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STRONG EXCHANGE RINGS

Manuel Cortés-Izurdiaga and Pedro A. Guil Asensio

Abstract: Two elements a, b in a ring R form a right coprime pair, written 〈a, b〉, if
aR + bR = R. Right coprime pairs have shown to be quite useful in the study of left

cotorsion or exchange rings. In this paper, we define the class of right strong exchange

rings in terms of descending chains of them. We show that they are semiregular and
that this class of rings contains left injective, left pure-injective, left cotorsion, local,

and left continuous rings. This allows us to give a unified study of all these classes of

rings in terms of the behaviour of descending chains of right coprime pairs.
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1. Introduction and notation

The exchange property was introduced by Crawley and Jónsson
in 1964 [4, Definition 3.1] in their study of the decomposition prop-
erties of algebraic systems and was later extended to arbitrary modules
by Warfield in 1972 [18]. He defined that a right module M satisfies the
(finite) exchange property if for any right module X and decompositions
X = M ′ ⊕ Y = ⊕INi with M ′ ∼= M (resp., with I finite) there exist
submodules N ′i ≤ Ni such that X = M ′⊕ (⊕IN ′i). It is well known that
the finite exchange property implies the general exchange property for
finitely generated modules, but it is not known if this is true for every
module. This is one of the oldest open questions in ring theory, and can
be traced back to the pioneering work of Crawley and Jónsson (see [4,
p. 807]). Warfield proved that a module M satisfies the finite exchange
property if and only if so does its endomorphism ring. He also proved
that this property is left-right symmetric for rings and called them ex-
change rings [18]. Exchange rings were later independently characterized
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by Goodearl [7, p. 167] and Nicholson [15] as those rings R satisfying
that for any element r ∈ R there exists an idempotent e ∈ R such that
e ∈ rR and 1− e ∈ (1− r)R. See [10, 11] for a more detailed exposition
on this topic and its relation with algebraic equations.

We recall that a pair a, b of elements in a commutative PID R is called
coprime if they do not have common divisors. This is equivalent to saying
that they satisfy the Bézout identity ar+ bs = 1, for some r, s ∈ R. This
definition has recently been extended to arbitrary (not necessarily com-
mutative) rings in a completely different context [8]. Namely, a pair of
elements a, b in a ring R is called right coprime, denoted 〈a, b〉, when they
satisfy the former condition; and an order relation was defined between
them: 〈a, b〉 ≤ 〈a′, b′〉 if and only if aR ⊆ a′R and bR ⊆ b′R. It was shown
in [8] that this order relation is a quite useful tool for constructing idem-
potent elements in rings. Using these ideas, the authors have proved that
any left cotorsion ring is semiregular (that is, R is von Neumann regular
modulo its Jacobson radical J(R) and idempotents in R/J(R) can be
lifted to idempotents in R; see [14]) and R/J(R) is left self-injective. In
particular, they have given an arithmetic (and probably more concep-
tual) proof of the fact that endomorphism rings of pure-injective modules
enjoy the former properties (see e.g. [21]).

The main tool in most of the proofs in [8] is that certain descending
chains of right coprime pairs (the compatible ones; see Definition 3.1)
have minimal lower bounds (with respect to the aforementioned order re-
lation), and these lower bounds are of the form 〈e, 1−e〉 for some idempo-
tent element e. Let us note that this fact connects Goodearl and Nichol-
son’s characterization of exchange rings with coprime pairs: a ring R is
an exchange ring if and only if for every element r ∈ R there exists a
minimal right coprime pair below the right coprime pair 〈r, 1− r〉. This
key observation is the idea that inspired the present paper. We call rings
satisfying the above descending property right strong exchange rings and
study their main properties. We show that the class of right strong ex-
change rings contains left cotorsion rings (hence, left self-injective and
left pure-injective rings), left perfect rings, local rings, and left con-
tinuous rings. Moreover, right strong exchange rings are semiregular.
Consequently, this right strong exchange property allows us to unify the
treatment of all the above classes of rings, which have been shown to be
semiregular as well.

Let us outline the contents of this paper. We begin by obtaining in
Section 2 the basic properties of right coprime pairs. In this section we
also give several examples that show the behaviour of right coprime pairs
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in different rings, and observe that this behaviour characterizes local, left
perfect, von Neumann regular, and exchange rings (see Proposition 2.5).

In Section 3, we define right strong exchange rings in terms of the
central notion of compatible descending chains of right coprime pairs. By
the preceding comments, right strong exchange rings satisfy the exchange
property, although there exist exchange rings which are not right strong
exchange (see Example 3.5). We also show that the class of right strong
exchange rings includes local, left cotorsion, and left continuous rings
(Proposition 3.7 and Theorems 3.6 and 3.11).

In Section 4, we study the main properties of right strong exchange
rings. We prove in Theorem 4.3 that they are semiregular. If we assume
the stronger property that compatible descending systems of right co-
prime pairs have minimal lower bounds, then they are left continuous
modulo their Jacobson radical (Theorem 4.9). We also give an example
showing that the strong exchange property is not left-right symmetric
(Example 4.10). We close the paper by showing that a ring is semiperfect
provided that it has a countable number of idempotents and is strong
exchange (Theorem 4.11).

Let us fix some notation. For any set A, |A| will denote its car-
dinality. The first infinite ordinal is denoted by ω. Moreover, R will
denote an associative ring with identity that we fix for the whole pa-
per. Module will mean R-module, and when dealing with left mod-
ules we will specify the side where scalars act. We denote by Mod-R
and R-Mod the categories of right and left R-modules, respectively. As
usual, we use the notation RR (resp. RR) when we consider R as a right
(resp. left) R-module over itself. Morphisms will act on the opposite side
of scalars. Consequently, if M , N , and L are modules and f : M → N
and g : N → L are homomorphisms of modules, we denote their compo-
sition by gf if M,N,L ∈ Mod-R and by fg if M,N,L ∈ R-Mod. We
will denote by J(R) the Jacobson radical of R. Given a family of mod-
ules {Mi | i ∈ I}, we treat elements in

∏
i∈IMi as maps x : I →

⋃
i∈IMi

with x(i) ∈Mi for each i ∈ I. The support of an element x in the product
is

supp(x) = {i ∈ I | x(i) 6= 0}.
Recall that a submodule K of a module M is called superfluous,

written K � M , if there does not exist a proper submodule L of M
with K+L = M . Dually, K is called essential in M if there does not exist
a non-zero submodule L with K ∩L = 0. A family of submodules {Mi |
i ∈ I} of M is called independent if, for every i ∈ I, Mi ∩

∑
j 6=iMj =

0. Given X ⊆ M and A ⊆ R, we denote by lM (A) and rR(X) the
corresponding annihilators of A in M and of X in R, respectively. Notice
that, if e is an idempotent element, lR(e) = R(1−e) and rR(e) = (1−e)R.
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2. Coprime pairs. Basic properties

We begin this section by recalling the following definition from [8].

Definition 2.1. A right coprime pair in R is a pair of elements, a, b,
such that R = aR+ bR. We denote the coprime pair by 〈a, b〉.

We are interested in the cyclic right ideals generated by the elements
in the right coprime pair. This is the reason why we define the following
equivalence relation between them:

〈a, b〉 ∼ 〈a′, b′〉 ⇐⇒ aR = a′R and bR = b′R.

We denote by RCP(R) the set of all equivalence classes of right coprime
pairs under this equivalence relation. From now on, the term “right co-
prime pair” and the notation 〈a, b〉 will refer to one of these equivalence
classes. Given a right coprime pair 〈a, b〉, any pair of elements (a′, b′)
of R2 such that 〈a′, b′〉 = 〈a, b〉 will be called a pair of generators of the
coprime pair.

We may define in RCP(R) an order relation. Given two right coprime
pairs 〈a, b〉 and 〈a′, b′〉, we will say that

〈a, b〉 ≤ 〈a′, b′〉 if and only if aR ≤ a′R and bR ≤ b′R.

