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1. Introduction

1.1. Ever since its introduction by Kolyvagin in the late 1980s, the the-
ory of Euler systems has played a vital role in the proof of many cel-
ebrated results concerning the structure of Selmer groups attached to
p-adic representations that are defined over number fields and satisfy a
variety of technical conditions.

In order to consider a wider class of representations, the theory has
also been developed in recent years to incorporate a natural notion of
‘higher rank’ Euler systems.

Given their importance, it is clearly of interest to understand the full
collection of Euler systems (of the appropriate rank) that arise in any
given setting.

In the concrete setting of (rank one) Euler systems that are attached
to the multiplicative group Gm over abelian extensions of Q, a conjecture
of Coleman concerning circular distributions can be seen to imply that
all such systems should arise in an elementary way from the classical
theory of cyclotomic units.

This conjecture of Coleman was itself motivated by an ‘Archimedean
characterization’ of norm-coherent sequences of cyclotomic units that he
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had obtained in [8] and hence by attempts to understand a globalized
version of the fact that all norm-compatible families of units in towers
of local cyclotomic fields arise by evaluating a ‘Coleman power series’ at
roots of unity.

To consider the analogous problem for an arbitrary number field K
we write rK for the number of Archimedean places of K and Ks for the
maximal abelian extension of K in which all Archimedean places split
completely.

Then, by adapting a general construction for p-adic representations
that is described by the first and third authors in [5], we shall first define

(unconditionally) a module ESb
K of ‘basic’ Euler systems of rank rK

for Gm relative to the extension Ks/K.

In the case K = Q we shall prove in Theorem 5.1 that ESb
K is gen-

erated by the restriction of the cyclotomic Euler system to real abelian
fields.

In the general case, we shall show in Theorem 3.8 that ESb
K contains

systems that are directly related to the leading terms of Artin L-series
at s = 0.

We shall then predict that essentially all Euler systems of rank rK
for Gm over Ks/K should belong to ESb

K (for a precise statement see
Conjecture 2.5).

In the case K = Q we can deduce from recent results of the first
and fourth authors in [6] that Conjecture 2.5 is equivalent to Coleman’s
original conjecture on circular distributions, and hence that the results
of loc. cit. give strong evidence for our conjecture in this case.

In addition, to obtain evidence for the general case of Conjecture 2.5
we can incorporate the construction of basic Euler systems into the equi-
variant theory of higher rank Euler, Kolyvagin, and Stark systems for Gm
that is developed by Sakamoto and the first and third authors in [4].

In particular, in this way we shall prove in Theorem 2.7 (and Theo-
rem 4.1) that the main result of [4] leads to some strong, and uncondi-
tional, evidence in support of Conjecture 2.5.

In fact, we find that even in the case K = Q the latter result consti-
tutes a strong improvement on results in the literature.

For example, in Theorem 2.9, we shall use it to prove a natural al-
gebraic analogue of Coleman’s ‘Archimedean characterization’ of norm-
coherent sequences in towers of cyclotomic fields (which is the main result
of [8]).
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1.2. Notation. In the remainder of the introduction we shall, for the
convenience of the reader, collect together various notations that we
employ throughout this article.

1.2.1. Arithmetic. We fix an algebraic closure Qc of Q and an alge-
braic closure Qcp of Qp for each prime number p.

Throughout the article, K will denote a number field (that is, a finite
extension of Q in Qc) and Kab the maximal abelian extension of K
inside Qc. We write S∞(K) for the set of Archimedean places of K and
denote its cardinality by rK .

For each extension K of K in Kab we consider the following collection
of intermediate fields:

Ω(K/K) := {F | K ⊂ F ⊆ K, F/K is ramified and of finite degree}.

For each field E in Ω(K/K) we set

GE := Gal(E/K)

and we write Sram(E/K) for the (finite, non-empty) set of places of K
that ramify in E.

For any set S of places of K, we then set

S(E) := S ∪ Sram(E/K).

We write SE for the set of places of E lying above those in S. The
ring of SE-integers of E is denoted by

OE,S := {a ∈ E | ordw(a) ≥ 0 for all non-Archimedean w 6∈ SE},

where ordw is the normalized additive valuation relative to w.
Given a finite set T of places of K that is disjoint from S∪S∞(K), we

define the (S, T )-unit group of E to be the finite index subgroup of O×E,S
given by

O×E,S,T := {a ∈ O×E,S | a ≡ 1 (modw) for all w ∈ TE}.

We denote by YE,S the free Z-module on SE and XE,S its augmenta-
tion kernel so that there is a tautological short exact sequence

0 XE,S YE,S Z 0.

Given a place w of E, we denote by GE,w the decomposition subgroup
of GE relative to w. If w is non-Archimedean, we denote by κ(w) the
residue field relative to w and write Nw for the cardinality of κ(w). Let
v be the place of K lying under w. If v does not ramify in E, then we
write Frv ∈ GE,w for the Frobenius automorphism relative to w.
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We denote by RK/K the completed group ring Z[[Gal(K/K)]]. For

each E in Ω(K/K) we write µE for the torsion subgroup of E× and AE
for the annihilator in Z[GE ] of µE . Then for each E′ with E ⊆ E′ one
has πE′/E(AE′) = AE (see Lemma 3.9(ii)) and so we obtain an ideal
of RK/K by setting

AK/K := lim←−
E∈Ω(K/K)

AE .

We writeKs for the maximal subfield ofKab in which all Archimedean
places of K split. We then abbreviate the modules RKab/K , RKs/K ,
AKab/K , and AKs/K to RK , Rs

K , AK , and As
K respectively.

For each natural number m we write µm for the group of m-th roots
of unity in Qc. For each n we fix a generator ζn of µn such that ζmmn = ζn
for all m and n.

1.2.2. Algebra. Let R be a commutative Noetherian ring and X an
R-module. We set X∗ := HomR(X,R). We write Xtor for the torsion
subgroup of X and Xtf for the associated torsion-free quotient X/Xtor.

We also write X̂ for the profinite completion of X and X̂p for its pro-p
completion at a rational prime p.

For a non-negative integer r the r-th exterior power bidual of X is
defined by setting ⋂r

R
X :=

(∧r

R
(X∗)

)∗
.

We recall that there exists a natural homomorphism of R-modules

ξrX :
∧r

R
X

⋂r

R
X; x (Φ Φ(x))

that is, in general, neither injective nor surjective (see [5, (1)]).
Exterior power biduals play an essential role in the theory of higher

rank Euler, Kolyvagin, and Stark systems (see, for example, [4] and [5]).
In particular, if R = Z[G] for a finite abelian group G, then ξrX induces

an identification

(1)

{
x∈
∧r

Q[G]
(Q⊗ZX)

∣∣∣∣Φ(x)∈R for all Φ∈
∧r

R
(X∗)

} ⋂r

R
X∼

(cf. [5, Proposition A.8]). Lattices of this form were first used by Rubin
in [11] to formulate an integral refinement of Stark’s conjecture.

In order to ease notations for objects associated to group rings, we
shall sometimes abbreviate a subscript ‘Z[G]’ to ‘G’ (for example, writing
‘
⋂r
G’ rather than ‘

⋂r
Z[G]’).

We denote the cardinality of a finite set X by |X|.
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2. Statement of the conjecture and main results

2.1. Euler systems. We first introduce the various notions of Euler
systems with which we shall be concerned.

In this section, we set S :=S∞(K) so that S(E)=S∞(K)∪Sram(E/K)
for any finite extension E/K.

Fix a field K in Kab, an integer r ≥ 0, and a pair of fields E and E′

in Ω(K/K) with E ⊆ E′. Then the field-theoretic norm map NE′/E :

Q⊗Z O×E′,S(E′) → Q⊗Z O×E,S(E′) induces a commutative diagram⋂r

GE′
O×E′,S(E′) Q⊗Z

∧r

GE′
O×E′,S(E′)

⋂r

GE
O×E,S(E′) Q⊗Z

∧r

GE
O×E,S(E′)

Nr
E′/E Nr

E′/E

where the horizontal inclusions are induced by the identification (1).

Definition 2.1. A ‘rational Euler system of rank r’ for Gm and K/K
is a collection

c = (cE)E ∈
∏

E∈Ω(K/K)

(
Q⊗Z

∧r

GE
O×E,S(E)

)
that satisfies the following distribution relations: for every pair of fields E
and E′ in Ω(K/K) with E ⊆ E′ one has

(2) Nr
E′/E(cE′) =

( ∏
v∈S(E′)\S(E)

(1− Fr−1
v )

)
cE

in Q⊗Z
∧r
GEO

×
E,S(E′).

The set RESr(K/K) of all rational Euler systems of rank r has a
natural structure as an RK/K-module. If r = rK and K = Ks, then we
abbreviate RESr(K/K) to RESK .

Example 2.2. A classical example of a rational Euler system is given
by the system of cyclotomic units. In fact, if for each E in Ω(Qs/Q)
of (non-trivial) conductor f(E), so that E ⊆ Q(ζf(E)), one sets cE :=
NQ(ζf(E))/E(1− ζf(E)), then the collection (cE)E belongs to RESQ.

More generally, the Euler system of (conjectural) Rubin–Stark ele-
ments constitutes an element of RESK . In particular, for each field E
in Ω(Ks/K), the (‘T -less’) Rubin–Stark conjecture for the data set
(E/K,S(E),∅, S∞(K)) is formulated in [11, Conjecture A] and predicts
the existence of an element cE in Q⊗Z

∧r
GE O

×
E,S(E) that is related by the
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Dirichlet regulator isomorphism to the r-th order S(E)-truncated Stick-
elberger element of E/K. Then the argument of [11, Proposition 6.1]
shows that (cE)E belongs to RESK .

Definition 2.3. ‘An Euler system of rank r’ for the pair (Gm,K/K)
is an element c of RESr(K/K) with the property that for every field E
in Ω(K/K) the element cE belongs to the lattice

⋂r
GEO

×
E,S(E).

The collection ESr(K/K) of such systems is an RK-submodule of
RESr(K/K). If r = rK and K = Ks, then we abbreviate ESr(K/K)
to ESK .

Remark 2.4. The module EScl := EScl(K/K) of ‘classical’ (rank one)
Euler systems for Gm and K/K comprises all elements c = (cE)E of∏
E O

×
E,S(E), where E runs over Ω(K/K), with the property that for all

pairs E and E′ with E ⊆ E′ the distribution relation (2) is valid in the
group O×E,S(E′).

