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Abstract: A new class of groups C, containing all coherent RAAGs and all toral
relatively hyperbolic groups, is defined. It is shown that, for a group G in the class C,

the Z[t]-exponential group GZ[t] may be constructed as an iterated centraliser ex-

tension. Using this fact, it is proved that GZ[t] is fully residually G (i.e. it has the

same universal theory as G) and so its finitely generated subgroups are limit groups
over G. If G is a coherent RAAG, then the converse also holds – any limit group

over G embeds into GZ[t]. Moreover, it is proved that limit groups over G are finitely
presented, coherent and CAT(0), so in particular have solvable word and conjugacy

problems.
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1. Introduction

When studying problems in R-modules or R-algebras it is often con-
venient to extend the ring of coefficients, for instance from an integral
domain to a field of fractions. The multiplicative notation employed in
the study of groups naturally defines an action of the ring of integers
on the group via exponentiation and, as in the case of modules and al-
gebras, it is sometimes useful to extend this exponential action of Z to
more general rings, bringing us to the notion of an exponential group
over a ring A. Exponential groups were initially considered by P. Hall
in [26], where he studied nilpotent groups with exponents in a binomial
ring. G. Baumslag (see [4]) considered groups with unique p-th roots
and their embedding into divisible groups, which are exponential groups
over the ring Q. Lyndon was the first to take an axiomatic point of view,
introducing axioms for exponential groups over an associative ring A, or
A-groups, while studying equations and the first-order theory of the free
group, and describing the set of solutions of an equation in one vari-
able over a free group F in terms of a free object FA in the category of
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A-groups, where A = Z[t1, . . . , td], that is, groups with exponents in the
ring of polynomials Z[t]; see [33, 34].

When extending the exponents of a group G to a ring A, there is
a natural “free” A-group, called the A-completion GA of G, defined
via the universal property that any group homomorphism from G to
an A-group H, factors through GA, via a canonical embedding from G
into GA and an A-homomorphism from GA to H.

Although the existence of an A-completion or a free exponential group
may follow from general results on varieties of algebras, their structure
may be very complex and difficult to describe, and in particular a group
may not embed into its A-completion. G. Baumslag described the Q-com-
pletion of a group with unique roots as a direct limit of a directed system
of A-groups, for A a subring of Q. More precisely, Baumslag’s directed
system involves the idea of an “iterated centraliser extension” (or ICE),
that is, a group built by repeated formation of free products with amalga-
mation, over centralisers of elements (see Definition 6.2). Indeed in this
setting, GA, built as an ICE, is a Fräıssé limit of extensions of centralis-
ers; see [31]. It is proved that, for A a subring of Q, the A-completion
of the ordinary free group F is the free A-group FA in the variety of
A-groups (see [4, Sections V–VIII]).

Lyndon gave an explicit description of the structure of the free Z[t]-
group FZ[t] as the limit of an ascending chain of subgroups and proved
that FZ[t] is fully residually free, or put another way, is universally equiv-
alent to the free group F . In [39, 40], Myasnikov and Remeslennikov
made a systematic study of A-groups and A-completions and described
the structure of the A-completion of CSA groups, that is, groups whose
maximal abelian subgroups are malnormal. It is shown that if A is an
associative ring, with a torsion-free additive subgroup, andG is a torsion-
free CSA group, then the A-completion GA of G may be constructed as
an ICE, whence many results on its structure may be deduced; for ex-
ample that G embeds into GA, which is itself a torsion-free CSA group.
In this case too, a free A-group is the A-completion of a free group.

In the introduction to [34] Lyndon comments that “. . . although the
connection is perhaps remote, my interest in the present problem derives
from a question of A. Tarski, whether the ‘elementary theory’ of free
groups is decidable”. It is now clear that the connection is anything but
remote. Indeed, crucial properties of Lyndon’s free Z[t]-group FZ[t] are
that it serves as a universe for the class of finitely generated models
of the universal theory of the free group and that it has a very robust
algebraic structure. More precisely, in [27] (see also [17]), it is shown
that any finitely generated fully residually free group (equivalently, any
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finitely generated model of the universal theory of the free group, also
known as a limit group; see Subsection 2.3) embeds into FZ[t].

An immediate consequence of this result is the fact that limit groups
split either as a free product or over an infinite cyclic subgroup and,
since finitely generated subgroups of limit groups are limit groups, this
endows them with a hierarchical structure. This fact allows one to use
induction to prove a variety of powerful results on limit groups. For ex-
ample, it readily follows that limit groups are finitely presented; in [16],
the hierarchical structure of limit groups is used to prove that they are
conjugacy separable, and in [50] it is established that limit groups are
subgroup separable.

In a different direction, the knowledge that limit groups embed
into FZ[t] was key to establishing the fact that limit groups act freely on
Zn-trees and made it possible to use the techniques of non-Archimedian
words to establish the Howson property, analogues of Hall’s and
Greenberg–Stallings’s theorems for free groups (see [42, 50]), and to
address all the major algorithmic questions for limit groups; see [30, 12]
and references therein.

This type of result, showing limit groups over a group G embedded
in the Z[t]-completion of G, has been established for other groups with
hyperbolic features. The proofs divide into two main steps. The first one
is to show that the Z[t]-completion is a model of the universal theory of
the base group G, i.e. is fully residually G. In their paper [7], Baumslag,
Myasnikov, and Remeslennikov carried out this step in the case of a
torsion-free hyperbolic group G and distilled the key ideas of the proof.
As in [27], a class of groups that contains G and is closed under exten-
sions of centralisers is required. In this case the group G is torsion-free
hyperbolic and the class chosen is the class of CSA groups satisfying the
big powers (BP) property. The BP property is an algebraic condition
that asserts that big powers of non-commuting elements generate a free
group (see Definition 3.2 below). It turns out that an extension of cen-
tralisers of a group G which is CSA and has the BP property is fully
residually G, and so a model of its universal theory. The strategy is then
to show that an extension of a centraliser of a group in the class of CSA
and BP groups is again in this class, to use transfinite induction to show
that an ICE of such a group remains in the class, and to conclude that
GZ[t] is fully residually G. These ideas were taken further in [29] in the
study of the Z[t]-completions of torsion-free toral relatively hyperbolic
groups.

The second main step of the proof is to show that any limit group
over G embeds into GZ[t]. In order to prove this statement, one needs
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to understand the structure of limit groups over G. In the case of free
groups, this was achieved by Kharlampovich and Myasnikov in [27],
using the Makanin–Razborov process, and by Sela in [48] using actions
on real trees.

The aim of this paper is to describe Z[t]-completions for (a class
of) right-angled Artin groups, or RAAGs for short; see Definition 2.1.
RAAGs form a prominent class of groups which contains both free and
free abelian groups and is widely studied in different branches of mathe-
matics and computer science. We refer the reader to [18, 22] for further
details.

In general, the subgroup structure of RAAGs is very complex. For
example, Bestvina and Brady ([9]) showed how to construct a subgroup
of a RAAG to give the first example of a group which is homologically
finite (of type FP ) but not geometrically finite (in fact not of type F2).
Again, Mihăılova’s example [37] of a group with the unsolvable subgroup
membership problem is constructed from the RAAG F2 × F2. More re-
cently results of Wise and others (see e.g. [51]) led to Agol’s proof of
the virtual Haken conjecture: that every hyperbolic Haken 3-manifold is
virtually fibred. An essential step in the argument uses the result that
the fundamental groups of so-called special cube complexes embed into
RAAGs. If one is to use the Z[t]-completion as a universe for limit groups
over a given RAAG and as a tool to study limit groups algorithmically, it
is natural to restrict to a class of RAAGs with tame subgroup structure
and good algorithmic behaviour – in our case, to the class of coherent
RAAGs. A RAAG is coherent if and only if its underlying graph contains
no full subgraph isomorphic to an n-cycle, for n ≥ 4; see [20]. Further-
more, a RAAG is coherent if and only if it satisfies the BP property;
see [10].

In this paper, we define a new class of groups C which contains all toral
relatively hyperbolic groups and all coherent RAAGs and prove that it
is closed under extensions of centralisers and direct limits. For groups G
from this class, we show that the Z[t]-completion may be built as an ICE,
enabling us to prove it is fully residually G. Thus, we give a general
framework for the results of Baumslag, Kharlampovich, Myasnikov, and
Remeslennikov [27, 7, 29] and establish analogous results for coherent
RAAGs. More precisely we prove the following theorem.

Theorem (see Theorem 6.3). Let G be a group from class C satisfying
condition (R) of Subsection 6.2. The Z[t]-completion GZ[t] of G can be
built as an ICE. It is fully residually G and so it has the same universal
and existential theory as G.
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In the case that G is a coherent RAAG, we use the fact that any limit
group over a RAAG is a subgroup of a graph tower (see [15]) to conclude
that GZ[t] is a universe for the class of limit groups over G.

Corollary (see Theorem 8.1). Let G be a coherent RAAG. Then GZ[t]

can be built as an ICE. It is fully residually G and so it has the same
universal and existential theory as G.

Furthermore, it is a universe for the class of limit groups over G,
i.e. any finitely generated model of the universal theory of G embeds
into GZ[t].

To prove our main result, we follow the strategy of papers [7], [29],
and [27] for hyperbolic groups, that we have sketched above. In these
works the authors consider the class of BP and CSA groups. The CSA
property has strong structural consequences, namely that in such groups
commutation is transitive and so the centralisers (of non-trivial ele-
ments) are abelian. The fact that centralisers are abelian (in fact, in
the cases considered, they are f.g. free abelian) is essential to showing
that a countable sequence of extensions of a centraliser admits a Z[t]-
action. Then, using the malnormality of abelian subgroups, one extends
the Z[t]-action, in a consistent way, from the abelian subgroups to the
whole group, thereby establishing that indeed the resulting limit is the
Z[t]-completion of G. The BP property is needed to show that extensions
of centralisers are fully residually G.

In our case, we define the class C to contain groups that are torsion-free
and BP, and such that the algebraic structure of centralisers of elements,
and their intersections, has a clear description; see Definition 3.4. The
main technical work is to show that the class C is indeed closed under
extension of centralisers; see Theorem 4.2. We then prove that a group
obtained as an ICE admits a Z[t]-action and so does the group GZ[t]; see
Theorem 6.3.

In order to show that the group GZ[t] is a universe for the class of limit
groups over G, we use the structure theorem for limit groups proved
in [15], where it is shown that any limit group over a RAAG G is a
subgroup of a graph tower over G. In the case of coherent RAAGs, we
provide a neat description of graph towers, which is key to showing that
they embed into the completion GZ[t]. More precisely, we prove that any
graph tower can be obtained as a free product with amalgamation over
a free abelian group, where one of the vertices is a tower of lower height
and the other vertex group is either free abelian or the direct product
of a free abelian group and a fundamental group of a non-exceptional
surface, and where the free abelian factor is contained in the edge group.
The base group is a coherent RAAG G′ which is obtained from G by
extending centralisers of canonical generators of G; see Lemma 7.4.
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In Section 7, we show that graph towers over coherent RAAGs belong
to the class C and use this fact to prove the following structural results:

Theorem (see Theorem 7.7). Let G be a coherent RAAG and let T =
(G,H, π) be a graph tower associated to a limit group L over G. Then G
has a graph of groups decomposition (in the same generating set as G)
where:

(i) the graph of the decomposition is a tree;
(ii) edge groups are finitely generated free abelian;
(iii) vertex groups are either graph towers of lower height, or a finitely

generated free abelian group or the direct product of a finitely gen-
erated free abelian group and a non-exceptional surface group.

This result is independent of the first theorem stated above (Theo-
rem 6.3) and it is of interest in its own right. For instance we can deduce
the following.

Corollary (see Corollary 7.9). Limit groups over coherent RAAGs are
coherent, and so, in particular, finitely presented.

In Section 8, we use the structure of the graph tower over a coherent
RAAG G to show that they embed into GZ[t] and obtain a new char-
acterisation of limit groups over coherent RAAGs – they are precisely
finitely generated subgroups of GZ[t].

Finally, in Section 9 we follow the approach of Alibegovič–Bestvina
(see [1]) to prove the following corollary.

Corollary (see Corollary 9.7). Limit groups over coherent RAAGs are
CAT(0) groups.

One may consider the relation with other generalisations of hyper-
bolicity such as acylindrical hyperbolicity or hierarchical hyperbolicity;
see [46] and [8]. A RAAG is acylindrically hyperbolic if and only if it
is directly indecomposable and not cyclic; see [13, 46]. From the struc-
ture of limit groups over coherent RAAGs (see Lemma 7.4 and results
from [38]), it follows that limit groups over directly indecomposable,
non-cyclic coherent RAAGs are acylindrically hyperbolic. On the other
hand, all RAAGs are hierarchically hyperbolic groups (HHG for short)
and one would expect this also to be true of towers over RAAGs. In
general, finitely generated subgroups of RAAGs need not be HHGs but
we expect subgroups of coherent RAAGs, and limit groups over them,
to be HHGs. More precisely we ask the following question.

Question 1. Are limit groups over coherent RAAGs hierarchically hy-
perbolic?
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In fact, D. T. Wise ([51]) showed that limit groups have a quasiconvex
hierarchy, and thence deduced that they are virtually compact special.
Similarly, we expect a positive answer to the following.

Question 2. Are limit groups over coherent RAAGs virtually (compact)
special?

Notice that virtually compact special groups are hierarchically hyper-
bolic [8].

Since RAAGs are linear so are limit groups over them; see [5, Propo-
sition 8] and [36]. In particular the word problem is decidable for limit
groups over RAAGs [47]. Furthermore, from the fact that limit groups
over coherent RAAGs are CAT(0), we deduce the following.

Corollary (see Corollary 9.7). Limit groups over coherent RAAGs have
decidable word and conjugacy problems.

As we mentioned, we expect that the embedding of limit groups in
Z[t]-completions will be useful in addressing algorithmic problems and
establishing residual properties. For instance, we ask the following.

Question 3. Are the following statements true?

(i) Quasiconvex subgroups of graph towers over (coherent) RAAGs are
subgroup separable. (Notice that we consider the metric induced by
the canonical generators of the graph tower (instead of the CAT(0)
metric). In particular, this metric induces the `1-metric on abelian
subgroups. Algebraically, we consider subgroups H such that if
h = h1 · · ·hk ∈ H and hi are pairwise commuting blocks, then
hkii ∈ H for some ki ∈ N and for all i = 1, . . . , k.)

(ii) Cyclic subgroups of limit groups over (coherent) RAAGs are closed
in the profinite topology.

(Since this paper was submitted, Fruchter ([24]) has shown,
using the class C introduced below, that this statement is true.)

(iii) Limit groups over coherent RAAGs are conjugacy separable.
(iv) The subgroup membership problem in limit groups over coherent

RAAGs is decidable.
(v) The isomorphism problem in the class of limit groups over coherent

RAAGs is decidable.
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2. Preamble

In this section we recall some basic definitions and properties of
RAAGs; see [23, 14] for further details.

2.1. Right-angled Artin groups.

Definition 2.1. Let Γ be a finite simple (no loops, no multiple edges)
graph with vertices X and edge set E. The right-angled Artin group
(RAAG) G(Γ) with commutation graph Γ is the group with presenta-
tion 〈X | R〉, where R = {[a, b] : {a, b} ∈ E〉.

If Y is a subset of X, denote by Γ(Y ) the full subgraph of Γ with ver-
tices Y . Then G(Γ(Y )) is the RAAG with graph Γ(Y ). One can show that
G(Γ(Y )) is the subgroup 〈Y 〉 of G(Γ) generated by Y . We call G(Γ(Y )) a
canonical parabolic subgroup of G(Γ) and, when no ambiguity arises, de-
note it by G(Y ). The elements of Y are termed the canonical generators
of G(Y ).

A subgroup P of G is called parabolic if it is conjugate to a canonical
parabolic subgroup G(Y ) for some Y ⊆ X.

If w is a word in the free group on X, then we say that w is reduced
in G(Γ) if w has minimal length amongst all words representing the same
element of G(Γ) as w. Notice that reduced words correspond to geodesics
in the corresponding Caley graph.

If w is reduced in G(Γ), then we define α(w) to be the set of elements
of X such that x or x−1 occurs in w. It is well known that all reduced
words representing a particular element have the same length, and that
if w = w′ in G(Γ), then α(w) = α(w′). We say that elements u and v of
a RAAG disjointly commute if α(u)∩α(v) = ∅ and [u, v] = 1. As shown
in [3], if u and v disjointly commute, then [α(u), α(v)] = 1.

A reduced word w is cyclically reduced in G(Γ) if the length of w2 is
twice the length of w.

An element w ∈ G is called a root of v ∈ G if there exists a positive
integer m ∈ N such that v = wm and there does not exist w′ ∈ G,

1 6= w′, and 0, 1 6= m′ ∈ N such that w = w′
m′

. In this case we write
w =

√
v. By a result from [21], RAAGs have least (or unique) roots,

that is, the root element of v is defined uniquely.
The link of a vertex x of Γ is the set of vertices lk(x) of Γ adjacent

to x, and the star of x is star(x) = {x}∪ lk(x). For a set of vertices Y ⊆
V (Γ) define the link lk(Y ) and the star of Y , in symbols star(Y ), to be
intersections of the links and stars, respectively, of all vertices in Y . By
the link and star of w ∈ G we mean the link and star, respectively, of
α(w) ⊆ V (Γ).
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The complement of a graph Γ is the graph Γ with the same vertex set
as Γ and an edge joining different vertices x and x′ if and only if there
is no such edge in Γ. The RAAG G(Γ) is said to have non-commutation
graph Γ.

Consider cyclically reduced w ∈ G and the set α(w). For this set,
consider the graph Γ(α(w)) (that is, the full subgraph of Γ induced
by α(w)). If this graph is connected, we call w a block.

If Γ(α(w)) is not connected, then w is a product of commuting words

(1) w = wj1 · wj2 · · ·wjt ; j1, . . . , jt ∈ J,

where |J | is the number of connected components of Γ(α(w)) and α(wji)
is the set of vertices of the ji-th connected component. Clearly, the
words {wj1 , . . . , wjt} pairwise disjointly commute. Each word wji , i ∈
1, . . . , t, is a block and so we refer to presentation (1) as a block normal
form of w. Notice that a block normal form is unique up to the order of
the commuting blocks and the order of letters within the blocks. There-
fore, abusing the terminology, we usually refer to “the” block normal
form.

From [3], if the block normal form of a cyclically reduced element w
of G is w = w1 · · ·wt and

√
wi = vi, then the centraliser of w is

(2) C(w) = 〈v1〉 × · · · × 〈vt〉 × 〈lk(w)〉.

2.2. Coherent RAAGs. Recall that a group is coherent if any finitely
generated subgroup is finitely presented. In [20], Droms gives a charac-
terisation of RAAGs that are coherent in terms of the defining commu-
tation graph. We recall this characterisation in the following theorem.
A graph is chordal if it has no full subgraph isomorphic to a cycle graph
of more than three vertices.

Theorem 2.2 (Theorem 1, [20]). A RAAG G(Γ) defined by the com-
mutation graph Γ is coherent if and only Γ is chordal.

Notice that among coherent RAAGs one finds free groups, free abelian
groups, and all RAAGs which are fundamental groups of a 3-manifold
(see [20, Theorem 2]).

