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1. Introduction

The world of representation theory of finite groups is often too much
focused on simple groups. This is not a complaint: simple groups are fas-
cinating objects, with an enthralling history, that have deep connections
with important parts of mathematics, and that attract the attention of
profound mathematicians. Furthermore, many problems on finite groups
reduce to questions on simple groups, and most of the time these ques-
tions are solved (using the classification of finite simple groups, CFSG
from now on), hence settling the problems. These are often quite diffi-
cult questions that require Deligne–Lusztig theory (in the case of groups
of Lie type), sophisticated combinatorics (in the case of the alternating
groups), or incredibly clever ad hoc arguments (in the sporadic groups).
Sometimes these questions even require investigations of the covering
groups of the simple groups (quasi-simple groups), or of their automor-
phism groups (almost simple groups). The modular (characteristic p)
representation theory of finite simple groups is far from understood:
there is a vast and exciting territory on simple groups that remains to
be discovered. If there has to be a complaint, it is that once a problem
is solved using the CFSG it is rarely revisited to explore a CFSG-free
proof; and if there has to be another complaint, it is that we are never
certain that a proof that uses the CFSG is fully understood. But perhaps
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this is a feature of finite group theory: certain theorems are true, almost
surely, because simple groups satisfy certain properties.

Where do solvable groups fit into this picture? Certainly, the history
of solvable groups, from E. Galois to P. Hall, from Burnside’s paqb theo-
rem to the Feit–Thompson odd order theorem, is no less extraordinary.
These days the representation theory of finite groups is overwhelmed
with a myriad of extraordinarily deep problems (from Brauer’s to the
Alperin–Broué–Dade–McKay–Robinson conjectures, and many more),
and it is true (particularly in the above mentioned cases) that they have
already been solved for solvable groups. (As a matter of fact, some of
them have already been solved for simple groups too.) A consequence
of this is that one often has the impression that there is little left to do
for solvable groups, or that solvable groups are easy. But this is not the
whole story.

Aside from the beauty of some of the character theory of solvable
groups (for instance, the so called Isaacs π-theory, Dolfi’s theorem on
graphs, Berger’s characterization of primitive characters, Dade–Isaacs
theorems on monomial groups, etc.), for me solvable groups is also the
territory to test and develop theories and conjectures for all finite groups.
Even to outline possible proofs for some of the most important conjec-
tures. For instance, our approach to the McKay conjecture in [29] is
based on the proof of the p-solvable case and the Glauberman corre-
spondence.

Unfortunately, it is sometimes forgotten how difficult solvable groups
can be. Many times, I measure the depth of a conjecture by check-
ing how hard it is to prove it for solvable groups. Richard Brauer’s
k(B)-conjecture—completed by D. Gluck, K. Magaard, U. Riese, and
P. Schmid for p-solvable groups, after work of R. Gow, R. Knörr,
G. R. Robinson, J. G. Thompson, and others—or one direction of
Brauer’s height zero conjecture—solved by D. Gluck and T. R. Wolf for
p-solvable groups—are examples of incredibly hard mathematics. (As
a matter of fact, these two conjectures remain open for general finite
groups: if a problem is difficult for solvable groups, hold no doubt that
it is going to be very difficult to prove it for general finite groups or to
reduce it to a question on simple groups.)

My purpose here is modest. For some years, I have been collecting
what I think are interesting problems on characters of solvable (mostly
p-solvable) groups. Some of them are false outside the realm of these
groups. Some others are convenient reformulations of less established
conjectures that are still open for solvable groups. If we can solve them
for these groups, there is a good chance that they will be true in general.
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(I always remember J. L. Alperin saying: “a conjecture is safe if it is
true for solvable groups, symmetric groups, the general linear groups,
and the sporadic groups.”) Hence, a conjecture on finite groups that has
not been proven for solvable groups is either in danger or, perhaps, it is
a promise for exciting mathematics ahead.

I avoid here the well-known open topics on character degrees of solv-
able groups, such as the Isaacs–Seitz conjecture on the derived length
and the number of character degrees; Huppert’s ρ-σ conjecture; Gluck’s
largest character degree conjecture; and some others already mentioned
in [48]. Let me add now that in the ten years since its publication, there
has been spectacular progress on the problems in [48]; in fact, many have
been solved: McKay’s conjecture for p = 2 in [41] (Problem 2.1 in [48]);
one implication of Brauer’s height zero conjecture in [35] (Problem 4.1);
Conjecture 4.2 on the generalized Gluck–Wolf theorem in [51]; Conjec-
ture 7.1 on the divisibility of the Glauberman correspondents in [15];
Problem 8.4 on character degrees in [49]; and a counterexample to Con-
jecture 14.3 on rational groups and Sylow 2-subgroups appears in [30].
In contrast, on solvable groups, there has been little or no progress.

Some of the problems below appear here for the first time. Of course,
these new problems (let me avoid the overused term “conjecture”) are
here because I haven’t been able to solve them. (This indicates either
that they are not completely trivial or perhaps that they are completely
false. In either case, an answer would be more than welcome.) I, together
with some colleagues, have put forward some conjectures—sometimes
questions—without having a proof even for solvable groups. As I said
above, this is a risky business. (An anecdote: the main conjecture of
the recent [14], proved for many classes of simple groups, is false:
SmallGroup(192,955) is a counterexample for p = 2. This is a small
counterexample, but as is well known, solvable counterexamples might
be quite big and remain out of reach of the power of computers, like
Hertweck’s counterexample on the isomorphism problem [22].) Perhaps
only a Richard Brauer can propose the k(B)-conjecture or the height
zero conjecture, without having a proof for solvable groups, and still be
(most probably) right.

In summary, let me write down a list of these problems not only as a
tribute to solvable groups, the area where I grew up, but with the hope
that they can interest someone, or reactivate interest in them, perhaps
enough to try to solve them or to provide counterexamples. Surely there
are other interesting open problems on characters of solvable groups that
do not appear here, either because I am overlooking them, or because
they lie a bit outside of my main interests right now. I apologize for that.
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2. Problems on blocks: inequalities

We fix a prime p. In most of the problems in this paper we con-
sider finite p-solvable groups, which are the natural extension of solvable
groups from the perspective of the prime p. Recall that a finite group
is p-solvable if the order of each of its composition factors is either p or
not divisible by p. (Hence a finite group is solvable if and only if it is
p-solvable for all primes p.) In any case, as a first approach, the reader
might ignore p-solvability and focus on solvable groups throughout the
paper. My notation for finite groups is [26], for ordinary characters [25],
and for blocks and Brauer (modular) characters [46]. Thus Irr(G) is the
set of complex irreducible characters of G, and IBr(G) is a set of irre-
ducible Brauer characters of G. If G is p-solvable, then IBr(G) is uniquely
defined (see Corollary 10.4 of [46]).