In particular, since for every E the module
⋂1
GEO

×
E,S(E) :=(O×E,S(E))

∗∗

identifies with O×E,S(E),tf , the natural reduction map from EScl to the

module ES1 := ES1(K/K) need be neither injective nor surjective.
However, if c belongs to ES1, then for any element a of AK/K there

exists a canonical system c′ = c′a in EScl that projects to give ca in ES1:
for each E in Ω(K/K) one need only define c′E to be (c̃E)aE , where c̃E is

any choice of element of O×E,S(E) that projects to cE in
⋂1
GEO

×
E,S(E).

2.2. The conjecture and main results. In §3 below we will use cer-
tain natural families of étale cohomology complexes to construct a canon-
ical ‘invertible’ Rs

K-module VS(Ks/K) and to prove the existence of a
canonical non-zero homomorphism

Θs
K : VS(Ks/K) RESK

of RK-modules with the property that

(3) As
K · im(Θs

K) ⊆ ESK .

The constructions of the module VS(Ks/K) and map Θs
K arise by

adapting certain generic p-adic constructions from [5] that are uncondi-
tional and both essentially algebraic and quite elementary in nature.

As a result, the inclusion (3) implies that for every field K there
exists a ‘large’ module of Euler systems of rank rK (for details see The-
orem 3.8).

We define the module of ‘basic Euler systems of rank rK ’ for Gm
over K by setting

ESb
K := im(Θs

K).
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In this article we shall then study the following conjecture concerning
a partial converse to the inclusion (3).

Conjecture 2.5. As
K · ESK ⊆ As

K · ESb
K .

This conjecture asserts that, modulo minor technical issues concern-
ing torsion, all Euler systems in ESK should arise via the elementary
construction given in §3.1.

Remark 2.6. It can be shown that ESb
Q is not contained in ESQ (see

Lemma 5.3). However, if we set Λ := Z
[

1
2

]
, then for any totally real

field K one has Λ ⊗Z As
K = Λ ⊗Z Rs

K and so Conjecture 2.5 combines

with (3) to predict Λ ⊗Z ESK = Λ ⊗Z ESb
K . In fact, at this stage, we

do not know an example showing that the inclusion of Conjecture 2.5
should not itself always be an equality.

To obtain evidence for Conjecture 2.5 one can use the equivariant the-
ory of higher rank Kolyvagin systems for Gm, as developed by Sakamoto
and the first and third authors in [4]. In particular, in this way we
shall obtain the following (unconditional) result, a precise statement,
and proof, of which is given in §4.

Theorem 2.7 (Theorem 4.1). Fix an odd prime p and for each field E
in Ω(Ks/K) write ∆E for the maximal subgroup of GE of order prime
to p. Then for every system c in ESK , every field E in Ω(Ks/K), and
every homomorphism χ : ∆E → Qc,×p that satisfies certain mild techni-
cal hypotheses, the ‘χ-component’ of cE belongs to the Zp[GE ]-module

generated by {c′E | c′ ∈ ESb
K}.

If K has at least one real embedding, then µL = {±1} for all L in
Ω(Ks/K) and so As

K is the kernel IK,(2) of the natural ‘mod 2 augmen-
tation’ map Rs

K → Z/(2).
In particular, in this case Conjecture 2.5 predicts that every Euler

system in ESK has the form 2−1 ·Θs
K(x) for some x in IK,(2) ·VS(Ks/K).

However, as the following result shows, in special cases it can predict
much more.

Theorem 2.8. If K = Q, then Conjecture 2.5 is equivalent to Coleman’s
conjecture on circular distributions. In particular, if Conjecture 2.5 is
valid, then for every c = (cF )F in EScl(Qab/Q) there exists an element rc
of RQ such that

cQ(n) = ±(1− ζn)rc

for every n 6≡ 2 (mod 4).
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This result shows that Conjecture 2.5 constitutes a natural ‘general-
ized Coleman conjecture’ and will be proved in §5.2.

In addition, by combining Theorem 2.7 with the analysis used to
prove Theorem 2.8 we obtain the following algebraic analogue of the
‘Archimedean characterization’ of norm-coherent sequences in towers of
the form

⋃
nQ(µpn) that was given by Coleman in [8]. (We recall that

this result was the original motivation for Coleman’s study of circular
distributions.)

Theorem 2.9. Let p be an odd prime and (an)n a norm-coherent se-
quence in the tower of fields

⋃
nQ(µpn). Then each element an belongs to

the RQ-module generated by 1− ζpn if and only if there exists a circular

distribution f and a non-negative integer t such that f(ζpn)2t = an for
all n.

This result improves upon [15, Theorem B] (by showing that the
positive integer c in loc. cit. can be taken as a power of 2) and also gives
an affirmative answer, modulo powers of 2, to the question raised by the
fourth author in [17, end of §1]. It will be proved in §5.3.

3. Basic Euler systems

In this section we shall define, and establish the key properties of, the
homomorphism Θs

K that occurs in Conjecture 2.5.
To do this we fix an extension K in Kab and a finite set of places S

of K containing S∞(K). (Later in the article we will specialize to S =
S∞(K).)

Throughout this section we shall also use the following general nota-
tion. For any finite abelian group G and any commutative Noetherian
ring R we write D(R[G]) for the derived category of R[G]-modules and
Dperf(R[G]) for the full triangulated subcategory of D(R[G]) comprising
complexes that are perfect.

For a bounded above complex of G-modules C we write C∗ for the
object RHomZ(C,Z[0]) of D(Z[G]), where the linear dual is endowed
with the natural contragredient action of G.

We write dR[G](−) for the determinant functor on Dperf(R[G]), as
constructed by Knudsen and Mumford in [10].

We write Ĝ for the group of Qc-valued characters of G and for any
such χ we write eχ for idempotent |G|−1

∑
σ∈G χ(σ)σ−1 of Qc[G].

For any G-module M we also set Mχ := eχ · (Qc ·M), where Qc ·M
denotes the Qc[G]-module that is generated by M .

3.1. Modified étale cohomology complexes. For each E in Ω(K/K)
and each finite set of places T of K that is disjoint from S(E), the
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methods of Kurihara and the first and third authors in [3, §2] define
a canonical T -modified, compactly supported ‘Weil-étale’ cohomology
complex RΓc,T ((OE,S(E))W ,Z) of the constant sheaf Z on Spec(OE,S(E)).

In the sequel we set

CE,S(E),T := RΓc,T ((OE,S(E))W ,Z)∗[−2]

and shall use the properties of this complex that are recalled in the
following result.

For any finite set T ′ of places of K that is disjoint from S(E) we set

F×T ′E :=
⊕
w∈T ′E

κ(w)×.

For each non-Archimedean place v ofK we write RΓ(κ(v)W ,Z[GE ]) for
the direct sum over places w of E above v of the complexes RΓ(κ(w)W ,Z)
defined in [3, Proposition 2.4(ii)].

For any finite set of places Σ of K that contains S∞(K) and is disjoint

from T , we write ClTΣ(E) for the ray class group of OE,Σ modulo the
product of all places of E above T .

Proposition 3.1. For each E in Ω(K/K) the complex CE,S(E),T belongs

to Dperf(Z[GE ]) and has all of the following properties.

(i) For any finite set of places Σ of K that contains S(E) and is disjoint
from T the complex CE,Σ,T is acyclic outside degrees zero and one
and there are canonical identifications of GE-modules H0(CE,Σ,T )=

O×E,Σ,T , H1(CE,Σ,T )tor = ClTΣ(E), and H1(CE,Σ,T )tf = XE,Σ.

(ii) If T ′ is any finite set of places that contains T and is disjoint
from S(E), then there is a canonical exact triangle in Dperf(Z[GE ])

CE,S(E),T ′ CE,S(E),T F×(T ′\T )E
[0]

(iii) Given a finite set S′ of places of K that contains S and is disjoint
from T , there exists a canonical exact triangle in Dperf(Z[GE ]) of
the form

CE,S(E),T CE,S′(E),T

⊕
v∈S′(E)\S(E)

RΓ(κ(v)W ,Z[GE ])∗[−1]

(iv) For any fields E and E′ in Ω(K/K) with E ⊆ E′ there exists a
natural isomorphism

Z[GE ]⊗L
Z[GE′ ] CE′,S(E′),T

∼= CE,S(E′),T

in Dperf(Z[GE ]).
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Proof: Write D−(Z[GE ]) for the full subcategory of D(Z[GE ]) comprising
complexes that are cohomologically bounded above and ψ∗ for the func-
tor from D−(Z[GE ]) to D(Z[GE ]) that sends each complex C to C∗[−2].

Concerning claim (i), since Σ contains S(E), the fact that CE,Σ,T
belongs to Dperf(Z[GE ]) is a consequence of [3, Proposition 2.4(iv)] and
the fact that ψ∗ preserves Dperf(Z[GE ]). The descriptions of cohomology
given in claim (i) are stated in [3, Remark 2.7].

The exact triangles in claims (ii) and (iii) result from applying ψ∗

to the triangles given by the right-hand column of the diagram in [3,
Proposition 2.4(i)] and to the exact triangle in [3, Proposition 2.4(ii)]
respectively.

The existence of isomorphisms as in claim (iv) can be deduced by
combining the commutative diagram of exact triangles in [3, Proposi-
tion 2.4(i)] together with the well known isomorphisms

Z[GE ]⊗L
Z[GE′ ] RΓc((OE′,S(E′))ét,Z)∗

∼= RHomZ[GE′ ](Z[GE ],RΓc((OE′,S(E′))ét,Z))∗

and

RHomZ[GE′ ](Z[GE ],RΓc((OE′,S(E′))ét,Z)) ∼= RΓc((OE,S(E′))ét,Z).

Remark 3.2. For each place v of K outside S(E), claim (ii) of Propo-
sition 3.1 with T = ∅ and T ′ = {v} implies that F×T ′E [0] belongs to

Dperf(Z[GE ]). It is in fact straightforward to show (and well known)
that this complex is isomorphic in Dperf(Z[GE ]) to the complex

Z[GE ] Z[GE ],
1−N v·Fr−1

v

where the first term is placed in degree minus one.