As we will see later on, this order relation is quite useful for finding
idempotent elements in R.

Examples 2.2. (1) For any a ∈ R, we have the coprime pair 〈a, 1−a〉.
We call this coprime pair basic.

(2) For any a ∈ R and any unit u ∈ R, we have the coprime pair 〈a, u〉.
We call this coprime pair trivial. Notice that 〈0, 1〉 ≤ 〈a, u〉.

(3) If e ∈ R is an idempotent, then 〈e, 1 − e〉 is a basic coprime pair
which is easy to check that is minimal in RCP(R) with respect
to ≤ (see [8]).

(4) Recall that, given a ∈ R, aR is a direct summand of RR if and
only if a is a regular element, i.e., there exists an x ∈ R with
axa = a. If 〈a, b〉 is a right coprime pair, then aR and bR are
direct summands if and only if a and b are regular elements. We
call this kind of coprime pairs regular. Notice that, in this case, we
can find idempotent elements e and f such that 〈a, b〉 = 〈e, f〉.

Let us prove some basic characterizations of right coprime pairs. Re-
call that a left R module M satisfies condition (C3) if, for any two direct
summands, K and L, of M , K + L is a direct summand provided that
K ∩ L = 0 (see e.g [13, 16]).
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Proposition 2.3. Let a, b ∈ R. The following assertions are equivalent:

(1) 〈a, b〉 is a right coprime pair.

(2) The morphism of left R-modules, i : R → R ⊕ R given by (x)i =
(xa, xb), is a split monomorphism.

(3) There exist a left R-module M and two elements m1 and m2 of M
such that the morphism f : R → M defined by (1)f = am1 + bm2

is a split monomorphism.

(4) lR(a) ∩ lR(b) = 0 and R(a, b) is a direct summand of R⊕R.

(5) lR(a) ∩ lR(b) = 0 and there exist r, s, x0, y0 ∈ R such that
(
ra rb
sa sb

)
is an idempotent matrix and

(x0, y0)

(
ra rb
sa sb

)
= (a, b).

(6) lR(a)∩lR(b) = 0 and there exist r, s ∈ R such that rR(r)∩rR(s) = 0
and

(
ra rb
sa sb

)
is an idempotent matrix.

(7) 〈a+ J(R), b+ J(R)〉 is a right coprime pair in R/J(R).

If R is von Neumann regular, or RR satisfies (C3) and a and b are
idempotent elements, the preceding conditions are equivalent to:

(8) lR(a) ∩ lR(b) = 0.

Proof: (1) ⇒ (2) Suppose that 〈a, b〉 is a right coprime pair. Then the
morphism k : R ⊕ R → R given by (x, y)k = xr + ys is a splitting of i,
where r and s are scalars satisfying 1 = ar + bs.

(2) ⇒ (3) Trivial.

(3) ⇒ (1) Note that if g splits f , then

1 = (1)fg = a(m1)g + b(m2)g,

which implies that 〈a, b〉 is a right coprime pair.

(2)⇔ (4) The equivalence follows from the fact that Ker i = lR(a)∩lR(b)
and Im i = R(a, b).

(4) ⇒ (5) If R(a, b) is a direct summand of R ⊕ R, there exists an
idempotent endomorphism h of R ⊕ R such that Imh = R(a, b). The
endomorphism h is of the form

(x, y)h = (x, y)

(
u v
w t

)
for some idempotent matrix ( u v

w t ) with entries in R. Using that (1, 0)h
and (0, 1)h belong to R(a, b) we can find r, s ∈ R such that u = ra,



546 M. Cortés-Izurdiaga, P. A. Guil Asensio

v = rb, w = sa, t = sb. Finally, since (a, b) ∈ Imh, there exist x0, y0 ∈ R
such that

(x0, y0)

(
ra rb
sa sb

)
= (a, b).

(5) ⇒ (4) The endomorphism h of R⊕R given by

(x, y)h = (x, y)

(
ra rb
sa sb

)
for all x, y ∈ R is idempotent with Imh = R(a, b). Then, R(a, b) is a
direct summand of R⊕R.

(1)⇒ (6) Since i is injective, 0 = Ker i = lR(a)∩lR(b). Now take r, s ∈ R
such that ar + bs = 1 and note that(

ra rb
sa sb

)2

=

(
r(ar + bs)a r(ar + bs)b
s(ar + bs)a s(ar + bs)b

)
=

(
ra rb
sa sb

)
.

Moreover, since 〈r, s〉 is a left coprime pair, it satisfies the dual of (2)
and j : R→ R⊕R given by j(x) = (rx, sx) is injective. This means that
rR(r) ∩ rR(s) = 0.

(6) ⇒ (1) Using that the matrix is idempotent we obtain the identities

(ra)2 + rbsa = ra,

rarb+ rbsb = rb,

sara+ sbsa = sa,

sarb+ (sb)2 = sb.

The first two identities together with lR(a) ∩ lR(b) = 0 give that rar +
rbs−r = 0. Similarly, from the last two identities we get that sar+sbs−
s = 0. Now, using that rR(r) ∩ rR(s) = 0 we obtain that ar + bs = 1.
That is, 〈a, b〉 is a right coprime pair.

(1) ⇒ (7) This is trivial.

(7) ⇒ (1) Note that (7) implies that aR + bR + J(R) = R. Then, by
Nakayama’s lemma, aR+ bR = R as well.

(4) ⇒ (8) Trivial.

(8) ⇒ (1) If R is von Neumann regular, then R(a, b) is always a direct
summand of R⊕R. Consequently, 〈a, b〉 is a right coprime pair by (4).

Finally, if RR satisfies (C3) and a and b are idempotents satisfying (5),
then R(1− a)∩R(1− b) = 0. By condition (C3), R(1− a) +R(1− b) is
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a direct summand of R. Therefore, 〈a, b〉 is a right coprime pair by [21,
Lemma 12].

By a minimal coprime pair we mean a right coprime pair which is
minimal in RCP(R). We will use the following description of minimal
coprime pairs (see [8, Proposition 3]).

Proposition 2.4. Let 〈a, b〉 be a right coprime pair. The following as-
sertions are equivalent:

(1) The coprime pair 〈a, b〉 is minimal.
(2) There exists an idempotent element e such that 〈a, b〉 = 〈e, 1− e〉.
(3) There exist r, s ∈ R such that a = ara, b = bsb (i.e., 〈a, b〉 is

regular), and arbs = bsar = 0.

Proof: In order to prove (1) ⇒ (2), suppose that 〈a, b〉 is a minimal
coprime pair and write 1 = ar + bs. Then 〈ar, bs〉 ≤ 〈a, b〉 and, since
〈a, b〉 is minimal, 〈ar, bs〉 is also minimal. By [8, Proposition 3] both ar
and bs are idempotents.

(2) ⇒ (3) Write e = ar, a = er′, 1 − e = bs, and b = (1 − e)s′. Then
a = ara, b = bsb, and arbs = bsar = 0.

(3) ⇒ (1) By (3), ar and bs are orthogonal idempotents with arR = aR
and bsR = bR. Then arR ⊕ bsR = R. This means that 〈ar, bs〉 = 〈a, b〉
is a minimal right coprime pair.

We now obtain some characterizations of rings R in terms of the
properties of their poset RCP(R). Recall from the introduction that R
is called an exchange ring if R has the finite exchange property as a right
(equivalently, left) module, that is, for any moduleX and decompositions

X = M ⊕N = A⊕B
with M ∼= RR, there exist submodules A′ ≤ A and B′ ≤ B such that
X = M ⊕ A′ ⊕ B′. Moreover, R is said to be right quasi-duo if every
maximal right ideal is a left ideal.

Proposition 2.5. Let R be a ring. Then:

(1) RR is indecomposable if and only if (RCP(R),≤) has exactly two
minimal elements.