Brauer’s p-blocks are the subject of some famous conjectures, some
arising as early as the 1950’s. By results of P. Fong and I. M. Isaacs, most
of the block theory for p-solvable groups can be entirely rephrased within
ordinary character theory. Recall that if F is an algebraic closure of the
field of p elements, then the blocks of a finite group G are the two-sided
indecomposable ideals into which the group algebra FG decomposes.
Each irreducible complex or modular character of G belongs exactly to a
p-block B, and B uniquely determines a conjugacy class of p-subgroups,
the defect groups, which in some sense measure the complexity of B. If
χ ∈ Irr(G) belongs to B, and B has defect group D of order pd, then it
is a fact that

χ(1)p =
|G|p
pd

ph,

where h ≥ 0 is the height of χ. (In this paper, np is the largest power
of p dividing the integer n, and np′ = n/np.) If B is a p-block, then
k(B) is the number of irreducible ordinary characters in B, and l(B) is
the number of irreducible Brauer characters in B. We have that l(B) ≤
k(B) (see, for instance, the paragraphs after Theorem 3.3 in [46]). The
principal block is the block containing the trivial character.

Brauer’s two most famous conjectures in blocks are the k(B)-conjec-
ture, which asserts that the number of complex irreducible characters
in B is less than or equal to pd, the order of any defect group D; and
Brauer’s height zero conjecture, which asserts that D is abelian if and
only if the heights of the complex irreducible characters in B are all zero.

The first block problems in this section are, after standard Clifford
theoretical reductions, translations to p-solvable groups of some ques-
tions raised by G. Malle and me in [37] (which generalize Brauer’s k(B)-
conjecture). Affirmative answers to these have been given for classical
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families of simple groups, most recently in [36], or for certain types of
defect groups in [57]. There is even a generalization of these problems to
fusion systems ([34, Conjecture 2.10]). Therefore it is natural to think
that p-solvable groups is the next territory to check the inequalities pro-
posed. As we wrote in [37], “for p-solvable groups, however, it seems
possible that these inequalities might be too optimistic.” In any case, it
is frustrating that no progress (on p-solvable groups) has been made on
this since 2006.

Blocks B of arbitrary finite groups with exactly one irreducible Brauer
character (we usually write l(B) = 1) are extraordinarily important:
these are the blocks such that B/J(B) is a matrix algebra, where J(B)
is the Jacobson radical of the algebra B. R. Kessar and M. Linckelmann
have conjectured that if l(B) = 1, then B is Morita equivalent to a block
of a p-solvable group. If this is true, but even if not, Problem 2.1 below
(which deals with this type of blocks) has interest.

First, some notation. If G is a finite group, N / G, and θ ∈ Irr(N),
then Irr(G|θ) is the set of irreducible constituents of the induced char-
acter θG. By Frobenius reciprocity, these are also the irreducible char-
acters χ of G that have θ as an irreducible constituent of the restriction
character χN . In general, if N / G has order not divisible by p, B is
a p-block of G, and Irr(B) is the set of complex irreducible characters
in B, then it is easy to check that there exists some θ ∈ Irr(N) such that
Irr(B) ⊆ Irr(G|θ) (using the theory of covering blocks; see Theorem 9.2
of [46]). Furthermore, if N = Op′(G) is the largest normal subgroup
of G of order not divisible by p, θ is G-invariant and G is p-solvable,
then

Irr(B) = Irr(G|θ),
by a theorem of Fong (Theorem 10.20 of [46]). Using the theory of central
extensions, it is no loss to assume in many problems that N is even
contained in the center of G.

If G is a finite group, we write k(G) for the number of conjugacy
classes of G, and l(G) for the number of conjugacy classes of G consisting
of elements of order not divisible by p. (These are the p-regular elements
of G.) A p-solvable group has a unique conjugacy class of p-complements,
also called Hall p′-subgroups (after P. Hall), which are the subgroups H
of G such that |G : H| is a power of p and p does not divide |H|.

Problem 2.1. Let G be a finite p-solvable group, P ∈ Sylp(G), and let
H be a Hall p-complement of G. Suppose that Z = Op′(G) is central
in G, and let λ ∈ Irr(Z). Assume that λH = eα, for some α ∈ Irr(H)
and e ≥ 1. Is it true that |Irr(G|λ)| ≤ k(P )?
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Problem 2.1 is a particular case of a projective version of a conjecture
of Pyber–Sangróniz which I mentioned in [48]: if N is a central normal
subgroup of G, θ ∈ Irr(N), and G = AB for some subgroups A, B
containing N with (|A/N |, |B/N |) = 1, then

|Irr(G|θ)| ≤ |Irr(A|θ)||Irr(B|θ)|.

Notice that Problem 2.1 is really about solvable groups since, by the
Howlett–Isaacs theorem (Theorem 8.13 of [50]), we have that H/Z is
solvable, and thus G is solvable.

If N is a normal p′-subgroup of G (that is, of order not divisible by p),
and λ ∈ Irr(N), then λ ∈ IBr(N), and we write IBr(G|λ) for the set of
irreducible Brauer characters of G which are constituents of the induced
Brauer character λG. If G is p-solvable and H is a p-complement of G,
it is not difficult to show that |IBr(G|λ)| = 1 if and only if λH = eα, for
some α ∈ Irr(H). We see then that Problem 2.1 is also a particular case
of a more general question in [37], which for p-solvable groups reduces
to the following:

Problem 2.2. Let G be a finite p-solvable group, and P ∈ Sylp(G). Sup-
pose that Z = Op′(G) is central in G, and let λ ∈ Irr(Z). Let IBr(G|λ)
be the set of irreducible Brauer characters of G over λ. Is it true that

|Irr(G|λ)| ≤ |IBr(G|λ)|k(P )?

In the important case where Op′(G) = 1, Problem 2.2 proposes an
appealing group theoretical question.

Problem 2.3. If G is p-solvable and Op′(G) = 1, is it true that k(G) ≤
l(G)k(P )?

In fact, at the time of this writing, I cannot even find an example of a
finite p-solvable group G, with Op′(G) = 1, in which k(G) > l(G)kp(G),
where kp(G) is the number of conjugacy classes of p-elements of G.

After reading a draft of this paper, B. Sambale has suggested that
the inequality in Problem 2.1 might hold “height to height.” That is, if
ki(G|λ) denotes the number of irreducible characters of G over λ whose
degree has p-part pi, is it true in Problem 2.1 that we have that ki(G|λ) ≤
ki(P )? Notice that this “height to height” version certainly does not hold
in Problems 2.2 or 2.3 (as shown by GL2(3) and p = 2).

Yet another block inequality was studied in [37]. For p-solvable groups
in the principal block case (using that the McKay conjecture is true for
p-solvable groups) it reduces to the following group theoretical problem.
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Problem 2.4. Let G be a finite p-solvable group, P ∈ SylpG, and as-
sume that Op′(G) = 1. Is it true that

k(G) ≤ k(NG(P )/P ′)k(P ′)?

Using the k(GV )-theorem (that is, the solution to Brauer’s k(B)-
conjecture for p-solvable groups) and that Op′(NG(P )) is contained
in Op′(G) = 1 (by standard but non-trivial finite group theory), notice
that we have that

k(NG(P )/P ′) ≤ |P/P ′|,
if Op′(G) = 1. Since k(P ′) ≤ |P ′|, the right hand side quantity in Prob-
lem 2.4 is usually much smaller than |P | (the quantity with which Brauer
bounds k(G) in the principal block case of the k(B)-conjecture).

