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1. Introduction

An atomic measure µ on Rn is a crystalline measure if the follow-
ing three conditions are satisfied: (i) µ is supported by a locally finite
set, (ii) µ is a tempered distribution, and (iii) the distributional Fourier
transform µ̂ of µ is also an atomic measure supported by a locally fi-
nite set. This is equivalent to a generalized Poisson summation formula,
as is shown in [3]. In the late 1950s crystalline measures were defined
under other names and studied by Andrew P. Guinand [1] and Jean-
Pierre Kahane and Szolem Mandelbrojt [3]. These authors were moti-
vated by the relationship between (a) the functional equation satisfied by
the Riemann zeta function and (b) the standard Poisson formula. More
generally let µ =

∑
λ∈Λ c(λ)δλ be a crystalline measure on Rn sup-

ported by a locally finite set Λ and let µ̂ =
∑
s∈S a(s)δs. We consider

the Dirichlet series ζ(µ, s) =
∑
{λ∈Λ, λ 6=0} c(λ)|λ|−s in the complex vari-

able s. Let γn = π−n/221−n

Γ(n/2) , where Γ denotes the Euler Gamma func-

tion. Then ζ(µ, s) is an entire function in the complex plane if 0 /∈ S,

while ζ(µ, s) − γn a(0)
s−n can be extended as an entire function of s ∈ C if

0 ∈ S [3], [7]. The connection between the Poisson summation formula
and the properties of the Riemann zeta function is developed in Titch-
marsh’s treatise and can be traced back to Riemann. When Kahane and
Mandelbrojt wrote their paper it was debated whether or not a crys-
talline measure is necessarily a generalized Dirac comb. But this same
year Guinand discovered a revolutionary crystalline measure. In his sem-
inal work [1] Guinand described an explicit atomic measure µ supported

by the set Λ = {±
√
k + 1/9, k ∈ N∪{0}} and claimed that µ̂ = µ. This
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beautiful example of a crystalline measure is rooted in Guinand’s work
on number theory. The fascinating problems raised by Guinand were
forgotten for more than fifty years. Fortunately in 2015 Nir Lev and
Alexander Olevskii gave a new life to Guinand’s work and constructed
a crystalline measure which is not a generalized Dirac comb [5]. This
was important since the proof given by Guinand in [1] was incomplete,
as was noticed by Olevskii in [5]. A few months later Guinand’s claims
were proved [7]. The revival of Guinand’s work could be related to the
discovery of quasi-crystals by Dan Shechtman (1982). The connection
between crystalline measures and quasi-crystals is discussed in [6]. Up
to now all examples of crystalline measures have been one-dimensional.
Non-trivial two-dimensional crystalline measures are constructed in this
note. It gives a simple proof of a remarkable theorem of Kurasov and
Sarnak [4].

The Dirac measure located at a ∈ Rn is denoted by δa or δa(x). A
purely atomic measure is a linear combination µ =

∑
λ∈Λ c(λ)δλ of Dirac

measures, where the coefficients c(λ) are real or complex numbers and∑
|λ|≤R |c(λ)| is finite for every R > 0. Then Λ is a countable set of

points of Rn. A subset Λ ⊂ Rn is locally finite if Λ∩B is finite for every
bounded set B. Equivalently, Λ can be ordered as a sequence {λj , j =
1, 2, . . . } and |λj | tends to infinity with j. A measure µ is a tempered
distribution if it has a polynomial growth at infinity in the sense given
by Laurent Schwartz in [10]. For instance, the measure

∑∞
1 2kδk is not

a tempered distribution, while
∑∞

1 k3δk and
∑∞

1 2k[δ(k+2−k) − δk] are

tempered distributions. The Fourier transform F(f) = f̂ of an integrable

function f is defined by f̂(y) =
∫
Rn exp(−ix·y)f(x) dx. The distributional

Fourier transform µ̂ of a tempered measure µ is defined by 〈µ̂, φ〉 =

〈µ, φ̂〉, ∀φ ∈ S(Rn).
If µ is a crystalline measure, its distributional Fourier transform is

also a crystalline measure. A product Pµ between a crystalline measure
and a finite trigonometric sum P is still a crystalline measure. If µ is a
crystalline measure and A is an affine transformation of Rn into itself, the
image measure µA of µ by A is still a crystalline measure. Let Γ ⊂ Rn
be a lattice. The distributional Fourier transform of the Dirac comb
µ = vol(Γ)