Remark 3.3. For each place v of K outside S(E) the result of [1, Propo-
sition 3.2] implies that the complex RΓ(κ(v)W ,Z[GE ])∗[−1] that occurs
in Proposition 3.1(iii) is canonically isomorphic to the complex

Z[GE ] Z[GE ],
1−Fr−1

v

where the first term is placed in degree zero.

Remark 3.4. If S(E) contains all places above a given rational prime p,
then [1, Proposition 3.3] implies that there is a canonical isomorphism
in Dperf(Zp[GE ]) of the form

Zp ⊗Z CE,S(E)
∼= RHomZp(RΓc(OE,S(E),Zp),Zp)[−2].

This isomorphism relates the constructions that we make below to those
from [5].
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3.2. Vertical determinantal systems. In this section we use the
complexes discussed in §3.1 to construct a canonical module over the
algebra RK/K .

We start by proving a useful technical result about the set Ω(K/K).

Lemma 3.5. There exists a cofinal directed subset of Ω(K/K) order-iso-
morphic to N.

Proof: Fix an enumeration p1, p2, . . . of the places of K. Given a modu-
lus m of K, let K(m) denote the intersection of K with the ray class field
modulo m for K. For each n ≥ 1, we now set Kn = K

(∏n
i=1 p

n
i

)
. By

class field theory, each Kn is abelian of finite degree over K and there is
a chain of inclusions K1 ⊆ K2 ⊆ · · · . Given an extension L ∈ Ω(K/K),
let fL be the conductor of L. Then L is contained in any K(m) such that
fL | m. Hence we can always choose an n such that L ⊆ Kn. We thus
see that the tower of fields {Kn}n≥1 forms a countable cofinal directed
subset of Ω(K/K).

For E in Ω(K/K) we abbreviate the functor dZ[GE ](−) to dGE . For
each pair of fields E and E′ in Ω(K/K) with E ⊆ E′, we then define

νE′/E : dGE′ (CE′,S(E′)) dGE (CE,S(E))

to be the following composite homomorphism of Z[GE′ ]-modules:

dGE′(CE′,S(E′))−−→ Z[GE ]⊗Z[GE′ ] dGE′ (CE′,S(E′)

∼−−→ dGE (Z[GE ]⊗L
Z[GE′ ] CE′,S(E′))

∼−−→ dGE (CE,S(E′))

∼−−→ dGE (CE,S(E))⊗
⊗

v∈S(E′)\S(E)

dGE(RΓ(κ(v)W ,Z[GE ])∗[−1])

∼−−→ dGE (CE,S(E)).

Here the first map is the canonical projection, the second is induced by
the standard base-change property of determinant functors, the third
by the isomorphism in Proposition 3.1(iv) (with T = ∅), the fourth by
the exact triangle in Proposition 3.1(iii) (with T = ∅), and the last
homomorphism is induced by the identification

dGE (RΓ(κ(v)W ,Z[GE ])∗[−1]) ∼= dGE (Z[GE ])⊗GE d−1
GE (Z[GE ])

∼= Z[GE ],
(4)

where the first isomorphism is induced by the description, given in Re-
mark 3.3, of RΓ(κ(v)W ,Z[GE ])∗[−1], and the second is the standard
‘evaluation map’ isomorphism.
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Definition 3.6. The module of ‘vertical determinantal systems’ for Gm
and K/K is the RK/K-module given by the inverse limit

VS(K/K) := lim←−
E∈Ω(K/K)

dGE (CE,S(E)),

where in the inverse limit the transition morphisms are the maps νE′/E
defined above.

The following result shows that this RK/K-module is in a natural
sense ‘invertible’.

Proposition 3.7. For each prime p the pro-p-completion of VS(K/K)

is free of rank one over R̂pK/K .

Proof: We fix a rational prime p and for E in Ω(K/K) set

ΞE := dZp[GE ](Zp ⊗Z CE,S(E)) ∼= Zp ⊗Z dGE (CE,S(E)).

Then the pro-p-completion of VS(K/K) is equal to

lim←−
n≥1

(
lim←−
E

dGE (CE,S(E))
)
/pn

∼−−→ lim←−
n≥1

lim←−
E

(dGE (CE,S(E))/p
n)

∼−−→ lim←−
E

lim←−
n≥1

(dGE (CE,S(E))/p
n)

∼−−→ lim←−
E

ΞE ,

where in all cases E runs over Ω(K/K). Here the first isomorphism
follows from the fact that Lemma 3.5 combines with the surjectivity of
each map νE′/E to imply that the inverse system underlying VS(K/K)
satisfies the Mittag-Leffler property, and the last from the fact that
dGE (CE,S(E)) is finitely generated so that its pro-p completion is ΞE .

Lemma 3.5 implies that we can compute the last limit by using the
tower of fields (Kn)n≥1. To do this we set Gn := GKn , νn := νKn/Kn−1

and Ξn := ΞKn .
Note that each Zp[Gn]-module Ξn is free of rank one. We fix n and

assume that for each m < n there exists a Zp[Gm]-basis of Ξm with
νKm/Km−1

(zm) = zm−1. Then it is enough to show that zn−1 lifts to a
Zp[Gn]-basis of Ξn.

To do this we write L for the maximal p-extension inside Kn/Kn−1

and set P := Gal(L/Kn−1) and H := Gal(Kn/L).
Then if zL is any pre-image of zn−1 under νL/Kn−1

, one has ΞL =
I(P) · ΞL + Zp[GL] · zL, where I(P) is the ideal of Zp[GL] generated by
all elements of the form g − 1 with g in P.

In particular, since I(P) is contained in the Jacobson radical of Zp[GL],
Nakayama’s lemma implies that zL is a Zp[GL]-basis of ΞL.
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Observe moreover that, since |H| is invertible in Zp, there is a canon-
ical decomposition of Zp[Gn]-modules

Ξn = eHΞn ⊕ (1− eH)Ξn

= (Zp[P]⊗Zp[Gn] Ξn)⊕ (1− eH)Ξn
∼= ΞL ⊕ (1− eH)Ξn,

where eH denotes the idempotent |H|−1
∑
σ∈H σ of Zp[Gn].

It is thus enough to choose zn to be any basis of Ξn that projects
under this decomposition to give zL in the first component.

3.3. The construction of basic Euler systems. In this section we
specialize to the case K = Ks and set r := rK := |S∞(K)|.

In the following, we also set S := S∞(K) (so that S(E) = S∞(K) ∪
Sram(E/K) for any E ∈ Ω(Ks/K)).

Then for every E in Ω(Ks/K) the Z[GE ]-module YE := YE,S∞(K) is
free of rank r. In particular, by fixing a set of representatives of the
GK-orbits of embeddings Ks → Qc we obtain (by restriction of the
embeddings) a compatible family of Z[GE ]-bases of the modules YE and
hence a compatible family of isomorphisms

(5) YE ∼= Z[GE ]r.

We also define an idempotent of Q[GE ] by setting

e(E) :=
∑
χ

eχ,

where χ runs over all characters in ĜE for which Xχ
E,Sram(E/K) van-

ishes. (Here we note that, whilst each individual idempotent eχ belongs
to Qc[GE ], the sum e(E) belongs to Q[GE ] since XE,Sram(E/K) spans a
finitely generated Q[GE ]-module.)

Then, with this definition, the natural exact sequence

(6) 0 XE,Sram(E/K) XE,S(E) YE 0

(the third arrow of which is surjective since, by assumption, Sram(E/K)
is non-empty) restricts to give an identification

(7) e(E)(Q⊗Z XE,S(E)) = e(E)(Q⊗Z YE) ∼= (Q[GE ]e(E))
r,

where the isomorphism is induced by (5).
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3.3.1. Statement of the main result. We define ΘE to be the com-
posite (surjective) homomorphism of Z[GE ]-modules

Q⊗Z dGE (CE,S(E))

−−→ dQ[GE ](Q⊗ZH
0(CE,S(E)))⊗Q[GE ] d

−1
Q[GE ](Q⊗Z H

1(CE,S(E)))

e(E)×−−−−→ e(E)

(
Q⊗Z

∧r

GE
O×E,S(E)

)
⊗Q[GE ]e(E)

(
Q⊗Z

∧r

GE
Z[GE ]r

)
= e(E)

(
Q⊗Z

∧r

GE
O×E,S(E)

)
.

(8)

Here the first arrow is the composite of the natural identification Q ⊗Z
dGE (CE,S(E)) = dQ[GE ](Q ⊗Z CE,S(E)) and the standard ‘passage-to-
cohomology’ map. In addition, the second arrow is induced by multi-
plication by e(E), the isomorphism

e(E)(Q⊗Z H
1(CE,S(E))) ∼= e(E)(Q⊗Z XE,S(E)) ∼= e(E)Q[GE ]r

induced by Proposition 3.1(i) and (7) and the fact that

e(E)(Q⊗Z H
0(CE,S(E))) = e(E)(Q⊗Z O×E,S(E))

is a free Q[GE ]e(E)-module of rank r.
The collection of morphisms (ΘE)E then induces a homomorphism of

RsK-modules

Θs
K : VS(Ks/K)

∏
E∈Ω(Ks/K)

Q⊗Z
∧r

GE
O×E,S(E)

and we set

ESb
K := im(Θs

K).

Finally, we note that for every E in Ω(Ks/K) and every character χ

in ĜE the S(E)-truncated Artin L-series LS(E)(χ, s) vanishes to order
at least r at s = 0 (see, for example, the discussion in §3.3.4 below) and

so we can write L
(r)
S(E)(χ, 0) for the value at s = 0 of its r-th derivative.

We can now state the main result of this section.
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Theorem 3.8.

(i) ESb
K is contained in RESK .

(ii) As
K · ESb

K is contained in ESK .
(iii) Fix a system c in RESK and a field E in Ω(Ks/K). Then for every

ramified character χ in ĜE one has

eχ(cE) 6= 0 L
(r)
S(E)(χ, 0) 6= 0.

(iv) There exists a system c in ESK with the property that for every

field E in Ω(Ks/K) and every character χ in ĜE one has

eχ(cE) 6= 0 L
(r)
S(E)(χ, 0) 6= 0.

