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Abstract: Let p be a prime number and ξ an irrational p-adic number. Its irrationality exponent µ(ξ)

is the supremum of the real numbers µ for which the system of inequalities

0 < max{|x|, |y|} ≤ X, |yξ − x|p ≤ X−µ

has a solution in integers x, y for arbitrarily large real number X. Its multiplicative irrationality
exponent µ×(ξ) (resp., uniform multiplicative irrationality exponent µ̂×(ξ)) is the supremum of the

real numbers µ̂ for which the system of inequalities

0 < |xy|1/2 ≤ X, |yξ − x|p ≤ X−µ̂

has a solution in integers x, y for arbitrarily large (resp., for every sufficiently large) real number X.
It is not difficult to show that µ(ξ) ≤ µ×(ξ) ≤ 2µ(ξ) and µ̂×(ξ) ≤ 4. We establish that the ratio

between the multiplicative irrationality exponent µ× and the irrationality exponent µ can take any
given value in [1, 2]. Furthermore, we prove that µ̂×(ξ) ≤ (5 +

√
5)/2 for every p-adic number ξ.

2020 Mathematics Subject Classification: 11J61, 11J04.

Key words: rational approximation, p-adic number, exponent of approximation.

1. Introduction

Let α be an irrational real number. Its irrationality exponent µ(α) is the supremum
of the real numbers µ for which

(1.1) 0 < |yα− x| ≤ max{|x|, |y|}−µ+1

or, equivalently,

(1.2) 0 < |α− x/y| ≤ max{|x|, |y|}−µ

has infinitely many solutions in nonzero integers x, y. Since, for all nonzero inte-
gers x, y with |yα− x| ≤ 1, we have

min{|x|, |y|} ≥ min{|α|, |α|−1} ·max{|x|, |y|} − 1,

the integers |x| and |y| in (1.1) and (1.2) have the same order of magnitude and we
can replace max{|x|, |y|} in (1.1) and (1.2) by |xy|1/2. The same observation does not
hold for rational approximation in p-adic fields, where similar definitions give rise to
two different irrationality exponents.

Throughout this paper, we let p denote a prime number and Qp the field of p-adic
numbers. Let ξ be an irrational p-adic number. The irrationality exponent µ(ξ) of ξ
is the supremum of the real numbers µ for which

(1.3) 0 < |yξ − x|p ≤ max{|x|, |y|}−µ
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has infinitely many solutions in nonzero integers x, y. Unlike in the real case, the
integers |x| and |y| in (1.3) do not necessarily have the same order of magnitude, and
one of them can be much larger than the other one. This has recently been pointed
out by de Mathan [14], who studied whether p-adic numbers ξ such that

inf
x,y 6=0

|xy| · |yξ − x|p > 0

actually exist; see also [1, 8].
Consequently, it is meaningful to also consider the multiplicative irrationality ex-

ponent µ×(ξ) of ξ defined as the supremum of the real numbers µ× for which

(1.4) 0 < |yξ − x|p ≤ (|xy|1/2)−µ
×

has infinitely many solutions in nonzero integers x, y. It follows from the
Minkowski theorem (see [11] or [12]) and the obvious inequalities max{|x|, |y|} ≤
|xy|≤(max{|x|, |y|})2 valid for all nonzero integers x, y that we have

(1.5) 2 ≤ µ(ξ) ≤ µ×(ξ) ≤ 2µ(ξ).

An easy covering argument given in Section 4 shows that µ×(ξ) = 2 for almost all
p-adic numbers ξ. Furthermore, the right-hand side inequality of (1.5) can be an

equality: for any sufficiently large integer c, the p-adic number ξc = 1 +
∑
j≥1 p

cj

is well approximated by integers obtained by truncating its Hensel expansion and it
satisfies µ×(ξc) = 2µ(ξc); see Theorem 2.1.

Our first results, contained in Section 2, are concerned with the study of the spectra
of the exponents of approximation µ and µ×, that is, the set of values taken by these
exponents. We also investigate the spectrum of their quotient µ×/µ and show that it
is equal to the whole interval [1, 2].

Besides the exponents of approximation µ and µ×, we consider the uniform expo-
nents µ̂ and µ̂× defined as follows.