∑
γ∈Γ δγ is the Dirac comb µ̂ = (2π)n

∑
y∈Γ∗ δy on the dual

lattice Γ∗.

Definition 1.1. Let σj , 1 ≤ j ≤ N , be N Dirac combs, each σj being
supported by a coset xj + Γj of a lattice Γj ⊂ Rn, 1 ≤ j ≤ N . Let
Pj(x) =

∑
y∈Fj

cj(y) exp(2πiy · x) be a finite trigonometric sum. Let

µj = Pj σj . Then µ = µ1 + · · ·+ µN is called a generalized Dirac comb.
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A generalized Dirac comb is a trivial example of a crystalline measure.
A Delone set Λ ⊂ Rn is defined by the following property: there exist
two positive numbers R > r > 0 such that any ball of radius r, whatever
its center, contains at most a point λ ∈ Λ and any ball of radius R,
whatever its center, contains at least a point λ ∈ Λ. Pavel Kurasov and
Peter Sarnak constructed a one-dimensional crystalline measure whose
support is a Delone set [4] and which is not a generalized Dirac comb.
This extends to any dimension since the tensor product µ1⊗µ2 between
two crystalline measures µ1 and µ2 on R is a crystalline measure on R2.
We construct a crystalline measure σ on R2 which is not a tensor product
between two crystalline measures on R. More precisely, σ =

∑
λ∈Λ δλ,

where Λ is a Delone set.

2. Crystalline measures on R2

Let T = R/Z be the torus. Let r ∈ [0, 1] and let θr be the 1-periodic
continuous function defined on T by cos(2πθr(x)) = r cos(2πx) and 0 ≤
θr(x) ≤ 1/2. We have θ0(x) = 1/4 identically and θ1(x) = |x| if −1/2 ≤
x ≤ 1/2. The function θr is analytic if 0 ≤ r < 1. The derivative of θr(x)
is

d θr
dx

=
r sin(2πx)√

1− r2 cos2(2πx)
.

We have θr(1/2− x) + θr(x) = 1/2 and ‖θr − 1/4‖∞ < 1/4 if 0 ≤ r < 1.

Lemma 2.1. For any m ∈ N the 1-periodic function cos(2πmθr(x)) is
a trigonometric polynomial. More precisely we have

(1) cos(2πmθr(x)) =

m∑
0

αr(k,m) cos(2πkx).

The Chebyshev polynomial of degree m is denoted by Pm and we have

cos(2πmθr(x)) = Pm[cos(2πθr(x))]

= Pm[r cos(2πx)] =

m∑
0

αr(k,m) cos(2πkx),

which ends the proof. We have αr(0, 0) = 1 and αr(k, 0) = 0 if k 6= 0,
α(1, 1) = r and α(k, 1) = 0 if k 6= 1.

Lemma 2.2. There exist an integer m0(r) and a constant c(r) > 0 such
that if m ≥ m0(r) and 0 ≤ k ≤ r

10m, we have

(2) |αr(k,m)| ≥ c(r)m−1/2.
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Indeed we have

(3) αr(k,m) = 2

∫ 1

0

cos(2πmθr(x)) cos(2πkx) dx.

To prove (2) it suffices to estimate the right-hand side of (3) by van der
Corput’s lemma.