3.3.2. The proof of Theorem 3.8(i). Fix (zE)E in VS(Ks/K) and
set cE := ΘE(zE) for each E in Ω(Ks/K).

Then to show that the family (cE)E belongs to RESK , it suffices to
prove that for every pair of fields E and E′ in Ω(Ks/K) with E ⊆ E′

and every χ in ĜE one has

(9) eχ(Nr
E′/E(cE′)) = eχ(PE′/E) · eχ(cE)

with PE′/E :=
∏
v∈S(E′)\S(E)(1− Fr−1

v ).

In addition, it is enough to verify this equality in Qp⊗Z
∧r
GE O

×
E,S(E′)

and with the system (cE)E replaced by the image (c̃E)E under the collec-

tion of maps (Qp⊗QΘE)E of any R̂s
K

p
-generator of the pro-p-completion

of VS(Ks/K) (cf. Proposition 3.7).

Then, for every E and every χ in ĜE the surjectivity of ΘE implies
that

eχ(c̃E) 6= 0 eχe(E) 6= 0 Xχ
E,Sram(E/K) = 0.

Thus, the direct sum decomposition XE,Sram(E′/K) = XE,Sram(E/K) ⊕
YE,S(E′)\S(E) implies

eχ(Nr
E′/E(c̃E′)) 6= 0⇐⇒ Xχ

E,Sram(E′/K) = 0

⇐⇒ Xχ
E,Sram(E/K) = 0 and Y χE,S(E′)\S(E) = 0

⇐⇒ eχ(c̃E) 6= 0 and eχ(PE′/E) 6= 0.
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It therefore suffices to verify (9) for characters χ with eχ(PE′/E) 6= 0
and in this case the required equality follows directly from the commu-
tative diagram

(dGE′ (CE′,S(E′)))
χ

(∧r

GE′
O×E′,S(E′)

)χ

(dGE (CE,S(E)))
χ

(∧r

GE
O×E,S(E)

)χ

ΘE′

νE′/E Nr
E′/E

PE′/E ·ΘE

The existence of this diagram follows from the fact (itself a conse-
quence of the general observation in [1, Lemma 1]) that for each v ∈
S(E′)\S(E) there is in this case a commutative diagram

dGE (RΓ(κ(v)W ,Z[GE ])∗[−1])χ Z[GE ]χ

dGE (RΓ(κ(v)W ,Z[GE ])∗[−1])χ Z[GE ]χ

1−χ(Frv)

where the upper row is induced by the isomorphism (4) and the lower
row by the acyclicity of the complex (RΓ(κ(v)W ,Z[GE ])∗[−1])χ.

3.3.3. The proof of Theorem 3.8(ii). For a = (aE)E in AsK and z =
(zE)E in VS(Ks/K) we need to show that for every fixed E in Ω(Ks/K)
one has

aE ·ΘE(zE) ∈
⋂r

GE
O×E,S(E).

In view of Lemma 3.9 below, we can also assume aE = δT := 1 −
N v · Fr−1

v , with T = {v}, where v is a place of K that is not contained
in S(E) and O×E,S(E),T is torsion-free.

To prove this we note that

dGE (CE,S(E),T ) = d−1
GE (F×TE [0]) · dGE (CE,S(E)) = δT · dGE (CE,S(E)),

where the first equality follows from the exact triangle in Proposi-
tion 3.1(ii) (with T and T ′ replaced by ∅ and T respectively) and the
second from the fact the explicit resolution of F×TE [0] described in Re-

mark 3.2 implies that dGE (F×TE [0]) = Z[GE ] · δ−1
T .

Hence, since
⋂r
GE O

×
E,S(E),T is a subset of

⋂r
GE O

×
E,S(E) it is enough

to show that for every prime p one has

(Qp ⊗Q ΘE)(dZp[GE ](Zp ⊗Z CE,S(E),T )) ⊆
⋂r

Zp[GE ]
(Zp ⊗Z O×E,S(E),T ).
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To do this we note that, since O×E,S(E),T is torsion-free, Proposi-

tion 3.1(i) implies that Zp ⊗Z CE,S(E),T is an admissible complex of
Zp[GE ]-modules in the sense of [5, Definition 2.20].

In particular, the above inclusion follows directly upon applying [5,
Proposition A.11(ii)] with the data (R, C,X) taken to be (Zp[GE ],Zp⊗Z
CE,S(E),T ,Zp ⊗Z YE) and the map f equal to the natural composite
homomorphism

H1(Zp ⊗Z CE,S(E),T ) Zp ⊗H1(CE,S(E),T )tf
∼= Zp ⊗Z XE,S(E)

Zp ⊗Z YE ,

where the isomorphism is by Proposition 3.1(i) and the last map is the
surjective map induced by (6).

This completes the proof of Theorem 3.8(ii).

Lemma 3.9. For each field E in Ω(Ks/K) the following claims are
valid.

(i) Let U be any finite set of places of K containing S(E) and all
places dividing |µE |. Then AE is generated as a Z-module by {1−
N v · Fr−1

v | v /∈ U}. Furthermore, for any place v of K that does
not belong to U , the group O×E,S(E),{v} is torsion-free.

(ii) The natural projection map As
K → AE is surjective.

Proof: The first assertion of claim (i) is proved in [19, Chapitre IV,
Lemme 1.1] and the second assertion is a straightforward exercise since
the residue characteristic of v does not divide |µE |.

To prove claim (ii) it suffices to show that for any fields E and E′ in
Ω(Ks/K) with E ⊆ E′ the natural projection Z[GE′ ]→ Z[GE ] sends AE′
onto AE .

This follows easily by applying the first assertion of claim (i) for
both E′ and E with respect to the same set U in both cases.

3.3.4. The proof of Theorem 3.8(iii) and (iv). We fix E in Ω(Ks/K)

and a character χ in ĜE that is ramified.
In this case the fixed field Eχ of E by the kernel of χ belongs to

Ω(Ks/K) and so for any system c = (cE)E in RESK one has

[E : Eχ] · eχ(cE) = eχ(Nr
E/Eχ(cE))

= eχ(PE/Eχ) · eχ(cEχ)

=

( ∏
v∈S(E)\S(Eχ)

(1− χ(Fr−1
v ))

)
· eχ(cEχ).



106 D. Burns, A. Daoud, T. Sano, S. Seo

In particular, if eχ(cE) 6= 0, then one has χ(Fr−1
v ) 6= 1 for all v in S(E)\

S(Eχ).
On the other hand, since LS(Eχ)(χ, s) = L(χ, s) one has

(10) LS(E)(χ, s) =

( ∏
v∈S(E)\S(Eχ)

(1− χ(Frv) N v−s)

)
· L(χ, s),

whilst [19, Chapitre I, Proposition 3.4] implies that if Σ denotes ei-

ther S(E) or S∞(K), then for all ψ in ĜE one has

ords=0 LΣ(ψ, s)=dimQc(X
ψ
E,Σ)

=r+


dimQc(X

ψ
E,Sram(E/K)), if Σ = S(E),

0, if Σ = S∞(K)

and ψ is non-trivial.

(11)

(Note that if Σ = S(E), then the second equality here is valid for the
trivial character ψ since, by assumption, Sram(E/K) is not empty.)

In particular, since the ramified character χ cannot be trivial, this
implies L(r)(χ, 0) 6= 0 and hence that the value

L
(r)
S(E)(χ, 0) =

( ∏
v∈S(E)\S(Eχ)

(1− χ(Fr−1
v ))

)
· L(r)(χ, 0)

is not zero if and only if χ(Fr−1
v ) 6= 1 for all v in S(E) \S(Eχ). Since we

have observed that the latter condition is satisfied whenever eχ(cE) 6= 0,
this proves Theorem 3.8(iii).

We claim next that to prove Theorem 3.8(iv) it is enough to show
that there exist elements a = (aE)E of As

K and z = (zE)E of VS(Ks/K)
with the property that for every E in Ω(Ks/K) one has aE ∈ Q[GE ]×

and Q[GE ] · zE = Q⊗Z dGE (CE,S(E)).
In fact, if this is true, then Theorem 3.8(ii) combines with the argu-

ment in the proof of Theorem 3.8(i) and (11) to show that c := a ·Θs
K(z)

is a system in ESK with the property that for all E in Ω(Ks/K) and

all χ in ĜE one has eχ(cE) 6= 0 if and only if L
(r)
S(E)(χ, 0) 6= 0.

To complete the proof of Theorem 3.8 it is thus enough to construct
elements a in As

K and z in VS(Ks/K) with the properties described
above.

To do this we again use Lemma 3.5 to reduce to the consideration of
the tower of fields (Kn)n≥1. Then, to ease notation, we set Gn := GKn
Hn := Gal(Kn/Kn−1), Ξn := dGn(CKn,S(Kn)), and νn := νKn/Kn−1

for
each n in N.
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To construct z we fix n in N and assume that for each m < n we
have fixed an element zm of Ξm such that Q ⊗Z Ξm = Q[Gm] · zm and
νm(zm) = zm−1. Then we must construct an element zn of Ξn such that
Q⊗Z Ξn = Q[Gn] · zn and νn(zn) = zn−1.

To do this we first choose any pre-image z′n of zn−1 under the (sur-
jective) map νKn/Kn−1

. Then, since νKn/Kn−1
induces an isomorphism

Q⊗Z Ξn = eHn · (Q⊗Z Ξn)⊕ (1− eHn)(Q⊗Z Ξn)

∼= (Q⊗Z Ξn−1)⊕ (1− eHn)(Q⊗Z Ξn)

there exists an element z′′n of Ξn such that eHn(z′′n) = 0 and z′n + z′′n is
a Q[Gn]-generator of Q ⊗Z Ξn. The element zn := z′n + z′′n is then an
element of the required type.

By an entirely similar argument (which we leave to the reader), one
finds that Lemma 3.9(ii) implies the existence of an element a in As

K

with the required property.
This completes the proof of Theorem 3.8.

4. Higher Kolyvagin derivatives

In this section we use the theory of equivariant higher Kolyvagin
derivatives to obtain some strong, and unconditional, evidence in sup-
port of Conjecture 2.5.

4.1. Statement of the main result.

4.1.1. To state a precise version of Theorem 2.7 we fix an odd prime p
and a finite abelian p-extension F of K. For simplicity, we shall assume
that F contains the maximal p-extension K(1) of K inside its Hilbert
class field HK .

As before, we continue to set S := S∞(K) and we recall this means
that for each E′ in Ω(Ks/K) the notation S(E′) denotes S∞(K) ∪
Sram(E′/K).