To motivate the axioms introduced in Section 3 below we give some
details of centralisers of elements of coherent RAAGs. Let Γ be a (simple)
chordal graph and let Γ be its complement. Then, as Γ is chordal, Γ has
at most one connected component with more than one vertex. Therefore
the block normal form of an element g of the RAAG G(Γ) has at most one
block which is not a power of a generator. Moreover, if g is an element
which has a block containing more than one generator, then lk(g) is a
clique (a set of vertices spanning a complete subgraph). Indeed, if lk(g)
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is not a clique, it contains two non-adjacent vertices, say u and v. Since
we assume that g has a block w with more than one generator, then
from the definition of a block we have that Γ(α(w)) is connected and so
it follows that α(w) contains two generators whose associated vertices
are not adjacent in Γ, say x and y. But then, since u, v ∈ lk(g) ⊂ lk(w) ⊂
lk({x, y}), we have that u and v are both adjacent to x and y and so the
full subgraph defined by {u, v, x, y} in Γ is a square, contradicting that
the RAAG G is coherent.

Lemma 2.3. Let G be a coherent RAAG, g a cyclically reduced element
of G, and C(g) the centraliser of g in G.

(i) If C(g) is non-abelian, then g is the product of powers of generators
that pairwise commute. In this case C(g) =

∏
x∈α(g)〈x〉 × 〈lk(g)〉.

(ii) If C(g) is abelian, then lk(g) is a clique (possibly empty) and either
(a) g is a product of powers of generators that pairwise commute,

in which case C(g) =
∏
x∈α(g)〈x〉 ×

∏
y∈lk(g)〈y〉; or

(b) g = wrv, where w is a root block element of length greater
than 1, r is a non-zero integer, v is a product of powers of
generators that pairwise commute and belong to lk(w), and
C(g) = 〈w〉 ×

∏
x∈α(v)〈x〉 ×

∏
y∈lk(g)〈y〉.

Proof: From the remarks preceding the lemma and (2), if C(g) is non-
abelian, then the blocks of g are powers of generators, which commute
by definition, giving (i). From (2), when C(g) is abelian lk(g) must be a
clique. As pointed out above, either g has a single block with more than
one generator, in which case we have (ii)(b); or g is a product of powers
of commuting generators, in which case (ii)(a) holds.

Remark 2.4. Let G(Γ) be a coherent RAAG. Then if g1, g2, h1, h2 are
elements of G so that [h1, h2] 6= 1, [g1, g2] 6= 1, there exists i, j = 1, 2 so
that [gi, hj ] 6= 1.

Indeed, assume to the contrary that [h1, h2] 6= 1, [g1, g2] 6= 1, and
[gi, hj ] = 1 for all i, j = 1, 2. Since [h1, h2] 6= 1 (correspondingly, [g1, g2] 6=
1), it follows that the centralisers of g1 and g2 (correspondingly, h1

and h2) are non-abelian as they contain h1 and h2 (correspondingly,
g1 and g2). By Lemma 2.3, it follows that gi is the product of powers
of pairwise commuting generators, i.e. gi =

∏
x∈α(gi)

xr(x) and C(gi) =∏
x∈α(gi)

〈x〉 × 〈lk(gi)〉; similarly, for hi, i = 1, 2.

Since g2 /∈ C(g1), it follows that there exist x2 ∈ α(g2) such that
x2 /∈ lk(g1). Since by definition lk(g1) =

⋂
x∈α(g1)

lk(x) and x2 /∈ lk(g1), it

follows that there exists x1 ∈ lk(g1) such that x2 /∈ lk(x1), that is, x1 is
not adjacent to x2 and so [x1, x2] 6= 1. A symmetric argument shows



Limit Groups over Coherent Right-Angled Artin Groups 209

that there exist yi ∈ α(hi), i = 1, 2, such that y1 and y2 are not adjacent
and so [y1, y2] 6= 1.

Since hi ∈ C(gj) for i = 1, 2, from the description of centralisers
we have that yi and xj commute, for i = 1, 2. Furthermore, yi 6= xj
as [x1, x2] 6= 1 and [yi, xj ] = 1 for i, j = 1.2. Therefore, x1, x2, y1,
y2 are different and the full subgraph that they define is a square – a
contradiction.

We shall later make use of the following property of centralisers of
sets of generators of a RAAG.

Lemma 2.5. Let G be a RAAG with canonical generating set X and
let Y ⊆ X be a finite set which generates a free abelian subgroup. Then
there exists g ∈ 〈Y 〉 such that C(Y ) = C(g).

Proof: Let Y = {y1, . . . , ym} and set g = y1 · · · ym. Then C(Y ) ⊆ C(g)
and if a ∈ C(g), then Lemma 2.3 implies a = bc, where b ∈ 〈Y 〉 and
c ∈ 〈lk(Y )〉. As Y is a clique, [b, y] = 1, and by definition [c, y] = 1, for
all y ∈ Y , so a ∈ C(Y ).

Remark 2.6 (Representatives in a RAAG). A key element of the main
construction of this paper is a choice of representatives of centralisers
of a group; see (C5)(i) below. As an initial example we describe how
such a set of representatives may be chosen in a coherent RAAG with
commutation graph Γ and generating set X = V (Γ). To begin with let
K = {C ⊂ X : C is a clique}, define an equivalence relation ∼ on K
by C ∼ D if and only if star(C) = star(D), and for each element C =
{x1, . . . , xk} ∈ K let gC = x1 · · ·xk. Let K denote the set of equivalence
classes of ∼ and for each equivalence class [C] of ∼ let [C]min be the
set of cliques of minimal cardinality in [C]. Let star([C]) = star(C),
where C is some (hence any) element of [C]. If star([C]) is a clique,
set W[C] = {gD}, for some D ∈ [C]min. If star([C]) is not a clique, set
W[C] = {gD : D ∈ [C]min}. Define WK to be the union of the sets W[C],

as [C] ranges over K. Now let B be the set of cyclically reduced root
block elements of length at least 2 in G and let ∼B be the equivalence
relation on B given by b ∼B c if and only if c is a conjugate of b or b−1.
Let WB be a set of representatives of equivalence classes of ∼B on B.
Finally, let WG = WK ∪WB .

Example 2.7. Let P4 be the path graph on four vertices and G =
G(P4) = 〈a, b, c, d | [a, b], [b, c], [c, d]〉. The cliques of P4 are {a}, {b}, {c},
{d}, {a, b}, {b, c}, {c, d}, and star(a) = star(a, b), star(d) = star(c, d),
whence {a} ∼ {a, b} and {d} ∼ {c, d}, while all other equivalence classes
are singletons. Thus K = {[{a}], [{b}], [{c}], [{d}], [{b, c}]} and, with an
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obvious abuse of notation, ga = a, gb = b, gc = c, gd = d, gbc = bc. As
Cmin is a singleton for each equivalence class, WK = {a, b, c, d, bc}.

Lemma 2.8. Let G be the RAAG with commutation graph Γ and let g
be an element of G. Then there is w ∈ WG such that C(g) is conjugate
to C(w). If C(g) is abelian, then w is unique.

Proof: Without loss of generality we may assume g is cyclically reduced.
If C(g) is non-abelian, then from Lemma 2.3, g is the product of powers
of generators that pairwise commute, and so α(g) is a clique. Let D be
of minimal cardinality in [α(g)]. Then gD ∈ WK and C(gD) = C(g),
as required. Similarly, if C(g) is abelian and canonical, gD ∈ WK, for
a unique D of minimal cardinality in [α(g)], and again C(gD) = C(g).
From the definitions, C(gD) 6= C(w), for all other w ∈W , so the lemma
holds if C(g) is canonical abelian.

If C(g) is abelian and non-canonical, then g = brxr11 · · ·x
rk
k , for some

cyclically reduced root block element b of length at least 2, xi ∈ lk(b),
and non-zero integers r, ri. From Lemma 2.3, C(g) ≤ C(b). On the other
hand if y ∈ C(b), since Lemma 2.3 implies C(b) = 〈b〉× 〈lk(b)〉 and lk(b)
is a clique, we have [y, xi] = 1, for all i, so y ∈ C(g). Hence C(g) = C(b).
There is a unique element d ∈WB such that d is a conjugate of b or b−1

and so C(g) = C(b) = C(d)h, for some h ∈ G. If w 6= d is an element
of W and C(w) is conjugate to C(d), then w ∈ WB , as C(d) is non-
canonical, so some conjugate w′ of w belongs to C(d), and therefore
w′ = drv, for some v ∈ 〈lk(d)〉. It follows, as both w and d are cyclically
reduced root block elements, that w′ = d±1, so w ∼B d, and by definition
of WB , we have w = d. Hence the lemma holds in all cases.

The following lemma is well known.

Lemma 2.9. Let C be a coherent group and let A be a finitely generated
abelian group. Then C ×A is coherent.

Proof: Since A is finitely generated, using induction, it suffices to con-
sider the case when A is cyclic. Let π be the natural epimorphism
from C × A onto C. The group π(H) is finitely presented by coher-
ence of C, and the kernel K of π|H is cyclic (possibly finite or even
trivial) as a subgroup of the cyclic group A. Hence there is an exact
sequence 1 → K → H → π(H) → 1, which shows that H is finitely
presented.

2.3. Limit groups. Limit groups have played an important role in the
classification of finitely generated groups elementarily equivalent to a free
group; see [28, 49]. They can be characterised from many different points
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of view. In this subsection, we briefly recall some of these equivalences;
see [19] for further details.

Let F (X) be a free group with basis X and denote by G[X] the free
product G∗F (X). A system of equations with coefficients in the group G
is defined as a set of formal equalities {s(X) = 1 | s(X) ∈ S(X)}, where
S(X) ⊂ G[X] is a (possibly infinite) subset. A solution of the system
of equations is a tuple of elements ḡ ∈ G|X| such that S(ḡ) = 1 in G,
or equivalently, a solution is a homomorphism from G[X] to G (defined
byX → ḡ) such that S(X) is contained in the kernel. The set of solutions
of a system of equations is called an algebraic set.

The group-theoretic counterpart to the notion of a Noetherian ring
is the notion of an equationally Noetherian group: a group G is called
equationally Noetherian if every system of equations S(X) = 1 with
coefficients in G is equivalent to a finite subsystem S0(X) = 1, where
S0(X) ⊂ S(X), i.e. the algebraic set defined by S coincides with the one
defined by S0. It is known (see [5]) that all linear groups are equationally
Noetherian.

Let G and H be groups. We say that H is discriminated by G if for
every finite set of non-trivial elements H0 ⊂ H there exists a homomor-
phism φ : H → G injective on H0, that is, hφ 6= 1 for every h ∈ H0. In
this case we also sometimes say that H is fully residually G. Following
the case of free groups, finitely generated fully residually G groups are
termed limit groups over G.

The universal theory of a group G is the set of all universal first-order
sentences (that is, sentences with only ∀ quantifiers in prenex normal
form) satisfied by G. We say that H is a model of the universal theory
of G if H satisfies all universal first-order sentences satisfied by G.

One can prove (see [41]) that if G is equationally Noetherian and H is
a G-group, then the following statements are equivalent:

• H is a limit group;
• H is a finitely generated model of the universal theory of G.

Limit groups over RAAGs, and their actions on higher dimensional
analogues of real trees, have been studied in [15].

3. The class C
In this section we define the class of groups C. Our general aim is

to give a combinatorial description of a class of groups that contains
coherent RAAGs and is closed under extensions of centralisers (of some
elements) and direct limits; see Definition 4.1. These closure properties
ensure that an appropriate iterated centraliser extension (ICE for short)
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of a group in the class remains in the class. One also needs to ensure
that the ICE over G admits a Z[t]-action, that it coincides with the
exponential group GZ[t], and that it is fully residually G.

The definition of the class C (see Definition 3.4) is rather technical.
As RAAGs are described via a specific presentation, the definition of the
groups in the class depends on the existence of a generating set for which
some properties are satisfied. In particular, condition (C4) asks for some
minimality of the generating set.

As in the case of hyperbolic groups, we require the groups in the
class to be torsion-free; see condition (C1). Furthermore, to ensure that
extensions of centralisers of elements in a group G from the class are
fully residually G, we require the groups to satisfy the BP property; see
condition (C2). This condition also implies that centralisers are isolated,
which means, in the presence of condition (C3), that only extensions of
centralisers of root elements need be considered.

As we mentioned in the introduction, for our approach, it is essential
that centralisers have a tractable structure. We extract conditions on the
structure of centralisers of elements in a RAAG so that, on the one hand,
this structure is preserved under iterated centraliser extensions and, on
the other hand, after countably many extensions of centralisers, the cen-
tre of a centraliser admits a Z[t]-action; see conditions (C5) and (C7) in
Definition 3.4.

To ensure that the Z[t]-action is well defined in the group, we require
a weak form of malnormality on centralisers, namely condition (C6).

In some sense, conditions (C5), (C6), and (C7) generalise the CSA
property of torsion-free hyperbolic groups (see Lemma 3.10).

We next define the properties required from the groups in the class.

Definition 3.1. The centraliser of an element g ∈ G is isolated if for
all wn ∈ C(g), n ∈ Z \ {0}, it follows that w ∈ C(g).

Definition 3.2. We say that a k-tuple u = (u1, . . . , uk) of elements of
a group is generic if

[ui, ui+1] 6= 1 for i = 1, . . . , k − 1.

A group G is said to have the big powers (BP) property if, for any
positive integer k and any generic k-tuple u = (u1, . . . , uk) of non-trivial
elements of G, there exists an integer n = n(u) such that, for positive
integers α1, . . . , αk,

uα1
1 · · ·u

αk

k = 1

implies αi < n, for some i.



Limit Groups over Coherent Right-Angled Artin Groups 213

All torsion-free abelian groups are BP, as is the direct product of a
BP group with a torsion-free abelian group. From [32], groups G and H
are BP if and only if the free product G ∗H is BP. However, if G and H
are non-abelian groups, then the direct product G×H is not a BP group.
From [10], a RAAG is BP if and only if its commutation graph is chordal.

If G is a BP group and g ∈ G, then the centraliser of g is isolated [32].
(In fact the centralisers of sets of elements are “strongly isolated”, but
we don’t use this.)

Definition 3.3. Let G = 〈X〉 be a group. We say that a subgroup K is
canonical (with respect to the generating set X) if K = 〈X ′〉, for some
X ′ ⊂ X.

Definition 3.4. We define C to be the class of groups satisfying the
following. A group G belongs to C if and only if G has a presentation
with generating set X such that properties (C1)–(C7) below hold.

(C1) G is torsion-free.
(C2) G satisfies the BP property.
(C3) G has unique roots.
(C4) (i) Let Y and Y ′ be subsets of X such that [y, y′] = 1 for all y ∈ Y ,

y′ ∈ Y ′, and Y ∩ Y ′ = ∅. Then 〈Y, Y ′〉 = 〈Y 〉 × 〈Y ′〉.
(ii) If x ∈ X, then x ∈ 〈Y 〉 implies x ∈ Y , for all Y ⊆ X. (In

particular, with Y = ∅ we have x 6= 1G, for all x ∈ X, that is,
1G /∈ X.)

There exists a subset W of G such that the following hold.

(C5) (i) For every g ∈ G, there exist elements w1, . . . , wk ∈ W , k ≥ 1,
and h ∈ G such that C(g) = h−1C(wi)h, for 1 ≤ i ≤ k. If
C(g) is abelian, then k = 1.

(ii) For all w ∈W , C(w) can be written as a direct product Z(w)×
O(w), where Z(w) and O(w) are defined as follows.
(a) If C(w) is a canonical abelian subgroup, then Z(w) = 1

and O(w) = C(w).
(b) If C(w) is abelian and non-canonical, then Z(w) is cyclic

and not canonical and O(w) is the maximal canonical sub-
group of G satisfying, for each minimal (by inclusion) sub-
set Y ⊆ X such that Z(w) ⊆ 〈Y 〉:
• every generator of O(w) commutes with each gener-

ator of Y and
• no generator of O(w) belongs to Y .

[Although X may be infinite, maximal subgroups always
exist.]
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(c) If C(w) is non-abelian, then Z(w) is defined in (C7) below
and O(w) is the maximal canonical subgroup of G satis-
fying, for each minimal (by inclusion) subset Y ⊆ X such
that w ∈ 〈Y 〉:
• every generator of O(w) commutes with each gener-

ator of Y and
• no generator of O(w) belongs to Y .

(iii) If w ∈W , g ∈ O(w), and C(g) is not conjugate to C(w), then
there exist h ∈ G, w0 ∈W , such that C(g) = h−1C(w0)h and
h,w0 ∈ O(w).

There may be several minimal canonical subgroups containing
an element of G, but for fixed w ∈ W the maximal canonical
subgroup O(w) satisfying the properties of (C5)(ii)(b) or (C5)(ii)(c)
is unique (indeed, if there were two maximal subgroups O1(w),
O2(w), then the group O(w) = 〈O1(w), O2(w)〉 would also satisfy
the required properties).

(C6) If w ∈ W and C(w) is abelian, then C(w) satisfies the property
that if a, ah ∈ C(w) and h /∈ C(w), then a ∈ O(w) and [h, a] = 1.

It follows that for all g ∈ G, if C(g) is abelian, a, ah ∈ C(g) and
h /∈ C(g), then h ∈ C(a) and a ∈ O(g).

(C7) If w ∈W and C(w) is non-abelian, then the following hold.
(i) C(w) is a canonical subgroup: C(w) = 〈Y (w)〉 ×O(w), where

Y (w) is a minimal subset of X such that w ∈ 〈Y (w)〉 and, by
definition, Z(w) = 〈Y (w)〉.

(ii) The centre Z(C(w)) of C(w) is a canonical subgroup.
In this case Y (w) is the unique minimal subset of X such that

w ∈ 〈Y (w)〉 ≤ C(w). Indeed, suppose that Y1 is another such
subset. If y1 ∈ Y1, then y1 ∈ C(w) implies y1 ∈ Y (w) ∪K (using
(C4)(ii)), where K is a set of canonical generators of O(w), and so
y1 ∈ Y (w). As Y (w) is minimal it follows that Y1 = Y (w).

If C(w) = 〈V 〉, for some subset V of X, then let V ′ be a minimal
subset of V such that w ∈ 〈V ′〉. Then V ′ ⊆ Y (w) (using (C4)(ii)
and (C5)(ii)) and the minimality of Y (w) implies V ′ = Y (w). Hence
Z(w) ⊆ Z(C(w)). If Z(C(w)) is finitely generated, then w can be
chosen such that Z(w) = Z(C(w)).

Remark 3.5.

(1) The set W is not uniquely determined by the conditions above, but
for fixed W satisfying the conditions, Z(w) and O(w) are uniquely
determined, for all w ∈ W . This follows directly from the defi-
nitions for O(w) and from (C5)(ii)(a) and (C7), if C(w) is canon-
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ical abelian or C(w) is non-abelian. If C(w) is abelian and non-
canonical, then let Y be a minimal subset of X such that Z(w) ⊆
〈Y 〉 and let Z(w) = 〈z〉. Suppose that Z ′(w) also satisfies the
conditions of (C5)(ii)(b) with C(w) = Z ′(w) × O(w), let Z ′(w) =
〈z′〉, and let Y ′ be a minimal subset of X such that Z ′(w) ⊆ 〈Y ′〉.
From (C4)(ii), 〈Y ∪ Y ′ ∪O(w)〉 = 〈Y ∪ Y ′〉 ×O(w). It follows that
z = z′o, for some o ∈ O(w). Then z′−1z = o ∈ 〈Y ∪Y ′〉 ∩O(w), so
z = z′ and Z(w) = Z ′(w), as claimed. We may then choose w = z
in this case.

(2) For g ∈ G let w ∈ W be such that CG(g) = CG(w)h, for some
h ∈ G. If C(w) is abelian and CG(g)h1 = CG(w)h2 , then w and

wh1h
−1
2 belong to CG(w), so (C6) implies that h1h

−1
2 ∈ CG(w),

and so wh1 = wh2 . In this case we define Z(g) = Z(w)h and
O(g) = O(w)h. Then h1 = zoh2, where o ∈ O(w) and z ∈ Z(w),
so Z(w)h1 = Z(w)h2 and O(w)h1 = O(w)h2 , so Z(g) and O(g) are
well defined.