The first ingredient of our construction is given by an arbitrary one-
dimensional crystalline measure µ. We have

µ =
∑
λ∈Λ

c(λ)δλ,

where Λ ⊂ R is a locally finite set of real numbers. To avoid cumbersome
discussions Λ is assumed to be a Delone set and c(λ) is assumed to be
a bounded sequence. Then all the series that form part of the proof
of Theorem 2.5 converge in the distributional sense. The distributional
Fourier transform of µ is

µ̂ =
∑
s∈S

γ(s)δs,

where S ⊂ R is a locally finite set. Before constructing the two-dimen-
sional crystalline measure σr let us define its support Mr = Mr(Λ).
If r ∈ (0, 1), this support is the disjoint union of two pieces. We have
Mr = M+

r ∪M−r , where the two locally finite sets M±r ⊂ R2 are defined
by

M±r = {(k ± θr(λ), λ); k ∈ Z, λ ∈ Λ}.

Lemma 2.3. We have

Mr = {(x1, x2) ∈ R2; cos(2πx1) = r cos(2πx2), x2 ∈ Λ}.

Moreover, M0 ={k±1/4, λ, k ∈ Z, λ ∈ Λ} andM1 ={k±θ1(λ), λ, k ∈
Z, λ ∈ Λ}. If r ∈ (0, 1), then M+

r and M−r are two disjoint sets.

Definition 2.4. With the preceding notations the atomic measure σr
is defined by

σr =
∑
k∈Z

∑
λ∈Λ

c(λ)δ(k+θr(λ),λ) +
∑
k∈Z

∑
λ∈Λ

c(λ)δ(k−θr(λ),λ).

This measure σr is 1-periodic with respect to the first variable. It can
also be written as

σr =
∑
y∈Mr

κ(y)δy,

where κ(y) = c(λ) if y = k ± θr(λ), k ∈ Z, λ ∈ Λ.
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Theorem 2.5. Let r ∈ [0, 1]. Then the atomic measure σr is a crys-
talline measure supported by the Delone set Mr.

If r = 0, this is a trivial fact, and σ0 is a generalized Dirac comb if µ
is a Dirac comb. If r = 1, Theorem 2.5 is still a trivial fact. Indeed for
any λ ∈ Λ we have

∑
k∈Z(δ(k+θ1(λ),λ) + δ(k−θ1(λ),λ)) =

∑
k∈Z(δ(k+λ,λ) +

δ(k−λ,λ)). Therefore σ1 is a trivial crystalline measure. Indeed σ1 is the
sum of the two images of τ =

∑
k∈Z

∑
λ∈Λ c(λ)δ(k,λ) by the mappings

(x1, x2) 7→ (x1 ± x2, x2). Before proving Theorem 2.5 let us consider
a third example. Let α > 0 be irrational and let µα =

∑
k∈Z δαk. If

r ∈ (0, 1), then

σr =
∑
k∈Z

∑
l∈Z

δ(k+θr(αl),αl) +
∑
k∈Z

∑
l∈Z

δ(k−θr(αl),αl).

This atomic measure is a genuine sum of Dirac measures carried by the
Delone setMr. Theorem 2.5 gives a new proof of the theorem by Kurasov
and Sarnak [4]. The vector space of all crystalline measures supported
by Mr will be described in this note (Theorem 3.3) when µ is a Dirac
comb supported on αZ, where α > 1, α /∈ Q.

The proof of Theorem 2.5 is straightforward. The series used in this
proof converge in the distributional sense since Λ is a Delone set and
c(λ) is a bounded sequence. The distributional Fourier transform σ̂r(x)
of σr is σ̂r(x) = Sr = S+

r (x) + S−r (x), where

S±r (x) =
∑
y∈M±

r

κ(y) exp(−ix · y).

We first consider

S+
r (x) =

∑
k∈Z

∑
λ∈Λ

c(λ) exp(−ix1(k + θr(λ))) exp(−ix2λ).