We write GK for the absolute Galois group of K and ω for the p-adic
Teichmüller character.

We also fix a non-trivial character

χ : GK Qc,×p

of finite prime-to-p order, write L for the abelian extension of K that
corresponds to the kernel of χ, and assume that all of the following
conditions are satisfied:
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(H1) L is not contained in K(µp).
(H2) χ2 6= ω if p = 3.
(H3) Any place of K that ramifies in F is not completely split in L.
(H4) All Archimedean places of K split in L.
(H5) L/K is ramified.

In the sequel we shall consider the compositum

E := LF

of L and F . We note in particular that, since p is odd, hypothesis (H4)
implies that E is contained in Ks.

We decompose the group GE as a product Π × ∆ with Π the Sylow
p-subgroup of GE and we identify GF and GL with Π and ∆ in the obvious
way.

We setO :=Zp[imχ] and define the (p, χ)-component of a ∆-moduleX
by setting

Xχ := O ⊗Z[∆] X,

where O is regarded as a Z[∆]-algebra via χ. For an element a ∈ X, we
also set

aχ := 1⊗ a ∈ Xχ.

The following result is a precise version of Theorem 2.7.

Theorem 4.1. For any system c in ESK , any field F as above, and any
character χ that satisfies all of the hypotheses (H1), (H2), (H3), (H4),
and (H5) one has cχE ∈ ΘE(dGE (CE,S(E)))χ.

In the remainder of §4.1 we shall reduce the proof of this result to the
proof of a statement about higher rank Stark systems for F/K and χ.

4.1.2. We fix an abelian pro-p extension K of K that contains both F
and the maximal p-extension K(q) of K inside its ray class field modulo q
for all but finitely many primes q of K. We note that, since p is odd,
K is a subfield of Ks.

We write Ω′(K/K) for the set of all finite extensions of K in K and
for each F ′ in Ω′(K/K) we set UF ′ := (O×LF ′)χ.

We continue to write r in place of rK := |S∞(K)|. We recall from
[4, Definition 2.4] that a ‘strict p-adic Euler system’ of rank r for the
extension K/K and character χ is a collection

c = (cF ′)F ′ ∈
∏

F ′∈Ω′(K/K)

⋂r

O[GF ′ ]
UF ′

that for all F ′ and F ′′ in Ω′(K/K) with F ′ ⊆ F ′′ satisfies the distribution
relation (2) with E′/E replaced by F ′′/F ′. The set of strict p-adic Euler
systems of rank r for K/K and χ is denoted by ESr(K/K, χ) and is
naturally an O[[Gal(K/K)]]-module.
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We further recall from [4, §2.3] that a Kolyvagin system of rank r
for F/K and χ is a collection of elements that is parametrized by certain
square-free products of prime ideals of K and that the set KSr(F/K,χ)
of all such collections is naturally a module over the quotient O[Π] of
O[[Gal(K/K)]].

In addition, the main result of [4] implies that, under the present
hypotheses on K/K and χ, the O[Π]-module KSr(F/K,χ) is free of
rank one and there exists a canonical ‘F -relative r-th order Kolyvagin
derivative’ homomorphism of O[[Gal(K/K)]]-modules

DF,r : ESr(K/K, χ) KSr(F/K,χ).

We write VS
(p)
LK for the pro-p-completion of VS(LK/K).

Lemma 4.2.

(i) For c in ESK the assignment F ′ 7→ cχLF ′ defines an element cχstr of
ESr(K/K, χ).

(ii) There exists a natural homomorphism of R̂pKs/K-modules

Θχ
LK : VS

(p)
LK ESr(K/K, χ).

(iii) Let b be a generator of VS
(p)
LK over R̂pKs/K . Then Theorem 4.1 is

valid if the O[Π]-module KSr(F/K,χ) is generated by the image
of Θχ

LK(b) under DF,r.

Proof: Hypothesis (H5) implies that for each F ′ in Ω′(K/K) the field LF ′

belongs to Ω(LK/K). Thus, if c belongs to ESK , then for F ′ in Ω′(K/K)
the element cχstr,F ′ := cχLF ′ belongs to

⋂r
O[GF ′ ]

(O×LF ′,S(LF ′))χ and the

collection

cχstr := (cχstr,F ′)F ′

satisfies the necessary distribution relations as the fields F ′ vary.
To deduce cχstr belongs to ESr(K/K, χ) it is thus enough to show that

for each F ′ the element cχLF ′ belongs to
⋂r
O[GF ′ ]

UF ′ .

In view of the equality (11), it is therefore sufficient to show that

eψχ(cLF ′) = 0 for any character ψ in ĜF ′ for which L
(r)
S(LF ′)(ψχ, 0) = 0,

where we regard each product ψχ as a character in ĜLF ′ in the obvious
way.

In addition, since (H5) implies ψχ is ramified, the required vanishing
is a direct consequence of Theorem 3.8(iii). This proves claim (i).

To prove claim (ii) we show first that for each F ′ in Ω′(K/K) the map

Θ†LF ′ := Qcp⊗Q ΘLF ′ sends ΞF ′,χ := dGLF ′ (CLF ′,S(LF ′))χ to
⋂r
O[GF ′ ]

UF ′ .
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To show this we note that (H1) implies µLF ′,χ vanishes so that ALF ′,χ
is equal to Z[GLF ′ ]χ, and hence contains the element eχ.

From the argument of Theorem 3.8(iv) we can therefore deduce

Θ†LF ′(ΞF ′,χ) is contained in
⋂r
O[GF ′ ]

UF ′ .

We can therefore define Θχ
LK to be the product map

∏
F ′ Θ

χ
F ′ , where

F ′ runs over Ω′(K/K) and each Θχ
F ′ is the composite homomorphism

VS
(p)
LK dGLF ′ (CLF ′,S(LF ′))χ

⋂r

O[GF ′ ]
UF ′ ,

Θ†
LF ′

where the first map is the natural projection.
To prove claim (iii) we assume DF,r(Θχ

LK(b)) is a generator over O[Π]
of KSr(F/K,χ). Then for any c in ESK claim (i) implies there exists an
element x = xb,c of O[Π] such that DF,r(cχstr) = x · DF,r(Θχ

LK(b)).
Upon evaluating these (equivariant) Kolyvagin systems at 1 (that is,

at the empty product of prime ideals of K) one deduces that

cχE = cχstr,F = DF,r(cχstr)1 = x·DF,r(Θχ
LK(b))1 =x·Θχ

LK(b)F = x·ΘE(bE)χ,

where bE denotes the image of b in Zp⊗Z dGE (CE,S(E)). This shows that
cχE belongs to ΘE(dGE (CE,S(E)))χ, as required.

In view of Lemma 4.2(ii), to prove Theorem 4.1 it is enough to show
that DF,r(Θχ

LK(b)) generates KSr(F/K,χ) over O[Π].
To do this we use the O[Π]-module SSr(F/K,χ) of Stark systems of

rank r for F/K and χ that is defined in [4, §2.3] and recall from [4,
Theorem 3.3(ii)] that there exists a canonical ‘algebraic regulator’ iso-
morphism of O[Π]-modules of the form

Rχr : SSr(F/K,χ) KSr(F/K,χ).∼

The key now is to prove the following result (which, we note, also
justifies [4, Remark 3.5]). We abbreviate Gal(LK/K) to GLK.

Theorem 4.3. There exists a canonical surjective homomorphism

∆χ
F,r : VS

(p)
LK SSr(F/K,χ)

of O[[GLK]]-modules that makes the following diagram commute:

VS
(p)
LK ESr(K/K, χ)

SSr(F/K,χ) KSr(F/K,χ)

∆χ
F,r

ΘχLK

DF,r

Rχr



Euler Systems for Gm 111

Before proving this result, we note that it does indeed finish the proof
of Theorem 4.1 since the surjectivity of the composite map Rχr ◦∆χ

F,r =

DF,r ◦ Θχ
LK implies that the image DF,r(Θχ

LK(b)) of b under this map
must be a generator of the O[Π]-module KSr(F/K,χ), as required.

4.2. Stark systems and the proof of Theorem 4.3. We first quickly
review the definition of Stark systems given in [4].

4.2.1. Let m be a non-negative integer and write Pm for the set of
prime ideals of K that do not divide p and split completely in

HKE(µpm , (O×K)p
−m

), where (O×K)p
−m

denotes the set of elements x

in Qc with xp
m ∈ O×K . (Recall here that HK denotes the Hilbert class

field of K and E the field LF .)
We write Nm for the set of square-free products of primes in Pm. For

each product n in Nm, we write Σn for the union of S∞(K) and the set
of prime divisors of n, we set

UE,n := O×E,Σn

and we write ν(n) for the number of prime divisors of n.
For any prime q of K, we define

(12) vq : E× Z[GE ]; a
∑
σ∈GE

ordQ(σa)σ−1,

where Q is a fixed place of E lying above q and ordQ denotes the nor-
malized additive valuation at Q.

We set Om := O/(pm). Upon reduction modulo pm, the above map
induces a map of Om[Π]-modules (E×/pm)χ → Om[Π] that we also
denote by vq and we then set

Snm := {a ∈ (E×/pm)χ | vq(a) = 0 for every q - n}.
For each pair of products m and n in Nm with n | m, there is then an

exact sequence of Om[Π]-modules

0 Snm Smm
⊕
q|m/n

Om[Π]

⊕
q|m/n vq

and hence (via the general result of [5, Proposition A.3]), for any non-
negative integer r a map of Om[Π]-modules

vm,n := ±
∧

q|m/n
vq :

⋂r+ν(m)

Om[Π]
Smm

⋂r+ν(n)

Om[Π]
Snm.

Here the sign is chosen so that vm′,n = vm,n ◦ vm′,m if n | m | m′ (cf. [5,
§3.1]).
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Then the Om[Π]-module of Stark systems of rank r and level m
for F/K and χ is defined to be the inverse limit

SSr(F/K,χ)m := lim←−
n∈Nm

⋂r+ν(n)

Om[Π]
Snm

with transition maps vm,n.
We also recall, from [4, §2.3], that the present hypotheses on χ im-

ply that for each non-negative integer m there exists a natural sur-
jective homomorphism of Om+1[Π]-modules πm : SSr(F/K,χ)m+1 �
SSr(F/K,χ)m so that one can set

SSr(F/K,χ) := lim←−
m

SSr(F/K,χ)m,

where the limit is taken with respect to the transition morphisms πm.
We next note the argument of [13, Proposition 3.6] shows that, just as

above, the maps vq in (12) give rise to a homomorphism of O[Π]-modules

vm,n :
⋂r+ν(m)

O[Π]
UE,m,χ

⋂r+ν(n)

O[Π]
UE,n,χ

and we define the O[Π]-module of global Stark systems of rank r for F/K
and χ to be

SSglob
r (F/K,χ) := lim←−

n∈N0

⋂r+ν(n)

O[Π]
UE,n,χ,

where the limit is taken with respect to the maps vm,n.