If C(w) is non-abelian, consider first g ∈ G such that C(g) =
C(w). Then g ∈ Z(C(w)), which is canonical, so a minimal sub-
set Y (g) of X such that g ∈ 〈Y (g)〉 and Y (g) ⊆ Z(C(w)) may be
chosen. Define Z(g) = 〈Y (g)〉 and define O(g) to be the subgroup
of C(w) generated by (Y (w)∪K(w))\Y (g), where K(w) is a canon-
ical generating set for O(w). Then C(w) = Z(g)×O(g). In general
let T (w) be a transversal (containing 1) for right cosets of the sub-
group U(w) = {u ∈ G : CG(w)u = CG(w)} in G. When CG(g) =
CG(w)h, let h = ut, for t ∈ T (w), u ∈ U(w) so CG(g) = CG(w)t.

Then CG(gt
−1

) = CG(w) and we may define Z(g) = Z(gt
−1

)t and

O(g) = O(gt
−1

)t.

If G belongs to the class C, has generating set X and subset W sat-
isfying (C1)–(C7) above, we say that G is in C(X,W ).

The following lemmas will be useful in Sections 4 and 7.

Lemma 3.6. Let G be a group in class C and let w and g be elements
of G such that w ∈ W , C(w) is abelian, and g ∈ C(w). If C(g) is non-
abelian, then g ∈ O(w) and there exists w0 ∈W ∩O(w) such that C(g) =
C(w0) and, using the notation of Remark 3.5(2), C(g) = Z(g)×O(g) is
canonical with Z(g) ≤ O(w).

Proof: As C(g) is non-abelian there exists x ∈ C(g), x /∈ C(w), so g
and gx belong to C(w) and, from (C6), then g ∈ O(w). From (C5)(iii),
there exists w0 ∈ O(w)∩W and h ∈ O(w), such that C(g) = h−1C(w0)h,
and as C(w) is abelian, C(g) = C(w0). From Remark 3.5(2) we have
Z(g) ≤ Z(C(w0)). This implies that if s ∈ Z(g), then w ∈ C(g) ≤ C(s)
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and so C(s) is non-abelian. Hence s and sx belong to C(w) and s ∈ O(w),
as claimed.

In the rest of this section, we give examples of groups that belong
to the class C, namely, RAAGs and toral relatively hyperbolic groups.
Recall that a toral relatively hyperbolic group is a torsion-free group
which is hyperbolic relative to a finite family {Aλ : λ ∈ Λ} of finitely
generated free abelian groups.

Example 3.7. Free abelian groups are in C(X,W ), where X is a free
basis and W = {0}. In this case Z(a) = {0} and O(a) is the entire group,
for all group elements a.

Lemma 3.8. A coherent RAAG belongs to C(X,W ), where X is the
vertex set of the commutation graph of the group and W is the set defined
in Remark 2.6.

Proof: Properties (C1), (C3), and (C4) hold for all RAAGs [3]. Blath-
erwick ([10]) proves that a RAAG satisfies the BP property if and only
if it is coherent. Property (C5)(i) follows directly from Lemma 2.8. In
the terminology of the preamble to Lemma 2.8, if w ∈ WK, then, if
C(w) is canonical abelian, then O(w) = C(w); if C(w) is abelian and
non-canonical, set Z(w) to be cyclic (and not canonically) generated
by the root of w and O(w) = 〈lk(g)〉; and if C(w) is non-abelian, set
Z(w) = 〈α(w)〉 and O(w) = 〈lk(w)〉. Then (C5)(ii)(a), (C5)(ii)(c), (C6),
and (C7) follow immediately from Lemma 2.8.

To see that (C5)(iii) holds, when w ∈WK, assume that g ∈ O(w) and
C(g) is not conjugate to C(w). Then g = g−1

1 g0g1, for some gi ∈ O(w)
such that g0 is cyclically reduced. There is w0 ∈ W such that C(g0) is
conjugate to C(w0) and, as both g0 and w0 are cyclically reduced, it
follows from Lemma 2.3 that either C(w0) = C(g0) or (as words) w0 is
a cyclic permutation of g0, and in both cases this implies w0 ∈ C(w).
In the case where C(w) is abelian, by definition, w0 ∈ O(w). Assume
then that C(w) is non-abelian. If α(g0) is not a clique, then w0 ∈ WB

and so by definition α(w0) ⊆ α(g0), which implies w0 ∈ O(w). If α(g0)
is a clique, then there exists a minimal element D of [α(g0)] such that
D ⊆ α(g0) and by definition gD ∈ WK. Taking w0 = gD, we have
w0 ∈ O(w) and C(g0) = C(w0), as required. Hence w0 ∈ O(w) in all
cases and (C5)(iii) holds when w ∈WK.

If w ∈WB , then set Z(w) = 〈w〉 and O(w) = 〈lk(w)〉, and (C5)(ii)(c)
follows. For (C5)(iii) assume that g ∈ O(w), which in this case is torsion-
free abelian so g is cyclically reduced. Then α(w) ⊆ star(g), so α(g) is a
clique and star(g) is not a clique; and (C5)(iii) follows as in the previous
case.
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Example 3.9. To see that in Lemma 3.8 the set W cannot be simplified
in such a way that every centraliser (of an element) is conjugate to the
centraliser of a unique element of W , consider the graph Γ of Figure 1
and the group G = G(Γ). There are non-abelian centralisers C(d1d2) =
〈a, c1, c2, d1, d2〉, C(ad2) = 〈a, b2, c1, c2, d1, d2〉, withO(d1d2) = 〈a, c1, c2〉
and O(ad2) = 〈b2, c1, c2, d1〉. Then ac1 ∈ O(d1d2) and d1c1 ∈ O(ad2) and
C(ac1) = C(d1c1) = 〈a, b1, c1, d1, d2〉. The elements of G with centraliser
equal to C(d1d2) are the elements of 〈d1, d2〉. Indeed, for v a vertex of Γ,
star(d1, d2) ⊆ star(v) if and only if v = a, d1, or d2. As star(a, di) 6=
star(d1, d2) the claim follows from Lemma 2.3. Similarly, the elements
of G with centraliser equal to C(ad2) are the elements of 〈a, d2〉. For all
elements g ∈ 〈d1, d2〉 we have O(g) = O(d1d2) and for all h ∈ 〈a, d2〉 we
have O(h) = O(ad2). To satisfy (C5)(iii) the set W must then contain an
element w1 conjugate to ac1 ∈ O(g) and an element w2 conjugate to ac1
in O(h), forcing C(w1) and C(w2) to be conjugate.

x

a

b2

y2 c2

z2

d2

z1

d1

y1

c1

b1

Figure 1. Example 3.9.

Lemma 3.10. Let G be a non-abelian group, generated by a finite set X,
satisfying (C1), (C2), (C4), and the condition that, for all g ∈ G, either
C(g) is conjugate to a canonical subgroup or C(g) = 〈g0〉, where g0 is
not a proper power.

If G is a CSA group, then G belongs to C.

Proof: From [40], as G is CSA and torsion-free it satisfies (C3) and,
for all g ∈ G, the centraliser C(g) is maximal abelian and malnormal.
If C(g) is conjugate to a canonical centraliser C(h), then, as G is a
CSA group, there exists x ∈ X ∩ C(h) such that C(h) = C(x). Let W0

be a subset of X such that if y, z ∈ W0, then C(y) is not conjugate
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to C(z) and if x ∈ X, then C(x) is conjugate to C(w) for some w ∈W0.
Then every canonical centraliser C(g) is conjugate to C(w), for precisely
one w ∈W0.

Now let C(g) be a non-canonical centraliser, so from the hypothe-
sis C(g) = 〈g0〉, where g0 is the root of g. Choose a subset Y of X which
is minimal with the property that there exists a root element g1 ∈ 〈Y 〉
with C(g1) conjugate to C(g0), and define W ′(g) = g1. Now let W ′ be a
subset consisting of elements w ofG such that w = W ′(g), for some g ∈ G
and such that no two elements of W ′ have conjugate centralisers. Using
Zorn’s lemma the set of all such W ′ has maximal elements. If W1 is a
maximal subset of this form, then it follows that, for all g ∈ G, if C(g)
is non-canonical, then C(g) is conjugate to C(w), for a unique element
of W1.

Set W = W0 ∪W1, if w ∈ W0, set Z(w) = {1} and O(w) = C(x),
and if w ∈ W1, set Z(w) = 〈w〉 and O(w) = 1. Then (C5)(i) and (ii)
follow directly. If g ∈ O(w), for some non-trivial g ∈ G and w ∈ W ,
then w ∈ W0 and as G is a CSA group C(g) = C(w), so (C5)(iii) holds.
Finally, (C6) follows immediately from the CSA property.

Lemma 3.11. Let G be a torsion-free group which is hyperbolic relative
to a finite family {Aλ : λ ∈ Λ} of finitely generated free abelian groups
(G is toral relatively hyperbolic). Then G is a BP group.

Proof: Let k be a positive integer and let u = u1, . . . , uk be a generic se-
quence of elements of G. Define T = {u1, . . . , uk, [u1, u2], . . . , [uk−1, uk]}.
From [44], if ui is hyperbolic, then ui is contained in a maximal elemen-
tary subgroup E(ui) and G is hyperbolic relative to {Aλ} ∪ {E(ui)}.
Moreover, as G is torsion-free hyperbolic, E(ui) is cyclic. Adding these
E(ui) to the family of peripheral subgroups, we may assume that ui is
contained in a peripheral subgroup Ai, i ∈ Λ, for all i. Theorem 1.1
of [45] states that there exists a finite subset F of non-trivial elements
of G with the following property. Let N = {Nλ}λ∈Λ be a collection of
subgroups Nλ / Aλ such that Nλ ∩ F = ∅ for all λ ∈ Λ. Write G(N)
for the quotient G/ncl

〈⋃
λNλ

〉
(where ncl denotes the normal closure

in G). Then, for each λ ∈ Λ, the natural map from Aλ/Nλ to G(N) is
injective and G(N) is hyperbolic relative to the collection {Aλ/Nλ}λ∈Λ.
Moreover, for any finite subset S ⊂ G, there exists a finite subset F(S) of
non-trivial elements of G such that the restriction of the natural homo-
morphism G→ G(N) to S is injective whenever Nλ∩F(S) = ∅ for λ ∈ Λ.
Let T ⊂ G be the finite set defined above and F(T ) be the set given by the
aforementioned theorem. For each λ ∈ Λ let Tλ = (F ∪F(T )∪ T )∩Aλ.
From [6] it follows that free abelian groups are discriminated by cyclic
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groups, so for all λ, there exists a homomorphism φλ from Aλ to a cyclic
group Cλ such that φλ restricted to Tλ is injective. Let Nλ be the kernel
of φλ and let H = G/ncl

〈⋃
λNλ

〉
. Then Nλ ∩ F(T ) = ∅ and from [45,

Theorem 1.1], the canonical map φ from G to H induces an embedding
from Aλ/Nλ to H. It follows that φ(ui) is of infinite order in H, for
all i, and that φ(u1), . . . , φ(uk) is a generic sequence of elements of H.
From [45, Corollary 1.2], the group H is hyperbolic and from [43] hy-
perbolic groups have the big powers property for tuples of elements of
infinite order; so there exists n(u) such that, whenever αi ≥ n(u), for
all i, we have φ(u1)α1 · · ·φ(uk)αk 6= 1. It follows that uα1

1 · · ·u
αk

k 6= 1,
and therefore G is a BP group.

Corollary 3.12. Let G be a torsion-free group which is hyperbolic rel-
ative to a finite family {Aλ : λ ∈ Λ} of finitely generated free abelian
groups. Then G is in C.

Proof: From Lemma 3.11, the group G is in BP and (C1) and (C4) hold
from the definitions. The centraliser of a non-trivial element g satisfies
that either C(g) = Aλ for some λ ∈ Λ or C(g) = 〈g0〉, where g0 is the
root of g, and from [25, Lemma 2.5], such groups are CSA. Hence we
may apply Lemma 3.10.

4. Preservation operations

Definition 4.1 (Extension of centralisers). Let G and H be groups,
u ∈ G, C = CG(u), and φ : C → H a monomorphism such that φ(u) ∈
Z(H). The extension of the centraliser C by H (with respect to φ) is

G(u,H) = G ∗φ H,
the group with relative presentation 〈G,H | φ(g) = g, ∀g ∈ C〉.

If H = φ(C) × A, for some subgroup A of H, then the extension is
said to be direct.

An element of an amalgamated free product is said to be cyclically
reduced if it has no reduced form which begins and ends with an element
from the same factor. Every element of an amalgam is conjugate to a
cyclically reduced element ([35, Theorem 4.6]).

Theorem 4.2. Let G ∈ C (with respect to the generating set XG and
subset WG satisfying (C1)–(C7) above) and let u ∈ WG be such that
CG(u) is abelian. Let B be a free abelian group, let φ : CG(u)→ B be a
monomorphism such that B = φ(CG(u)) × A, for some A ≤ B, and let
G(u,B) = G∗φB be the direct centraliser extension of C = CG(u) by B.
Then the following hold.



220 M. Casals-Ruiz, A. Duncan, I. Kazachkov

(i) G(u,B) ∈ C, with respect to the generating set X(u,B) = XG∪XA,
where XA is a free generating set for A, and cyclically reduced
elements W (u,B) = WG∪W∗, where W∗ is the set of elements z ∈
G(u,B) that satisfy the following conditions:
(a) z is a cyclically reduced root element with a factorisation z =

g1a1 · · · grar, where r ≥ 1, gi /∈ C, ai ∈ A, ai 6= 0, for all i,
such that

(b) If Y (z) is a minimal subset of XG such that gi ∈ 〈Y (z)〉, for
all i, and O′(z) =

⋂r
i=1 CG(gi) ∩ CG(u), then 〈Y (z), O′(z)〉 =

〈Y (z)〉 ×O′(z).
(c) If z satisfies (a) and (b) above, then exactly one element of

the set of elements v ∈ G(u,B) such that v is conjugate to z
or z−1 and satisfies (a) and (b) belongs to W∗.

(ii) Assume φ(u) = v ∈ B and identify the cyclic subgroup 〈v〉 of B
with Z. Let ψi : B → Z, i ∈ I, be a discriminating family of (ad-
ditive group) homomorphisms of B by its subgroup Z, indexed by
a set I. For (i,m) ∈ I × N, define λi,m : G(u,B) → G to be the
homomorphism induced by the identity homomorphism on G and
the composition of the inverse image of φ with the m-th scalar mul-
tiple mψi of the homomorphism ψi on B: that is, λi,m(g) = g and

λi,m(b) = φ−1(mψi(b)) = umψi(b), for g ∈ G and b ∈ B. Then
G(u,B) is discriminated by G via the family λi,m, (i,m) ∈ I × N.

Proof: Note that, although there may be more than one choice of w ∈
WG such that CG(w) = C, the group G(u,B) and subsets X(u,B),
W (u,B), ZG(u), and Og(u) are independent of the choice w = u.

(ii). Let w = (w1, . . . , wn+1) be an n + 1 tuple of elements of G, such
that wi /∈ C, for i ≥ 2, and let m = (m1, . . . ,mn) be an n-tuple of
non-zero integers. Then, setting ui = umi , the tuples (w1, . . . , wn+1)
and (u1, . . . , un) satisfy the condition that [u

wi+1

i , ui+1] 6= 1 in G, since
the fact that centralisers in G are isolated implies [u

wi+1

i , ui+1] = 1 if
and only if (umi)wi+1 ∈ C(ui+1) = C if and only if uwi+1 , u ∈ C, if and
only if [wi+1, u] = 1. Since G satisfies the BP property there exists an
integer K(w,m) such that w1u

m
1 · · ·umn wn+1 6= 1, for all m ≥ K(w,m).

Let g be a non-trivial element in G(u,B). One can write it in a reduced
form

g = w1a1w2 · · · anwn+1,

where 1 6= ai ∈ A and wi ∈ G, for all i, and wi 6∈ CG(u) for i =
2, . . . , n, and either wn+1 = 1 or wn+1 /∈ CG(u). Let ψj discriminate
the elements a1, . . . , an in Z. Define mi = ψj(ai), for i = 1, . . . , n. By
definition,

λj,m(ai) = umi = ummi ∈ C,
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so, with w, m, andK(w,m) as above, λj,m(g) 6= 1, for allm ≥ K(w,m).
(If wn+1 = 1, then we replace g with anga

−1
n and obtain λj,m(anga

−1
n ) 6=

1, so again λj,m(g) 6= 1.) Thus, we can separate any given non-trivial
element g ∈ G(u,B) by λj,m, for all m ≥ K(w,m).

Consequently, if we have a finite number of elements g1, . . . , gk ∈
G(u,B), say

gi = wi,1ai,1wi,2 · · · ai,ni
wi,ni+1,

then, choosing ψj to discriminate the elements a1,1, . . . , ak,nk
in Z, it fol-

lows that λj,m discriminates g1, . . . , gk, as long as m ≥ max{K(w1,m1),
. . . ,K(wk,mk)}, where wi and mi have the obvious definitions. Hence
G(u,B) is discriminated by G.

(i): (C1) and (C2). Since G(u,B) is discriminated by G, it follows that
G(u,B) is torsion-free and since G satisfies the BP property, so does
G(u,B) ([7, Lemma 11]), so (C1) and (C2) hold.

(C4)(i). Let Y and Y ′ be disjoint and commuting subsets of X(u,B).
Then Y = L1 ∪ L2 and Y ′ = L′1 ∪ L′2, where L1, L

′
1 ⊂ XG and L2, L

′
2 ⊂

XA. If Y, Y ′ ⊆ G ∪ B, then immediately from the definitions (C4)(i)
holds. Assume then that L1 and L2 are both non-empty and that a ∈ L2

(a 6= 1). Then, [a, y′] = 1 and a ∈ A, so y′ ∈ C for all y′ ∈ L′1. Hence
Y ′ ⊆ C × A = B. If also L′2 6= ∅, then Y ⊆ B, a contradiction. Hence,
without loss of generality, we have Y ′ ⊆ C. In this case if w ∈ 〈Y 〉∩〈Y ′〉,
then w ∈ 〈Y ′〉 < C implies that w has syllable length 0, and so w ∈
〈Y 〉∩G = 〈L1〉, so w ∈ 〈L1〉∩〈Y ′〉. Since L1∩Y ′ = ∅ and L1∪Y ′ ⊆ XG,
it follows from (C4)(i) in G that w = 1 and so 〈Y, Y ′〉 = 〈Y 〉 × 〈Y ′〉.

(C4)(ii). Let Y ⊂ X(u,B) and let x ∈ X(u,B)∩〈Y 〉. Write YG = Y ∩XG

and YA = Y ∩XA and let x = g0a0 · · · gnan be an expression for x with
ai ∈ 〈YA〉 and gi ∈ 〈YG〉. If n > 0, then an = 1B and gn ∈ C, so
x = g0a0 · · · gn−1gnan−1; and continuing this way we see x = g′0a0, with
g′0 ∈ 〈YG〉. If x ∈ XA, then g′0 ∈ C and x = φ(g′0)a0, from which it
follows that φ(g′0) = 1B and then that x ∈ YA. If x ∈ XG, then a0 = 1B
and x ∈ YG, by (C4)(ii) in G.