We first sum on k ∈ Z and apply the standard Poisson formula. We
obtain

S+
r (x) = 2π

∑
λ∈Λ

[
exp(−ix1θr(λ))

∑
m∈Z

δ2πm(x1)

]
c(λ) exp(−ix2λ)

= 2π
∑
λ∈Λ

[∑
m∈Z

exp(−2πimθr(λ))δ2πm(x1)

]
c(λ) exp(−ix2λ)

= 2π
∑
m∈Z

δ2πm(x1)

[∑
λ∈Λ

exp(−2πimθr(λ))c(λ) exp(−ix2λ)

]
.
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For any m ∈ Z we consider the distribution

g+
m(x2) =

∑
λ∈Λ

c(λ) exp(−2πimθr(λ)) exp(−ix2λ).

Then
S+
r = 2π

∑
m∈Z

δ2πm ⊗ g+
m.

Once this is reached we consider the corresponding series

S−r (x) =
∑
k∈Z

∑
λ∈Λ

c(λ) exp(−ix1(k − θr(λ))) exp(−ix2λ)

and we end with S−r = 2π
∑
m∈Z δ2πm ⊗ g−m, where for any m ∈ Z we

define a distribution

g−m(x2) =
∑
λ∈Λ

c(λ) exp(2πimθr(λ)) exp(−ix2λ).

We do not want to compute g±m. Finally,

Gm(x2) = g+
m(x2) + g−m(x2) = 2

∑
λ∈Λ

c(λ) cos(2πmθr(λ)) exp(−ix2λ).

We obviously have G−m = Gm.

Lemma 2.6. We have

Sr = 2π
∑
m∈Z

δ2πm ⊗Gm.

If m = 0, G0(x2) = 2
∑
λ∈Λ c(λ) exp(−ix2λ) = 2

∑
s∈S γ(s)δs. If m =

±1, the definition of θr implies cos(2πθr(λ)) = r cos(2πλ) and we have

G±1(x2) = 2r
∑
λ∈Λ

c(λ) cos(2πλ) exp(−ix2λ)

= r
∑
s∈S

γ(s)(δs+2π + δs−2π).

If m ≥ 2, Lemma 2.1 yields

Gm(x2) = 2
∑
s∈S

∑
{k∈Z; |k|≤|m|}

αr(k, |m|)γ(s)δs+2πk.

Therefore Sr = S+
r + S−r = 4π

∑
m∈Z δ2πm ⊗ Gm is a sum of weighted

Dirac masses on the locally finite set U = {(2πm, s+ 2πk), s ∈ S, |k| ≤
|m|, m ∈ Z}. More precisely we have

(4) σ̂r = Sr = 2π
∑
m∈Z

∑
s∈S

∑
{k∈Z; |k|≤|m|}

αr(|k|, |m|)γ(s) δ2πm ⊗ δs+2πk.

The definition of αr(k,m) is given in (1). This ends the proof of Theo-
rem 2.5.
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The right-hand side of (4) can be written S = ρ ∗ µ̃, where µ̃ = δ0⊗ µ̂
and

(5) ρ =
∑
m∈Z

∑
{k∈Z; |k|≤|m|}

αr(|k|, |m|) δ2πm ⊗ δ2πk

is an atomic measure supported by (2πZ)2.
This remark paves the way to a second proof of Theorem 2.5. We

start with a Z2-periodic measure W which is given a simple geomet-
ric definition. Then we prove directly that σr coincides with the point-
wise product between the measure W and the measure dx1 dµ(x2). This
pointwise product between two measures is defined in Lemma 2.10. The
Fourier transform of W is computed and coincides with ρ. The Fourier
transform of dx1 dµ(x2) is obviously µ̃. Finally, the Fourier transform
of the pointwise product between W and dx1 dµ(x2) is the convolution
product between ρ and µ̃. The support of ρ ∗ µ̃ is locally finite, as is
checked immediately. The distributional Fourier transform of σr is the
atomic measure ρ∗ µ̃ which is supported by a locally finite set. This ends
the proof of Theorem 2.5.