We end this section with a lower bound for k(B) proposed in [23]:
k(B) ≥ 2

√
p− 1, whenever k(B) > 1. Using the usual standard reduc-

tions, and assuming the Alperin–McKay conjecture, this is equivalent to
the following innocent-looking problem.

Problem 2.5. Let V be a finite-dimensional FpH-module, where H is a
p′-group and Fp is the field of p elements. Let G = V H be the semidirect
product, and set Z = Op′(G). Let λ ∈ Irr(Z) and assume that Z ⊆ Z(G).
Is it true that |Irr(G|λ)| ≥ 2

√
p− 1?

A. Maróti proved in [43] that if G is a finite group and p divides |G|,
then k(G) ≥ 2

√
p− 1. This takes care of the case Z = 1, in Problem 2.5.

3. Problems on Brauer characters: inequalities

A totally different type of inequality was proposed in [39]. The new
subject now is the number of modular irreducible constituents that a
complex character has, after reducing it modulo p. It is completely open
for p-solvable groups, even in the case where the Sylow p-subgroup is
normal! If χ ∈ Irr(G), then we denote by IBr(χ0) the set of the irre-
ducible p-Brauer characters that appear in the decomposition of χ0, the
restriction of χ to the p-regular elements of G. In general, recall that

χ0 =
∑

ϕ∈IBr(G)

dχϕϕ,

where the non-negative integers dχϕ are the decomposition numbers.
Therefore |IBr(χ0)| = |{ϕ ∈ IBr(G) | dχϕ 6= 0}|.

We recall now that p-blocks can be characterized by linking via de-
composition numbers. If we link χ, ψ ∈ Irr(G) if there exists ϕ ∈ IBr(G)
such that dχϕ 6= 0 6= dψϕ, then the irreducible characters in blocks are
the connected components of the associated graph, called the Brauer
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graph (Theorem 3.9 of [46]). Likewise, if we link ϕ, µ ∈ IBr(G) if there
exists χ ∈ Irr(G) such that dχϕ 6= 0 6= dχµ, then, again, the irreducible
Brauer characters in blocks are the connected components of this graph
(Problem 3.4 of [46]). We shall use these facts in what follows.

Problem 3.1. Let G be a finite p-solvable group and let χ ∈ Irr(G). Is
it true that

|IBr(χ0)| ≤ |G|p/χ(1)p?

There is some evidence for an affirmative answer to this question.
First, we claim that it follows from Brauer’s k(B)-conjecture if χ has
height zero (for any finite group). Indeed, if χ ∈ Irr(B) and dχϕ 6= 0,
then ϕ ∈ IBr(B). Now, we know that l(B) ≤ k(B), in general. If we
assume Brauer’s conjecture, then k(B) ≤ pd = |G|p/χ(1)p, whenever
χ has height zero, hence proving the claim. If |G|p/χ(1)p = 1, then we
know that χ0 ∈ IBr(G), by the celebrated Brauer–Nesbitt theorem. Thus
|IBr(χ0)| = 1. We also know that Problem 3.1 has an affirmative solution
if |G|p/χ(1)p = p (using Brauer’s defect one theory); or if |G|p/χ(1)p ≤
p2 and G is p-solvable ([39]). Also, we know that it holds for symmetric
groups and groups of Lie type in the defining characteristic (as shown
in [39]).

It is somewhat curious that the dual question of Problem 3.1 is true
(and easy). If Ψ is a character of G, then we write Irr(Ψ) for the set of
the irreducible constituents of Ψ. If ϕ ∈ IBr(G), then Φϕ is the projective
indecomposable character associated with ϕ; that is,

Φϕ =
∑

χ∈Irr(G)

dχϕχ.

Lemma 3.2. Suppose that G is p-solvable and let ϕ ∈ IBr(G). Then

|Irr(Φϕ)| ≤ |G|p/ϕ(1)p.

We also have that equality holds if and only if the block of ϕ is nilpotent
with an abelian defect group.

Proof: By Fong’s dimensional formula (Corollary 10.14 of [46]), we have
that Φϕ(1) = |G|pϕ(1)p′ . If χ ∈ Irr(G) and dχϕ 6= 0, notice that χ(1) ≥
ϕ(1). Therefore

Φϕ(1) ≥ |Irr(Φϕ)|ϕ(1),

and the first part follows.
Notice that the equality above holds if and only if whenever dχϕ 6= 0,

then χ0 = ϕ. Let B be the block of ϕ, and let D be a defect group of B.
We prove now that this condition is equivalent to B being nilpotent and
D abelian.
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If B is nilpotent and D is abelian, then this follows from the main
result of [2]. For the converse, first we claim that l(B) = 1. Indeed,
suppose that µ ∈ IBr(B) is linked to ϕ in the sense of Problem 3.4
of [46]. Then there exists ψ ∈ Irr(G) such that dψϕ 6= 0 6= dψµ. Then
ψ0 = ϕ. Since µ is also an irreducible constituent of ψ0, it follows that
ϕ = µ. The claim follows.

Once we have that l(B) = 1, then it follows by our hypothesis that
all Irr(B) have the same degree, and then we apply Proposition 1 and
Theorem 3 of [54] to deduce that D is abelian and B has inertial index 1.
Now, blocks with abelian defect group and with inertial index 1 are
nilpotent by Example (1.ex.3) of [2].

In general, |Irr(Φϕ)| can be bigger than |G|p/ϕ(1)p, as shown by G =
2.A6, and p = 2. If Q is a vertex of ϕ ∈ IBr(G) and G is p-solvable, then
it is known that |Q| = |G|p/ϕ(1)p. Outside p-solvable groups, we only
have that |G|p/ϕ(1)p ≤ |Q|. Perhaps, |Irr(Φϕ)| ≤ |Q|, in general.

In 1984, M. Murai ([45]) proposed an interesting inequality conjecture
involving a somewhat mysterious quantity. Again, this remains open for
p-solvable groups. Recall that if G0 is the set of p-regular elements of G,
and if |G|p′ is the largest positive integer not divisible by p dividing |G|,
then |G0|/|G|p′ is an integer. (See Problem 2.3 of [46].) This is a partic-
ular case of a well-known theorem of Frobenius. Furthermore, Frobenius
conjectured that if |G0|/|G|p′ = 1, then G has a normal p-complement.
(This is now known to be a consequence of the CFSG.)

Conjecture 3.3 (Murai). Let G be a finite group, and let B be the
principal block of G. Then l(B) ≤ |G0|/|G|p′ .

As we said, if |G0| = |G|p′ , then G has a normal p-complement, and it
is trivial to see that in this case l(B) = 1. Murai proved that in order to
prove his conjecture in the p-solvable case, one can assume that G = V H,
where V is a normal elementary abelian p-group and H has order not
divisible by p. (Be aware that Murai also proved that Conjecture 3.3
implies the k(GV )-conjecture.)