(C3). Let g ∈ G(u,B) be in a conjugate of a factor. Then, without
loss of generality, we may assume that g belongs to a factor; and it
follows that g has a unique root, using (C3) in the case g ∈ G. Hence
we may assume that g is not in a conjugate of a factor. First note that
for all h, f ∈ G(u,B) and s ≥ 1, if hs = fs, then [fs, hs] = 1, so
[f, h] = 1, as centralisers in G(u,B) are isolated. Hence (fh−1)s = 1
and, as G(u,B) is torsion-free, h = f . Now if g is not in a conjugate of a
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factor, then without loss of generality we may assume that g is cyclically
reduced so, for all h and r such that g = hr, the syllable length of g
is k0|r|, where k0 is the syllable length of h0. Therefore there is a unique
maximal positive integer r(g), such that g = hr(g), for some h ∈ G(u,B).
Suppose that g = hr = fs, for some h, f ∈ G(u,B), where r = r(g) and
1 ≤ s ≤ r. Let d = gcd(r, s) and a, b ∈ Z be such that d = ar+ bs. Then
hd = harhbs = gahbs = (fahb)s and, setting h1 = (fahb)s/d, we have
hd = hd1, so h = h1. Thus h = (fahb)s/d and, by the maximality of r(g),
we have s = d, so s|r and fs = (hr/s)s implies f = hr/s. Therefore g
has a unique root

√
g = h.

To verify that (C5)–(C7) hold, a description of centralisers in G(u,B)
is needed. We will use the following description of commuting elements
in free products with amalgamation (see [35]): if [x, y] = 1, then one of
the following conditions holds:

(I) x or y belongs to some conjugate of the amalgamated subgroup C =
CG(u);

(II) neither x nor y is in a conjugate of C, but x is in a conjugate of
a factor (G or B), in which case y is in the same conjugate of the
factor;

(III) neither x nor y is in a conjugate of a factor, in which case x =
g−1cgzn and y = g−1c′gzm, where c, c′ ∈ C, and g−1cg, g−1c′g
and z commute pairwise.

Considering each of these three possible cases in turn we shall prove
the following lemma and show that (C5)–(C7) hold in G(u,B).

Lemma 4.3. Let v be a cyclically reduced element of G(u,B) and let
C(v) denote the centraliser of v in G(u,B).

(i) If v ∈ C, then either
(a) v /∈ OG(u), in which case C(v) = C ×A = B = C(u); or
(b) v ∈ OG(u), in which case C(v) = C(w), for some w ∈ WG,

and C(v) = ZG(v)× 〈OG(v), A〉.
(ii) If v ∈ G\C, then C(v) = CG(v) and if v ∈ A, and is not the

identity, then C(v) = B = C(u).
(iii) If v is not in G ∪ B, then there exists z ∈ W∗ such that C(v) =

〈z〉 ×O′(z) (as defined in Theorem 4.2(i)(b) above).

In case (i)(b) C(v) is non-abelian and canonical, while in all other cases
C(v) is abelian.

Case (I). If x belongs to some conjugate of the amalgamated subgroup
C = CG(u) = ZG(u)×OG(u) = φ(C) ≤ B, without loss of generality we
may assume that x ∈ C. In this case, as C is abelian B = C×A ⊆ C(x).
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Let [x, y] = 1 and let y = g1a1 · · · gnan be any reduced form of y,
that is, ai ∈ A, gi ∈ G, ai 6= 1A, for i < n, and for i ≥ 2, gi /∈ C.
From yx = xy and the theory of amalgamated products, it follows that

either (n = 1 and g1 ∈ C) or (n ≥ 1, gn /∈ C, and xg
−1
n ∈ C). In the

latter case, as (C6) implies that gn ∈ CG(x), the centraliser of x in G is
non-abelian: gn ∈ CG(x), u ∈ CG(x), but [gn, u] 6= 1. Hence, if CG(x) is
abelian,

(3) y ∈ C ×A, and C(x) = C ×A = C(u).

Now assume that CG(x) is non-abelian, so contains y as above where
n ≥ 1 and gn /∈ CG(u), so gn ∈ CG(x). From Lemma 3.6, CG(x) =
ZG(x)×OG(x) is canonical, there exists x0 ∈ OG(u) such that CG(x) =
CG(x0) and ZG(x) ≤ OG(u).

Since gn ∈ ZG(x)×OG(x), we have gn = xnon, where xn ∈ ZG(x) <
OG(u) and on ∈ OG(x). Then y = y′xnonan and [x, y′] = 1. By induction
on syllable length we have that y′ = Kn−1On−1, where Kn−1 ∈ ZG(x),
On−1 ∈ 〈OG(x), A〉. Then

y = Kn−1On−1xnonan = KnOn,

where Kn = Kn−1xn ∈ ZG(x) and On = On−1onan ∈ 〈OG(x), A〉.
Hence, if CG(x) is non-abelian, then there exists x0 ∈WG such that

(4) C(x) = ZG(x)× 〈OG(x), A〉 = C(x0) with x, x0 ∈ OG(u).

In particular, for any x ∈ C, CG(x) is abelian if and only if C(x) is
abelian, and if CG(x) is canonical, so is C(x).

Now let us verify that conditions (C5) to (C7) hold for x in Case (I).
If CG(x) is abelian, so C(x) = C(u) is given in (3), define Z(u) = ZG(u)
and O(u) = OG(u) × A. As CG(u) 6= CG(v), for all v ∈ W , v 6= u, it
follows that if w ∈W and w 6= u, then C(w) 6= C(u). Hence (C5)(i) and
(C5)(ii) hold.

For (C5)(iii), if g ∈ O(u), let g = oa, where o ∈ OG(u) and a ∈ A.
From (C5)(iii) in G and the fact that CG(u) is abelian it follows that
CG(o) = CG(w0), for some w0 ∈ WG ∩ OG(u) and from (4), if a is
trivial, then C(g) = C(w0) = ZG(w0) × 〈OG(w0), A〉, and w0 ∈ W ; so
(C5)(iii) holds. Otherwise a is non-trivial and g ∈ B so C(g) = B = C(u)
and (C5)(iii) follows immediately.

To see that (C6) holds, when C(x) is abelian, assume that w ∈ C(u),
wh ∈ C(u), and h /∈ C(u). Then w = wGa, where a ∈ A and wG ∈ C.
Also, h /∈ C(u) implies h = g1a1 · · · gnan, where gi ∈ G, ai ∈ A, and
either n = 1 and g1 /∈ C; or n > 1 and gi /∈ C, for i ≥ 2. Then

wh = a−1
n g−1

n · · · a−1
1 g−1

1 wGag1a1 · · · gnan ∈ C(u) = C ×A
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so g−1
1 wGag1 ∈ C, whence a = 1 or g1 ∈ C. If n = 1, then g1 /∈ C so

a = 1, w = wG, and wg1G ∈ C, so wG ∈ OG(u) ⊆ O(u) and [g1, wG] = 1;
so [h,w] = 1. If n > 1 and g1 ∈ C, then

g−1
n · · · a−1

1 wGaa1 · · · gn = g−1
n · · · g−1

2 wGag2 · · · gn ∈ C ×A

and, by induction on syllable length, w ∈ O(u) and [w, g2 · · · gn] = 1; so
[w, h] = 1.

On the other hand, if g1 /∈ C, as before a = 1 and [g1, wG] = 1 so

g−1
n · · · g−1

2 wGg2 · · · gn ∈ C ×A.

As g2 · · · gn /∈ C(u), by induction [wG, g2 · · · gn] = 1. It follows that in
all cases [w, h] = 1.

Thus (C5) and (C6) hold in Case (I) when CG(x) is abelian.
Assume then that x ∈ C and CG(x) is non-abelian, so (4) describes

C(x) = C(x0). If w ∈ W such that CG(w) = CG(x0), then w ∈ WG

since, as we shall see in the final case of this proof, v ∈W∗ implies that
C(v) is abelian. Hence for all such w we have w ∈ WG and we may set
Z(w) = ZG(w) and O(w) = 〈OG(w), A〉. If w 6= x0, note that ZG(w) ≤
Z(CG(w)) = Z(CG(x0)) ≤ CG(u), so CG(w) = ZG(w) × 〈OG(w), A〉.
Hence, in this case (C5)(i), (C5)(ii), and (C7) follow directly from the
definitions and we defer consideration of (C5)(iii) until we have completed
our description of centralisers of elements of G(u,B), below.

Case (II). If x is in a conjugate of G but not in a conjugate of C, then

x ∈ Gg, for some g ∈ G(u,B). In this case C(xg
−1

) = CG(xg
−1

) and (C5)
and (C7) hold for C(x), as they hold in G. To see that (C6) holds assume
that C(x) is abelian and conjugate to C(w) = CG(w), for some w ∈WG,
and that b and bh are in C(w), but h /∈ C(w). If h ∈ G, then (C6)
implies b ∈ OG(w) = O(w) and [h, b] = 1, as required. Assume then that
h = g1a1 · · · gnan in reduced form, with ai ∈ A and gi ∈ G, and a1 6= 1.
Then bh ∈ C(w) ≤ G implies that bg1 ∈ C and so [a1, b

g1 ] = 1 and then
bh = (bg1)h1 ∈ C(w), where h1 = g2a2 · · · gnan. Hence (bg1)g2 ∈ C and
g2 /∈ C, so [g2, b

g1 ] = 1. Continuing this way we obtain [gi, b
g1 ] = 1,

2 ≤ i ≤ n, so bh = bg1 ∈ C(w). If g1 /∈ C(w), then, from (C6) in G,
we have [b, g1] = 1, so [b, h] = 1, and b ∈ OG(w) = O(w). Otherwise
g1 ∈ C(w) so b = bg1 = bh ∈ C and then b, bu ∈ CG(w), but u /∈ C(w),
as w /∈ C, so again b ∈ O(w) and [b, h] = 1. Therefore, (C6) holds for w
in G(u,B).

If x is in a conjugate of B, but not in C, then C(x) is conjugate
to C(u) and we have Case (I) again.
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Case (III). If x does not belong to any conjugate of a factor, without loss
of generality we may assume that x is cyclically reduced (as an element
of the amalgamated free product G(u,B)) and its reduced factorisations
begin with an element of G\C. Let x = g1a1 · · · gnan be any reduced
form of x, that is, n ≥ 1, gi ∈ G\C, and ai ∈ A\{1A}, for i = 1, . . . , n.

Let O′(x) =
⋂

i=1,...,n

CG(gi)∩OG(u). We claim that O′(x) is a canon-

ical subgroup of G with canonical generating set Ux = XG ∩O′(x), and
that C(x) = O′(x)×〈zx〉, where zx is the unique root element (

√
zx = zx)

such that

• x = dzmx , with m ≥ 1, d ∈ O′(x); and
• there is a minimal subset Z of XG such that zx ∈ 〈Z,XA〉, and
〈Ux, Z,XA〉 = O′(x)× 〈Z,XA〉.

By the description of centralisers in amalgamated products, if [x, y] =
1, then x = dvl and y = d′vm, where d, d′ ∈ C and d, d′, v pairwise
commute. As x is cyclically reduced, so is v and so both l and m divide n.
As [d, x] = [d′, x] = 1 = [d, u] = [d′, u] but [x, u] 6= 1 (as C(u) =
C×A), both C(d) and C(d′) are non-abelian, so from Lemma 3.6, ZG(d)∪
ZG(d′) ⊆ OG(u). Since v ∈ C(d), it follows from (4) that v = d1w,
where d1 ∈ ZG(d) ≤ OG(u) and w = g′1a

′
1 · · · g′ra′r ∈ O(d) = 〈OG(d), A〉;

that is, g′i ∈ OG(d) and a′i ∈ A. Since v = d1w, we have xv−ld−1 =

xw−ld−l1 d−1 = 1, so a′r = an and g′rg
−1
n ∈ C. Since d ∈ C and C is

abelian, we deduce that [g′rg
−1
n , d] = 1. Now since [g′r, d] = 1, we have

that [gn, d] = 1 and so d ∈ CG(gn). Continuing this process, we conclude
that d ∈ CG(gi) and, similarly, d′ ∈ CG(gi), for i = 1, . . . , n. Hence
d, d′ ∈ O′(x).

Now, let p be any element of O′(x). Then p ∈ OG(u) so Lemma 3.6
gives CG(p) = ZG(p)×OG(p) and ZG(p) ≤ OG(u). Let s ∈ ZG(p). Then
s ∈ OG(u) and, by definition, ZG(p) ≤ Z(CG(p)) so [p, gi] = 1 implies
[s, gi] = 1. Hence s ∈ O′(x) and, as ZG(p) is canonical, it follows that
O′(x) is a canonical subgroup of G.

Let Ux = O′(x) ∩ XG, the canonical generating set for O′(x), and
let x = dvl, where d ∈ C and [d, v] = 1, so as above d ∈ O′(x) and
v = d1w, where d1 ∈ ZG(d) and w ∈ 〈OG(d), A〉. Using the description
of C(d) again, and the uniqueness of roots in G(u,B), if r(w) = q and√
w = w0, so w = wq0, then we may factorise w0 = g′1a

′
1 · · · g′ra′r, with

g′i ∈ OG(d) and a′i ∈ A. Let Y be a minimal subset of XG such that
g′i ∈ 〈Y 〉, for i = 1, . . . , r, let Y1 = Ux ∩ Y and let Y2 = Y \Y1. Suppose
s ∈ Ux and t ∈ Y2. As s ∈ O′(x) we have, as above, [s, g′i] = 1, so
g′i = x′io

′
i, with x′i ∈ ZG(s) and o′i ∈ OG(s), for i = 1, . . . , r. By the

minimality of Y , there is i such that g′i ∈ 〈Y 〉 but g′i /∈ 〈Y \{t}〉. For
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such i we have g′i = x′io
′
i, with x′i ∈ ZG(s) and o′i ∈ OG(s), and as

t /∈ ZG(s) (since t ∈ Y2) it follows that t ∈ OG(s); so [s, t] = 1. Therefore
〈Ux, Y2〉 = O′(x) × 〈Y2〉. For all i, by definition g′i ∈ 〈Y 〉 ≤ 〈Ux, Y2〉 so
we have g′i = xioi, xi ∈ O′(x), oi ∈ 〈Y2〉, and we may further factorise
w0 = d2w1, where d2 = x1 · · ·xr and w1 = o1a

′
1 · · · ora′r. Thus x =

dvl = d3w
lq
1 , where d3 = ddl1d

lq
2 ∈ O′(x) (as d1 ∈ ZG(d) ≤ C) and

w1 ∈ 〈Y2, XA〉. Replacing w1 by w−1
1 if necessary we may also assume

lq ≥ 1. Hence C(x) = 〈w1〉 ×O′(x), which is abelian.
This implies that C(x) ≤ C(w1). Applying this argument to the ele-

ment w1 in place of x, with initial reduced factorisation w1 =o1a
′
1 · · · ora′r

and Y =Y2, gives C(w1) = 〈w1〉×O′(w1), whereO′(w1)=
⋂

i=1,...,r

CG(oi)∩

OG(u). If b ∈ O′(w1), then, for all i, we have [b, oi] = 1 and g′i = xioi,
with xi ∈ OG(u), which is abelian, so [b, g′i] = 1 and b ∈ C(x). As
before, as b ∈ C we obtain [b, gi] = 1, so b ∈ O′(x). Conversely, if
b ∈ O′(x), then by definition of oi, we have [b, oi] = 1, so we conclude
that O′(x) = O′(w1). Therefore C(x) = C(w1) = 〈w1〉 × O′(w1), with
O′(x) = O′(w1).

Now suppose x = d′zm, where m ≥ 1, d′ ∈ O′(x), z is a root element,
z ∈ 〈Y ′, XA〉 for some minimal subset Y ′ of XG, such that Y ′ ∩ Ux = ∅
and [y′, y′′] = 1, for all y′ ∈ Y ′ and y′′ ∈ Ux. Then d−1

3 d′ = wlq1 z
−m; so

from (C4)(i) and the disjointness of Ux and Y2∪Y ′∪XA we have d3 = d′

and wlq1 = zm. As w1 and z are root elements and both m and lq are
positive we have w1 = z, completing our claim.

Given the validity of the claim, to show in addition that w1 or w−1
1

is in W∗ it is enough to show that given a minimal subset Y ′ of XG

such that oi ∈ 〈Y ′〉, for all i, we have 〈Y ′ ∪ Ux〉 = 〈Y ′〉 × 〈Ux〉. To
see this, given such a subset Y ′ let Y ′2 = Y ′\(Y ′ ∩ Ux), so as above,
〈Y ′2 ∪ Ux〉 = 〈Y ′2〉 × 〈Ux〉 and we may write oi = x′io

′′
i , with x′i ∈ O′(x)

and o′′i ∈ 〈Y ′2〉. Therefore x = d′3w
′lq
1 , where d′3 = (x′1 · · ·x′r)lqd3 ∈ O′(x)

and w′1 = o′′1 · · · o′′r ∈ 〈Y ′2〉. From the previous paragraph it follows that
d′3 = d3 and w′1 = w1, so Y ′2 = Y ′ and 〈Y ′ ∪ Ux〉 = 〈Y ′〉 × 〈Ux〉, as
required. Hence either w1 or w−1

1 ∈ W∗. This completes the proof of
Lemma 4.3.

Now we are in a position to verify properties (C5) and (C6). From
the previous two paragraphs it follows that C(x) is conjugate to C(w1)
for a unique element w1 of W∗, so (C5)(i) holds. To simplify notation
we may now assume x = w1 = o1a1 · · · orar ∈ W , with oi ∈ 〈Y2〉,
ai ∈ A, so x ∈W∗, and let Ux be a canonical generating set for O′(x) as
before. Then C(x) is abelian and non-canonical and we set Z(x) = 〈x〉
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and O(x) = O′(x). For (C5)(ii)(b) let V be a minimal subset of X such
that x ∈ 〈V 〉, so x has a reduced factorisation x = h1b1 · · ·hrbr, with
hi ∈ 〈V ∩XG〉 and bi ∈ 〈V ∩XA〉. Setting VG = XG ∩V , it is enough to
show that 〈VG ∪Ux〉 = 〈VG〉 × 〈Ux〉. Let V1 = VG ∩Ux and V2 = VG\V1.
Since, from the above, O′(x) = OG(u) ∩

⋂r
i=1 C(hi) = 〈Ux〉 we have

hi = yipi, yi ∈ 〈V1〉, pi ∈ 〈V2〉, and may rewrite x as x = d′2w
′
1, where

d′2 = y1 · · · yr ∈ O′(x) and w′1 = p1 · · · pr. As in the proof of the final
part of the claim above, we have d′2 = 1, w′1 = x, and V2 = VG, and
(C5)(ii)(b) follows. If g ∈ O(x), then g ∈ OG(u), so C(g) is given by (4),
and as (C5)(iii) is satisfied by the centraliser CG(g) in G it holds also
for C(g).

To see that C(x) satisfies property (C6), assume that h /∈ C(x),
v ∈ C(x), and vh ∈ C(x). Then, for some integers p, q, and ele-
ments b, c ∈ O′(x) we have v = bxp and h−1vh = cxq. This means
that bxp is conjugate to cxq and both are cyclically reduced. From
the conjugacy criterion for free products with amalgamation, p = q
and bxp is obtained from cxp by cyclic permutation, followed by con-
jugation by an element of C. As b ∈ O′(x), it follows that x has a
factorisation x = x1x2, where x1 and x2 are both reduced and be-
gin with elements of G, such that cxp = d−1b(x2x1)pd, for some d ∈
C. As C is abelian, we have b−1cxp = d−1(x2x1)pd. As OG(u) and
O′(x) are canonical we may choose a minimal subset D of X ∩ OG(u)
such that d ∈ 〈D〉, and write D = D1 ∪ D2, where D2 = D ∩ O′(x)
and D1 ∩ D\D2. Then d−1(x2x1)pd = d−1

1 (x2x1)pd−1
1 , so we may as-

sume d = d1 and D = D1. We have x ∈ 〈Y (x) ∪ XA〉 and it follows
that d−1(x2x1)pd ∈ 〈D ∪ Y (x) ∪ XA〉 and, by definition of Y (x), that
〈O′(x) ∪ D ∪ Y (x) ∪ XA〉 = O′(x) × 〈D ∪ Y (x) ∪ XA〉 (using (C4)(i)).
Therefore b−1c = 1, and we have h−1bxph = bxp. However, h /∈ C(x),
so this implies that p = 0, so v = xpb = b ∈ O(x) and [h, v] = 1. That
is, (C6) holds for C(x).