Lemma 4.4. There exists a natural surjective homomorphism of O[Π]-
modules

%F,χ : SSglob
r (F/K,χ) SSr(F/K,χ).

Proof: For each natural number m we use the cofinal subset N ′m of Nm
described in Lemma 4.5 below.

Then the latter result implies that for each m in N ′m there exists a
natural surjective homomorphism of O[Π]-modules⋂r+ν(m)

O[Π]
UE,m,χ =

∧r+ν(m)

O[Π]
UE,m,χ

∧r+ν(m)

Om[Π]
(UE,m,χ/(p

m))

=
∧r+ν(m)

Om[Π]
Smm =

⋂r+ν(m)

Om[Π]
Smm

that are compatible with the respective transition morphisms vm,n as
n and m vary over N ′m. This therefore gives a surjective homomor-

phism %F,χ,m of O[Π]-modules from SSglob
r (F/K,χ) to SSr(F/K,χ)m.
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These homomorphisms %F,χ,m are compatible with the transition mor-
phisms πm asm varies and hence lead to a surjective homomorphism %F,χ
of the required sort.

Lemma 4.5. For each natural number m there exists a cofinal subset N ′m
of Nm such that for every product m in N ′m the following conditions are
satisfied.

(i) The O[Π]-module UE,m,χ is free of rank r + ν(m).
(ii) The Om[Π]-module Smm is equal to (UE,m/p

m)χ and is free of
rank r + ν(m).

Proof: For each number field N we set Nm := N(µpm). We also write
Hχ
E for the subfield of the Hilbert class field of E that corresponds to

the image of Cl(OE) in Cl(OE)χ.

We claim that Hχ
E∩HKEm((O×K)p

−m
) = E and to prove this we shall

use the following diagram of fields.

(Hχ
E)m HKEm((O×K)p

−m
)

Hχ
E Em

∆′

E

∆

Fm

L

Π

∆

F

K

Π

We set D := (Hχ
E)m ∩ HKEm((O×K)p

−m
) and at the outset consider

the conjugation action of ∆′ on the abelian group Gal(D/Em).

In fact, since D is contained in HKEm((O×K)p
−m

) it is abelian over Fm
and so this conjugation action must be trivial.

However, since Hχ
E/E is of p-power degree, Gal(D/Em) is a p-group

and so identifies with a subset of the module O ⊗Z Gal(D/Em) upon
which the conjugation action of ∆′ is via the restriction χ′ of χ (as D ⊆
(Hχ

E)m).
In particular, since ∆′, and hence also χ′, is non-trivial (as L *

K(µp) by hypothesis (H1)), the group Gal(D/Em) must be trivial and

so (Hχ
E)m ∩HKEm((O×K)p

−m
) = Em.

This fact implies thatHχ
E∩HKEm((O×K)p

−m
) is equal to the fieldD′ :=

Hχ
E ∩ Em.
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Then the same approach as above shows that D′ = E since the
conjugation action of ∆ on Gal(D′/E) is trivial (as D′ ⊆ Em) whilst
Gal(D′/E) also embeds into an O-module upon which ∆ acts via the
non-trivial character χ.

We have now shown that Hχ
E ∩ HKEm((O×K)p

−m
) = E and so, by

Chebotarev’s density theorem, we can choose a set of primes n in Nm
with the property that Cl(OE,Σn

)χ is trivial.
We claim that the cofinal subset N ′m of Nm comprising multiples of n

has both of the stated properties (i) and (ii).
To prove this we fix m in N ′m. Then Cl(OE,Σm

)χ is trivial and so
Proposition 3.1(i), with Σ = Sram(E/K) ∪ Σm and T empty, implies
that H0(CE,Σ)χ = (O×E,Σ)χ = (UE,m)χ and that H1(CE,Σ)χ = XE,Σ,χ =

YE,Σm,χ is a free O[Π]-module of rank r + ν(m). (Here we used hypoth-
esis (H3).)

Since (CE,Σ)χ belongs to Dperf(O[Π]) these facts combine to imply
that (UF,m)χ is free of rank r + ν(m), as required to prove claim (i).

Claim (ii) then follows since the vanishing of Cl(OE,Σm
)χ implies that

the natural inclusion (UE,m)χ/(p
m) = (UE,m/p

m)χ → Smm is bijective.

4.2.2. Lemma 4.4 implies that to construct a surjective homomor-

phism of O[[GLK]]-modules ∆χ
F,r : VS

(p)
LK → SSr(F/K,χ) it is enough

to construct a surjective map of O[[GLK]]-modules ∆χ
F,r,1 : VS

(p)
LK →

SSglob
r (F/K,χ), and then to define ∆χ

F,r to be %F,χ◦∆χ
F,r,1. To do this we

shall mimic the construction of ‘horizontal determinant systems’ from [5,
§3.3].

For each q in P0 we write K(q)/K for the maximal p-extension of K
inside its ray class field modulo q. For each n in N0 we write E(n) for
the compositum E

∏
q|nK(q) and set Sn := S(E(n)) = Sram(E/K)∪Σn.

For each n in N0 we then define ∆n to be the composite homomor-
phism

dGE(n)
(CE(n),Sn

)χ dO[Π]((CE,Sn
)χ)

⋂r+ν(n)

O[Π]
UE,n,χ,

ΘE,n

where the first map is the natural projection and ΘE,n is defined just as
in (8) but with S(E) replaced by Sn and with respect to a fixed choice of
O[Π]-basis of the free module YE,Σn,χ. In particular, the fact that ΘE,n

maps dO[Π]((CE,Sn
)χ) to

⋂r+ν(n)
O[Π] UE,n,χ follows by an application of [5,

Proposition A.11(ii)], just as in §3.3.3.
We write ∆′n for the composite of ∆n and the natural (surjective)

projection map from VS
(p)
LK to dGE(n)

(CE(n),Sn
)χ.
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Then, provided that one makes a compatible choice of bases of the
modules YE,Σn,χ, these maps ∆′n are compatible with the transition mor-
phisms vm,n as n varies over N0 and so lead to the construction of a
map ∆χ

F,r,1.

In addition, since the modules ker(∆′n) are compact the derived limit
lim←−

1

n∈N0
ker(∆′n) vanishes.

To prove that ∆χ
F,r,1, and hence also ∆χ

F,r, is surjective it is therefore
enough to prove that the maps ∆n are surjective for all n in the cofinal
subset N ′0 of N0 comprising products m for which Cl(OE,Σm

)χ vanishes.
This is true since for all such n the argument of Lemma 4.5(i) shows

the O[Π]-modules H0((CE,Sn
)χ) = UE,n,χ and H1((CE,Sn

)χ) = YE,Σn,χ

to be free of rank r+ν(n) and hence that ΘE,n coincides with the natural
‘passage-to-cohomology’ isomorphism

dO[Π]((CE,Sn
)χ)∼=

(∧r+ν(n)

O[Π]
UE,n,χ

)
⊗
(∧r+ν(n)

O[Π]
Y ∗E,Σn,χ

)
∼=
∧r+ν(n)

O[Π]
UE,n,χ

that exists in this case.

4.2.3. To complete the proof of Theorem 4.3 it suffices to check the
diagram commutes.

To do this, for each n in N0 we set Gn := Gal(E(n)/K) and Hn :=
Gal(F (n)/F ) and write In for the kernel of the augmentation map
Z[Hn]→ Z.

For each product n in N0 and each prime q in P0 we define a map ϕn
q

as follows:

ϕn
q : E× Z[GE ]⊗Z In/I

2
n ; a

∑
σ∈GE

σ−1 ⊗ (recQ(σa)− 1),

where Q is a fixed place of E lying above q and recQ:E×→Gal(E(n)/E)∼=
Hn is the local reciprocity map at Q. This map induces a map UE,Σn,χ →
O[Π]⊗Z In/I

2
n , that we continue to denote by ϕn

q.
Upon combining these maps for each prime divisor q of n we obtain

a map of O[Π]-modules∧
q|n

ϕn
q :
⋂r+ν(n)

O[Π]
UE,Σn,χ

⋂r

O[Π]
UE,Σn,χ ⊗ I

ν(n)
n /I

ν(n)+1
n .

Finally we recall (from, for example, [4, (4.1.1)]) that there exists a
natural injective homomorphism

ιn :
⋂r

O[Π]
UE,Σn,χ ⊗Z I

ν(n)
n /I

ν(n)+1
n⋂r

O[Gn]
UE(n),Σn,χ ⊗Z Z[Hn]/I

ν(n)+1
n .
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Then, after unwinding the definitions of the maps Θχ
LK and ∆χ

F,r, the

argument that is used to prove [4, Theorem 4.13] shows that the square
in Theorem 4.3 is commutative if and only if for all products n in N0

and all elements bn of dGE(n)
(CE(n),Sn

) one has∑
σ∈Hn

σ(ΘE(n)(bn)χ)⊗ σ−1 = ιn

((∧
q|n
ϕn
q

)
(∆n(bχn))

)
in the module

⋂r
O[Gn]UE(n),Σn,χ ⊗ Z[Hn]/Iν(n)+1

n .

To complete the proof of Theorem 4.3, it is thus enough to note that
the latter equality follows directly from the argument used in [3, §5.7]
to prove [3, Theorem 5.16].

5. The case K = Q
In this section we consider the special case K = Q and will, in par-

ticular, prove Theorems 2.8 and 2.9.
Throughout we abbreviate the ringsRQ andRs

Q and idealsAQ andAs
Q

to R, Rs, A, and As respectively.
We also set S := S∞(Q) so that for any finite abelian extension E

of Q the set S(E) comprises the Archimedean place of Q together with
all rational primes that ramify in E.

For each natural number m we set Q(m) := Q(µm) and denote its
maximal real subfield by Q(m)+.

