X1) = δ(Z1,1)X1 + δ(Z1,2)X2,

$(δ)(X2) = δ(Z2,1)X1 + δ(Z2,2)X2,
(64)

and it factors through τ(δ) :Zi,j⊗Xk 7→δ(Zi,j)Xk∈Derk
t(H⊗A,AεH⊗A),

for k = 1, 2.
Notice that from equation (64) we deduce that $ is injective and that

$(δ) is uniquely determined by the 2×2 complex matrix M(δ) := (mi,j)
with mi,j = δ(Zi,j) for all i, j ∈ {1, 2}. Note that the latter assignment
yields a bijective correspondence

M : DerC(H,Cε) // Mat2(C)

which satisfies

M([δ, δ′]) = ([δ, δ′](Zi,j))

= (δ(Zi,j)) · (δ′(Zi,j))− (δ′(Zi,j)) · (δ(Zi,j)) = [M(δ),M(δ′)].

Thus M is the well known identification between the Lie algebra of the
algebraic group GL2(C) and the general linear algebra gl2(C) = Mat2(C).
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[3] T. Brzeziński and R. Wisbauer, “Corings and Comodules”, London Math-

ematical Society Lecture Note Series 309, Cambridge University Press, Cam-
bridge, 2003. DOI: 10.1017/CBO9780511546495.
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Vol. 2007/2008, Astérisque 326 (2009), Exp. No. 987 (2010), 165–196.

[5] S. Chemla and F. Gavarini, Duality functors for quantum groupoids, J. Non-
commut. Geom. 9(2) (2015), 287–358. DOI: 10.4171/JNCG/194.

[6] M. Crainic and R. L. Fernandes, Integrability of Lie brackets, Ann. of

Math. (2) 157(2) (2003), 575–620. DOI: 10.4007/annals.2003.157.575.
[7] P. Deligne, Catégories tannakiennes, in: “The Grothendieck Festschrift”,
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[33] B. Malgrange, Le groupöıde de Galois d’un feuilletage, in: “Essays on Geom-

etry and Related Topics”, Vol. 1, 2, Monogr. Enseign. Math. 38, Enseignement
Math., Geneva, 2001, pp. 465–501.
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