B. Sambale and I have wondered if the following natural generalization
of Murai’s conjecture holds true. If G is a finite group and ψ, χ are class
functions defined over G0, we denote

[ψ, χ]0 =
1

|G|
∑
x∈G0

ψ(x)χ(x−1).

Problem 3.4. Let B be a p-block with defect group of order pd. If χ ∈
Irr(B), is it true that

l(B) ≤ pd[χ, χ]0?
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A positive solution to Conjecture 3.3 and Problem 3.4, if there is one,
should be quite hard to obtain, because of the following observation (by
B. Sambale):

Theorem 3.5. Let B be a block with defect group of order pd. If Prob-
lem 3.4 has a positive solution for B, then k(B) ≤ pd.

Proof: We have that

k(B)l(B) ≤ pd
∑

χ∈Irr(B)

[χ, χ]0

= pd
∑

χ∈Irr(B)

[ ∑
ϕ∈IBr(G)

dχϕϕ,
∑

µ∈IBr(G)

dχµµ

]0

= pd
∑

ϕ,µ∈IBr(B)

( ∑
χ∈Irr(B)

dχϕdχµ

)
[ϕ, µ]0

= pd
∑

ϕ,µ∈IBr(B)

cϕµ[ϕ, µ]0

= pd Trace(Il(B)) = pdl(B),

as desired. (In the next to last equality, we have used Theorem 2.13
of [46], which asserts that the inverse of the Cartan matrix is pre-
cisely ([ϕ, µ]0).)

We end this section with an inequality proposed in [7] by J. P. Cossey.

Problem 3.6. Suppose that G is p-solvable and ϕ ∈ IBr(G) has ver-
tex Q. Is it true that the number of irreducible lifts of ϕ is less than or
equal to |Q/Q′|?

Notice that Problem 3.6 can be stated without the p-solvability hy-
pothesis, and, in principle, it might even hold in full generality.

In general, I have mixed feelings about inequalities: there is always
the possibility that we are trying to relate quantities that are not meant
to be related.

4. Problems on blocks of p-solvable groups: equalities

Broué–Puig nilpotent blocks are ubiquitous in the block theory of fi-
nite groups. (We already saw them in Lemma 3.2.) Their definition [2],
however, requires knowing a good deal of the local structure of the group.
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In [38], we proposed two easy-to-state global characterizations of nilpo-
tent blocks. After the usual arguments, they reduce to the following
problems (for p-solvable groups).

Problem 4.1. Let G be a finite p-solvable group, P ∈ Sylp(G), and
assume that Z = Op′(G) is central in G. Let λ ∈ Irr(Z). Suppose that
all the irreducible characters of G of degree not divisible by p that lie
over λ have the same degree. Is G = Z × P?

Problem 4.2. Let G be a finite p-solvable group, P ∈ Sylp(G), and
assume that Z = Op′(G) is central in G. Let λ ∈ Irr(Z). Suppose that
each irreducible character of G of degree not divisible by p that lies over λ
lifts an irreducible Brauer character of G. Is G = Z × P?

If P is abelian, then these questions have affirmative solutions by
using the main result of [54]. As we explained in [38], a natural orbit
problem would solve Problems 4.1 and 4.2 for p-solvable groups.

Problem 4.3. Let G>1 be a finite group with a normal p-complement K
and let P ∈ Sylp(G). Suppose that V is a finite faithful completely re-
ducible G-module over a field of characteristic p. Does there exist v ∈
CV (P ) such that |K : CK(v)|2 > |K|?

D. Gluck has proved this is the case in [19] for groups of odd order.
The case where K is nilpotent was solved in [9]. The case where K = G
is a celebrated theorem of S. Dolfi [8] and Halasi–Podoski [20].

To end this short section, let us remind the reader of the Eaton–
Moretó conjecture [11], which proposes an exciting block equality. After
standard reductions, the following is the p-solvable principal block case.

Conjecture 4.4 (Eaton–Moretó). Let G be a finite p-solvable group
with Op′(G) = 1. Suppose that P ∈ Sylp(G) is not abelian. If pa is the
smallest non-linear character degree of P , then the smallest p-part of
the degrees of the irreducible characters of G of degree divisible by p is
exactly pa.

The Eaton–Moretó conjecture was checked for many families of quasi-
simple groups in [3], and for symmetric groups, general linear groups in
characteristic p and sporadic groups in [11]. Hence, if we share Alperin’s
opinion, we have to check p-solvable groups for this conjecture to be safe.

5. Problems on zeros of characters

Zeros of characters is a classical topic in character theory. It probably
starts with Burnside’s theorem stating that if G is a finite group, and
χ ∈ Irr(G) is non-linear, then there exists g ∈ G such that χ(g) = 0. A
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famous theorem of Brauer and Nesbitt asserts that if χ(1)p = |G|p, then
χ(g) = 0 whenever p divides the order of g.

If x ∈ G, we say that x is non-vanishing (in G) if χ(x) 6= 0 for
all χ ∈ Irr(G). If x ∈ Z(G) is a central element of G, then x is non-
vanishing in G, because if X is any representation affording χ, then
X (x) is a scalar (non-zero) matrix. The converse is certainly not true.
Generically, however, one expects x to lie in a nilpotent normal subgroup
of G ([10]). For solvable groups, this was conjectured in [32], and there
is a great deal of literature following it. In this section, again we fix a
prime p and consider the elements of finite p-solvable groups G on which
the irreducible characters of G of degree not divisible by p, which we
denote by Irrp′(G), do not vanish. It would be interesting to know which
elements these are. For instance:

Problem 5.1. Let G be a finite p-solvable group with Op′(G) = 1, where
p is a prime, and let x ∈ G. Is it true that χ(x) 6= 0 for all χ ∈ Irrp′(G)
if and only if x is a p-element?

If χ ∈ Irrp′(G) and x ∈ G is a p-element, it is known that χ(x) 6= 0,
using some elementary facts on p-power roots of unity (see for instance
Corollary 4.20 of [50]). Hence, Problem 5.1 discusses conditions for the
converse to hold. To have an affirmative answer to Problem 5.1 some
p-solvability hypotheses are needed, as shown, for instance, by the ele-
ments of order 3 in S5, with p = 2. Problem 5.1, if we do not require
that Op′(G) = 1, cannot have an affirmative answer. Indeed, notice
that the intersection of the kernels of the p′-degree characters of G is
not necessarily a p-group (but a group with a normal p-complement);
hence some hypothesis regarding normal p′-subgroups is necessary. Let
us record (without proof) the following essentially well-known result.

Theorem 5.2. Let G be a finite group, p a prime, and P ∈ Sylp(G).
Let

K =
⋂

χ∈Irrp′ (G)

ker(χ).

Then K = coreG(NP ′), where N is the largest normal subgroup of G
such that CN (P ) = 1.

Notice that an affirmative answer to Problem 5.1 would easily solve
the main problem in [32]. We denote by F(G) the Fitting subgroup of G.
Also, recall that if x ∈ G, then x can be uniquely written as x = xpxp′ ,
where xp, xp′ are powers of x, having orders a power of p and not divisible
by p, respectively.