We write N† for the subset of N \ {1} comprising all numbers that
are not congruent to 2 modulo 4 and N‡ for the subset N† \ {3, 4} of N†
comprising numbers m for which Q(m)+ 6= Q.

5.1. In this subsection we establish some essential preliminary results.

5.1.1. The first such result gives an explicit description of the image
of the homomorphism Θs

Q defined in §3.3.1.
Before stating this result we note the Kronecker–Weber theorem im-

plies that the set of fields {Q(m)+}m∈N‡ is cofinal in the set Ω+ :=
Ω(Qs/Q) of non-trivial finite real abelian extensions of Q in Qc.

The distribution relations satisfied by cyclotomic units therefore imply
that there exists a unique system ε in RESQ with the property that

εQ(m)+ = (1− ζm)(1+τ)/2

for every m in N‡, where τ denotes complex conjugation.

Theorem 5.1. The Rs-module ESb
Q is free of rank one, with basis ε.
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Proof: For each E in Ω+ we write ϑE for the composite isomorphism of
R[GE ]-modules

R⊗ZdGE (CE,S(E))
∼−−→ dR[GE ](R⊗ZO×E,S(E))⊗R[GE ]d

−1
R[GE ](R⊗ZXE,S(E))

∼−−→ dR[GE ](R⊗ZXE,S(E))⊗R[GE ]d
−1
R[GE ](R⊗ZXE,S(E))

∼−−→ R[GE ].

Here the first arrow is induced by the descriptions in Proposition 3.1(i)
and the natural passage-to-cohomology map, the final arrow is the canon-
ical evaluation map and the second arrow is induced by the canonical
Dirichlet regulator isomorphism

(13) λE : R⊗Z O×E,S(E)
∼= R⊗Z XE,S(E)

that sends each u in O×E,S(E) to −
∑
w log(|u|w) · w, where in the sum

w runs over all places of E above those in S(E) and | − |w denotes the
absolute value with respect to w (normalized as in [19, Chapitre 0, 0.2]).

We then write zE for the pre-image under ϑE of the element

θ∗E,S(E)(0) :=
∑
χ∈ĜE

L∗S(E)(χ
−1, 0)eχ

of R[GE ]×, where L∗S(E)(χ
−1, 0) denotes the leading term in the Taylor

expansion at s = 0 of the series LS(E)(χ
−1, s).

Then, by Lemma 5.2 below, the collection z := (zE)E∈Ω+ is an Rs-ba-
sis of VS(Qs/Q). In addition, by the argument of [6, Lemma 5.4], one
knows that the map Θs

Q is injective.
Hence, the claimed result will follow if we can show for each m

in N‡ that the element Θs
Q(z)Q(m)+ = ΘQ(m)+(zQ(m)+) is equal to (1 −

ζm)(1+τ)/2.
To do this we fix such an m and set S(m) := S(Q(m)) = S(Q(m)+)

and Gm := GQ(m)+ . We then fix an embedding j : Qc → C and recall

(from, for example [19, Chapitre 3, §5]) that for each χ in Ĝm the first
derivative L′S(m)(χ, s) is holomorphic at s = 0 and such that

L′S(m)(χ, 0) = −1

2

∑
σ∈Gm

χ(σ) log |(1− ζσm)1+τ |,

where both χ(σ) and 1− ζσm are regarded as complex numbers via j.
This equality implies, firstly, that the image of (1 − ζm)(1+τ)/2 in

Q · O×Q(m)+,S(m) is stable under the action of the idempotent e(m) :=

e(Q(m)+) and then, secondly, that its image under the isomorphism (13)
is equal to e(m) ·θ∗Q(m)+,S(m)(0) · (wj−w0), where wj is the Archimedean
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place of Q(m)+ that corresponds to j and w0 is any choice of place
of Q(m)+ that lies above a prime divisor of m.

This latter fact then combines with the explicit definition (8) of the
map ΘQ(m)+ to imply that

(14) ΘQ(m)+(zQ(m)+) = e(m)((1− ζm)(1+τ)/2) = (1− ζm)(1+τ)/2,

as required.

Lemma 5.2. The Rs-module VS(Qs/Q) is free of rank one, with ba-
sis (zE)E∈Ω+ .

Proof: At the outset, we fix E in Ω+ and recall (from [3, Proposi-
tion 3.4]) that the equivariant Tamagawa number conjecture for the
pair (h0(Spec(E)),Z[GE ]) asserts that dGE (CE,S(E)) is a free Z[GE ]-mod-
ule with basis zE .

We further recall that this conjecture is known to be valid by the work
of the first named author and Greither in [2] and of Flach in [9].

Given the explicit definition (in Definition 3.6) of VS(Qs/Q) as an in-
verse limit, the claimed result will therefore follow if we can show that for
each pair of fields E and E′ in Ω+ with E⊆E′ one has νE′/E(zE′)=zE .

To prove this we use Remark 3.3 to identify RΓ(κ(v)W ,Z[GE ])∗[−1] for
each place v in S(E′) \S(E) with the complex Ψv that is equal to Z[GE ]
in degrees zero and one and has the differential x 7→ (1− Fr−1

v )x.
We write Yv for the free abelian group on the set of places of E above v

and, fixing a place wv of E above v, note there are isomorphisms ιiv :
Hi(Ψv) ∼= Yv for i ∈ {0, 1} with ι0v(x) = |GE,v|−1x ·wv and ι1v(x) = x ·wv
where, we recall, GE,v denotes the decomposition subgroup of v in GE .

The key fact now is that the Gal(E′/E)-invariants of ϑE′ differ from
the composite ϑE ◦ νE′/E only in that for each v ∈ S(E′) \ S(E) and

each χ in ĜE these maps respectively use the upper and lower composite
homomorphisms in the following diagram:

(dGE (Ψv))χ dC(Yv,χ) · dC(Yv,χ)−1 C

(dGE (Ψv))χ dC(Z[GE ]χ) · dC(Z[GE ]χ)−1 C

α1 α2

εχv

α3 α4

Here α1 denotes the morphism induced by the maps ι0v and ι1v, α2 the
morphism induced by multiplication by log(N(wv)), α3 is the obvious
identification, α4 is induced by the identity map on Z[GE ]χ, and εχv is
defined to be 1−χ(Frv)

−1 if χ(Frv) 6= 1 and to be |GE,v|−1 ·log(N(wv)) =
log(N(v)) otherwise.
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The claimed result then follows from the fact that the argument of [1,
Lemma 10] shows that the above diagram commutes, whilst an explicit

computation using (10) shows that for each χ in ĜE one has

L∗S(E′)(χ, 0) =

( ∏
v∈S(E′)\S(E)

εχv

)
· L∗S(E)(χ, 0).

5.1.2. In the next two results we establish some useful properties of
the ideal As. We write IQ,(2) for the kernel of the natural projection map
Rs → Z/(2).

Lemma 5.3. One has {r ∈ Rs | r(ESb
Q) ⊆ ESQ} = IQ,(2) = As.

Proof: We set X := {r ∈ Rs | r(ESb
Q) ⊆ ESQ}.

We also recall that the equality IQ,(2) = As was explained just be-
fore the statement of Theorem 2.8 and that Theorem 3.8(ii) implies X
contains As.

On the other hand, if r belongs to Rs \ IQ,(2), then it can be written
as r = r′ + 1 with r′ ∈ IQ,(2).

To deduce IQ,(2) = X it is thus enough to show that the system ε that
occurs in Theorem 5.1 does not belong to ESQ, or equivalently that there
exists an m in N‡ for which εQ(m)+ is not contained in O×Q(m)+,S(m),tf .

But, if εQ(m)+ belongs to O×Q(m)+,S(m),tf , then there exists an ele-

ment u of Q(m)+ with εQ(m)+ = ±u and hence also

u2 = (εQ(m)+)2 = (1− ζm)1+τ = −ζ−1
m (1− ζm)2.

This implies −ζm is a square in Q(m) and so is impossible if m is divisible
by 4.

In the sequel we write µ∞ for the union of µm over all m, set µ∗∞ :=
µ∞ \ {1} and write F for the multiplicative group of GQ-equivariant
maps from µ∗∞ to Qc,×.

We note that F is naturally an R-module and that it contains the
function Φ that sends each element ζ of µ∗∞ to 1− ζ.

Lemma 5.4. The image of the set {r ∈ R | (1−ζm)r(τ−1) = 1 for all m}
under the projection map R → Rs is As.

Proof: Write Ẑ(1) for the inverse limit of the groups µm with respect to
the transition morphisms µm → µm′ for each divisor m′ of m that are
given by raising to the power m/m′.
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Then Ẑ(1) is naturally anR-module and the result of [6, Theorem 1.2]
proves that it lies in an exact sequence of R-modules

0 Ẑ(1) R · Φ Rs 0π

in which π sends each element r · Φ to the projection of r in Rs.

Set Γ = Gal(C/R) = 〈τ〉. Then, since H0(Γ, Ẑ(1)) vanishes, the long
exact sequence of Tate cohomology of this sequence gives an exact se-
quence

(15) 0 Ĥ0(Γ,R · Φ) Ĥ0(Γ,Rs) Ĥ−1(Γ, Ẑ(1)).π′

Here the map π′ is the composite of the connecting homomorphism

Ĥ0(Γ,Rs) Ĥ1(Γ, Ẑ(1))

that is induced by the above exact sequence and the canonical isomor-

phism Ĥ1(Γ, Ẑ(1)) ∼= Ĥ−1(Γ, Ẑ(1)) that results from the fact that Tate
cohomology over Γ is periodic of order 2.

Now it is clear that the groups Ĥ0(Γ,Rs) and Ĥ−1(Γ, Ẑ(1)) respec-
tively identify with Rs/(2 ·Rs) and Z/(2 ·Z) and an explicit computation
shows that, with respect to these identifications, the map π′ in (15) is
induced by the natural projection map Rs → Z.

Given these facts, the exact sequence (15) implies that the image
under π of H0(Γ,R · Φ) is equal to IQ,(2), and hence also to As by
Lemma 5.3.

It therefore suffices to note that an element r of R is such that r · Φ
belongs to H0(Γ,R · Φ) if and only if one has (1 − ζm)r(τ−1) = 1 for
all m.