Finally, we show that (C5)(iii) holds when x ∈ WG ∩ C and C(x)
is non-abelian, in which case (4) implies C(x) = ZG(x) × 〈OG(x), A〉.
Assume v ∈ O(x) and that C(v) is not conjugate to C(x). Either v ∈
OG(x), v ∈ A, or v has reduced factorisation of length at least 2. In the
case v ∈ OG(x), from (C5)(iii) in G, there exist v0, v1 in OG(x), such that
v0 ∈ WG and CG(v) = CG(v0)v1 . If v0 ∈ WG\C, then C(v0) = CG(v0)
and so C(v) = C(v0)v1 , as required. If v0 ∈ C and CG(v0) is non-

abelian, then v0 ∈ OG(u) and, from (4), C(vv
−1
1 ) = C(v0) = ZG(vv

−1
1 )×

〈OG(vv
−1
1 ), A〉, so C(v) = C(v0)v1 .
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If v0 ∈ C and CG(v0) is abelian, or if v ∈ A, then C(v0) = C × A =
C(u) and so to show that (C5)(iii) holds it suffices to show that u ∈ O(x).
From (4), we have u ∈ C(x) = ZG(x) × O(x) and ZG(x) ≤ OG(u). If
Y is a minimal subset of X such that u ∈ 〈Y 〉, then Y ∩ OG(u) = ∅, so
Y ∩ ZG(x) = ∅, whence u ∈ O(x), as required.

Otherwise v has a reduced factorisation of length at least 2 and we
choose U to be a minimal subset of X such that v ∈ 〈U〉 ≤ O(x).
Then we may write v = v−1

1 v0v1, where v0, v1 ∈ 〈U〉 and v0 is cyclically
reduced (as an element of the free product with amalgamation G(u,B))
and belongs to O(x). Thus C(v) = C(v0)v1 and there is an element z ∈
W∗ such that C(v0) = C(z), with v0 = dzp, for some d ∈ O(z) =
O′(v0) and non-zero p ∈ Z. As x, d ∈ C we have [x, d] = 1, so z ∈
C(x) (as centralisers are isolated). To demonstrate that (C5)(iii) holds
it suffices to show that z ∈ O(x). As z ∈ W∗, we may assume that z
has a factorisation z = g1a1 · · · grar and there is a minimal subset Y (z)
of XG satisfying conditions (a) and (b) of Theorem 4.2(i). As v0 belongs
to O(x) = 〈OG(x), A〉 it follows that gi ∈ CG(x), for all i, and as CG(x)
is canonical we may assume that Y (z) ⊆ CG(x). As ZG(x) ≤ Z(C(x)),
if s ∈ ZG(x), then [s, gi] = 1, as gi ∈ CG(x), and [s, u] = 1, as Z(x) ≤
OG(u); so s ∈ O′(z) = O(z). Hence ZG(x) ≤ O′(z) and Y (z) ∩ ZG(x) =
∅. Therefore (C4)(ii) implies Y (z) ⊆ OG(x), and so z ∈ O(x).

Corollary 4.4. Let G be a non-abelian group in C(XG,WG) and let
u ∈WG such that CG(u) = 〈u〉×OG(u) is abelian and non-canonical. Let
x = {x1, . . . , xm} be a set disjoint from G, either let D=

∏g
i=1[x2i−1, x2i],

where m is even, m ≥ 4, and g = m/2, or let D =
∏m
i=1 x

2
i , where m ≥ 3,

and let S be the surface group with presentation 〈x, u | D = u〉. Write
C = CG(u) and define T to be the free product with amalgamation

T = G ∗C (S ×OG(u)),

identifying u ∈ G with u ∈ S. Let Z = X ∩ OG(u) be the canonical
generating set for OG(u) and let z ∈ Z. Then

(i) S × OG(u) is in C(x ∪ Z,WS ∪ {z}), where WS is a subset of the
free group on x and z ∈ Z, and

(ii) T is in C(XG ∪ x,WT ), where WT = WG ∪WS ∪W ′, for some
subset W ′ of the set of elements of T of reduced length at least 2.

Proof: For the first statement note that S is free on x and OG(u) is
free abelian with basis Z, whence S×OG(u) is a coherent RAAG. From
Lemma 3.8, S × OG(u) is then in C, with respect to the generating
set x∪Z and the set, W ′S say, defined as above in Lemma 2.8. From the
definition, for some z ∈ Z, the set W ′S is the union of WK = x∪{z} with
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a set WB of cyclically reduced root elements of the free group on x, of
length at least 2. Taking WS = x ∪WB , we have the first statement.

To prove the second statement we shall show that T embeds in an ex-
tension of centralisers ofG, and use this together with Theorem 4.2. From
the hypotheses, C is a maximal abelian subgroup of G; so the assump-
tions of [29, Lemma 3.2] hold. Let ρ : T → G be the natural retraction
with ρ(S) being non-abelian; see [15]. It is shown in [15, Section 7]
that ρ is injective on both vertex groups of T , G, and S × OG(u).
Set T ∗ = 〈G, y | [CG(ρ(CS(u))), y]〉. Then, by [29, Lemma 3.2(1)] the
group T embeds into T ∗ via the map ψ given by ψ(g) = g, for all g ∈ G
and ψ(s) = (ρ(s))y, for all s ∈ 〈x〉. Moreover, as CS(u) = C ⊆ G, we
have

(5) T ∗ = 〈G, y | [C, y]〉 = G ∗C (C × 〈y〉).

From Theorem 4.2, T ∗ ∈ C(X,W ), where set X = XG ∪ {y}, W =
(WG\WG,C) ∪ {y} ∪ W∗, and WG,C and W∗ are defined in the state-
ment of the theorem. Also, T ∗ is discriminated by G, whence T is
discriminated by G and it remains to show that T is in C. Proper-
ties (C1) and (C2) hold in T as they hold in T ∗. To see that prop-
erty (C3) holds in ψ(T ) it suffices to show that if w is an element
of ψ(T ), then the unique root of w in T ∗ belongs to ψ(T ). Suppose
then that w = ψ(t), for some t ∈ T , say t = g1s1 · · · gmsm in reduced
form, with gi ∈ T and si ∈ S ×OG(u). Then w = ψ(t) = g1t

y
1 · · · gmtym,

where ti = ρ(si). Moreover this is a reduced factorisation of w, since
the given factorisation of t is reduced. In this case, for all c ∈ C and
j such that 1 ≤ j ≤ m, gjc, c

−1gj , (c−1tj)
y and (tjc)

y are in ψ(T ),
and it follows that if w = g′1(t′1)y · · · gjc(c−1t)yg′m(t′m)y is any reduced
factorisation of w in T ∗, then g′i ∈ G and t′i ∈ ψ(S × OG(u)). Now
suppose that t is cyclically reduced, in which case so is w, that the
root of w in T ∗ is w0 and that wd0 = w. If w0 has reduced factorisa-
tion w0 = h1y1 · · ·hkyk, with hi ∈ G and yk ∈ 〈y〉 × C, then w has
reduced factorisation (h1y1 · · ·hkyk)d. As w is in ψ(T ) it follows that
the yi are of the form ciy

−1 when i is odd and ciy when i is even,
with ci ∈ C. It follows that w0 = h′1y

−1h′2y · · ·h′2l−1y
−1h′2ly, where

h′i ∈ G and h′i ∈ ρ(S × OG(u)), whenever i is even. That is, w0 is
in ψ(T ). As roots in T ∗ are unique, ψ−1(w0) is the unique root of t in T .
That is, cyclically reduced elements of T have unique roots, whence all
elements of T have unique roots, confirming that (C3) holds.

To see that (C4)(i) holds assume that Y and Y ′ are disjoint commuting
subsets of XG ∪ x. If Y ∩ x 6= ∅, then Y ′ ⊆ OG(u) and 〈Y 〉 ∩ 〈Y ′〉 ⊆
OG(u). Otherwise Y and Y ′ are contained in XG. In both cases we have
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〈Y 〉 ∩ 〈Y ′〉 = {1}, using (C4)(i) in G. Again, (C4)(ii) follows from the
fact that it holds in both G and S ×OG(u).

To verify that (C5), (C6), and (C7) hold we consider the centraliser of
an element v ∈ T . If v is in G but is not conjugate to an element of C,
then CT (v) = CG(v) and it follows that there are elements w ∈WG and
h ∈ G such that CG(v) = CG(w)h. Also, w cannot be in C so CT (w) =
CG(w) and so CT (v) is conjugate to CT (w), as required. Moreover, (C5),
(C6), and (C7) hold for w in T , as they hold for w in G. If v ∈ S×OG(u)
but is not conjugate to an element of C, then CS×OG(u)(v) is conjugate
to CS×OG(u)(w), for some w ∈WS ∪ {z}, and w 6= z, so w ∈WS .

Suppose now that v is conjugate to an element of C. Without loss
of generality we may assume v ∈ C, so CG(v) ≥ C. In this case, if
b ∈ CT (v) and has reduced factorisation b = s1g1 · · · smgm, with gi ∈ G
and si ∈ 〈x〉, then either m = 1 and s1 ∈ C; or m ≥ 1 and sm /∈ C. In
the first case g1s1 ∈ CG(v), so g1 ∈ CG(v). In the second case vgm ∈ C,
so either gm ∈ C ≤ CG(v) or gm /∈ C, and then (C6) in G implies
v ∈ OG(u) and gm ∈ CG(v). In all cases then vsm ∈ C, and (C6) in
S × OG(u) implies v ∈ OG(u) and CG(v) is non-abelian. On the other
hand if v /∈ OG(u), a similar argument shows that CT (v) = CG(v)
and from (C6) and (C7) in G and the fact that C is abelian, it follows
that CG(v) is abelian, so equal to C. Now if CG(v) is abelian, then
CT (v) = CT (u) = C, and u ∈ WT = WG ∪WS ∪W ′. In this case (C5)
holds for u in T , as it holds in G. For (C6), suppose g ∈ C and b ∈ T such
that gb ∈ C and b /∈ C. If b ∈ G or S ×OG(u), then we have b ∈ CG(g)
and g ∈ OG(u), from (C6) in these groups. Assuming then that b has a
reduced factorisation b = s1g1 · · · smgm, as above with m ≥ 1, it follows
again that g ∈ OG(u) and gi ∈ CG(g), so b ∈ CG(g), whence (C6) holds
for u in T .

If v ∈ OG(u), then CT (v) ≥ 〈CG(v),x〉. Repeating the argument with
a reduced factorisation of an element b ∈ CT (v) we see that CT (v) =
〈CG(v),x〉. We have CG(v) = ZG(v) × OG(v) and from the definitions
ZT (v)∩〈OG(v),x〉 = {1} and [ZT (v), 〈OG(v),x〉] = 1, so setting ZT (v) =
ZG(v) and OT (v) = 〈OG(v),x〉 we have CT (v) = ZT (v)×OT (v). As the
only generators of T not in XG are those in x, both (C5)(i) and (ii)
follow. We defer consideration of (C5)(iii) till the end of the proof. To
see (C7) holds, note that Z(CT (v)) = OG(u), which is canonical.

Finally, suppose that v /∈ G or S ×OG(u), and let v = g1s1 · · · gmsm,
with gi ∈ G, and si ∈ 〈x〉 be a reduced factorisation of v. Without loss
of generality we may assume that v is cyclically reduced. Then, setting
ti = ρ(si), it follows that ψ(v) = g1t

y
1 · · · gmtym is cyclically reduced

in T ∗. Let W∗ be the subset of T ∗ defined in Theorem 4.2 and define
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W ′ = ψ−1(W∗). From the proof of Lemma 4.3, ψ(v) is conjugate to
an element dzm, say ψ(v)h = dzm, for some z ∈ W∗, d ∈ C, h ∈ T ∗,
with CT∗(ψ(v))h = CT∗(z) = 〈z〉 × OT∗(z) and OT∗(z) ≤ C. As both
ψ(v) and dzm are cyclically reduced, dzm may be obtained from ψ(v) by
cyclic permutation followed by conjugation by an element of C. Hence
h and dzm are in ψ(T ), and as d ∈ C we have zm ∈ ψ(T ) whence, from
the argument verifying (C3), z ∈ ψ(T ). Therefore CT∗(z) ≤ ψ(T ) and
Cψ(T )(z) = CT∗(z) ∩ ψ(T ) = Cψ(T )(z). As T ∗ ∈ C both (C5) and (C6)

hold for z ∈ T ∗ and hence in ψ(T ). Setting w = ψ−1(z) and g = ψ−1(h)
we have CT (v)g = CT (w), with w ∈W ′, and (C5) and (C6) hold for w ∈
T , as ψ is injective.

To complete the proof we show that (C5)(iii) holds when v ∈ OG(u),
so CT (v) is non-abelian. Then ψ(v) = v so CT∗(v) is non-abelian and
CT∗(v) = ZG(v) × OT∗(v), while Cψ(T )(v) = ψ(ZG(v) × 〈OG(u),x〉) =
ZG(v)×〈OG(u), ρ(x)〉. As Cψ(T )(v) = CT∗(v)∩ψ(T ) and ZG(u) ≤ ψ(T )
this implies 〈OG(u), ρ(x)〉 = OT∗(v) ∩ ψ(T ). If a ∈ OT (v), then b =
ψ(a) ∈ OT∗(v)∩ψ(T ), so there exists w0∈W and h∈T ∗, both in OT∗(v),
such that CT∗(b) = CT∗(w0)h. From the above descriptions of centralis-
ers, we also have w0 and h in ψ(T ), whence w0, h ∈ 〈OG(u), ρ(x)〉.
Therefore w1 = ψ−1(w0) is in WT and h1 = ψ−1(h) is in T , both w1

and h1 belong to OT (v) and CT (a) = CT (w1)h1 .

Theorem 4.5. If Gi in C(Xi,Wi) is a family of groups, then the free
product ∗Gi is in C(X,W ), where X =

⋃
iXi and W =

⋃
iWi ∪W∗,

where W∗ is the set of all cyclically reduced root elements of ∗Gi.
If G is in C(XG,WG) and A is a free abelian group with basis XA,

then the direct product H = G×A is in C(XG ∪XA,WG).
If {Av}v∈V (Γ) is a family of free abelian groups and ∆ is a chordal

graph, then the graph product G(∆, {Av}) is in C.

Proof: Let Gi be in C and let G = ∗Gi. Then (C1) and (C3) follow
immediately. For finite families Gi, property (C2) follows from [32] and
induction, and in general, if u and w are a pair of tuples, as in the
definition of BP groups above, then the support of u and v is a finite
subfamily of Gi, and the BP property follows since it holds for this finite
subfamily. If g ∈ G and g is in a conjugate of some Gi, then (C5)–(C7)
hold because they hold in Gi. If g is not in a conjugate of a factor,
then g is conjugate to a unique cyclically reduced element g1 and the
centraliser of g is conjugate to CG(g1) = 〈g0〉, where g0 =

√
g1, so is

abelian, and setting Z(g0) = 〈g0〉 and O(g0) = {1}, we see that g0 ∈ W
and (C5)–(C7) hold.
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Conditions (C1), (C2), and (C3) for H follow immediately. As the
generating set for G× A is XG ∪XA, property (C4) lifts from G and A
to H. For g ∈ G and a ∈ A, we have CH(ga) = CG(g) × A = CH(g).
If g ∈ WG = WH , we set ZH(g) = ZG(g) and OH(g) = OG(g) × A and
(C5), (C6), and (C7) follow.

Let Xv be a basis for Av (not necessarily finite), for each vertex v.
Expanding each vertex v of ∆ to a complete subgraph on |Xv| we may
regard G as a RAAG defined by a chordal graph. (In more detail, for
each vertex v of ∆ let Kv be a complete graph with vertex set Xv. Let ∆′

be the graph obtained from the disjoint union of the Kv, over v ∈ V (∆),
by adding an edge joining x ∈ Xu to y ∈ Xv for all vertices u 6= v of ∆
and all x ∈ Xu, y ∈ Xv.) From Lemma 3.8, G is then in C.

Proposition 4.6. Let {Gi, λij} be a direct system of groups and

monomorphisms, indexed by a set I, where λij maps Gi to Gj, for i ≤ j,
and let G be the direct limit of this system. Assume that

(i) Gi is in C(Xi,Wi) and λij(Xi) ⊆ Xj, for all i, j ∈ I; and
(ii) for all j ∈ I and g ∈ Gj there exists i ≥ j such that, for all k ≥

i, the centraliser CGk
(λjk(g)) = λik(CGi(λ

j
i (g)). In other words,

centralisers of elements of the Gi are eventually stable.

Let ψi be the canonical homomorphism from Gi to G, let X =⋃
i∈I ψi(Xi) ⊆ G and let W =

⋃
i∈I ψi(Wi) ⊆ G. Then G is in C(X,W ).

Proof: From the definition, G is generated by X. If g ∈ G, then (taking
a representative on its equivalence class we may assume that) g ∈ Gj ,
for some j ∈ I. Moreover, j may be chosen large enough so that every
element involved in (C1) and (C2) is also in Gj . As (C1) and (C2) hold

in λij(Gj), for all i ≥ j, they also hold in G. Similarly, if Y, Y ′ ⊆ X
satisfy the conditions of (C4)(i) and y ∈ 〈Y 〉 × 〈Y ′〉, then there exist
finite subsets Y0 ⊆ Y and Y ′0 ⊆ Y ′ such that y ∈ 〈Y0〉 × 〈Y ′0〉. Choosing
j large enough to contain Y0 and Y ′0 it follows, from the fact that Gj is
in C, that y = 1 in Gj . Hence (C4)(i) holds. A similar argument shows
that (C4)(ii) and (C5)(i) hold. Moreover if x ∈ Gj and ψi(x) = ψj(x

′),
for some j and x′ ∈ Gj , then there exists k in I such that k ≥ i, j and

so λik(x) = λjk(x′). Hence if x has a unique root y in Gj , then λik(x) and

λjk(x′) both have a unique root λik(y) in Gk; and ψ(y) is the unique root

of ψ(x) in G; giving (C3).
If g ∈ Gi, then we may assume that i has been chosen large enough

so that, for all k ≥ i, we have CGk
(λik(g)) = λik(CGi

(g)). As (C5)(ii),

(C5)(iii), (C6), and (C7) hold in Gi it follows that they hold in G. There-
fore G ∈ C.
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The following definition is taken from [40], to which the reader is
referred for further details.

Definition 4.7. Let C = {Ci = CG(gi)}i∈I be a set of centralisers in
the group G and let φi : Ci → Hi be a monomorphism from Ci to a
group Hi, such that φi(gi) ≤ Z(Hi), for all i ∈ I. Let T be the tree with
vertices v, vi, and directed edges ei = (v, vi), from v to vi, for i ∈ I. Then
there is a graph of groups with vertex groups G(v) = G, G(vi) = Hi;
edge groups G(ei) = Ci; and with edge maps the inclusions of Ci into G,
and φi from Ci into Hi, for all i ∈ I. The fundamental group of this
graph of groups is called a tree extension of centralisers and is denoted
by G(C,H,Φ), where H = {Hi : i ∈ I} and Φ = {φi : i ∈ I}.