(2) The following assertions are equivalent:
(a) R is local.
(b) Every right coprime pair is trivial.
(c) The following two conditions are satisfied:

(i) RCP(R) has exactly two minimal elements.
(ii) For each 〈a, b〉 ∈ RCP(R), there exists a minimal right

coprime pair 〈c, d〉 such that 〈c, d〉 ≤ 〈a, b〉.
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(3) R is left perfect if and only if R has DCC on right coprime pairs.
(4) R is von Neumann regular if and only if every right coprime pair

is regular.
(5) R is an exchange ring if and only if for every right coprime

pair 〈a, b〉 there exists a minimal right coprime pair 〈c, d〉 with
〈c, d〉 ≤ 〈a, b〉.

(6) R is right quasi-duo if and only if every left coprime pair is a right
coprime pair.

Proof: (1) Note first that the right coprime pairs 〈1, 0〉 and 〈0, 1〉 are
always minimal in RCP(R).

Suppose now that RR is indecomposable and let 〈a, b〉 ∈ RCP(R) be
minimal. By Proposition 2.4, aR⊕ bR = R. Since R is indecomposable,
aR = R or bR = R. In the first case, 〈1, 0〉 = 〈a, b〉. And in the second,
〈0, 1〉 = 〈a, b〉.

Assume now that 〈1, 0〉 and 〈0, 1〉 are the only minimal elements of
RCP(R) and let e ∈ R be an idempotent. As 〈e, 1−e〉 is a minimal right
coprime pair in RCP(R) by Proposition 2.4, we get that 〈e, 1 − e〉 =
〈1, 0〉 or 〈e, 1 − e〉 = 〈0, 1〉, which means that e ∈ {0, 1}. Thus, RR is
indecomposable.

(2) That (a) ⇔ (b) follows from the fact that R is local if and only if
every proper right ideal of R is superfluous.

(b) ⇒ (c) Trivial, since the hypotheses imply that 〈0, 1〉 ≤ 〈a, b〉 or
〈1, 0〉 ≤ 〈a, b〉 for any right coprime pair 〈a, b〉.

(c)⇒ (a) First, note that 〈1, 0〉 and 〈0, 1〉 are the only minimal elements
in RCP(R). Choose two right ideals I and K of R such that I+K = R.
Then 1 = y+k for some y ∈ I and k ∈ K. By hypothesis, 〈1, 0〉 ≤ 〈y, k〉
or 〈0, 1〉 ≤ 〈y, k〉, which implies that 〈y, k〉 is trivial. This means that
I = R or K = R and, consequently, that R is local.

(3) If 〈a0, b0〉 ≥ 〈a1, b1〉 ≥ 〈a2, b2〉 ≥ · · · is a countable descending chain
of right coprime pairs, then, since R is left perfect, both chains a0R ≥
a1R ≥ · · · and b0R ≥ b1R ≥ · · · stabilize. In particular, there exist
an n < ω such that 〈an, bn〉 = 〈an+kbn+k〉 for each k < ω.

Conversely, if R has DCC on right coprime pairs and a0R ≥ a1R ≥
a2R ≥ · · · is a descending chain of cyclic right ideals, then the chain of
right coprime pairs

〈a0, 1〉 ≥ 〈a1, 1〉 ≥ 〈a2, 1〉 ≥ · · ·

stabilizes, which implies that there exists an n < ω such that anR =
an+kR for each k < ω.
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(4) Trivial.

(5) Suppose that R is an exchange ring and let 〈a, b〉 be a right coprime
pair. Writing 1 = ar + bs for some r, s ∈ R, we get that 〈ar, 1 − ar〉 ≤
〈a, b〉. Now, by [15, Theorem 2.1], there exists an idempotent e with
eR ≤ arR and (1− e)R ≤ (1− ar)R. By Proposition 2.4, 〈e, 1− e〉 is a
minimal right coprime pair which satisfies 〈e, 1− e〉 ≤ 〈a, b〉.

Conversely, given x∈R, there exists a minimal right coprime pair 〈c, d〉
with 〈c, d〉 ≤ 〈x, 1−x〉. By Proposition 2.4, there exists an idempotent e
such that 〈c, d〉 = 〈e, 1 − e〉. Again by [15, Theorem 2.1], this implies
that R is an exchange ring.

(6) This is proved in [12, Theorem 3.2].

Remark 2.6. Note thatR is local if and only ifR is exchange and RCP(R)
has exactly two minimal elements.

3. Strong exchange rings. Examples

As we mentioned in the introduction, one of the key ingredients
in [8] is that certain descending chains of right coprime pairs have lower
bounds. In this section, we give the central notion of compatible descend-
ing chains of right coprime pairs, and study their lower bounds.

Definition 3.1. A compatible descending chain of right coprime pairs is
a chain indexed by an ordinal κ of right coprime pairs, {pα |α<κ}, such
that, for each α < κ, there exists a pair of generators (aα, bα) of pα,
and families of scalars {rαβ | α < β} and {sαβ | α < β}, satisfying the
following two conditions for each ordinal α < γ < β with β < κ.

(1) aβ = aαrαβ and bβ = bαsαβ ;
(2) rαβ = rαγrγβ and sαβ = sαγsγβ .

From now on, if {〈aα, bα〉 | α < κ} is a compatible descending chain of
right coprime pairs, we will assume that (aα, bα) is the pair of generators
satisfying the compatibility condition of the preceding definition.

Of course, we could have defined descending chains with the index set
being a totally ordered set instead of an ordinal. However, since every
totally ordered set contains a cofinal well-ordered subset (see e.g. [17,
Theorem 36]), we can always assume that the index set of the chain is a
well-ordered set.

We are interested in studying when these chains have lower bounds
in RCP(R). A minimal lower bound of a chain is a lower bound of the
chain that is a minimal element in RCP(R).
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Proposition 3.2. Let {〈aα, bα〉 | α < κ} be a descending chain of right
coprime pairs. Then:

(1) The chain has a lower bound if and only if⋂
α<κ

aαR+
⋂
α<κ

bαR = R.

(2) If 〈aα, bα〉 is regular for each α < κ, then the chain is compatible.
In particular, every descending chain of right coprime pairs in a
von Neumann regular ring is compatible.

(3) If R is von Neumann regular, the following are equivalent:
(a) The chain has a lower bound.
(b) There exist a, b ∈ R with lR(a) ∩ lR(b) = 0,

∑
α<κ lR(aα) ≤

lR(a), and
∑
α<κ lR(bα) ≤ lR(b).

Proof: (1) If the chain has a lower bound, then trivially
⋂
α<κ aαR +⋂

α<κ bαR = R. Conversely, write 1 = a + b with a ∈
⋂
α<κ aαR and

b ∈
⋂
α<κ bαR. Then 〈a, b〉 is a right coprime pair and a lower bound of

the chain.

(2) Since 〈aα, bα〉 is regular, we may assume that aα and bα are idem-
potent elements for each α < κ. Given α < β, we have that aαaβ = aβ ,
since aβ = aαr for some r ∈ R. Then the families of scalars {rαβ | α < β}
and {sαβ | α < β}, given by rαβ = aβ and sαβ = bβ , for each pair α < β,
make the chain compatible.

(3) Again, we may assume that aα and bα are idempotent elements for
each α.

(a)⇒ (b) Take 〈a, b〉 a lower bound of the chain. Then lR(a)∩ lR(b) = 0
by Proposition 2.3. Moreover, the inclusions⋂

α<κ

aαR ≥ aR and
⋂
α<κ

bαR ≥ bR

imply, by [1, Propositions 2.15 and 2.16], that∑
α<κ

lR(aαR) ≤ lR

(⋂
α<κ

aαR

)
≤ lR(a) and

∑
α<κ

lR(bαR) ≤ lR

(⋂
α<κ

bαR

)
≤ lR(b).