Theorem 5.3. Let G be a finite solvable group and let x ∈ G be non-
vanishing in G. If Problem 5.1 has an affirmative answer, then x ∈ F(G).
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Proof: If p is any prime, then xp′ ∈ Op′(G), by Problem 5.1 applied
in G/Op′(G). Thus, if q 6= p is a prime, then xq ∈ Op′(G). Hence,
holding q fixed and varying p, we have that

xq ∈
⋂
p 6=q

Op′G = Oq(G),

as desired.

We should mention that the conclusion of Theorem 5.3 is still not
known if o(x) is even, even in the case where F(G) is a Sylow subgroup
of G. (This could be territory for a negative answer in Problem 5.1.
Perhaps the possible groups involved are too big to be detected by com-
puters.)

Next we provide some evidence for a possible affirmative answer to
Problem 5.1, using a non-standard variation of a well-known regular
orbit theorem, that might have some interest on its own. The proof that
we present here is a simplification by I. M. Isaacs of our original one.

Theorem 5.4. Suppose that G is a finite group that has an abelian nor-
mal p-complement A, and let P ∈ Sylp(G). Let V be a finite-dimensional
G-module in characteristic p. Then there exists v ∈ CV (P ) such that
CA(v) = CA(V ).

Proof: We can assume that V 6= 0, and we proceed by induction on
the dimension of V . First, CA(V ) is normal in G, so we can replace
G by G/CA(V ), and assume that A acts faithfully on V . Suppose that
V = X ⊕ Y , where X and Y are non-trivial G-submodules. By the
inductive hypothesis, there exists x ∈ CX(P ) and y ∈ CY (P ) such that
CA(x) = CA(X) and CA(y) = CA(Y ). Writing v = x+ y, we have that
v ∈ CV (P ), and CA(v) = CA(x)∩CA(y) = CA(X)∩CA(Y ) = CA(V ) =
1. We can thus assume that V is indecomposable as a G-module.

Now suppose that 1 < B ≤ A, with B / G. By Fitting’s lemma,

V = CV (B)⊕ [V,B]

and both summands are G-invariant. It follows from the previous para-
graph that one of these summands must be trivial. But A acts faithfully
on V and B is non-trivial, so [V,B] > 0, and we deduce that CV = 0.

Now let U be a simple G-submodule of V . If we let B = CA(U),
then B is normal in G, and since 0 < U ⊆ CV (B), it follows from the
previous paragraph that B = 1 and thus A acts faithfully on U . We can
thus replace V by U , so we can assume that V is a simple G-module.

If V is homogeneous as an A-module, it follows from the fact that A is
abelian and acts faithfully on V that the action ofA on V is Frobenius. In
this case, we can choose v to be an arbitrary non-zero element of CV (P ),
and we have CA(v) = 1, as wanted.
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Finally, we can assume that V is not homogeneous as an A-module,
and thus there exists H / G of index p and H-submodules Ui ⊆ V
for 0 ≤ i < p such that

V = U0 ⊕ U1 ⊕ · · · ⊕ Up−1
and the Ui’s are transitively permuted by G/H.

Let Q = H ∩ P , and apply the inductive hypothesis to the action
of H on U0 to choose u0 ∈ CU0

(Q) such that CA(u0) = CA(U0). Let
x ∈ P −Q, and note that xp ∈ Q. We can assume that the subspaces Ui
are numbered so that (U0)xi = Ui for 0 ≤ i < p. Now write ui = u0x

i

for 0 < i < p, and let v =
∑
i ui. Then ui ∈ Ui for 0 ≤ i < p, and since x

normalizes Q, we see that ui ∈ CV (Q) for all i, and thus Q centralizes v.
Since xp ∈ Q and Q centralizes u0, it follows that (up−1)x = u0, and
thus x centralizes v, so v ∈ CV (P ). Also, since CA(u0) = CA(U0), it
follows by conjugation by powers of x that CA(ui) = CA(Ui) for all i.
Since the spaces Ui are A-invariant, we have

CA(v) =
⋂
i

CA(ui) =
⋂
i

CA(Ui) = CA(V ) = 1,

and the proof is complete.

Notice that the condition of A being abelian cannot be relaxed to A
being nilpotent, since there are examples of nilpotent p′-groups that do
not have regular orbits on simple modules in characteristic p.

We now give an affirmative answer to Problem 5.1 in a special case.

Theorem 5.5. Let G be a finite solvable group with Op′(G) = 1, such
that all the p′-factors in the ascending p-p′-series of G are abelian. Sup-
pose that x ∈ G is such that χ(x) 6= 0 for all χ ∈ Irrp′(G). Then x is a
p-element.

Proof: We can assume that G is not a p-group, and we proceed by in-
duction on |G|. Write V = Op(G), and let Ḡ = G/Φ(V ), where Φ(V )
is the Frattini subgroup of V . Then Op′(Ḡ) = 1 using standard group
theory, and Ḡ satisfies the hypotheses with respect to the element x̄. If
|Ḡ| < |G|, then the inductive hypotheses guarantee that x̄ is a p-element,
and thus x is a p-element, and there is nothing further to prove. We can
assume, therefore, that Φ(V ) = 1, so V is elementary abelian. Now
let M/V = Op′(G/V ), and note that M/V is abelian by hypothesis.
Also, since V < G, we have M > V , and thus M is not a p-group.
Let N = Op(M), and note that N > 1. If K/N = Op′(G/N), then
K ∩M = N , and we will have that KM/M is a p′-group. Therefore
K = N . It is straightforward to check that G/N satisfies the hypothesis
of the theorem. Therefore, we deduce that Nx is a p-element.
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Write W = N ∩V and observe that the p′-group N/W acts faithfully
on W . Indeed, if U/W ⊆N/W acts trivially on W , then [V,U/W,U/W ]=
1 and by coprime action, [V,U ] = 1. However, CG(V ) = V , since G is
p-solvable.

Let X = N〈x〉, and note that X/N is a cyclic p-group. Now choose
P ∈ Sylp(G) so that X ⊆ NP , and note that P ∩ N = W . Let
I = Irr(W ), and observe that I can be viewed as an NP/W -module on
which N/W acts faithfully. By Theorem 5.4, there exists a P -invariant
linear character λ ∈ I such that the stabilizer of λ in N is W , and
thus θ = λN is irreducible and P -invariant. Also, θ(1) = |N/W | is a
p′-number. Now Op(N) = N , so θ has p′-determinantal order as well
as p′-degree, and thus θ extends to ψ ∈ Irr(NP ) (by Corollary 6.2
of [50]). Since NP has p′-index in G, it follows that ψG has an irreducible
constituent χ ∈ Irrp′(G). By hypothesis, χ(x) 6= 0, so there exists some
irreducible constituent ξ of the restriction χX such that ξ(x) 6= 0. Now
χ lies over θ ∈ Irr(N), so ξN is a sum of G-conjugates of θ, and all of
these have p′-degree.