Proposition 4.8. Let G be in C(X,W ) and let C = {Ci : i ∈ I} be a
set of abelian centralisers of G satisfying the following conditions.

(i) For all i ∈ I, there is gi ∈W such that Ci = CG(gi); and if g ∈W ,
CG(g) = Ci and i 6= j, then g /∈ Cj; and

(ii) no two centralisers of C are conjugate.

For each i in I, let Hi be a free abelian group and φi : Ci → Hi be
a monomorphism from Ci to Hi, such that Hi = φ(Ci) ×Ki, for some
subgroup Ki of Hi. Then, in the notation of Definition 4.7, the
group G(C,H,Φ) is in C. Moreover, G(C,H,Φ) is discriminated by G.

Proof: Choose a well-ordering of the set I, let G0 = G (assuming 0 /∈ I
and is taken to be less than the least element of I), and recursively

define groups Gi ∈ C and monomorphisms λji , for all i ∈ I and j < i,
as follows. For a fixed successor ordinal i ∈ I and all j ≤ i assume
that groups Gj in C(Xj ,Wj) have been defined, and for j ≤ k ≤ i,

monomorphisms λjk : Gj → Gk have been defined, such that {λjk : j <

k < i} forms a direct system of monomorphisms (that is, λkl ◦ λ
j
k = λjl ,

with λjj the identity). Assume further that, for all j ≤ i and m > j,

the centraliser CGj
(λ0
j (gm)) = λ0

j (Cm); and that conditions (i) and (ii)

hold for Cj = {λ0
j (Cm) : m > j}, with C(Xj ,Wj) in place of C(X,W ).

Finally, we assume that for g ∈ W with CG(g) = Cm, we have λ0
j (g) ∈

Wj , for all j ≤ i and j < m. By abuse of notation we let φm denote
the map from λ0

j (Cm) to Hm, given by mapping λ0
j (c) to φm(c), for

all c ∈ λ0
j (Cm), where j ≤ i and j < m.

Now define Gi+1 = Gi ∗φi+1 Hi, noting that λ0
i (Ci+1) ≤ λ0

i (G0) ≤ Gi
and that λ0

i (Ci+1) = CGi(λ
0
i (gi+1)). Also, from the definitions, Hi+1 =

φi+1(λ0
i (Ci+1))×Ki+1. Define λii+1 to be the canonical embedding of Gi

in Gi+1. From Theorem 4.2, Gi+1 is in C(Xi+1,Wi+1), where Xi+1 =
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λii+1(Xi) ∪X ′i+1 and Wi+1 = λii+1(Wi) ∪Ki+1 ∪W ′i+1, with Ki+1 as in
Definition 4.7 and X ′i+1 and W ′i+1 defined as XA and W∗, respectively, in

the statement of Theorem 4.2. For j < i define λji+1 = λji ◦λii+1. For m >

i+ 1, as λ0
i (gm) ∈ Gi\λ0

i (Ci) it follows, as in the proof of Theorem 4.2,
that

CGi+1
(λ0
i (gm)) = λii+1(CGi

(λ0
i (gm))) = λii+1(λ0

i (Cm)) = λ0
i+1(Cm).

Also, λ0
i+1(gm) = λii+1 ◦ λ0

i (gm) ∈ λii+1(Wi) ⊆ Wi+1. Therefore all as-
sumptions on i above hold for i+ 1.

If l ∈ I is a limit ordinal, assume that groups Gj in C(Xj ,Wj) and

monomorphisms λjk have been defined, and satisfy the properties above,

for all j ≤ k < l. Let L = {j ∈ I : j < l}, let Gl = lim−→Gj , where
the limit is over the direct system L, and let ψj be the canonical map

from Gj to Gl, for all j ∈ L. As before, we may assume that φl maps

ψ0(c) to φl(c) ∈ Hl, for all c ∈ Cl, and define Gl = Gl ∗φl
Hl. We

must check that Gl is in C. As Gl is formed from Gl by extension of
centralisers, in the light of Theorem 4.2, it suffices to show that Gl is
in C. In fact, from Proposition 4.6, Gl = G(X l,W l), where X l and W l

are the subsets X l =
⋃
j<l ψj(Xj) and W l =

⋃
j<l ψj(Wj) of Gl.

Set Xl = X l ∪X ′l and Wl = W l ∪Kl ∪W ′l , both subsets of G′l ∗Hl.
From Theorem 4.2, Gl is in C(Xl,Wl). As in the case of successor ordinals
above, the assumptions made for j < l are now seen to hold also for l.
Therefore, by induction the direct limit lim−→{Gi : i ∈ I} = G(C,H,Φ) is
in C.

For the final statement, assume that {∂d : d ∈ D} is a discriminating
family of homomorphisms for Gi by G0. From Theorem 4.2, Gi+1 is
discriminated by Gi via a family {λi,m : (i,m) ∈ I × N}. Then Gi+1 is
discriminated by G0 via the family {∂d ◦ λi,m : d ∈ D, (i,m) ∈ I × N}.

Now suppose l is a limit ordinal and, for all j < l, the family {∂j,d :
d ∈ Dj} is discriminating for Gj by G0. Any finite set of elements of

the direct limit G of the Gj may be represented by elements of Gj ,

for some fixed j < l. It follows that G is discriminated by G0 via the
family

⋃
j<l{∂j,d : d ∈ Dj}. Now it follows from the first part of the proof

that Gl is discriminated by G0. Therefore G(C,H,Φ) is discriminated
by G = G0, as required.

Remark 4.9. From the proof, given a well-ordering of I, there is a di-
rect system {Gi}i∈I of groups such that Gi ∈ C, for all i ∈ I, and
G(C,H,Φ) = lim−→{Gi : i ∈ I}. Consequently, the properties of tree ex-
tensions of centralisers are similar to those of ordinary extensions of
centralisers. That is, there exist canonical embeddings of G and Hi
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into G(C, H,Φ); the centraliser of gi in G(C, H,Φ) contains the group Hi

and the group G(C, H,Φ) has the corresponding universal property.
Moreover, groups G(C, H,Φ) for different well-orderings of I have the
same universal property, so are isomorphic.

5. Exponential groups

Following [39, 40], where further detail may be found, we define
exponential groups as follows.

Definition 5.1. Let A be an arbitrary associative ring with identity
and let G be a group. Fix a map from G×A to G and write the image
of (g, α) as gα. Consider the following axioms:

(i) g1 = g, g0 = 1, 1α = 1;

(ii) gα+β = gαgβ ; gαβ = (gα)
β
;

(iii) (h−1gh)
α

= h−1gαh;
(iv) [g, h] = 1⇒ (gh)

α
= gαhα.

Groups that admit a map G×A→ G satisfying axioms (i) to (iv) are
called A-groups.

The class of A-groups over arbitrary associative rings is referred to as
the class of exponential groups. Every group is a Z-group, and an abelian
group which is an A-group is, by definition, an A-module.

Given A-groups G and H, a homomorphism f : G → H is called
an A-homomorphism if f(gα) = (f(g))α, for all g ∈ G and α ∈ A. A
subgroup H ≤ G is called an A-subgroup if hα ∈ H, for all h ∈ H and α ∈
A. It follows that an intersection of A-subgroups is an A-subgroup. The
A-subgroup A-generated by a subset X of G, written 〈X〉A, is defined
as the smallest A-subgroup of G containing X.

A basic operation in the class of exponential groups is that of A-com-
pletion. Here we give a particular case of this construction (see [39] for
the general definition). Later on we always assume that the ring A and
its subring A0 have a common identity element.

Definition 5.2. Let A be a ring, A0 a subring of A, and G an A0-group.
Then an A-group GA is called an (A0, A)-completion of the group G if
GA satisfies the following universal property.

(i) There exists an A0-homomorphism τ : G → GA such that τ(G)
A-generates GA: that is, 〈τ(G)〉A = GA; and

(ii) for any A-group H and an A0-homomorphism ϕ : G → H there
exists a unique A-homomorphism ψ : GA → H such that ψ◦τ = ϕ.
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As every group is a Z-group, one can consider (Z, A)-completions
of arbitrary groups for each ring of characteristic zero, i.e. Z ≤ A. In
practice, our use of (A0, A)-completions will be restricted to the case
where A0 = Z, in which case we omit A0 from the notation and refer to
the (Z, A)-completion simply as the A-completion of G.

If G is an abelian A0-group, then the group GA is also abelian, i.e.
it is an A-module. In this case GA satisfies the same universal property
as the tensor product G ⊗A0

A of the A0-module G and the ring A.
Therefore GA ' G ⊗A0

A. In particular, if M is an A-module, then
MA ∼= M , as A-modules.

The A-completion of a coherent RAAG G will be constructed by defin-
ing an A-action on successively larger subsets of G, and necessarily in-
volves groups in which A acts on some, but not all, elements. This brings
us to the following definition.

Definition 5.3. A group G is called a partial A-group, for an associative
ring A (with identity 1) if there exists a subset P of G×A, such that gα

is defined whenever (g, α) ∈ P , and axioms (i) to (iv) in Definition 5.1
hold whenever the arguments belong to P .

In this case we say the partial A-action is defined on P . Let H, G be
partial A-groups with A-actions defined on subsets PH and PG, respec-
tively. A homomorphism of groups φ : G→ H is called a partial A-homo-
morphism if (ga)φ is in PH and (ga)φ = (gφ)a for all pairs (g, a) ∈ PG.
We say that X is a partial A-generating set for the partial A-group G if
G is generated (as a group) by {xa | (x, a) ∈ PG}.

When the sets on which A-actions are defined are clear from the con-
text, no explicit reference to the sets PG and PH will be made. In par-
ticular, when H is an A-group (the A-action is defined everywhere) it is
always assumed that a partial A-homomorphism from H to G is defined
with respect to PH = H ×A.

Definition 5.4. Let G be a partial A-group with action defined on
P ⊂ G×A. We say that an A-group GA is an A-completion of G, with
respect to P , if GA satisfies the following universal property:

(i) there exists a partial A-homomorphism τ : G→ GA such that τ(G)
is an A-generating set for GA; and

(ii) given an A-group H and a partial A-homomorphism ϕ : G → H
there exists a A-homomorphism ψ : GA → H such that τ ◦ ψ = ϕ.

In particular, if A0 is a subring of A, then any A0-group is also a
partial A-group and an (A0, A)-completion is a partial A-completion
of G, with respect to (G,A0).
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Theorem 5.5 ([39]). Let G be a partial A-group, with action defined
on the set P . Then there exists an A-completion GA of G, with respect
to P , and it is unique up to A-isomorphism.

(The version of this theorem proved in [39] is restricted to the case of
an (A0, A)-completion of G, while the proof of the general case, which
follows through almost word for word, is left to the reader.)

It is shown in [2] that the operation of A-completion commutes with
taking direct sums and forming direct limits of directed systems of partial
A-groups.

Definition 5.6. A partial A-group G is faithful (over A) if the partial
A-homomorphism τ : G→ GA is injective.

From the definition, it follows that a partial A-group G is faithful
over A if and only if there is an injective partial A-homomorphism fromG
into an A-group.

Given a partial A-group G and a subgroup H of G, we say that H is
a full A-subgroup when H is an A-subgroup: that is, hα is defined and
belongs to H, for all h ∈ H and α ∈ A. If H is a full A-subgroup of a
partial A-group G, then H is necessarily faithful and HA = τ(H).

6. A-completion of groups in C
6.1. A-completion of abelian groups in C. In general, the construc-
tion of the A-completion of an abelian partial A-group M is very similar
to tensor multiplication by the ring A. (As we shall see, it is only neces-
sary to make the existing partial action of A on M agree with the right
action of A on M ⊗Z A.)

Let M be a partial right A-module (i.e. a partial abelian A-group with
action defined on P ⊂ G×A). Consider the tensor product M⊗ZA of the
abelian group M by the ring A over Z. The A-completion MA of M may
be obtained by factorising M ⊗Z A by the right A-submodule generated
by the set of all elements (xα⊗ 1)− (x⊗α), for (x, α) ∈ P , and defining
τ(x) to be the image of x⊗ 1 in the quotient. The following proposition
is a copy of the corresponding result from the theory of modules.

Proposition 6.1. Let M be a torsion-free abelian partial A-group, with
action defined on the set P , where A is a unitary associative ring with
a torsion-free additive group. Assume that for all x ∈ M , α ∈ A, and
non-zero n ∈ Z,

(6) if (xn, α) ∈ P, then (x, α) ∈ P.
Then M is A-faithful, MA is a torsion-free abelian A-group, and τ(M) is
a direct summand of MA.
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Proof: As a torsion-free abelian group is a direct limit of finitely gen-
erated subgroups, we may restrict attention to finitely generated free
abelian groups, and so to infinite cyclic groups. If M = 〈x〉 is infinite
cyclic, then the condition on P implies that either P = 〈x〉×A or P = ∅.
In the first case M = MA and in the second case MA = M ⊗Z A.

6.2. A-completion of non-abelian groups in C. From now on all
rings are associative, with a free abelian additive subgroup and a mul-
tiplicative identity 1. For such a ring A, by Z ⊆ A we mean the char-
acteristic subring of A, and we always assume that a basis contains the
element 1; so A = Z×A′, for some subring A′.

Let A be a ring and let G be a group satisfying condition (R), namely:

(R) G ∈ C is a partial A-group, such that for all g ∈ G;
(i) if CG(g) is non abelian, and C(g) = Z(g) × O(g), then the

centre Z(C(g)) of C(g) is a full A-subgroup (so A-faithful)
and

(ii) if CG(g) is abelian, then condition (6) holds for all x ∈ CG(g),
α ∈ A, and n ∈ Z (n 6= 0).

In this subsection we describe the A-completion of such a group G. As-
sume then that G satisfies condition (R). Zorn’s lemma guarantees the
existence of a set C = {Ci : i ∈ I}, of centralisers Ci of elements of G,
which satisfies the following conditions (S).

(S1) Any C ∈ C is abelian but not a full A-subgroup.
(S2) No two centralisers from C are conjugate.

Note that if C 6= C ′ ∈ C, then C ∩ C ′g is an A-module, for
all g ∈ G. Indeed, assume that C = C(a), C ′g = C(b), and x ∈
C(a) ∩ C(b). If [a, b] = 1, that is, a ∈ C(b) and b ∈ C(a), then
since C(a) and C(b) are abelian, we have that C(a) < C(b) and
C(b) < C(a) and so C(a) = C(b). If [a, b] 6= 1, then C(x) is
non-abelian and so by assumption Z(C(x)) is an A-subgroup. In
particular xα is defined and in Z(C(x)) and Z(C(x)) ≤ C(a)∩C(b),
for all α ∈ A.

(S3) Any abelian centraliser in G which is not a full A-subgroup is
conjugate to a centraliser in C.

Given Ci ∈ C, since by assumption Ci is abelian, from condition (R)(ii)
and Proposition 6.1, we have CAi = Ci ⊗Z A, for all i ∈ I, and we can
form the set HA = {Ci ⊗Z A | i ∈ I} and the set of canonical embed-
dings ΦA = {ϕi : Ci ↪→ Ci ⊗Z A | i ∈ I}. As Ci is a direct summand
of Ci⊗ZA, we may consider the tree extension of centralisers G∗, of this
special type:

G∗ = G(C,HA, ΦA).
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If G∗ satisfies condition (R), then we can iterate this construction up to
level ω:

(7) G = G(0) < G(1) < G(2) < · · · < G(n) < · · · ,
where G(n+1) = G(n)(Cn,HA,n, ΦA,n), and the set Cn of centralisers in

the group G(n) satisfies conditions (S).

Definition 6.2. The union
⋃
n∈ω

G(n) of the chain (7) is called an iterated

centraliser extension (ICE for short) of G by the ring A. (If A = Z[t],
we refer simply to an ICE of G.)

Theorem 6.3 (cf. [40, Theorem 8]). Let A be a ring (as at the beginning
of this subsection) and let G be a non-abelian partial A-group satisfying
condition (R). If all abelian centralisers of G are faithful over A, then
the A-completion GA of G by A is an ICE of G by A. Furthermore GA

is in C and is discriminated by G.

To prove this theorem, we shall show that the tree extension of cen-
tralisers G∗ = G(C, A), defined above, satisfies condition (R) and has an
appropriate universal property. This will allow us to conclude the same
for all the groups G(n) from the chain (7) and then in turn to prove the
theorem.

Lemma 6.4. Assume that G satisfies condition (R), that C = {Ci : i ∈
I} is a set of centralisers of elements of G which satisfies (S), and that
G∗ = G(C,HA, ΦA). For any g ∈ G,

(i) if the centraliser of g ∈ G is abelian, then either
(a) CG(g) is not conjugate to an element of C, in which case

CG∗(g) ∼= CG(g), or
(b) CG(g) is conjugate to an element of C, in which case CG∗(g) ∼=

CG(g)⊗A = CG(g)A.
In both cases CG∗(g) is an A-module. Otherwise,

(ii) the centraliser of g is non-abelian and CG∗(g) = ZG(g) × OG(g),
Z(g) = ZG(g), g ∈ Z(g) ≤ Z(C(g)), and Z(C(g)) is a full A-sub-
group.

Proof: As in the remark following the proof of Proposition 4.8, there is a
directed system {Gi}i∈I of groups, with G = G0, such that Gi ∈ C, for all
i ∈ I, and G(C,HA,ΦA) = lim−→{Gi : i ∈ I}. If the centraliser CG0

(g) is

not conjugate to an element of C, assume that, for some i ≥ 0, CGi
(g) ∼=

CG0(g). Then, as in the proof of Proposition 4.8, CGi+1(g) ∼= CG0(g). If
l is a limit ordinal, then the standard argument shows that, if CGj (g) ∼=
CG0

(g), for all j < l, then again CGl
(g) ∼= CG0

(g). Hence, if CG(g) is not
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conjugate to an element of C, then, for all i ∈ I, CGi
(g) ∼= CG0

(g), so
CG∗(g) ∼= CG(g). In this case if CG(g) is abelian, so by definition of C a
full A-subgroup, then this isomorphism induces an A-action on CG∗(g),
making it into an A-subgroup. If CG(g) is non-abelian, then CG(g) =
ZG(g)×OG(g) and as Z(CG(g)) is a full A-subgroup, so is its isomorphic
image Z(CG∗(g)).

On the other hand suppose CG(g) is conjugate to an element Ci of C.
Then, CGi

(g) is conjugate to Ci ⊗ A and as no two elements of C are
conjugate we may unambiguously extend the action of A on Ci ⊗ A
to CGi(g). As above, for allm > i, we have CGm(g) isomorphic toGGi(g)
under the map λim, which from the definitions is an A-homomorphism.
Hence CG∗(g) ∼= GGi

(g), which is an abelian A-subgroup.

Lemma 6.5. G∗ is a partial A-group and G is a full A-subgroup of G∗.
Moreover, G∗ is A-generated by G.

Proof: By construction G∗ is a partial A-group. Let g ∈ G ≤ G∗. If
CG(g) is abelian, then, from Lemma 6.4, C(g) is a full A-subgroup. If
CG(g) is non-abelian, then g ∈ Z(C(g)), which is also a full A-subgroup.
In both cases the action of A on g is defined. As CAi is A-generated
by Ci, for all i ∈ I, it follows that G∗ is A-generated by G.

Lemma 6.6. G∗ satisfies condition (R). In particular G∗ is in C.

Proof: That G∗ is in C follows from Proposition 4.8. To see that the
second condition of Proposition 4.8(i) holds note that if w ∈ W (where
G is in C(X,W )) and CG(w) is abelian, then C(w) is not conjugate
to C(w′), for all other w′ ∈ W . Hence if w′ ∈ W and w′ ∈ CG(w),
then w = w′. That G∗ is a partial A-group satisfying the appropriate
conditions on centralisers follows from Lemmas 6.4 and 6.5.