(b) ⇒ (a) Since R is von Neumann regular, we may assume that a
and b are idempotents. By Proposition 2.3, 〈a, b〉 is a right coprime pair.
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Moreover, since aR = rRlR(a) and aαR = rRlR(aαR) for each α < κ,
we get, by [1, Propositions 2.15 and 2.16], that

aR = rRlR(a) ≤ rR

(∑
α<κ

lR(aαR)

)
=
⋂
α<κ

rRlR(aα) =
⋂
α<κ

aαR.

And, similarly,

bR ≤
⋂
α<κ

bαR.

This means that 〈a, b〉 is a lower bound of the chain.

Motivated by the preceding results, we introduce the following natural
notion of strong exchange rings:

Definition 3.3. We say that a ring R is right strong exchange if every
compatible descending chain of right coprime pairs has a minimal lower
bound.

Examples 3.4. (1) Let R be an integral domain. Then, for every pair
of elements a and b such that a ∈ bR, there exists a unique r ∈ R
such that a = br. As a consequence, every descending chain of right
coprime pairs is compatible.

(2) Z is not a strong exchange ring since, for instance, if p and q are
different primes, the compatible descending chain {〈pn, qn〉 | n <
ω} does not have a lower bound.

We show an example of an exchange ring which is not right strong
exchange. Actually, we are going to construct, for any infinite regular
cardinal κ, a von Neumann regular ring S such that all compatible de-
scending chains of right coprime pairs of cardinality smaller than κ have
minimal lower bounds, but there does exist a chain of length κ with no
lower bound.

Recall that a cardinal κ is called singular if there exists a cardinal µ <
κ and a family of cardinals {κα | α < µ} with κα < κ for each α, such
that κ =

∑
α<µ κα. A cardinal is called regular when it is not singular.

Example 3.5. Let κ be an infinite regular cardinal. There exists a von
Neumann regular ring S satisfying that:

(1) Every compatible descending chain of right coprime pairs of length
smaller than κ has a minimal lower bound.

(2) There exists a compatible descending chain of right coprime pairs
with no lower bound.

Since every von Neumann regular ring is an exchange ring, this example
shows that exchange rings do not need to be strong exchange.
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Proof: Let F be a field and S the subring of Fκ given by

{x ∈ Fκ | ∃C ⊆ κ with |C| < κ and x(α) = x(β)∀α, β ∈ κ \ C}.

It is clear that S is von Neumann regular, since for any x ∈ S, x is
of the form xyx, where, for each α, y(α) = x(α)−1 if x(α) 6= 0, and
y(α) = 0 otherwise.

(1) First note that x ∈ S is idempotent if and only if x(α) ∈ {0, 1} for
each α < κ and one of the sets, {α < κ | x(α) = 1} or {α < κ | x(α) = 0},
has cardinality smaller than κ. Indeed, if Γ is any subset of κ and we
denote by eΓ the element of Fκ satisfying that

eΓ(α) =

{
1 if α ∈ Γ,

0 if α /∈ Γ,

then the set of idempotents of S is {eΓ | Γ ⊆ κ and |Γ| < κ or |κ \ Γ| <
κ}.

Let us choose an ordinal λ < κ and a descending chain of right coprime
pairs {〈aα, bα〉 | α < λ}. We may assume that both aα and bα are
idempotents. Since 〈aα, bα〉 is a right coprime pair,

(∗) supp(aα) ∪ supp(bα) = κ,

for each α < λ.
Let us denote Γ =

⋂
α<κ supp(aα) and ∆ =

⋂
α<κ supp(bα). We claim

that

(a) Γ ∪∆ = κ.
(b) Either Γ or κ \ Γ has cardinality smaller than κ. And, similarly,

either ∆ or κ \∆ has cardinality smaller than κ.

Assume that this claim is already proved and choose the idempotents
eΓ and e∆. They belong to S by (b). And 〈eΓ, e∆〉 is a right coprime
pair by (a), which is clearly a lower bound of the initial chain. Therefore,
〈eΓ, e∆\Γ〉 is a minimal lower bound of the chain.

Let us prove our claim. In order to prove (a), take x ∈ κ. Then
x ∈ supp(a0) or x ∈ supp(b0) by equation (∗). Suppose x ∈ supp(a0).
If x /∈ supp(b0), then x ∈ Γ by (∗) and we are done. If x ∈ supp(b0),
we have two possibilities. If x ∈ supp(aα) ∩ supp(bα) for each α, then
x ∈ Γ∩∆ and we are done. Otherwise, take α the minimum ordinal such
that x /∈ supp(aα) ∩ supp(bα) and assume, by (∗), that x ∈ supp(aα).
Then, again by (∗), x ∈ Γ. This proves claim (a).

In order to prove (b), let us check that either Γ or κ\Γ has cardinality
smaller than κ. The proof involving ∆ is similar. If there exists an α < κ
such that |supp(aα)| < κ, then Γ ⊆ supp(aα) has cardinality smaller
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than κ. If |supp(aα)| = κ for each α < λ, then |κ \ supp(aα)| < κ.
Therefore,

|κ \ Γ| ≤
∑
α<λ

|κ \ supp(aα)| < κ

since κ is regular and λ < κ.

(2) Let I1 and I2 be two subsets of κ such that |I1| = |I2| = κ, I1∩I2 = ∅,
and κ = I1∪I2. Consider in I1 and I2 the orders induced by κ and set, for
each α < κ, Γα = κ\{β ∈ I1 | β < α}, and ∆α = κ\{γ ∈ I2 | γ < α}. We
obtain a descending chain of right coprime pairs {〈eΓα , e∆α

〉 | α < κ}.
Let us check that this chain does not have a lower bound. Suppose that
〈a, b〉 is a lower bound. Then

(a) supp(a) ⊆
⋂
α<κ supp(eΓα),

(b) supp(b) ⊆
⋂
α<κ supp(e∆α), and

(c) supp(a) ∪ supp(b) = κ.

Since I1 ∩
(⋂

α<κ supp(eΓα)
)

= ∅, (a) implies that |{α < κ | a(α) =

0}| = κ. Since I2∩
(⋂

α<κ supp(e∆α
)
)

= ∅, (b) implies that I2∩supp(b) =
∅, so that I2 ⊆ supp(a) by (c). Then, |supp(a)| = κ.

We have proved that |supp(a)| = |{α < κ | a(α) = 0}| = κ, which
contradicts that a ∈ R.

Now we show, using ideas from [8, Lemma 2], that left cotorsion rings
are right strong exchange. Recall that R is left cotorsion if Ext1

R(F,R)=0
for each flat left R-module F (see e.g. [8]). Let us begin by discussing
the relationship between compatible descending chains of right coprime
pairs and certain direct limits.

Let {〈aα, bα〉 | α < κ} be a compatible descending chain of right co-
prime pairs, and choose families of scalars {rαβ | α < β} and {sαβ |
α < β} witnessing the compatibility of the chain. In a similar way as
in [8, Lemma 2], we can construct a direct system of split exact se-
quences (Σα, (fαβ , gαβ , hαβ) | α < β) in R-Mod, associated to this de-
scending chain and the families of scalars, as follows. For each α, Σα is
the short exact sequence

0 R R⊕R Zα 0,
kα pα

where (x)kα=(xaα, xbα) for each x ∈ R, and pα is a cokernel of kα. By
Proposition 2.3, Σα is split.

The morphisms fαβ , gαβ , and hαβ are defined in the following way:

• fαβ is the identity;
• (x, y)gαβ = (xrαβ , ysαβ);
• hαβ is the unique morphism from Zα to Zβ induced by gαβ .
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Note that, as the tensor product commutes with direct limits, the
direct limit of the system of sequences is of the form

0 R F1 ⊕ F2 Z 0,k p

with F1 and F2 flat modules.

Theorem 3.6. Let R be a left cotorsion ring. Then R is right strong
exchange.

Proof: Suppose that the result is not true, that is, that R is not right
strong exchange. Then there exists a compatible descending chain of
right coprime pairs, {〈aα, bα〉 | α < κ}, which does not have a minimal
lower bound.