First, suppose that p divides ξ(1), so ξN is reducible. Since X/N is
cyclic, ξN cannot be homogeneous, so ξ is induced from some character
of a subgroup T with N ⊆ T < X. Since X = N〈x〉, no X-conjugate
of x lies in T , and thus ξ(x) = 0, which is a contradiction. We can now
assume that ξ has p′-degree, and we write Y = X ∩ P . Then |X : Y | =
|N : W | = θ(1) ≤ ξ(1). Since Y is a p-group and ξ has p′-degree, we
deduce that ξY has some linear constituent β. Then ξ is a constituent
of βX , which has degree |X : Y | ≤ ξ(1), and it follows that ξ = βX .
Since ξ(x) 6= 0, we see that some conjugate of x lies in the p-group Y ,
and in particular, x is a p-element. This completes the proof.

The following easy block-theoretical result gives a criterion for certain
elements to have non-zero values. We let R be the ring of algebraic
integers in C.

Theorem 5.6. Let G be a finite group, P ∈ Sylp(G). Let x ∈ G be such
that xp′ ∈ Op′(NG(P )). Then χ(x) 6≡ 0 mod pR for every χ ∈ Irrp′(G)
in the principal p-block of G.

Proof: Suppose that χ ∈ Irrp′(G) in the principal p-block of G is such
that χ(x) ≡ 0 mod pR. Let M be a maximal ideal of R containing p.
Write y = xp′ . By Lemma 4.19(b) of [50], we have that χ(y) ≡ χ(x) ≡ 0
mod M . Let L = yG, the conjugacy class of y. Since [P, y] = 1, we have
that |L| 6≡ 0 mod p. However,

χ(1)|L| ≡ χ(1)

(
|L|χ(y)

χ(1)

)
= |L|χ(y) ≡ 0 mod M.

Therefore p divides χ(1)|L|, and this is not possible.
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The conclusion in Theorem 5.6 is really about characters in the princi-
pal block. For instance, SmallGroup(160,235) has an irreducible charac-
ter χ of degree 5 and value 3 in an element x of order 2. Therefore if p = 3,
then {χ} is a 3-block of maximal defect and of course x ∈ Op′(NG(P )),
in this case (because 3 does not divide the order of the group). The con-
verse of Theorem 5.6 is not true, even assuming that χ(x) 6≡ 0 mod pR
for all χ in the principal block of G (as shown by S3, p = 2).

6. Problems on zeros of characters: natural
correspondences

We start this section by speculating that there might exist a “row ver-
sion” of Problem 5.1 that is related to some recent results. Suppose that
X(G) is the character table of the finite group G. In Problem 5.1, we
wish to infer a property of a fixed element of G (a column in X(G)) pro-
vided that the p′-degree characters of G do not vanish on this element.
Once characters of p′-degree are in the picture, due to the McKay con-
jecture, p-Sylow normalizers show up naturally. (Recall that the McKay
conjecture asserts that |Irrp′(G)| = |Irrp′(NG(P ))| if P ∈ Sylp(G).) It
would be interesting to know the answer to the following dual question.

Problem 6.1. Let G be a p-solvable group. Let χ ∈ Irr(G) be such that
χ(x) 6= 0 for all x ∈ NG(P ), where P ∈ Sylp(G). Is the degree of χ not
divisible by p?

Some solvability hypotheses are again needed in order to have an
affirmative answer to Problem 6.1, as shown by PSL2(11) for p = 2,
or M22 for p = 3. (Certainly, Problem 6.1 does not have an affirmative
answer in p-solvable groups if NG(P ) is replaced by P , as shown by
a 2-Sylow normalizer of Suz(8), unless, perhaps, the hypothesis that

Op′(G) = G is added.) On the other hand, for many groups, such as the
alternating or symmetric groups, the answer to Problem 6.1 seems to
be affirmative, even only assuming non-zero values on p-elements. (The
case of the symmetric and alternating groups is proved in [17].)

An affirmative answer to Problem 6.1 implies that if G is p-solvable,
P ∈ Sylp(G), and NG(P ) = P , then the number of irreducible characters
of G which are never zero on P is |P/P ′|. (This is a particular case of
a conjecture of this author on Carter subgroups of solvable groups that
is mentioned in [27]. See Problem 6.7 below.) Let us now prove the
following.

Theorem 6.2. Let G be a p-solvable group. Let χ ∈ Irr(G) be such that
χ(x) 6= 0 for all x ∈ NG(P ), where P ∈ Sylp(G). If P is maximal in G
or P is abelian, then χ has degree not divisible by p.
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Proof: The Hall–Higman lemma 1.2.3 asserts that CG(Op′p(G)/Op′(G))
is contained in Op′p(G)/Op′(G). Hence, if P is abelian, then we have that
G/Op′(G) has a normal Sylow p-subgroup, and then Op′pp′(G) = G. Let
us prove that χ has p′-degree under the more general assumption that
G has an abelian normal p-subgroup K such that Op′pp′(G/K) = G/K.
Indeed, suppose that K ⊆ L ⊆ M are normal subgroups of G such
that L/K is p′, M/L is a p-group, and G/M is p′. Now, G/L has a
normal Sylow p-subgroup, and by elementary group theory, we have
that G = LNG(P ). By Corollary C of [47], we have that χL = θ is
irreducible. Since L has an abelian normal Sylow p-subgroup K, we have
that θ(1) = χ(1) divides |L : K|, and therefore χ(1) is not divisible by p.

Suppose now that P is maximal in G. In order to prove this case, we
heavily use the results of [27] and the McKay conjecture for p-solvable
groups. If P is normal inG, then necessarily χ is linear by hypothesis and
Burnside’s theorem on zeros of characters. Hence, we may assume that
P = NG(P ) is a Carter subgroup of G. Therefore |Irrp′(G)| = |P/P ′| by
Theorem 9.4 of [50], for instance. Notice that if χ ∈ Irrp′(G), then χP
is never zero, for instance by Corollary 4.20 of [50]. Now P is a Carter
subgroup of G, and by Theorem A of [27], |P/P ′| is also the number of
the head characters of G. By hypothesis and Theorem 6.1 of [27], we
have that the number of head characters of G is the number of irreducible
characters which do not vanish on P . The claim follows easily now.

If G is p-solvable and P = NG(P ), we remind the reader that there
is a natural bijection ∗ : Irrp′(G) → Irrp′(P ) (see Theorem 9.4 of [50]).
This leads us to the main topic of this section: zeros of characters and
natural correspondences.

It is my belief, as a somewhat vague general principle, that if H is a
distinguished (up to G-conjugacy) subgroup of a finite group G, A and
B are canonical subsets of Irr(G) and Irr(H), respectively, and ∗ : A → B
is a natural bijection, then the image χ∗ of χ ∈ A is linear if and only if
χH is never zero. (I shall not even attempt to make a general definition
of when a bijection is natural, when a subgroup H is distinguished or
when a subset is canonical—although in all the cases, I certainly mean
choice-free.) All this is better explained with an example.