Lemma 6.7. The group G∗ has the following universal property with
respect to the canonical embedding τ : G ↪→ G∗. For any A-group H and
any partial A-homomorphism f : G→ H there exists a partial A-homo-
morphism f∗ : G∗ → H such that f = f∗ ◦ τ .

Proof: Write f = f0 and G = G0 and, in the notation of the proof
of Proposition 4.8, let 0 ≤ i ∈ I and assume that for all 0 ≤ j ≤ i,
we have A-homomorphisms fj : Gj → H such that f0 = fj ◦ λ0

j , where
f = f0. Assume in addition that, for all j ≤ k ≤ i, we have fj =

fk ◦ λjk. Then fi(Ci+1) is an abelian A-subgroup Ni+1 of H. Using the
universal property of A-completion for abelian groups, we can find a ho-
momorphism Ψi+1 : Ci+1 ⊗A→ Ni+1 such that fi = Ψi+1 ◦ τi+1, where
τi+1 : Ci+1 ↪→ Ci+1 ⊗ A is the canonical embedding. By [40, Propo-
sition 5], there exists an A-homomorphism fi+1 : Gi+1 → H with the
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property fi = fi+1 ◦ λii+1. It then follows directly from the definitions

that fj = fk ◦ λjk, for all 0 ≤ j ≤ k ≤ i+ 1.
If l is a limit ordinal, the universal property of direct limits gives a

homomorphism f̄l : Gl → H such that fj = f̄l ◦λjl . Then using Gl and f̄l
in place of Gi and fi, and Gl in place of Gi+1, the previous argument
gives an A-homomorphism fl : Gl → H, making the necessary diagrams
commute. The result now follows by induction.

Lemma 6.8. G∗ is discriminated by G.

Proof: This follows from Proposition 4.8.

Proof of Theorem 6.3: Let G(0) = G and G(n+1) = (G(n))∗, as in the
chain (7), and let G =

⋃
n∈ω

G(n). The claim is that the ICE G coincides

with the A-completion GA of G. Indeed, as a union of partial A-groups,
G is a partial A-group, but an action of A on G is in fact defined every-
where: if x ∈ G, then x ∈ G(n), and hence by Lemma 6.4 the action of A
on x is defined in G(n+1). So G is an A-group. Similarly, from Lemma 6.5,
G is A-generated by G.

To prove that G is the A-completion of the partial A-group G, it
remains to verify the corresponding universal property. Let H be an
A-group and f : G→ H a partial A-homomorphism. Using Lemma 6.7,
we can extend f to a partial A-homomorphism fn : G(n) → H. By
construction these homomorphisms commute with the canonical maps
from G(n) into G(m), for m ≥ n: that is, fn = fm|G(n) . Since G is the
direct limit of the G(n) (with these inclusion maps) there exists a unique
homomorphism f̄ : G→ H such that fn = f̄ ◦ψn, where ψn is the canon-
ical embedding of G(n) into G. In particular f = f0 = f̄ ◦ψ0. As all the
partial A-homomorphisms fn restrict to A-homomorphisms on G(n−1),
it follows that f̄ is an A-homomorphism, so G = GA, as claimed.

Lemma 6.6 implies that G(n) is in C, for all n. A given centraliser is
extended at most once in the construction of chain (7), so condition (ii)
of Proposition 4.6 holds, whence GA is in C. That GA is discriminated
by G follows using Lemma 6.8 to see that G(n) is discriminated by G,
for all n > 0, and then by an argument similar to the last part of the
proof of Lemma 6.8 to see that G = GA is discriminated by G.

Applications. Toral relatively hyperbolic groups belong to the class C
and trivially satisfy condition (R) (as partial A-groups with action de-
fined on G×Z). Therefore, our results recover the results for torsion-free
hyperbolic groups (as long as A is as at the beginning of Subsection 6.2),
see [7], and for toral relatively hyperbolic groups; see [29].
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Corollary 6.9 ([29]). Let A be a ring (as at the beginning of Subsec-
tion 6.2) and let G be a torsion-free toral relatively hyperbolic group.
Then the A-completion GA of G by A is an ICE of G by A. Further-
more, GA is in C and is discriminated by G.

Our results can also be applied to coherent RAAGs. Given a coherent
RAAG G, we can view it as the graph product G(∆,Z), where ∆ is a
chordal graph. Let G = G(∆, A), where A is a ring of the type above.
From Theorem 4.5 G is in C and it satisfies condition (R).

Lemma 6.10. Let G = G(∆, A), where A is a ring (with the usual
restrictions) and ∆ a chordal graph. For all g ∈ G such that C(g) is
non-abelian, we have that C(g) = Z(g) × O(g), Z(g) ≤ Z(C(g)), and
Z(C(g)) is an A-module.

Proof: From Lemma 3.8, C(g) is conjugate to C(w) = Z(w)×O(w), for
some cyclically reduced element w of the RAAG G. If x ∈ Z(C(w))∩X,
then x belongs toXv, for some vertex v of Γ, and basisXv for the copy Av
of A associated to v. As 〈Xv〉 = Av ∼= 〈v〉 ⊗ A the subgroup Av is an
A-module, and from Lemma 2.3, Av ≤ Z(C(w)), so A acts on Z(C(w)),
hence on Z(C(g)).

Theorem 6.11. In the notation above, the A-completion GA of G by
the ring A is an ICE of G over the ring A.

Corollary 6.12. Let G be a coherent RAAG. Then the A-completion GA
of G by the ring A is an ICE of the group G over the ring A, belongs to
the class C and is discriminated by G.

Formally, the A-completion GA of G is obtained in two steps: we first
embed G into the graph product G to ensure property (R) and then we
take an ICE of G over A. Abusing the terminology, we say that GA is
an ICE of G over A.

7. Coherence of limit groups over coherent RAAGs

In this section, we introduce graph towers over coherent RAAGs and
prove that they are coherent; see Corollary 7.8. As a main corollary, we
obtain that limit groups over coherent RAAGs are finitely presented;
see Corollary 7.9. The proofs of this section are (almost) independent
of the previous sections. More precisely, we only use (and prove) that
graph towers belong to the class C, in order to deduce a hierarchical
decomposition of the tower as a graph of groups with abelian vertex
groups; see Theorem 7.7. Coherence of graph towers is then deduced
from that structural decomposition.
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As we mentioned, we shall define (below) a graph tower T of height l,
over a RAAG G = G(Γ), to be a sequence T0, . . . ,Tl of triples: Tl =
(Gl,Hl, πl), where Gl is a group, Hl = G(Γl), Γl, a simple graph, is
the l-th RAAG of T, and πl is an epimorphism of Hl onto Gl. The
group Gl is called the group of Tl and by abuse of notation is itself
referred to as a graph tower over G. The definition depends on a partition
of the edges of Γl into disjoint subsets Ec(Γl) and Ed(Γl). Given this
partition, we define a co-irreducible subgroup K of Hl to be a canonical
parabolic subgroup which is closed (i.e. K⊥⊥ = K) and such that K⊥
is Ed(Γl)-directly indecomposable. As in [15], where more details are
given, we make the following definition.

Definition 7.1. A graph tower T of height l is a sequence of triples
T0, . . . ,Tl, defined recursively, setting T0 = (G0,H0, π0), where G0 =
H0 = G, Γ0 = Γ, π0 = IdG, and Ed(Γ) = E(Γ). In addition de-
fine the subset S0 = ∅ of H0 = G(Γ0). To define Tl assume that
Tl−1 = (Gl−1,Hl−1, πl−1), Γl−1, Ed(Γl−1), Ec(Γl−1), and Sl−1 ⊆ Hl−1 =
G(Γl−1) are defined, and choose a co-irreducible subgroup Kl of Hl−1,
canonically generated by a set Yl; and a positive integer ml. Let Γl be
the graph with vertex set V (Γl−1)∪{xl1, . . . , xlml

} (where the xli are new

symbols). The set of d-edges of Γl is Ed(Γl) = Ed(Γl−1) ∪ {(xli, y) : 1 ≤
i ≤ ml, y ∈ Yl}. The set of c-edges of Γl is Ec(Γl) = Ec(Γl−1) ∪ E′c(Γl)
and the set Sl = Sl−1 ∪ S′l , where E′c(Γl) and S′l are chosen according
to one of the alternatives described below: basic floor, abelian floor, or
quadratic floor. In all cases Hl = G(Γl), Gl = Hl/ ncl〈Sl〉, and πl is the
canonical map from Hl to Gl.

Basic floor.

• E′c(Γl) = ∅ if K⊥l is a directly indecomposable subgroup of Hl−1;
and

• E′c(Γl) = {(xli, xlj) : 1 ≤ i < j ≤ ml} ∪ {(xli, y) : 1 ≤ i ≤ ml, y ∈
Y ⊥l }, if K⊥l is directly decomposable.

S′l is the set of basic relators:

S′l = [C, xli], 1 ≤ i ≤ ml,

where C = π−1
l−1(CGl−1

(K⊥l ).

Abelian floor.

• E′c(Γl) = {(xli, xlj) : 1 ≤ i < j ≤ ml}, if K⊥l is a directly indecom-
posable subgroup of Hl−1; and

• E′c(Γl) = {(xli, xlj) : 1 ≤ i < j ≤ ml} ∪ {(xli, y) : 1 ≤ i ≤ ml, y ∈
Y ⊥l }, if K⊥l is directly decomposable.
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Either

• S′l = [C, xli], 1 ≤ i ≤ ml, where C = π−1
l−1(CGl−1

(u)) with u is a

non-trivial cyclically reduced block root element of K⊥l ; or
• S′l is the set of basic relators.

Quadratic floor. E′c(Γl) is defined as in the basic floor case.

S′l consists of the set of basic relators and a relator W of the form either

• W =
∏g
i=1[x2i−1, x2i]

(∏m
i=2g+1 u

xi
i

)
um+1,

with u−1
m+1 =

∏g
i=1[v2i−1, v2i]

∏m
i=2g+1 u

wi
i or

• W =
∏g
i=1 x

2
i

(∏m
i=g+1 u

xi
i

)
um+1, with u−1

m+1 =
∏g
i=1 v

2
i

∏m
i=g+1 u

wi
i ,

for some ui, vj , wk in K⊥ such that the following condition ~ holds.

~ The Euler characteristic of W is at most −2 or W = [x1, x2]u3,
and in both cases the subgroup of Gl−1 generated by the set of
all ui, vj , wk is non-abelian.

(In [15] in the definition of the quadratic floor the condition ~ is
slightly less restrictive. However, with the simpler definition given here,
all the properties of graph towers in [15] hold as before.)

We next recall some of the properties of the graph towers proved
in [15].

Remark 7.2. From the definitions it follows that Hl−1 is a retraction of Hl
and that Gl−1 is a retraction of Hl/ ncl(Sl−1). In [15, Theorem 7.1 and
Theorem 8.1] it is shown that, given a limit group G over G, there exists
a graph tower Tl over G and embedding of G into Gl (both of which
may be effectively constructed if G is given by its presentation as the
coordinate group of a system of equations) such that

(1) Gl and Hl are discriminated by G.
(2) If K is a co-irreducible subgroup of Hl, then K⊥ is either a di-

rectly indecomposable subgroup of Hl or Ec(Γl)-abelian ([15, Lem-
ma 6.2]).

(3) There is a discriminating family {ϕi} of Gl by G such that, writ-
ing ϕ′i for ϕiπl, the following hold; see [15, Theorem 7.1].
• For any edge e = (x, y) of Γl, either x and y are sent to the

same cyclic subgroup of G, by all homomorphisms ϕ′i, in which
case e belongs to Ec(Γl); or the images of x and y, under all ho-
momorphisms ϕ′i, disjointly commute, in which case e belongs
to Ed(Γ).

• If K is a canonical parabolic subgroup of Hl, then there exists
a subgroup GK of G such that GK < K and

⋃
i ϕ
′
i(K) = GK.
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In particular, if K is a co-irreducible subgroup of Hl, then GK
is co-irreducible in G (here Ed(Γ) = E(Γ)). Furthermore, in
this case, G⊥K = GK⊥ is a directly indecomposable subgroup
of G,

⋃
i ϕ
′
i(K⊥) = GK⊥ , and CG(GK⊥) = GK.

(In the terminology of [15], the homomorphisms ϕi all factor
through the principal branch of the (tribal) Makanin–Razborov
diagram for G.)

Definition 7.3. In the notation above, given a limit group G over a
coherent RAAG G, we call a graph tower Gl into which G embeds a
graph tower associated to G over G, and the family of discriminating
homomorphisms {ϕi}, as described above, a principal discriminating
family of homomorphisms.

We will use the following graph of groups decomposition of graph
towers, obtained in [15].

Lemma 7.4 (cf. Lemma 5.3 in [15]). A graph tower Tl = (Gl,Hl, πl)
of height l over G admits one of the following decompositions, where
K = Kl.
(i1) Gl−1 ∗CGl−1

(K⊥) (CGl−1
(K⊥)×〈xl1, . . . , xlml

〉) (in this case the floor

is basic and K⊥ is non-abelian);
(i2) Gl−1 ∗CGl−1

(K⊥) (CGl−1
(K⊥)×〈xl1, . . . , xlml

| [xli, xlj ] = 1, 1 ≤ i, j ≤
ml, i 6= j〉) (in this case the floor is basic and K⊥ is abelian);

(ii1) Gl−1 ∗CGl−1
(u) (CGl−1

(u) × 〈xl1, . . . , xlml
| [xli, x

l
j ] = 1, 1 ≤ i, j ≤

ml, i 6= j〉) (in this case the floor is abelian and u is non-trivial
irreducible root element);

(ii2) Gl−1 ∗CGl−1
(K⊥) (CGl−1

(K⊥)×〈xl1, . . . , xlml
| [xli, xlj ] = 1, 1 ≤ i, j ≤

ml, i 6= j〉) (in this case the floor is abelian and K⊥ is non-abelian);
(iii) Gl−1 ∗CGl−1

(K⊥)×〈u2g+1,...,um〉 (〈u2g+1, . . . , um, x
l
1, . . . , x

l
ml
| W 〉 ×

CGl−1
(K⊥)) (in this case the floor is quadratic and K⊥ is non-

abelian).

Note that, as Hl is discriminated by the principal family {ϕi}, the
elements u, ui ∈ Hl from cases (ii1) and (iii) are root block elements.

In the remainder of the section, to distinguish between orthogonal
complements of parabolic subgroups in various Hj , given a subset Y
of the canonical generating set X of Hj we shall write lkj(Y ) = {x ∈
X : x /∈ Y and [x, Y ] = 1} and 〈Y 〉⊥j = 〈lkj(Y )〉 ≤ Hj . We shall

also write Cj for CGj
, xj for {xj1, . . . , xjmj

}, and, in case (iii), u for

{u2g+1, . . . , um}.
Our next goal is to give a more precise description of a graph tower

when the base group is a coherent RAAG. In particular, we show that
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the graph tower can be built from the coherent RAAG G by first build-
ing floors of type (i2) with a non-abelian centraliser and of type (ii2)
– obtaining a graph tower which is a coherent RAAG G′ (discriminated
by G); and then building floors over G′ for which the corresponding
amalgamation is over a free abelian subgroup; see Theorem 7.7.

Lemma 7.5. Let G be a coherent RAAG and let T = (Gl,Hl, πl) be a
graph tower associated to a limit group G over G. Let K be a canon-
ical parabolic co-irreducible subgroup of Hl. If K⊥ is non-abelian, then
CGl

(K⊥) is finitely generated torsion-free abelian.

Proof: By Remark 7.2, the graph tower Gl is G-discriminated by the
principal family of homomorphisms {ϕ′i} and, if K is co-irreducible, then
ϕ′i(K) < GK, GK is co-irreducible, and

⋃
i ϕ
′
i(K⊥) = G⊥K = GK⊥ , so K⊥

is discriminated by GK⊥ . In particular, as K⊥ is non-abelian, it follows
that GK⊥ is also non-abelian.

Then the centraliser CGl
(K⊥) is discriminated by CG(GK⊥). Since

GK⊥ is non-abelian and G is coherent, we have that CG(GK⊥) is finitely
generated torsion-free abelian and since CGl

(K⊥) is discriminated
by CG(GK⊥), CGl

(K⊥) is also torsion-free abelian and by the structure
of the tower, it is finitely generated.

Lemma 7.6. Let G be a coherent RAAG, let L be a limit group over G,
and let Gl be a graph tower of height l associated to L. Then

(i) Gl is a tower of height k ≤ l over a coherent RAAG G′, where all
the floors of Gl over G′ are of type (i2) with an abelian centraliser
amalgamated; or of type (ii1); or of type (iii) and

(ii) Gl is in C.

Proof: Let the tower consist of the sequence T0, . . . ,Tl, where Ti =
(Gi,Hi, πi), for 1 ≤ i ≤ l.

From Lemmas 2.5 and 3.8, when i = 0 the following properties are
satisfied.

• Gi is in C(Xi,Wi) and
• if Y is a subset of Xi such that 〈Y 〉 is abelian, then there exists
u ∈ 〈Y 〉 such that

(8) CGi(Y ) = CGi(u).

Assume that all towers of height at most l − 1 over a coherent RAAG
satisfy (8) and say a floor Gi ≤ Gi+1 has type (i’2) if it has type (i2)
with an abelian centraliser amalgamated. Note that from [15, Proof of
Theorem 7.1], floors of type (i1) occur only at the lowest levels of the
tower. That is, we may assume that Gi ≤ Gi+1 is of type (i1) for 0 ≤
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i ≤ k, and that no further floors of type (i1) occur in the construction.
Then Gk+1 is a coherent RAAG, and replacing G with Gk+1, we may
assume there are no floors of type (i1).

IfGl−1 ≤ Gl is of type (ii1), then, since u is a non-trivial block element
of K⊥, if K⊥ is non-abelian, by Lemma 7.5 we have that CGl−1

(u) is

abelian. Notice that if K⊥ is abelian, since homomorphisms ϕi of the
principal family preserve disjoint commutation (see [15, Lemma 6.29])
it follows that ϕi(K⊥) is cyclic. Hence, it follows that for all x ∈ K⊥
one has CGl−1

(x) = CGl−1
(K⊥). Therefore if K⊥ is abelian, without loss

of generality, we can assume that Gl−1 ≤ Gl is of type a′2). Assuming
then that CGl−1

(u) is abelian, from Theorem 4.2, Gl is in C.
If Gl−1 ≤ Gl is of type a′2) with an abelian centraliser CGl−1

(K⊥),

then (8) implies there is u ∈ K⊥ such that CGl−1
(K⊥) = CGl−1

(u), so
Gl is in C, using Theorem 4.2 again.

If Gl−1 ≤ Gl is of type (iii), then the surface S corresponding to
the right hand side of the graph of groups decomposition described in
Lemma 7.4(iii) has m boundary components and genus g. We form a
surface S′ from S by attaching an m + 1-punctured sphere to S, iden-
tifying m of the punctures to the m boundary components of S; so S′

has genus g + m − 1 and one boundary component. Now Gl may be
obtained from Gl−1 by attaching the boundary component of S′ along
a path representing the word u2g+1 · · ·um in Gl−1.

More formally, set t = u2g+1 · · ·um ∈ Gl−1 < Gl. Observe that

Gl'Gl−1∗〈z〉×CGl−1
(K⊥)(〈xl1, . . . , xlml

, v | V (xl1, . . . , x
l
ml

)·v〉×CΓl−1
(K⊥)),

where 〈z〉 ' Z, z 7→ t in Gl−1, z 7→ v in the second vertex group, and
V is a quadratic word in the xli. From the definition we have CGl−1

(t) =

CB(v) = 〈v〉 × CΓl−1
(K⊥), where B is the right hand vertex group, and

since Gl−1 ∈ C, we have ZGl−2
(t) = 〈t〉 and OGl−1

(t). Therefore we may
write

(9) Gl = Gl−1 ∗CGl−1
(t) (Σ×OGl−1

(t)),

where Σ = 〈xl1, . . . , xlml
, v | V (xl1, . . . , x

l
ml

) · v〉. Therefore, from Corol-
lary 4.4, Gl is in C.