For each ordinal α, we are going to construct a right coprime
pair 〈xα, yα〉 such that 〈xα, yα〉 < 〈xγ , yγ〉 for each γ < α and the
chain {〈xγ , yγ〉 | γ ≤ α} is compatible. This is a contradiction, since
it implies that the cardinality of RCP(R) is bigger than the cardinality
of α for any ordinal α.

We will make our construction by transfinite induction on all ordi-
nals α. If α < κ, set xα = aα and yα = bα. Let us now choose an
ordinal α ≥ κ and assume that we have constructed right coprime
pairs 〈xγ , yγ〉 for each γ < α satisfying the above condition. Let us
distinguish between two possibilities.

Suppose first that α is a successor ordinal, say α = β+ 1. As 〈xβ , yβ〉
is not minimal, by the election of the initial chain, there exists a right
coprime pair 〈xα, yα〉 ∈ RCP(R) strictly smaller than 〈xβ , yβ〉. Clearly,
the chain {〈xγ , yγ〉 | γ ≤ α} is compatible.

Suppose now that α is a limit ordinal. Choose families of scalars,
{rαβ | α < β} and {sαβ | α < β}, witnessing the compatibility of the
chain, and consider the direct system of splitting short exact sequences,
(Σγ , (fγβ , gγβ , hγβ) | γ < β < α), associated to this descending chain.
As shown before, the direct limit of the system is of the form

0 R F1 ⊕ F2 Z 0,k p

with F1 and F2 flat modules. This sequence is pure, since all the se-
quences in the system are split (see e.g. [19, 34.5]). This implies that Z
is flat by [19, 36.6]. We now deduce that this sequence is split, since R
is left cotorsion.

Take a splitting k′ of k and denote by fγ : R ⊕ R → F1 ⊕ F2 the
canonical map associated to the direct limit, for each γ < α. Write
(1)k = z1 +z2 for some z1 ∈ F1 and z2 ∈ F2 and note that (xγ , 0)fγ = z1

and (0, yγ)fγ = z2 for each γ < α. Denote xα = (z1)k′, yα = (z2)k′,
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rγ = (1, 0)fγk
′, and sγ = (0, 1)fγk

′ for each γ < α. Then 〈xα, yα〉 is a
right coprime pair since

1 = (1)kk′ = (z1 + z2)k′ = xα + yα.

Moreover, for each γ < α,

xγrγ = (xγ , 0)fγk
′ = xα and yγsγ = (0, yγ)fγk

′ = yα.

Finally, if γ < β,

rγβrβ = (1, 0)fγβfβk
′ = (1, 0)fγk

′ = rγ

and
sγβrβ = (0, 1)fγβfβk

′ = (0, 1)fγk
′ = sγ .

These identities mean that 〈xα, yα〉 is a lower bound of the chain
and that {〈xγ , yγ〉 | γ ≤ α} is a compatible descending chain of right
coprime pairs. Moreover, 〈xα, yα〉 < 〈xγ , yγ〉 for each γ < α, since the
equality 〈xα, yα〉 = 〈xγ , yγ〉 for some γ < α implies that 〈xγ , yγ〉 =
〈xγ+1, yγ+1〉, which is a contradiction. This finishes the construction.

Now we prove that local rings are right strong exchange.

Proposition 3.7. Every local ring is right (and left) strong exchange.

Proof: Take a compatible descending chain of right coprime pairs,
{〈aα, bα〉 | α < κ}. If 〈aα, bα〉 = 〈1, 1〉 for each α < κ, then 〈1, 0〉 is
trivially a minimal lower bound of the chain.

So we may assume that there exists an α < κ such that 〈aα, bα〉 6=
〈1, 1〉. Since 〈aα, bα〉 is a trivial coprime pair by Proposition 2.5, either
aα or bα is a unit. Suppose, without loss of generality, that aα is a unit.
Then bα ∈ J(R). We claim that aβ is a unit for each β < κ. Suppose, on
the contrary, that there exists a β < κ such that aβ is not a unit. Then
aβ ∈ J(R). Choosing γ = max{α, β}, we deduce that aγ ∈ J(R) (since
aγ ∈ aβR) and bγ ∈ J(R) (since bγ ∈ bαR). But then, 〈aγ , bγ〉 cannot
be a right coprime pair, a contradiction that proves our claim.

Consequently, aα is a unit for each α < κ and thus 〈1, 0〉 is a minimal
lower bound of the chain.

Using this result we can show that the class of left cotorsion rings is
strictly contained in the class of right strong exchange rings.

Example 3.8. Let R be a local Noetherian commutative ring which
is not complete in the I-adic topology. As the completion in the I-adic
topology of R is the pure-injective envelope of R (see e.g. [9, Exam-
ple 7.7]), this means that R cannot be cotorsion by [20, Lemma 3.1.6].
However, R is strong exchange by Proposition 3.7.
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We close this section by showing that the endomorphism ring of a
continuous left R-module is right strong exchange. Recall that a left
R-module M is called continuous when it satisfies the following two
conditions (see e.g. [13, 16]):

(C1) Every submodule of M is essential in a direct summand.
(C2) Any submodule of M which is isomorphic to a direct summand

of M is itself a direct summand.

For the rest of this section, let us fix a left R-module M and an
injective envelope u : M → E of M . We will denote by T and S the
endomorphism rings of M and E, respectively. For every f ∈ T , we

can use the injectivity of E to find an extension f̂ of f to E, that is, a

morphism f̂ : E → E such that uf̂ = fu.

Let f, g ∈ T and take two extensions, f̂ and ĝ, of these morphisms

to E. In general, it may happen that f̂S ≤ ĝS but fT � gT . The lemma
below shows that this is not the case when M is continuous and f is
idempotent.

Lemma 3.9. Let M be a continuous left R-module and f, e ∈ T with

e idempotent. Take f̂ and ê, extensions of f and e to E, respectively. If

êS ≤ f̂S, then eT ≤ fT .

Proof: There exists, by hypothesis, an h ∈ S such that ê = f̂h. The
restriction of f to Im e is a monomorphism from Im e to M with im-

age Im ef , since if x ∈M satisfies (x)ef = 0, then 0 = (x)êf̂h = (x)êê =
(x)ee = (x)e. We can now apply (C2) to conclude that Im ef is a direct
summand of M .

Furthermore, by condition (C1), we can find a direct summand K
of M such that Im(1−e)f is essential in K. We claim that Im ef∩K = 0.
Suppose, on the contrary, that there exists 0 6= y ∈ Im ef ∩ K. Write
y = (x)ef for some x ∈ M , and note that, as Im(1 − e)f is essential
in K, there exist z ∈M and r ∈ R such that 0 6= (rx)ef = (z)(1− e)f .
Applying h to this identity we get, on the one hand, that (rx)efh =
(rx)e 6= 0 and, on the other, that (z)(1 − e)fh = (z)(1 − e)e = 0, a
contradiction that proves our claim.

We can now apply (C3) to conclude that Im ef ⊕K is a direct sum-
mand ofM . Thus, there exists a submodule L ofM such that Im ef⊕K⊕
L = M . Consider the endomorphism h′ of M whose restriction to Im ef
is equal to h (note that Im efh ≤ M), and its restriction to K ⊕ L is
zero. Then, for each x ∈M ,

(x)fh′ = ((x)e+ (x)(1− e))fh′ = (x)efh′ + (x)(1− e)fh′ = (x)e.

This means that fh′ = e and that eT ≤ fT .
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The following lemma allows us to construct right coprime pairs in S
from right coprime pairs in T .

Lemma 3.10. Let 〈f, g〉 be a right coprime pair in T and f̂ and ĝ

extensions of f and g to E, respectively. Then 〈f̂ , ĝ〉 is a right coprime
pair in S.

Proof: Take r, s ∈ T such that fr + gs = 1M . Then u(f̂ r̂ + ĝŝ) = u.