Problem 6.3. Suppose that A acts coprimely on G, let IrrA(G) be the
set of A-invariant irreducible characters of G, let C = CG(A), and let
∗ : IrrA(G)→ Irr(C) be the Glauberman–Isaacs correspondence. Let χ ∈
IrrA(G). Is it true that χ∗(1) = 1 if and only if χC is never zero?

I recognize that the evidence supporting an affirmative answer in
Problem 6.3 is quite scarce. I do not even know how to prove the case
where G is nilpotent, and this should be territory for counterexamples.
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On the other hand, an argument involving roots of unity (which we shall
use in Theorem 6.6 below) shows that if A is a p-group and χ∗(1) = 1,
then χC is never zero.

Besides the case where P = NG(P ) and G is p-solvable, there are
some other (few but) important cases where we have McKay natural
correspondences of characters

∗ : Irrp′(G)→ Irrp′(NG(P )).

For instance, if p = 2 and G is solvable ([24]); if p = 2 and G = Sn,
G = GLn(q), or G = GUn(q), where q is odd ([16]); if p is any prime and
G has a normal p-complement (Theorem 9.2 of [50]); or if p is any odd
prime and P = NG(P ) ([53]). In these cases, we also believe that there
might be a connection between non-vanishing and linear characters.

The following has been proved by E. Giannelli (for symmetric groups)
and P. H. Tiep in private communication.

Theorem 6.4. Suppose that p = 2 and G = Sn, G = GLn(q), or
G = GUn(q), where q is odd. Let P ∈ Syl2(G), N = NG(P ), and let

∗ : Irrp′(G)→ Irrp′(N)

be the McKay natural correspondence. Let χ ∈ Irr(G). Then χN is never
zero if and only if χ has p′-degree and χ∗(1) = 1. In particular, in all
these cases, the number of irreducible characters of G which are never
zero on N is |N/N ′|.

In the remaining cases where we have a McKay natural correspon-
dence, it seems natural to guess that the same is going to happen, but
I am unable to prove it. The main obstruction is that we do not know
much about the relationship between Clifford correspondents and zeros
of characters.

Problem 6.5. Let G be a finite group, let p be a prime, let P ∈ Sylp(G),
and N = NG(P ). Assume one of the following hypotheses:

(a) p = 2 and G is solvable;
(b) G has a normal p-complement;
(c) p is odd and N = P .

Let χ ∈ Irr(G). Is it true that χN is never zero if and only if χ has
p′-degree and χ∗(1) = 1?

Notice that, in particular, this would imply that in all the cases enu-
merated above, the number of irreducible characters of G which are never
zero on N is |N/N ′|.

There is a connection between Problem 6.5(b) and Problem 6.3. This
follows by using properties of the Glauberman correspondence.
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Theorem 6.6. If Problem 6.3 has an affirmative answer whenever A is
a p-group, then Problem 6.5(b) has an affirmative answer.

Proof: Suppose that G has a normal p-complement K, and a Sylow
p-subgroup P . Then N = NG(P ) = C × P , where C = CK(P ). Let
χ ∈ Irr(G).

Suppose that χN is never zero. Then χP is never zero, and therefore
χK = θ ∈ Irr(K), for instance by Corollary C of [47]. Therefore χ has

p′-degree. If θ̂ ∈ Irr(G) is the canonical extension of θ, then χ = λθ̂
for some linear λ ∈ Irr(G/K), and χ∗ = λP × θ∗, where θ∗ ∈ Irr(C) is
the P -Glauberman correspondent of θ. Therefore, we only need to prove
that θ∗(1) = 1. Since χC is never zero by hypothesis, this follows from
Problem 6.3.

Conversely, assume that χ∗(1) = 1 and χ has p′-degree. Write χK =

θ ∈ Irr(K) and χ = λθ̂ for some linear λ ∈ Irr(G/K), where θ̂ ∈ Irr(G)
is the canonical extension. Again, χ∗ = λP × θ∗, and we have that

θ∗(1) = 1. We need to prove that θ̂(cx) 6= 0 for all x ∈ P and all c ∈ C.
By the Glauberman correspondence, we can write

θC = eθ∗ + p∆,

where e ≥ 1 is an integer not divisible by p, and ∆ is a character of C
or zero. By Theorem 13.6 and Theorem 13.14 of [25], we have that

θ̂(cx) = εβ(c),

where β ∈ Irr(CG(x)) is the 〈x〉-Glauberman correspondent of θ. By the
Glauberman correspondence, we can write

θCG(x) = dβ + pΞ,

where d ≥ 1 is an integer not divisible by p and Ξ is a character of CG(x)
or zero. Hence

χC = eθ∗ + p∆ = dβC + pΞC .

From this equation, we deduce that

βC = fθ∗ + pρ,

where f ≥ 1 is an integer not divisible by p, and ρ is a character of C or
zero. Now, if β(c) = 0, then (−f)θ∗(c) = pρ(c). Now choose a maximal
ideal M of the ring of algebraic integers R in C containing p. Then

(−f)θ∗(c) ≡ 0 mod M.

Therefore either f ≡ 0 mod M or θ∗(c) ≡ 0 mod M . Since p does not
divide f , we have that f 6≡ 0 mod M . Since θ∗(c) is a root of unity,
θ∗(c) 6≡ 0 mod M , and this is a contradiction.
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I. M. Isaacs brought to my attention the following example. Suppose
thatG is a finite group, N is a normal subgroup ofG, and that θ ∈ Irr(N)
has a canonical (choice-free) extension ψ to G. Assume now that N has
a complement H in G. Hence, we have that the map ∗ : Irr(H)→ Irr(G)
given by α 7→ αψ is a canonical injection. Hence, according to our “prin-
ciple” before Theorem 5.3, we should have that ψH is never zero. This
does happen if (|N |, |H|) = 1, using the Glauberman correspondence.
(Thus our principle is right if H happens to be a distinguished subgroup
of G, in this case, a Hall subgroup of G.) Now, if we take G the wreath
product of A4 with A5, and N / G is the base group, then N has a
G-invariant irreducible character θ of degree 35, which extends to G, by
well-known properties of the wreath products. Since G/N is perfect, by
the Gallagher correspondence we have that θ has a unique (and there-
fore) canonical extension ψ ∈ Irr(G). Now, G has five conjugacy classes
of subgroups H isomorphic to A5, and all of them are complements to N
in G. It turns out that ψH is never zero exactly in one of these conjugacy
classes of subgroups: those that are conjugate to the natural complement
of N in G. Perhaps this is serendipity, or perhaps not.

Without natural correspondences, it is definitely not true that the
number of (p′-degree) irreducible characters of a finite group G which
are never zero on N = NG(P ) equals |N/N ′| (even if G is p-solvable and
Op′(G) = 1, as shown by (C3 × C3) : GL2(3) for p = 3). In fact these
numbers can be bigger (A5 with p = 2) or smaller (A5 with p = 5).

In [27], Isaacs recently constructed injections from the linear charac-
ters of a Carter subgroup of a solvable group G into Irr(G). Although the
injections are not totally canonical, their image is. As is written in [27],
I have wondered if this image is the set of the irreducible characters of G
which are never zero on C.