If Gl−1 ≤ Gl is of type (ii2), then Gl = Gl−1 ∗C (C × A), where
C = CGl−1

(K⊥), K⊥ is non-abelian, and A is the free abelian group with

basis xl. From Lemma 7.5, C is finitely generated torsion-free abelian.
Let Y be a basis for C. Then, for all y ∈ Y , CGl−1

(y) contains K⊥, so
is non-abelian and thus canonical, and y ∈ KGl−1

(y), which is contained
in the centre of CGl−1

(y), so every generator of KGl−1
(y) commutes
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with K⊥. It follows that Y is a subset of the generators of Gl−1. We
have Gl−2 ≤ Gl−1 of type a′2), (ii1), or (iii) whence, from the above,
Gl−1 = Gl−2 ∗D B, where D = CGl−2

(u), for some u ∈ Gl−2, and

B = 〈D,xl−1〉. If y ∈ xl−1, then CGl−1
(y) is abelian in each case, a con-

tradiction. Hence y ∈ Gl−2. Therefore Y ⊆ Gl−2 and C = CGl−1
(K⊥) =

〈Y 〉 = CGl−2
(K⊥). If u ∈ CGl−2

(K⊥), then K⊥ ≤ CGl−2
(u), which is

abelian. As K⊥ is non-abelian it follows that CG′l−1
(u) = CGGl−2

(u),

from which in turn we obtain Gl = G′l−1 ∗D B. Then G′l−1 satisfies the
inductive hypotheses and G′l−1 ≤ Gl is of type a′2), (ii1), or (iii), so Gl
is in C.

If Gl−1 ≤ Gl is of type (i2) with a non-abelian centraliser, we shall
show that we can replace the sequence of extensions Gl−2 < Gl−1 < Gl
by a sequence Gl−2 < G′l−1 < Gl, where G′l−1 < Gl is of type a′2),
(ii1), or (iii) and G′l−1 is in C. To simplify notation write R = Gl−2,
S = Gl−1, and T = Gl, so R and S are in C, say R is in C(XR,WR)
and S is in C(XS ,WS), R ≤ S is of type a′2), (ii1), or (iii) and S ≤ T
is of type (i2) with a non-abelian centraliser. Then (from the discussion
above) there are elements r ∈ R and s ∈ S such that either

Case (i) S = R ∗CR(r) (CR(r)×A) or
Case (ii) S = R ∗CR(r) (OR(r)× Σ),

where A is free abelian with basis xA and Σ is the appropriate analogue
of (9): generated by xA and r, with V a quadratic word in the gen-
erators xA. From Lemma 7.4, T = S ∗CS(K⊥) (CS(K⊥) × B), for some

co-irreducible subgroup K of Hl−1 such that K⊥ is abelian, CS(K⊥) is
non-abelian, and B is free abelian with basis xB . From property (8),
there exists s ∈ S such that CS(s) = CS(K⊥), so

T = S ∗CS(s) (CS(s)×B),

and, without loss of generality, we may assume s ∈WS .
Next define

S′ = R ∗CR(s) (CR(s)×B)

and either

(i) T ′ = S′ ∗CS′ (r)
(CS′(r)×A), if S is given by Case (i) above, or

(ii) T ′ = S′ ∗CS′ (r)
(OS′(r)× Σ), if S is given by Case (ii).

The inductive hypothesis implies that S′ ∈ C and satisfies condition (8)
and so, from Theorem 4.2 or Corollary 4.4, T ′ ∈ C.

As CS(s) is non-abelian, it follows from Lemma 4.3 or the proof of
Corollary 4.4 that s ∈ R and either s /∈ CR(r) and CS(s) = CR(s) or
s ∈ CR(r) and CS(s) = ZR(s)×〈OR(s), B〉. If s /∈ CR(r), then r /∈ CR(s)
so CS′(r) = CR(r) and it follows, in the case when S is given by Case (i),
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that T = T ′. In Case (ii), we have CR(r) = ZR(r)×OR(r), where ZR(r)
is cyclic and non-canonical. If r /∈ CR(s), then CS′(r) = CR(r) and
so CS′(r) = Z ′S(r) × OS′(r) with OS′(r) = OR(r). Again this implies
T = T ′.

Assume then that s ∈ CR(r) and CS(s) = ZR(s) × 〈OR(s), B〉. As
S′ ∈ C, we have CS′(r) = ZS′(r)×OS′(r). As r ∈ CR(s), we have xB ⊆
CS′(r). Hence, if CS′(r) is abelian, then it is contained in CR(s) × B,
so CS′(r) = CR(r) × B. Therefore, from (C5), r ∈ ZS′(r) and OR(r) ⊆
OS′(r). As both OR(r) and OS′(r) are canonical and XS′ = XR ∪ xB ,
we have OS′(r) = 〈OR(r),xB〉. Moreover, from Remark 3.5(1), ZR(r) =
ZS′(r), so CS′(r) = ZR(r)× 〈OR(r),xB〉.

Now we have relative presentations S = 〈R,A | [CR(r),xA]〉, in
Case (i), and S = 〈R,A | [OR(r),xA], V · r〉, in Case (ii), whence

Case (i) T = 〈R,A,B | [CR(r),xA], [ZR(s),xB ], [OR(s),xB ], [xA,xB ]〉
and

Case (ii) T = 〈R,A,B | [OR(r),xA], V · r, [ZR(s),xB ], [OR(s),xB ],
[xA,xB ]〉.
Also, S′ has relative presentation S′ = 〈R,B | [ZR(s),xB ], [OR(s),xB ]〉,
and using the description of CS′(r) above, in each case we see that T ′

and T have the same relative presentation. Thus T = T ′ and T is in C.
Therefore, in all cases Gl is in C and it remains to show that Gl

satisfies condition (8). To simplify notation we use the notation above
with S = Gl−1 and T = Gl, where S is generated by XS and T is
generated by XT = XS ∪ xB . From the above we may now assume
that the floor S < T is of type a′2), (ii1), or (iii). In all cases we have
T = S ∗C D, where C = CS(s), for some s ∈ S, and D is either of
the form D = C × B or D = Os(s) × Σ, where B is free abelian with
basis xB and Σ is a surface group generated by xB and s. Assume that
Y ⊆ XT is such that 〈Y 〉 is abelian. If Y * XS , then Y contains an
element z of xB , so CT (Y ) ≤ D. If S < T is not of type (iii), then,
as 〈Y 〉 and C are abelian, CT (Y ) = C × B = CT (z), as required. If
S < T is of type (iii), then, Y ∩ xB = {z} (as 〈Y 〉 is abelian) and
CT (Y ) = 〈z〉 × OS(s) = CT (z) again. Hence we may assume that Y ⊆
XS . If Y * C, then CT (Y ) = CS(Y ), and we have u ∈ 〈Y 〉 such that
CS(Y ) = CS(u), from (8) in S. If u ∈ C, then CT (u) contains elements
outside S, a contradiction, so u /∈ C and CT (u) = CS(u) = CT (Y ). This
leaves the case Y ⊆ CS(s). In this case there exists u ∈ 〈Y 〉 such that
CS(Y ) = Cs(u) and then CT (Y ) ≤ CT (u). As in the proof of Lemma 4.3
and Corollary 4.4, if CS(u) is abelian, then CT (u) = CT (s) is abelian,
in which case CT (s) ≤ CT (Y ), so CT (Y ) = CT (u). Otherwise CT (u) is
non-abelian and CT (u) = ZS(u)×〈OS(u),xB〉. In this case if g ∈ CS(u),
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then g ∈ CS(Y ) ≤ CT (Y ), by definition of u, and xB ⊆ CT (Y ), so
CT (u) = CT (Y ) again. Therefore, in all cases (8) holds.

Theorem 7.7. Let G be a coherent RAAG and let T = (G,H, π) be a
graph tower associated to a limit group L over G. Then G has a graph
of groups decomposition (in the same generating set as G) where:

(i) the graph of the decomposition is a tree;
(ii) edge groups are finitely generated free abelian;
(iii) vertex groups are either graph towers of lower height, or a finitely

generated free abelian group or the direct product of a finitely gen-
erated free abelian group and a non-exceptional surface group.

Proof: Note that by Lemma 7.6, without loss of generality, we can as-
sume that all the floors of G are of type (i2) with an abelian centraliser
amalgamated; or of type (ii1); or of type (iii). We prove the statement
by induction on the height l of the graph tower. If the height is 0, then
G = G. In this case, G is a coherent RAAG and admits a graph of
groups decomposition (in the same set of generators) where all the ver-
tex groups and edge groups are finitely generated torsion-free abelian
groups; see [20].

Assume that l > 0 and let T = (Gl,Hl, πl). IfGl−1 < Gl is of type (iii),
then Gl has a splitting as in (9), and this decomposition is of the required
type (on the original generating set).

If Gl−1 < Gl is of type (ii1), we may assume, as in the proof of
Lemma 7.6, that CGl−1

(u) is abelian, and in this case, as in the case
when Gl−1 < Gl is of type (i2) with an abelian centraliser, Lemma 7.4
exhibits an appropriate decomposition.

Corollary 7.8. Let G be a coherent RAAG and let T = (G,H, π) be a
graph tower associated to a limit group L over G. Then G is coherent.

Proof: We use induction on the height l of the graph tower. If the height
is 0, then G = G and hence is coherent.

Let l > 0 and Gl = G. By Theorem 7.7, the group Gl admits a decom-
position as an amalgamated product with finitely generated abelian edge
group. By the induction hypothesis, the graph tower Gl−1 is coherent.
Furthermore, in all the cases, the other vertex group is a direct product
of a coherent group and an abelian group and hence, by Lemma 2.9,
vertex groups of the decomposition of Gl as an amalgamated product
are coherent.

Therefore, since an amalgamated product of coherent groups over a
finitely generated abelian subgroup is coherent (see [50, Lemma 4.8]) it
follows that Gl is coherent.
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Corollary 7.9. Limit groups over coherent RAAGs are coherent. In
particular, they are finitely presented.

Proof: If L is a limit group over a coherent RAAG G, then L is a sub-
group of a graph tower G over G by Remark 7.2, and G is coherent
by Corollary 7.8, and hence the result follows from the fact that limit
groups are finitely generated by definition.

8. Characterisation of limit groups over coherent
RAAGs

We are now in a position to show that limit groups over coherent
RAAGs are exactly the finitely generated subgroups of their Z[t]-com-
pletions.

Theorem 8.1. Let G be a coherent RAAG. Then a finitely generated
group G is a limit group over G if and only if G is a subgroup of the
Z[t]-completion GZ[t] of G.

Proof: It follows from Theorem 6.3, that GZ[t] is discriminated by G.
Since discrimination passes to subgroups, it follows that every finitely
generated subgroup of GZ[t] is a limit group over G.

Let us prove the converse. By [15, Theorem 8.1], it follows that any
limit group over G is a subgroup of a graph tower T over G of height l.
Hence, we are left to show that graph towers over G embed into GZ[t].
We proceed by induction on the height l of the tower T = (Gl,Hl, πl).
Assume, by induction, that graph towers over G of height l − 1 embed
into GZ[t]. In the light of Lemma 7.6, without loss of generality we may
assume that all the floors of G are of type (i2) with an abelian centraliser;
or of type (ii1); or of type (iii).

Suppose first that the floorGl−1 < Gl is of type (i2), where CGl−1
(K⊥)

is abelian. In this case, the statement is obvious, since Gl = Gl−1 ∗A B,
where A and B are finitely generated free abelian groups. Similarly, if
the floor Gl−1 < Gl is of type (ii1), then Gl is an extension of an abelian
centraliser, hence the statement follows in this case.

We are left to consider the case when the floor Gl−1 < Gl is of
type (iii). In this case, as in the proof of Theorem 7.7, Gl has the de-
composition (9) and, as in Corollary 4.4, Gl embeds in the group T ∗ =
〈G, y | [C, y]〉 = G∗C (C×〈y〉) of (5), with G = Gl−1 and C = CGl−1

(u).
As Gl−1 < T ∗ is of type (i2) with an abelian centraliser, the statement

follows.
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9. Limit groups over coherent RAAGs are CAT(0)

A group that acts properly discontinuously and co-compactly by
isometries on a proper CAT(0) space is called a CAT(0) group.

In this section we prove that limit groups over coherent RAAGs are
CAT(0) and deduce that the conjugacy problem is decidable for these
groups. We recall the following two definitions; see [1].

Definition 9.1. Let X be a connected locally CAT(0) space. A sub-
space C of X is a core of X if it is compact and locally CAT(0) (with
respect to the induced path metric) and the inclusion C → X is a ho-
motopy equivalence.

Definition 9.2. A connected locally CAT(0) space Y is geometrically
coherent if for every covering space X → Y with X connected and π1(X)
finitely generated and every compact subset K ⊂ X it follows that X
contains a core C ⊃ K.

If G is the fundamental group of a geometrically coherent space Y
and H is a finitely generated subgroup of G, then, taking a covering
space X → Y with π1(X) = H and a core C of X, by definition π1(C) =
H and C is locally CAT(0), so H is finitely presented and the Cartan–
Hadamard theorem (see [11] for example) implies that H is CAT(0).

Example 9.3 (see Example 2.4 in [1]). A flat torus T = Rn/Λ is geomet-
rically coherent. Indeed, any connected covering space admits a metric
splitting T ′ × E where T ′ is a flat torus or a point and E is Euclidean
space Rk or a point. Thus T ′ × {point} is a (convex) core.

Theorem 9.4 ([1, Theorem 2.6]). Let M and N be geometrically coher-
ent locally CAT(0) spaces. Let Y be the space obtained from the disjoint
union of M , N , and a finite collection of n-tori Ti

M t
⊔
i

Ti × [0, 1] tN

by gluing Ti × {0} to a convex space in M by a local isometry and glu-
ing Ti × {1} to a convex space in N by a local isometry.

Then Y is geometrically coherent.

Proof: Proof follows from [1, Theorem 2.6 and Remark 2.8].

For a description of the Salvetti complex of a RAAG we refer to
Charney’s survey [18].

Lemma 9.5. The Salvetti complexes of coherent RAAGs are geometri-
cally coherent.
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Proof: Let Γ be such that G(Γ) is coherent and let C(Γ) be the corre-
sponding Salvetti complex.

The graph Γ contains a clique which induces a decomposition of G(Γ)
as an amalgamated product, where vertex groups are RAAGs corre-
sponding to proper full subgraphs of Γ and the amalgamation is over a
free abelian group corresponding to the clique; see [20]. Hence, G(Γ) is
the fundamental group of a tree S of free abelian groups; see [20]. We
use induction on the number of vertices in S.

If S has one vertex, then C(Γ) is a flat torus and the statement follows
from Example 9.3. Suppose that the statement of the lemma is true for
any Γ′ such that the corresponding tree S′ has fewer than n vertices.
Let Γ be such that S has precisely n vertices. Let S′ be a subtree of S
obtained by removing a leaf v. We have G(Γ) = π1(S′) ∗Zk Zl, for some
k < l ∈ N, and π1(S′) = G(Γ′) is a RAAG such that the corresponding
tree S′ has fewer than n vertices. Notice that the generators of Zk are
generators of π1(S′) and of Zl. Then C(Γ) decomposes as C(S′)t T k ×
[0, 1]tT l/ ∼, where T k and T l are k- and l-tori, T k×{1} is identified with
a k-torus spanned by coordinate circles in T l, and T k ×{0} is identified
with a k-torus spanned by coordinate loops in C(S′). In particular, we
glue the T k×{0} and T k×{1} k-tori to convex subspaces of T l and C(S′),
respectively, each by a local isometry. Thus, the statement follows by
induction and Theorem 9.4.

Abusing the terminology, we call a group geometrically coherent if it
is the fundamental group of a geometrically coherent space.

Proposition 9.6. Finite iterated centraliser extensions of coherent
RAAGs are geometrically coherent.

Proof: Let G be a coherent RAAG. We use induction on the number
of iterated centraliser extensions. To the base of induction G, we asso-
ciate the Salvetti complex χ(G) of G, which is geometrically coherent by
Lemma 9.5.

Now let G = G0 < G1 < · · · < Gm−1 < Gm be an ICE. Arguing as in
the proof of Lemma 7.6, we may assume that the centraliser CGm−1(u)
being extended in step m is abelian. Indeed, all non-abelian centralisers
correspond to canonical generators of G and extension of such a cen-
traliser results in a new coherent RAAG, as in the proof of Lemma 7.6.

Hence, without loss of generality, we may assume that Gm = Gm−1∗C
Zl, where C = CGm−1(u) = 〈u〉×Zk−1 ∼= Zk, with k < l, is the (abelian)
centraliser of a block element u in Gm−1 and Gm−1 is an ICE satisfy-
ing the statement of the proposition. By induction, the corresponding
core χ(Gm−1), such that Gm−1 = π1(χ(Gm−1)), is already defined.
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We now define the core χ(Gm) as χ(Gm−1)tT k× [0, 1]tT l/ ∼, where
T k and T l are k- and l-tori, T k×{1} is identified with a k-torus spanned
by coordinate circles in T l, and the coordinate circles of T k × {0} are
identified with non-trivial loops in χ(Gm−1) that generate the abelian
subgroup C in π1(χ(Gm−1)) = Gm−1. The induction step now follows
by Theorem 9.4.

Since every limit group over a coherent RAAG G is a subgroup of an
iterated centraliser extension of G, we obtain the following

Corollary 9.7. Limit groups over coherent RAAGs are CAT(0). In par-
ticular, the conjugacy problem is decidable in limit groups over coherent
RAAGs.

Proof: If L is a limit group over a coherent RAAG G, then L is a sub-
group of GZ[t] by Theorem 8.1 and GZ[t] is an ICE of G by Corollary 6.12
(and the subsequent comment). Moreover, it follows from the proof of
Theorem 8.1 that L is a subgroup of G′, where G′ is obtained from G
by a finite chain of centraliser extensions. Therefore, G′ is CAT(0) and
geometrically coherent by Proposition 9.6. Hence, L is isomorphic to a
finitely generated subgroup of a geometrically coherent group so, from
the comments following Definition 9.2, L is CAT(0). Finally, by [11,
Theorem 1.12, III.Γ.1], the conjugacy problem in L is decidable.
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groups, J. Algebra 545 (2020), 300–323. DOI: 10.1016/j.jalgebra.2019.08.

003.
[32] A. Kvaschuk, A. Myasnikov, and V. Remeslennikov, Algebraic geometry

over groups III: Elements of model theory, J. Algebra 288(1) (2005), 78–98.

DOI: 10.1016/j.jalgebra.2004.07.038.
[33] R. C. Lyndon, Equations in free groups, Trans. Amer. Math. Soc. 96 (1960),

445–457. DOI: 10.2307/1993533.
[34] R. C. Lyndon, Groups with parametric exponents, Trans. Amer. Math. Soc. 96

(1960), 518–533. DOI: 10.2307/1993539.

[35] W. Magnus, A. Karrass, and D. Solitar, “Combinatorial Group Theory:
Presentations of Groups in Terms of Generators and Relations”, Reprint of the

1976 second edition, Dover Publications, Inc., Mineola, NY, 2004.

[36] A. Malcev, On isomorphic matrix representations of infinite groups (Russian),
Rec. Math. [Mat. Sbornik] N.S. 8(50), number 3 (1940), 405–422.
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