5.2. Circular distributions and the proof of Theorem 2.8. In
this section we quickly review Coleman’s conjecture concerning circular
distributions and then prove Theorem 2.8.

5.2.1. Coleman’s conjecture. In the 1980s Coleman defined a ‘cir-
cular distribution’, or ‘distribution’ for short in the sequel, to be a func-
tion f in F that satisfies the relation∏

ζa=ε

f(ζ) = f(ε)

for all natural numbers a and all ε in µ∗∞. (A similar notion was also sub-
sequently introduced by Coates in [7] in the context of abelian extensions
of imaginary quadratic fields.)
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It is clear that the subset Fd of F comprising all such distributions
is naturally an R-module.

Further, recalling the module EScl
Q = EScl(Qab/Q) of classical Euler

systems of rank one for Gm over Qab/Q, as discussed in Remark 2.4,
there exists a canonical isomorphism of R-modules

(16) Fd ∼= EScl
Q .

This map sends each f in Fd to the unique element cf of EScl
Q with

cf,Q(m) = f(ζm) for all m ∈ N† and its inverse sends each c in EScl
Q to

the unique function fc in Fd that satisfies

fc(ζm) :=


cQ(m), if m ∈ N†,
(cQ(m′))

1−Fr−1
2 , if m = 2m′ with m′ odd and m′ > 1,

NQ(4)/Q(cQ(4)), if m = 2.

(In this regard, we point out that our definition of the set of fields Ω(Qc/Q)

means that it does not contain Q and hence that a system in EScl
Q has

no component at the field Q.)
The function Φ that is defined just prior to Lemma 5.4 clearly belongs

to Fd and Coleman’s conjecture predicts that

(17) Fd = Fd
tor +R · Φ.

Since [16, Theorem B] implies that every distribution of finite order
has order dividing two, the isomorphism (16) implies this conjecture is

equivalent to asserting that for every system c = (cF )F in EScl
Q there

exists an element r′c of R such that for every m in N† one has

(18) cQ(m) = ±Φ(ζm)r
′
c = ±(1− ζm)r

′
c

in Q(m)×.
We further recall that the recent result of [6, Theorem 1.2] implies

both that the quotient group Fd/(Fd
tor +R · Φ) is torsion-free and also

that the homomorphism of R-modules

Fd/(Fd
tor +R · Φ)→ (1 + τ)Fd/(R · Φ1+τ )

that sends the class of each f in Fd to the class of f1+τ is bijective.
In addition, if f belongs to Fd, then [6, Theorem 5.1 and Remark 5.2]

implies that to show f1+τ belongs to R · Φ1+τ it is enough to show the
existence of a natural number t in N∗ and an element r = rf of R for

which one has f(ζm)1+τ = (1−ζm)(1+τ)r for all m in N† that are divisible
by t.
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These facts combine to imply that the conjectural equality (17) is

valid if for each system c in EScl
Q there exist elements t1 and t2 in N∗ and

an element r = rc,t1 of R for which one has

(19) (cQ(m))
t1(1+τ) = (1− ζm)(1+τ)r

for all m in N that are divisible by t2.

Remark 5.5. For more details concerning Coleman’s conjecture, the
reader can consult [6] or the earlier articles [14, 15, 16, 17] of the
fourth author and the associated work of Saikia in [12].

5.2.2. The proof of Theorem 2.8. We first assume the validity of
Coleman’s conjecture and use it to deduce the validity of Conjecture 2.5
in the case K = Q.

To do this we fix an element a of As and a system c = (cF )F in
ESQ = ES1(Qs/Q). Then, by the discussion in Remark 2.4, there exists

a canonical system c′ in EScl(Qs/Q) that projects to ca in ESQ.
For this system c′ one has c′Q(m)+ > 0 for every m in N‡. In partic-

ular, since the argument of [14, Lemma 2.2] implies c′Q(m)+ is a global

unit for every m in N‡ that is divisible by two distinct primes, one has

N
Q(m)+

Q (c′Q(m)+) = 1 for all such m.

As a result, there exists a unique system c′′ in EScl
Q for which at each m

in N† one has

c′′Q(m) :=


c′Q(m)+ , if m ∈ N‡,

N
Q(9)+

Q (cQ(9)+), if m = 3,

N
Q(8)+

Q (cQ(8)+), if m = 4.

For this system one has (c′′)τ−1 = 1. Thus, if Coleman’s conjecture
(in the form of (18)) is valid, then Lemma 5.4 implies the existence of
an element r of R which projects to Rs to give an element a′ of As and
is such that for every m in N‡ one has

c′Q(m)+ = c′′Q(m) = ±(1− ζm)r

and hence also

(c′Q(m)+)1+τ = (1− ζm)(1+τ)r = (1− ζm)(1+τ)a′ = (εQ(m)+)2a′ .

But then in RESQ one has

ca = c′ = ((c′)2)1/2 = ((c′)1+τ )1/2 = (ε2a′)1/2 = εa
′
.

Since a is an arbitrary element of As, and a′ belongs to As, this proves
the claimed inclusion As · ESQ ⊆ As · ESb

Q.
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To prove the converse it suffices to show the latter inclusion implies
that every system in EScl

Q satisfies the condition (19).

To do this we fix c in EScl
Q . Then by first restricting c to the subset Ω+

of Ω(Qab/Q) and then reducing its values modulo torsion one obtains a
system c̃ in ESQ.

Further, since 2 belongs to As, the assumed inclusion As ·ESQ ⊆ As ·
ESb

Q combines with Theorem 5.1 to imply the existence of an element r

of R such that c̃4 = ε2r in RESQ.
This equality of functions implies that for each m in N‡ one has

(cQ(m))
4(1+τ) = (c̃Q(m)+)4 = (εQ(m)+)2r = (1− ζm)(1+τ)r.

This shows that c verifies the condition (19) with t1 = t2 = 4 and hence
implies Coleman’s conjecture.

This completes the proof of Theorem 2.8.

5.3. Norm-coherent sequences in p-power conductor cyclotomic
fields. In this final section we shall give a proof of Theorem 2.9. To do
this we fix an odd prime p and for each natural number n set Gn :=
Gal(Q(pn)/Q) and G+

n := Gal(Q(pn)+/Q).
At the outset we recall that the discussion in [17, §3] shows that if

(an)n is a norm-coherent sequence in
⋃
nQ(pn) such that each an belongs

to Z[Gn] · (1− ζpn), then there exists a circular distribution f such that
f(ζpn) = an for all n.

To prove Theorem 2.9, it is thus enough to fix f in Fd and show
that there exists a natural number t (possibly depending on f) for which

f(ζpn)2t belongs to Z[Gn] · (1− ζpn) for all n.
Hence, since [15, Theorem B] implies the existence of a natural num-

ber c for which f(ζpn)c belongs to Z[Gn] · (1 − ζpn) for all n, it is
enough to show for each n that there exists a natural number tn with

f(ζpn)2tn ∈ Z[Gn] · (1− ζpn).

In addition, for any t in N∗ one has f2t = f (1−τ)2t−1

f (1+τ)2t−1

and,
by [6, Theorem 4.1], one knows that f(ζpn)1−τ ∈ Z[Gn] · (1 − ζpn) for
all n.

It therefore suffices to show that for each n, and for every odd prime `,
one has

f(ζpn)1+τ ∈ Z`[Gn] · εn,
where we set

εn := (1− ζpn)1+τ .

For the prime ` = p the above containment is proved in [6, Theo-
rem 3.1] and so we assume in the sequel that ` 6= p.
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We decompose Gn as a direct product Λn × ∆n with Λn the Sylow
`-subgroup of Gn. We set E := Q(pn) and E+ := Q(pn)+, write F and L
for the fixed fields of E by ∆n and Λn respectively and write L+ for the
maximal real subfield L ∩ E+ of L.

Then it suffices to prove that for each homomorphism φ : ∆n → Qc,×`
that is trivial on τ one has

(20) f(ζpn)φ ∈ Z[Gn]φ · εn,

where we use the same notation for φ-components as in §4.1.1.
We assume first that φ is trivial. In this case we can identify Xφ for

each ∆n-moduleX as a submodule of Z`⊗ZX by sending each element xφ

to
∑
h∈∆n

h(x).

Then, with respect to this identification, one has Z[Gn]φ ·εn = Z`[Gn]·
NE/F (εn). In addition, since F/Q is an `-power degree extension that
is only ramified at the prime p, one knows that the class number of F is
not divisible by ` (by [20, Theorem 10.4]).

Upon combining the latter fact with the formulas proved by Sin-
nott in [18, Theorems 4.1 and 5.1] one finds that NE/F (εn) generates
over Z`[Gn] the `-completion of the full group of p-units of F .

The required containment (20) is thus true in this case since f(ζpn)φ =
NE/F (f(ζpn)) is a p-unit in F (by [14, Lemma 2.2]).

We now assume φ is non-trivial and regard it as a homomorphism
Gal(L+/Q) → Qc,×` . We also note that L+ is not contained in Q(µ`),
that φ2 is not equal to the Teichmüller character at ` if ` = 3, that p is
not split in L+, and that the Archimedean place of Q splits in L+.

This shows that the pair F and φ satisfies all of the hypotheses (H1),
(H2), (H3), (H4), and (H5) (with p replaced by `) that are listed in §4.1.1.

We may therefore apply Theorem 4.1 to the system c̃f in ESQ that is
obtained from f by the method used in the latter part of §5.2.2.

Noting thatAE,φ = Z[Gn]φ (since ` is odd and φ is even), we deduce in
this way that the element (f(ζpn)φ)2 = (f(ζpn)1+τ )φ = (c̃f,E+)φ belongs
to ΘE+(dG+

n
(CE+,S(E)))φ.

The required containment (20) is therefore true in this case since the
equality (14) (with m = pn) combines with the argument of Lemma 5.2
to imply that ΘE+(dG+

n
(CE+,S(E)))φ = Z[G+

n ]φ · εn.
This completes the proof of Theorem 2.9.

Remark 5.6. The result of Theorem 2.9 does not extend in a straight-
forward way to more general towers of cylotomic fields. To be specific,
if p is an odd prime and m is a multiple of p that is not a power of p,
then there can exist norm-compatible sequences of cyclotomic units in
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the tower
⋃
nQ(mpn) that are not equal to the restriction of any cir-

cular distribution. For an explicit example of this phenomenon see [6,
Lemma 2.10].
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