As u is an injective envelope, f̂ r̂ + ĝŝ is an isomorphism and thus there

exists an h ∈ S such that 1E = f̂ r̂h + ĝŝh. This means that 〈f̂ , ĝ〉 is a
right coprime pair in S.

Theorem 3.11. Let M be a continuous left R-module. Then EndR(M)
is right strong exchange.

Proof: We follow the notation fixed on p. 556. Take a compatible de-
scending chain of right coprime pairs in T , {〈fα, gα〉 | α < κ}, and
families of elements of T , {rαβ | α < β}, and {sαβ | α < β}, making the
chain compatible. First, we are going to construct families of endomor-
phisms of E, {r̂αβ | α < β}, and {ŝαβ | α < β}, extending the families
rαβ and sαβ , respectively, to E, such that

(a) r̂αγ r̂γβ = r̂αβ and
(b) ŝαγ ŝγβ = ŝαβ ,

for each α < γ < β. We make the construction of {r̂αβ | α < β} by
transfinite induction on β. The construction of the family {ŝαβ | α < β}
is made similarly.

If β = 0, there is nothing to construct. If β = 1, choose, using the
injectivity of E, an extension r̂01 : E → E of r01.

Let β < κ, and suppose that we have constructed r̂αγ for each α <
γ < β, and let us construct r̂αβ . If β is successor, say β = γ + 1,
take r̂γγ+1 ∈ S an extension of rγγ+1 and define r̂αβ = r̂αγ r̂γβ . It is
easy to check that r̂αβ is an extension of rαβ and that the compatibility
conditions (a) hold.

Suppose now that β is a limit ordinal. We have two direct systems
of left R-modules: S1 = (Mα, rαγ | α < γ ∈ β) and S2 = (Eα, r̂αγ |
α < γ ∈ β), where Mα = M and Eα = E for each α < β. Denote by
(X,mα : M → X | α < β) and (Y, nα : E → Y | α < β) their direct
limits. Since each r̂αγ is an extension of rαγ , u defines a monomor-
phism between the direct systems S1 and S2, which induces a monomor-
phism v : X → Y . Similarly, (rαβ : Mα →M | α < β) is a direct system
of morphisms from S1 to M . So, it induces a morphism r : X → M .
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Finally, using the injectivity of E we can find a r̂ : Y → E making the
diagram

X Y

M E

v

r r̂

u

commutative. Now set r̂αβ = nαr̂ for each α < β. It is easy to check that
r̂αβ is an extension of rαβ that satisfies the compatibility conditions (a).
This finishes the construction.

Now take k0 and l0 extensions of f0 and g0 to endomorphisms of E,
respectively, and define

kα = k0r̂0α and lα = l0ŝ0α

for every α < κ. Since kα and lα are extensions of fα and gα to E,
respectively, 〈kα, lα〉 is a right coprime pair in S by Lemma 3.10. In
this way we obtain a compatible descending chain {〈kα, lα〉 | α < κ}
of right coprime pairs in S. Since S is left pure-injective (in particular,
left cotorsion) by [21, Proposition 3], the chain has a minimal lower
bound 〈k, l〉 by Theorem 3.6. So, there exists an idempotent e of S such
that 〈k, l〉 = 〈e, 1 − e〉 by Proposition 2.4. By [13, Theorem 2.8], there
exists an idempotent e′ ∈ T such that e is an extension of e′ to E and,
consequently, 1− e is also an extension of 1− e′ to E. Since 〈e, 1− e〉 ≤
〈kα, lα〉 for each α < κ, Lemma 3.9 says that 〈e′, 1 − e′〉 ≤ 〈fα, gα〉 for
each α < κ. This means that 〈e′, 1− e′〉 is a minimal right coprime pair
below the initial chain, which concludes the proof.

Corollary 3.12. Suppose that R is a left continuous ring. Then R is a
right strong exchange ring.

Remark 3.13. The converse of this result is not true. For instance, a
commutative local domain is strong exchange by Proposition 2.5. But it
is not continuous, unless it is a field, since it does not satisfy (C2).

Furthermore, any von Neumann regular left continuous ring which is
not left self-injective (see e.g. [6, Example 13.8]) is another example of
a right strong exchange ring which is not left cotorsion.

4. Strong exchange rings. Main properties

We have proved in the previous section that local, left cotorsion,
and left continuous rings are right strong exchange. All these rings are
semiregular (see [8, Theorem 6] and [13, Proposition 3.5]). We are going
to show in this section that right strong exchange rings are, in general,
semiregular. Let us begin with a couple of technical lemmas that we will
need later on.
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Lemma 4.1. Let 〈a, b〉 be a right coprime pair such that aR∩bR ≤ J(R).
Then (aR+ J(R)) ∩ (bR+ J(R)) ≤ J(R).

Proof: Let y ∈ (aR + J(R)) ∩ (bR + J(R)) and take r1, s2 ∈ R, j1, j2 ∈
J(R) such that y = ar1 + j1 = bs2 + j2.

Since 〈a, b〉 is a right coprime pair, there exist s, r ∈ R such that
1 = ar + bs. Then bsa = a(1 − ra) ∈ aR ∩ bR ≤ J(R) and arb =
b(1− sb) ∈ aR ∩ bR ≤ J(R). Consequently, (1− ar)ar1 ∈ J(R).

Moreover, multiplying the identity ar1 = bs2 +j2−j1 by ar and using
that arb ∈ J(R), we conclude that arar1 ∈ J(R).

Finally, ar1 = (1−ar)ar1+arar1∈J(R), so that y ∈ J(R) as well.

Lemma 4.2. Let 〈a, b〉 be a right coprime pair.

(1) If aR ∩ bR is not contained in J(bR), then there exists a z ∈ R
such that 〈a, z〉 is a right coprime pair strictly less than 〈a, b〉.

(2) If aR ∩ bR is not contained in J(R), there exists a right coprime
pair 〈x, y〉 strictly less than 〈a, b〉 and such that x = a or y = b.

Proof: (1) Choose an x ∈ (aR∩bR)\J(bR). Then xR is not superfluous
in bR and there exists a proper submodule X ≤ bR with xR+X = bR. In
particular, there exists a z ∈ X with xR + zR = bR. Then, as x ∈ aR,
aR + zR = R, which means that 〈a, z〉 is a coprime pair satisfying
〈a, z〉 < 〈a, b〉.

(2) Take x ∈ (aR ∩ bR) \ J(R). We claim that x /∈ J(aR) ∩ J(bR).
Suppose, on the contrary, that x ∈ J(aR) ∩ J(bR) and let X be a right
ideal of R such that xR + X = R. Then, by modularity, aR = xR +
(aR ∩ X) and bR = xR + (bR ∩ X), which implies that aR = aR ∩ X
and bR = bR ∩X, since xR is superfluous in aR and bR. In particular,
R = aR + bR ≤ X. This means that xR is superfluous in R and thus
x ∈ J(R), a contradiction which proves our claim.

Therefore, x does not belong to either J(aR) or J(bR). Now, the
result follows from (1).

Theorem 4.3. Every right strong exchange ring is semiregular.

Proof: First, we claim that for any right coprime pair 〈a, b〉 there exists
an element x such that 〈a, x〉 is a right coprime pair, 〈a, x〉 ≤ 〈a, b〉, and
aR ∩ xR ≤ J(xR).

Suppose that our claim is false. We are going to construct by trans-
finite induction an element bα, for each ordinal α, such that

(a) 〈a, bα〉 is a right coprime pair;
(b) aR ∩ bαR is not contained in J(bαR);
(c) 〈a, bα〉 < 〈a, bγ〉, for each γ < α;
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(d) if α > 0 is limit, then bα is idempotent.

For α = 0, set b0 = b.
Now let α > 0 be an ordinal and assume that we have just constructed,

for each γ < α, elements bγ ∈ R satisfying the above conditions. If α is
successor, say α = β + 1, apply Lemma 4.2 to get an element bα such
that 〈a, bα〉 is a right coprime pair strictly smaller than 〈a, bβ〉. Since we
are assuming that our claim is false, aR ∩ bαR * J(bαR).