Here are the details. Let us define W . We first consider the curve C+
on the two-dimensional torus T2 = (R/Z)2 defined by x1 = θr(x2).
Similarly C− is defined by x1 = −θr(x2). Let w+ be the measure on C+
which is the image of the measure dx2 on T by the mapping x2 7→
(θr(x2), x2). Then we have

Lemma 2.7. The Fourier coefficients of w+ are

ŵ+(k1, k2) =

∫ 1

0

exp(−2πik1θr(x2)) exp(−2πik2x2) dx2.

This is obvious by the definition of the direct image of a measure. In
a similar way we consider the measure w− on C− which is the image of
the normalized measure dx2 on T by the mapping x2 7→ (−θr(x2), x2).
Then the Fourier coefficients of w− are

ŵ−(k1, k2) =

∫ 1

0

exp(2πik1θr(x2)) exp(−2πik2x2) dx2.

Finally, we consider w = w+ + w−. Its Fourier coefficients are

(6) ŵ(k1, k2) = 2

∫ 1

0

cos(2πk1θr(x2)) exp(−2πik2x2) dx2.

But cos(2πkθr(x)) =
∑k

0 αr(k,m) cos(2πkx). This yields

ŵ(k1, k2) = αr(|k2|, |k1|).
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This together with (6) implies

(7) w(x1, x2) =
∑∑

αr(|k2|, |k1|) exp(2πi(k1x1 + k2x2)).

The right-hand side of (7) is ρ̂(x) when ρ is defined by (5).
Viewed as two Z2-periodic measures on R2 the measures w± and w are

denoted by W± and W . The support of W+ is the union of the pairwise
disjoint curves C+

l , l ∈ Z, defined by the equations y1 = θr(y2) + l. Sim-

ilarly the support of W− is the union of the pairwise disjoint curves C−l ,
l ∈ Z, defined by the equations y1 = −θr(y2) + l.

Lemma 2.8. The distributional Fourier transform of W is ρ.

This is immediate from (5) and (7). Our second proof of Theorem 2.5
is an immediate consequence of the following lemma:

Lemma 2.9. The measure σr is the pointwise product between W and
dx1µ(x2).

This pointwise product between two measures makes sense as the
following lemma indicates:

Lemma 2.10. Let f be a real-valued continuous function of the real vari-
able t and let F : R 7→ R2 be the mapping defined by F (t) = (t, f(t)). Let l
be the Lebesgue measure on R. Let ξ = F∗(l) be the Radon measure on R2

which is the pushforward of l by F . For any Radon measure µ on R the
pushforward F∗(µ) is the pointwise product between µ⊗ l and ξ.

The measure µ is the weak limit of a sequence µj of continuous func-
tions. Then for any continuous compactly supported function φ on R2

we have

〈F∗(µ), φ〉 =

∫
φ(t, f(t)) dµ(t) = lim

j→∞

∫
φ(t, f(t))µj(t) dt

= lim
j→∞
〈(ξ)(µj ⊗ l), φ〉 = 〈(ξ)(µ⊗ l), φ〉.

This last limit is the definition of the product between ξ and µ ⊗ l. It
ends the proof of Lemma 2.10. This obvious lemma is applied to each
Dirac measure δλ, λ ∈ Γ. The product between W and dx1 ⊗ δλ(x2)
is δ(θr(λ),λ) + δ(−θr(λ),λ). This implies Lemma 2.9. Lemma 2.9 implies
that the Fourier transform of σr is given by the convolution product

between Ŵ and ̂dx1 ⊗ µ. We have Ŵ = ρ and ̂dx1 ⊗ µ = µ̃. Our second
proof of Theorem 2.5 is complete.
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3. Mean-periodic measures

In this section it is assumed that the atomic measure µ used in the
construction of σr is the Dirac comb on αZ, where α > 1, α /∈ Q.
Then the distributional Fourier transform ν of the crystalline measure σr
belongs to a larger class W of crystalline measures which are studied in
this section. This distributional Fourier transform is a mean-periodic
measure which can be calculated explicitly by simple geometric rules.
This observation is proved now and paves the way to the definition ofW.