Problem 6.7. Let G be a solvable group, and let C be a Carter subgroup
of G. Is it true that the number of irreducible characters of G which do
not vanish on C is |C/C ′|?

Of course, if G has a self-normalizing Sylow p-subgroup P , then P is
a Carter subgroup of G, and this case of Problem 6.7 is included in
Problem 6.5.

7. Problems on fields of values

Recall that if χ is a character of a finite group G, then

Q(χ) = Q(χ(g) | g ∈ G),

the field of values of χ, is the smallest subfield of C containing the values
of χ. Also, the conductor c(χ) of χ is the smallest positive integer n such
that Q(χ) is contained in the n-th cyclotomic field Qn.
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A recent conjecture, proposed in [52], would explain the abelian ex-
tensions Q(χ)/Q of the p′-degree irreducible characters of finite groups.

Conjecture 7.1. Suppose that G is a finite group, and let p be a prime.
Let χ ∈ Irrp′(G), and let P ∈ Sylp(G). Write c(χ) = pam, where m is
not divisible by p, and a ≥ 0 is an integer. Is it true that the exten-
sion Qpa/Q(χP ) has degree not divisible by p?

This would imply, for instance, that if χ ∈ Irr(G) has odd degree and
P ∈ Syl2(G), then Q(χP ) is always a full cyclotomic field. (For instance,
if λ is a linear character of order 8, then 1 + λ + λ3 cannot be the re-
striction of an odd-degree irreducible character to a Sylow 2-subgroup.)
Also, Conjecture 7.1 implies that χ ∈ Irr(G) of odd degree is 2-rational
(i.e., c(χ) is odd) if and only if χP is a rational-valued character. There
are many indications (see [52]) that Conjecture 7.1 has an affirmative
answer for every finite group. Again, solvable groups seem to be blocking
a reduction of it to a problem on simple groups. (Added in proof: Con-
jecture 7.1 is now known to be true for p-solvable groups by unpublished
work by I. M. Isaacs and myself [31].)

Brauer’s Problem 7 in [1] proposes “to study the irreducible characters
of p-groups.” I would add the following.

Problem 7.2. If P is a p-group, study the characters χP , where P is a
Sylow p-subgroup of some finite group G, and χ ∈ Irr(G).

A small piece of information was discussed in [18]: if p divides χ(1)
and χP has a linear constituent, then it appears that at least it should
have p. (Now, this has been extended in [56].)

While checking Conjecture 7.1, we came across the following problem.
Perhaps there is an easy explanation or a counterexample.

Problem 7.3. Let G be a finite group, and let χ ∈ Irr(G). If χ(1) is
odd or χ is 2-rational, is it true that there is g ∈ G such that Q(χ) =
Q(χ(g))?

Suppose that Q(G) is the smallest field containing Q(χ) for all χ ∈
Irr(G). In 1972, B. Fein and B. Gordon ([13]) proposed to study the
abelian extensions Q(G)/Q. As far as we know, the following remains
an open problem.

Problem 7.4. For which finite abelian extensions F/Q does there exist
a finite group G such that F = Q(G)?

It is true, by work in [12], that there is no solvable group G such that

Q(G) = Q(i
√

11), for instance. However, Q(M12) = Q(
√

11i), where
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M12 is the Mathieu group. I would not be surprised if “for all” is the
answer to Problem 7.4, but at this time, I cannot find a finite group G
such that Q(G) = Q(

√
11).

In Problem 7.4, one can also restrict the families of groups under
consideration. For instance, I cannot find any solvable group G such
that Q(G) = Q(

√
5i).

Finally, it is a well-known theorem of J. G. Thompson that the values
of any irreducible character are zeros or roots of unity for more than a
third of the elements of the group. (See Problem 3.15 of [25].) Recently
A. R. Miller conjectured in [44] that the following also holds.

Conjecture 7.5 (Miller). If G is a finite group and χ ∈ Irr(G), then
the values of χ are zeros or roots of unity for at least half of the elements
of G.

Conjecture 7.5 is open for solvable groups.

8. Problems on character degrees and conjugacy classes

The analogies between characters and conjugacy classes—between
rows and columns of the character table—is a source of inspiration for
many results in character theory. In this last section, let me remind the
reader of a few (perhaps) not so well-known interesting open problems.

I have mentioned in the Introduction Dolfi’s spectacular result on
graphs of solvable groups: if p and q are different primes dividing an
irreducible character degree χ(1), then there exists a conjugacy class K
of G whose size is divisible by p and q. Using the CFSG, this result was
extended to every finite group by Casolo and Dolfi many years later ([4]).
Inspired by Dolfi’s result, two new ideas were discussed in [28]. It is
well known that conjugacy class sizes are, in general, much bigger than
irreducible character degrees, if only by looking at the equations∑

K∈Cl(G)

|K| = |G| =
∑

χ∈Irr(G)

χ(1)2.

(Here Cl(G) denotes the set of conjugacy classes of G.) But could it
be that for each irreducible character degree χ(1) there is a conjugacy
class size |K| such that χ(1) divides |K|? Unfortunately, there are a
few examples where this does not happen. It seems, however, that in
these cases χ is always induced from a proper subgroup (that is, χ is not
primitive). This is the content of Conjecture C in [28], which is open
even for solvable groups. (Recall that we are using gG to denote the
conjugacy class of g in G.)

Conjecture 8.1. Let χ be a primitive irreducible character of a finite
group G. Then χ(1) divides |gG| for some g ∈ G.
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Conjecture 8.1 is true for simple groups and symmetric groups by work
in [5]. Given the failure to prove this conjecture for solvable groups, some
attempts have been made to try to prove a weak local version (one prime
at a time). This was done recently in [42] for groups of odd order, and
in [33] for solvable groups.

The following related problem (also from [28]) remains open. If n is
an integer, we let π(n) be the set of primes dividing n.

Problem 8.2. Let χ be an irreducible character of a finite group G. Is
there a conjugacy class K of G such that π(χ(1)) ⊆ π(|K|)?

These problems somewhat resemble an intriguing conjecture of
G. Qian ([55]).

Problem 8.3. Let G be a finite group, and let g ∈ G. Is there some
χ ∈ Irr(G) such that o(g) divides |G : ker(χ)|/χ(1)?

As is explained in [40], this would be a consequence of the following.

Conjecture 8.4. Let G be a finite group, and let H be a cyclic subgroup
of G. If θ ∈ Irr(H), then there exists an irreducible constituent χ of θG

such that χ(1) divides |G : H|.

In [40], we have a strong version of Conjecture 8.4 which we have
reduced to decorated simple groups—in particular giving a stronger so-
lution to Problem 8.3 for solvable groups. Also, as discussed in [40], in
Conjecture 8.4, cyclic might be replaced by abelian (or even nilpotent),
at least in solvable groups. In [6], the modular version of this conjecture
is studied.

Finally, K. Harada proposed the following in [21].

Conjecture 8.5. Let G be a finite group. Then∏
χ∈Irr(G)

χ(1) divides
∏

K∈Cl(G)

|K|.

We are not aware that this has been solved, even for solvable groups.
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