Suppose now that α is limit. If the set {γ < α | γ is limit} is not
cofinal in α, then there exists a limit ordinal β < α such that α = β+ω.
Then the descending chain of right coprime pairs, {〈a, bβ+n〉 | n < ω},
is compatible and, by hypothesis, it has a minimal lower bound 〈x, bα〉.
By Proposition 2.4, bα can be chosen to be idempotent. Since xR ≤ aR,
〈a, bα〉 is a right coprime pair below the chain. Moreover, 〈a, bα〉 < 〈a, bγ〉
for each γ < α, since the identity 〈a, bα〉 = 〈a, bγ〉 for some γ < α
implies that 〈a, bγ〉 = 〈a, bγ+1〉, a contradiction. Finally, aR∩ bαR is not
contained in J(bαR) since we are supposing that our initial claim is false.

It remains to prove the case in which {γ < α | γ is limit} is cofi-
nal in α. If this holds, we have the descending chain of right coprime
pairs {〈a, bγ〉 | γ < α limit}. The arguments used in the proof of Propo-
sition 3.2 show that this chain is compatible. So we can find by hypothesis
a minimal lower bound 〈x, bα〉, in which bα is idempotent by Proposi-
tion 3.2. Reasoning as above, we get that 〈a, bα〉 is a right coprime pair
below the chain such that aR ∩ bαR * J(bαR). This finishes the con-
struction.

We have constructed, for any ordinal α, a right coprime pair 〈a, bα〉
such that 〈a, bα〉 < 〈a, bβ〉 if α < β. In particular, this means that
bα 6= bβ if α < β, and therefore the cardinality of R must be at least the
cardinality of α for any ordinal α, a contradiction that proves our initial
claim.

Finally, given any a ∈ R, we can apply our claim to the right coprime
pair 〈a, 1−a〉 to get an element x ∈ R such that 〈a, x〉 is a right coprime
pair with aR ∩ xR ≤ J(xR) and 〈a, x〉 ≤ 〈a, 1− a〉. By Lemma 4.1,

(a+ J(R))R/J(R)⊕ (x+ J(R))R/J(R) = R/J(R),

which means that (a + J(R))R/J(R) is a direct summand of R/J(R).
This proves that R/J(R) is a von Neumann regular ring.

In order to prove that idempotents lift modulo the Jacobson radical
of R, note that R is an exchange ring and that exchange rings have this
property [15, Theorem 2.1 and Proposition 1.5].
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The converse of this result is not true, since there exist von Neumann
regular rings which are not right strong exchange (see Example 3.5).

Remark 4.4. We have proved in Section 3 that local, left self-injective,
left pure-injective, left cotorsion, and left continuous rings are right
strong exchange. All these rings satisfy that they are left continuous mod-
ulo their Jacobson radical (see [8, Theorem 8] and [13, Theorem 3.11]).
But we do not know whether any right strong exchange rings enjoy this
property.

If we strengthen the definition of a right strong exchange ring a little
bit to include all compatible descending systems of right coprime pairs
instead of just compatible descending chains of right coprime pairs, we
can prove that the ring is left continuous modulo its Jacobson radical.
However, we do not know whether any left continuous ring satisfies this
last condition.

Let us state the ideas of the preceding remark more precisely.

Definition 4.5. Let R be a ring.

(1) A descending system of right coprime pairs is a downwards directed
subset of RCP(R), i.e., a subset {pi | i ∈ I} ⊆ RCP(R) indexed by
a directed set I such that pj ≤ pi whenever i ≤ j.

(2) A descending system of right coprime pairs {pi | i ∈ I} is called
compatible if for each i ∈ I there exists a pair of generators (ai, bi)
of pi, and families of scalars {rij | i < j} and {sij | i < j},
satisfying that
(a) aj = airij and bj = bisij ;
(b) rik = rijrjk and sik = sijsjk for each i < j < k in I.

As in the case of chains, if {〈ai, bi〉 | i ∈ I} is a compatible descend-
ing system of right coprime pairs, we will assume that (ai, bi) is the
pair of generators satisfying the compatibility condition of the preceding
definition.

Recall that the singular submodule of a right R-module M is its sub-
module

Z(M) = {x ∈M | rR(x) is essential in RR}.
A module M is called singular if M = Z(M) and non-singular if Z(M) =
0.

Lemma 4.6. Let M be a non-singular module and K, N , and L, sub-
modules of M such that both inclusions K ≤ N and K ≤ L are essential.
If M

L is non-singular (for instance, if L is a direct summand of M), then
N ≤ L.
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Proof: SinceK ≤ N∩L ≤ N , we get thatN∩L is essential inN . And, by
[5, Proposition 1.21], N

N∩L is singular. On the other hand, N
N∩L

∼= N+L
L

is non-singular, since it is a submodule of the non-singular module M
L .

Therefore, N
N∩L = 0 and consequently N ≤ L.

Lemma 4.7. Let {ei | i ∈ I} be a family of idempotents of R such that∑
i∈I eiR is essential in RR. Let J ⊆ I and f ∈ R, an idempotent such

that
∑
j∈J ejR ≤ fR. If fei = 0 for each i ∈ I \ J , then

∑
j∈J ejR is

essential in fR.

Proof: Let us choose an r ∈ R such that fr 6= 0. Since
∑
i∈I eiR is

essential in R, there exists an s ∈ R such that 0 6= frs ∈
∑
i∈I eiR.

Write

frs =
∑
i∈I

eiri

for a family {ri | i ∈ I} ⊆ R satisfying that {i ∈ I | ri 6= 0} is finite.
Multiplying this identity by f on the left we obtain that

frs =
∑
j∈J

fejrj .

And, as fej = ej for each j ∈ J , we deduce that fsr ∈
∑
j∈J ejR.

Lemma 4.8. Let R be a von Neumann regular ring, N a non-zero right
ideal of R, and X a set of idempotent elements in N such that

∑
e∈X eR

is direct. Then X is contained in a set of idempotents X ′ of R such that∑
e∈X′ eR is direct and essential in N .

Proof: Consider the set

L=

{
F ⊆N | F consists of idempotents,

∑
e∈F

eR is direct, and X⊆F

}
.

L is an inductive non-empty partially ordered set. Thus, it has a maximal
element X ′ by Zorn’s lemma. Let us check that

∑
e∈X′ eR is essential

in N . For any non-zero x ∈ N , there exists an idempotent f such that
xR = fR. By construction, the sum

∑
e∈X′ eR + fR is not direct, so

there exists an r ∈ R such that 0 6= fr ∈
∑
e∈X′ eR. In particular,

xR ∩
∑
e∈X′ eR 6= 0.

Theorem 4.9. Let R be a ring. If every compatible descending system
of right coprime pairs of R has a minimal lower bound, then R/J(R) is
left continuous.
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Proof: DenoteR/J(R) byR. For every x ∈ R, let x be the corresponding
element in R/J(R). And, for each subset X of R, denote by X the
subset {x | x ∈ X} ⊆ R.

Let I be a left ideal of R. Using Lemma 4.8, and the fact that R is
semiregular by Theorem 4.3, we can find sets of idempotents of R, E,
and F , such that {Re | e ∈ E}∪ {Rf | f ∈ F} is independent,

∑
e∈E Re

is essential in I, and
∑
e∈E Re+

∑
f∈F Rf is essential in R. We may now

apply [21, Lemma 13] to conclude that {Re | e ∈ E} ∪ {Rf | f ∈ E} is
a local direct summand of RR. That is, it is independent and for every
finite subset X ⊆ E ∪ F ,

∑
e∈X Re is a direct summand of R.