Here are the proofs of these claims. Let r ∈ (0, 1) and let us consider
the two atomic measures τ1 and τ2 on R2 defined by τ1 = rδ(0,2π) +
rδ(0,−2π)− δ(2π,0)− δ(−2π,0) and τ2 = δ(0,2π/α)− δ(0,0). We have P1(x) =
τ̂1 =2r cos(2πx2)−2 cos(2πx1). Similarly P2(x)= τ̂2 =exp(−2πix2/α)−1.
Then Mr ⊂ R2 can be defined by P1(x) = P2(x) = 0. Indeed P2(x) = 0
implies x2 =kα, k∈Z, and P1(x)=0 yields cos(2πx1)=r cos(2kπα). This
implies P1σr =P2σr = 0 since σr is supported by Mr. Therefore ν = σ̂r
satisfies

(8) ν ∗ τ1 = ν ∗ τ2 = 0.

Any solution of (8) is a mean-periodic measure. We forget σr now and
focus on this convolution equation.

Let W be the vector space consisting of all atomic measures ν(x1, x2)
on R2 which are supported by a locally finite set and such that:

ν(x1, x2 + 2π/α) = ν(x1, x2)(9)

and

ν(x1+2π, x2)+ν(x1 − 2π, x2) = rν(x1, x2+2π) + rν(x1, x2 − 2π).(10)

Lemma 3.1. Any measure ν ∈ W is a tempered distribution.

Lemma 3.1 is proved in the next section. If this result is accepted, the
distributional Fourier transform σ of ν makes sense. Then (10) implies
τ̂1ν̂ = 0. The zero set of τ̂1 in R2 is a collection of pairwise disjoint
curves C±l , l ∈ Z, defined by the equations y1 = ±θr(y2) + l. Each C±l ,
l ∈ Z, is contained in a vertical strip. Similarly (9) implies τ̂2ν̂ = 0.
The zero set of τ̂2 is a collection of horizontal lines defined by y2 =
αq, q ∈ Z. Each of these lines is transverse to each C±l . Therefore the
distribution σ = ν̂ is a sum of weighted Dirac measures on Mr. If ν itself
is a sum of weighted Dirac masses on a locally finite set, then ν and σ
are necessarily two crystalline measures.

The characterization of W is given in Theorem 3.2 and completed in
Theorem 3.3. We consider the vertical strip S = [−2π, 2π]× R and the
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rectangle R = [−2π, 2π] × [−2π/α, 2π/α]. The restriction of an atomic
measure ν to a line or to a point is denoted the same way as if ν were a
continuous function. Then we say that (10) holds for x1 = 0 if

(11) ν(2π, x2) + ν(−2π, x2) = rν(0, x2 + 2π) + rν(0, x2 − 2π).

Theorem 3.2. Let ν0 be an atomic measure which satisfies (9) and (11)
and whose support is a locally finite set F ⊂ S. Then there exists a unique
crystalline measure ν ∈ W whose restriction to S is ν0.

The proof is almost obvious. We rewrite (10) as an evolution equation
and treat x1 as a time variable. We obtain

(12) ν(x1, x2)+ν(x1−4π, x2)=rν(x1−2π, x2+2π)+rν(x1−2π, x2−2π).

The initial condition is ν0. Then (12) is used to move from the vertical
strip S = [−2π, 2π] × R to the vertical strip S1 = [0, 4π] × R. Next we
iterate to define ν on the vertical strip Sm = [2(m − 1)π, 2mπ] × R,
m ≥ 2. The treatment of the left vertical strips is identical. The extended
atomic measure ν still satisfies (9) and (10). This ends the proof. As was
stated earlier, the inverse Fourier transform σ of an atomic measure ν
defined by Theorem 3.2 is a crystalline measure supported by Mr.