For each finite subset X of E, fix an idempotent eX such that∑
e∈X Re = ReX . Similarly, fix an idempotent fY for each finite sub-

set Y of F . Then, for every X ⊆ E and Y ⊆ F finite, ReX ∩ RfY = 0
and ReX +RfY is a direct summand, so that 〈1− eX , 1− fY 〉 is a right
coprime pair by [21, Lemma 12]. It is easy to check that the family

{〈1− eX , 1− fY 〉 | X ⊆ E, Y ⊆ E are finite subsets}
is a compatible descending system of right coprime pairs.

Now, we may apply our hypothesis to find a minimal lower bound 〈a, b〉
of the system which, by Proposition 2.4, must be of the form 〈g, 1−g〉, for
some idempotent element g. Then, g ∈ (1− eX)R and 1− g ∈ (1−fY )R
for each X ⊆ E and Y ⊆ F finite, which implies that eX ∈ R(1 − g)
and fY ∈ Rg. In particular, e ∈ R(1 − g) and f ∈ Rg for each e ∈ E
and f ∈F . Since this implies that f(1−g) = 0 for each f ∈F , Lemma 4.7
claims that

∑
e∈E Re is essential in R(1 − g). Finally, I is essential

in R(1− g) by Lemma 4.6.
We have just proved that R satisfies (C1). Since R is von Neumann

regular by Theorem 4.3, it trivially satisfies (C2). Therefore, R is left
continuous.

We use some ideas in the proof of the preceding result to show that
the strong exchange property is not left-right symmetric.

Example 4.10. Let D be a division ring and V a vector space over D
with infinite countable dimension. Denote by S the endomorphism ring
of V . Then S is left strong exchange but not right strong exchange.

Proof: It is well known, e.g. [5, Proposition 2.23], that S is right self-
injective. By Theorem 3.6, S is left strong exchange.

Let {vn | n < ω} be a basis of V and denote by en : V → V the
endomorphism of V satisfying en(vi) = 0 if i 6= n and en(vn) = vn,
for each n < ω. Moreover, let p : V → V be the endomorphism of V
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such that p(ei) = e0 for each i < ω. As is shown in the proof of [5,
Proposition 2.23],

(⊕
n<ω Sen

)
∩ Sp = 0, which in particular implies,

as a consequence of Proposition 2.3, that
〈
1 −

∑
n≤m en, 1 − p

〉
is a

right coprime pair in S for each m < ω. Then, it is easy to see that{〈
1 −

∑
n≤m en, 1 − p

〉
| m < ω

}
is a (compatible) descending chain of

right coprime pairs in S.
We are going to prove that this chain does not have a minimal lower

bound. Assume, on the contrary, that there exists an idempotent e ∈ S
such that 〈e, 1 − e〉 ≤

〈
1 −

∑
n≤m en, 1 − p

〉
for each m < ω. Then,(∑

n≤m en
)
e = 0 for each m<ω, which implies that

∑
n≤m en ∈ S(1−e).

Now we claim that {(1 − e)(vn) | n < ω} is linearly independent.
Assume, in order to get a contradiction, that there exists m < ω such
that (1− e)(vm) =

∑n
i=1(1− e)(vmi)di for some m1, . . . ,mn ∈ ω − {m}

and d1, . . . , dn ∈ D. Then, since em = s(1− e) for some s ∈ S, we get

vm = em(vm) = s(1−e)(vm) =

n∑
i=1

s(1−e)(vmi)di =

n∑
i=1

em(vmi)di = 0,

which is a contradiction. This proves our claim.
Finally, this claim implies that 1− e is monic and, since it is idempo-

tent, e = 0. But 1 = 1− e ∈ S(1− p), which implies that p = 0 as well.
This is a contradiction.

Now we give a sufficient condition for a strong exchange ring to be
semiperfect.

Theorem 4.11. Suppose that R is a right strong exchange ring with
countably many idempotents. Then R is semiperfect.

Proof: Let us first note that R is semiregular by Theorem 4.3 and
that R/J(R) has countably many idempotents. Suppose that R is not
semiperfect. Then R/J(R) is not semisimple and thus it has infinite
right Goldie dimension. This means that there exists a countable infinite
family {en | n < ω} of non-zero idempotents in R such that the fam-
ily {(en+J(R))R/J(R) | n<ω} is independent. By [6, Proposition 2.14],
we may assume that the family {en + J(R) | n < ω} is orthogonal.

For each infinite subset A ⊂ ω such that ω \ A is infinite, write A =
{in(A) | n < ω} and ω \A = {jn(A) | n < ω}. Define the idempotents

xAn = 1−
n∑
k=0

(eik(A) + J(R)) and yAn = 1−
n∑
k=0

(ejk(A) + J(R))

for any n<ω. We get a descending chain of right coprime pairs, {〈xAn, yAn 〉 |
n < ω}, for which we can find, by hypothesis, a lower bound 〈xA, yA〉.
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Since R/J(R) is von Neumann regular, we can assume that xA and yA

are idempotent elements.
We claim that if A and B are distinct subsets of ω such that ω \ A

and ω \B are infinite, then xA 6= xB . This would prove the result, since
it would imply that the set of idempotents of R is uncountable.

To prove our claim, choose an n ∈ A \ B. Then n ∈ ω \ B and
thus there exist u, v < ω such that n = iu(A) and n = jv(B). Using that
xA ∈ xAuR/J(R) and (en+J(R))xAu = 0, we get that (en+J(R))xA = 0.
Similarly, (en+J(R))yB = 0, since yB ∈ yBv R/J(R) and (en+J(R))yBv =
0. Now, writing 1 + J(R) = xBr + yBs for r, s ∈ R, we get that en +
J(R) = (en+J(R))xBr, from which we deduce that (en+J(R))xB 6= 0.
As (en + J(R))xA = 0, we conclude that xA 6= xB .

Corollary 4.12. Any right strong exchange ring with countably many
idempotent elements and zero Jacobson radical is semisimple. In partic-
ular, any regular left continuous ring with countably many idempotents
is semisimple.

Proof: R is semiperfect by the above theorem. So it is semisimple as its
Jacobson radical is zero. Finally, note that, if R is a left continuous von
Neumann regular ring, then it satisfies these conditions by Theorem 3.11.

Remark 4.13. The following alternative proof of the last assertion of
this corollary was communicated to us by K. Goodearl. Suppose that
R is a left continuous ring which is not semisimple. Then, by [6, Corol-
lary 2.16], R has an infinite set of non-zero orthogonal idempotents,
{en | n < ω}. Let Q be the maximal left quotient ring of R. Since Q is
left self-injective, for every subset J of ω, there exists an idempotent eJ
of Q such that QeJ is an injective hull of

⊕
j∈J Qej . The set {eJ | J ⊆ ω}

is uncountable, which is a contradiction, since R contains all the idem-
potent elements of Q by [6, Theorem 13.13].

We close this paper by suggesting some new lines of research. As we
mentioned in the introduction, it is not known whether a module M
satisfying the finite exchange property satisfies the full exchange prop-
erty. Furthermore, Warfield proved that a module M satisfies the finite
exchange property if and only if its endomorphism ring is exchange.
Therefore, it is natural to ask whether a module M satisfies the full
exchange property provided its endomorphism ring is right strong ex-
change. Let us call a module M strong exchange when its endomorphism
ring is right strong exchange. The above question can rephrased as fol-
lows:
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Question 4.14. Does every strong exchange module satisfy the full ex-
change property?

A ring R is called clean when every element in R is the sum of an idem-
potent and a unit. Suppose that R satisfies that compatible descending
systems of right coprime pairs have minimal lower bounds. Then, by
Theorems 4.3 and 4.9, R is semiregular and R/J(R) is left continuous.
By [2, Theorem 3.9], R/J(R) is clean and by [3, Proposition 7] R is clean
as well. Moreover, note that all the examples of right strong exchange
rings exhibited in this paper are clean (for instance, left self-injective,
left cotorsion, local or left continuous rings). We may pose, then, the
following question:

Question 4.15. Is every right strong exchange ring clean?
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