Here is a slight improvement on Theorem 3.2. We start from an ar-
bitrary atomic measure νR carried be a finite subset of R = [−2π, 2π]×
[−2π/α, 2π/α]. Does there exist a unique crystalline measure ν ∈ W
whose restriction to R is νR? Here is the answer. We first construct
an atomic measure ν0 enjoying the following three properties: (a) ν0 is
carried by S = [−2π, 2π] × R, (b) ν0 satisfies (9) on S and (11), and
(c) the restriction of ν0 to R is νR. Once ν0 is constructed the crystalline
measure ν ∈ W is defined as above. The only obstruction to the exis-
tence of ν ∈ W is the construction of ν0. There are two issues. The first
obstruction comes from the periodicity of ν0 given by (9). It forces the
restriction νR(x1, π/α) of νR to the upper horizontal side of R to be iden-
tical to the restriction νR(x1,−π/α) of νR to the lower horizontal side
of R. Then νR is the restriction to R of a unique atomic measure ν0 satis-
fying (9). It remains to check (11). This provides the second obstruction.
Indeed let us consider the restrictions of νR to the two vertical sides of R
and to {0} × [−2π/α, 2π/α]. These three atomic measures are extended
by the periodicity defined by (9) and the corresponding atomic measures
are denoted by θ, η, and κ. These three measures shall satisfy (11). This
reads

θ(x2) + η(−2π, x2) = rκ(x2 + 2π) + rκ(x2 − 2π).

We can conclude
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Theorem 3.3. Let νR be an atomic measure supported by a finite sub-
set of the rectangle R = [−2π, 2π]× [−2π/α, 2π/α]. Let us assume that
νR satisfies (11) and that νR(x1, π/α) = νR(x1,−π/α). Then νR is the
restriction to R of a unique crystalline measure ν ∈ W. The inverse
Fourier transform of ν is a crystalline measure σ supported by Mr. Con-
versely, any crystalline measure σ supported by Mr is obtained by this
construction.

4. Proof of Lemma 3.1

Let ν be a Radon measure satisfying (9) and (10). If g is a compactly
supported continuous function, then the convolution product f = ν ∗g is
a continuous function satisfying (9) and (10). It suffices to prove that f
is a tempered distribution to conclude. This is implied by the following
lemma:

Lemma 4.1. There exists a constant C such that for every y ∈ R2 and
for every continuous solution f of (9) and (10) we have

(13)

∫
R+y

|f(x)|2 dx ≤ C
∫
R

|f(x)|2 dx.

The Fourier series of the 2π/α-periodic continuous function x2 7→
f(x1, x2) is denoted by

∑
k ak(x1) exp(iαkx2). Then for any x1 Parse-

val’s theorem implies
∑
k |ak(x1)|2 = α/2π

∫ π/α
−π/α |f(x1, x2)|2 dx2. Next

Fubini’s theorem yields

(14)
∑
k

∫ 2π

−2π

|ak(x1)|2 dx1 = α/2π

∫
R

|f(x)|2 dx.

We now plug (10) into the Fourier expansion

f(x1, x2) =
∑
k

ak(x1) exp(iαkx2).

Then for any k ∈ Z we obtain

2r cos(2πkα) ak(x1) = ak(x1 + 2π) + ak(x1 − 2π).

Therefore ak(x1) is a mean-periodic function of x1 and can be ex-
panded as a generalized Fourier series [2]. The possibly complex frequen-
cies which appear in this expansion are the roots u ∈ C of cos(2πu) −
r cos(2πkα) = 0. Since 0 < r < 1 these roots are the real numbers λm ∈
T defined by λm = m ± θr(kα), m ∈ Z. This implies that ak(x1) =
exp(iθr(kα)x1)bk(x1) + exp(−iθr(kα)x1)ck(x1) where bk and ck are two
2π-periodic continuous functions. Since ‖θr − 1/4‖∞ < 1/2 the set T
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is uniformly discrete. Therefore there exists a constant C such that for
any y1 ∈ R we have

(15)

∫ y1+2π

y1−2π

|ak(x1)|2 dx1 ≤ C
∫ 2π

−2π

|ak(x1)|2 dx1,

where C does not depend on k or y1. Finally, (15) and (14) imply (13)
when y = (y1, 0). This yields (13) in full generality since f is periodic in
the second variable.
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