Definition 1.1. Let ξ be an irrational p-adic number. The uniform irrationality
exponent µ̂(ξ) of ξ is the supremum of the real numbers µ̂ for which the system

(1.6) 0 < max{|x|, |y|} ≤ X, |yξ − x|p ≤ X−µ̂

has a solution in integers x, y for every sufficiently large real number X. The uni-
form multiplicative irrationality exponent µ̂×(ξ) of ξ is the supremum of the real
numbers µ̂× for which the system

(1.7) 0 < |xy|1/2 ≤ X, |yξ − x|p ≤ X−µ̂
×

has a solution in integers x, y for every sufficiently large real number X.

Let us note that, besides the classical exponent (where the points (x, y) belong to
a square of area 4X2 centered at the origin) and the multiplicative exponent (where
the points (x, y) belong to a set of area 16X2(logX) bounded by four branches of
hyperbola), we can also consider weighted exponents (where the points (x, y) belong
to a rectangle of area 4X2 centered at the origin). Although most of our results can
be extended to the weighted setting, for simplicity we restrict our attention to the
somehow more natural exponents µ× and µ̂× defined above.

We point out that x and y are not assumed to be coprime in (1.3), (1.4), (1.6),
or in (1.7). Adding this assumption would not change the values of µ(ξ) and µ×(ξ),
but would change the values of the uniform exponents at some p-adic numbers ξ. As
in the real case, it is not difficult to show that µ̂(ξ) = 2 for every irrational p-adic
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number ξ (this follows from [13, Satz 2]; see also Lemma 5.1 below). This implies
that every irrational p-adic number ξ satisfies

(1.8) 2 = µ̂(ξ) ≤ µ̂×(ξ) ≤ 2µ̂(ξ) = 4.

Furthermore, the example of the p-adic numbers ξc defined above shows that the
exponent µ̂× takes values exceeding 2; see Theorem 2.1. Thus, unlike µ̂, this exponent
is not trivial and deserves to be studied more closely. Among several results, stated in
Section 3, we prove that µ̂× is bounded from above by (5 +

√
5)/2, thereby improving

the upper bound 4 given by (1.8). Thus, unlike (1.5), the inequalities in (1.8) are not
best possible.

Throughout this paper, the numerical constants implied by � are always positive
and depend at most on the prime number p. Furthermore, the symbol � means that
both inequalities � and � hold.

2. On the spectra of µ×, µ̂×, and µ×/µ

We begin with explicit examples of lacunary Hensel expansions, which include the
p-adic numbers ξc defined in Section 1.

Theorem 2.1. Let (ak)k≥0 be an increasing sequence of non-negative integers with
a0 = 0 and ak+1 ≥ 2ak for every sufficiently large integer k. Define

ξ =

∞∑
k=0

pak = 1 + pa1 + pa2 + · · · .

Set

c = lim inf
k→∞

ak+1

ak
, d = lim sup

k→∞

ak+1

ak
,

where c, d are in [2,+∞]. Then, we have

(2.1) µ(ξ) = d, µ×(ξ) = 2d,

and

(2.2) 3− 1

c
≤ µ̂×(ξ) ≤ 3 +

1

d− 1
.

The left-hand equality of (2.1) was established in [5], the best rational approxima-

tions being given by the integers
∑J
j=0 p

aj , with J ≥ 1, obtained by truncation of the

Hensel expansion of ξ. In view of the definition of µ× and of (1.5), this implies the
right-hand equality of (2.1). The left-hand inequality of (2.2) is proved in Section 5,
while the right-hand inequality is derived from (3.1) below. For small values of d,
Theorem 3.1 below slightly sharpens the right-hand inequality of (2.2). We believe
that the left-hand inequality in (2.2) is actually an equality.

Recall that a p-adic Liouville number is, by definition, an irrational p-adic number
whose irrationality exponent is infinite. The case where c and d are infinite yields the
following statement.

Corollary 2.2. The p-adic Liouville number

ξ∞ :=

∞∑
j=1

pj!

satisfies µ̂×(ξ∞) = 3. Consequently, the spectrum of µ̂× contains 3.
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The inequalities in (1.5) motivate the study of the joint spectrum of the exponents µ
and µ× and of the spectrum of their quotient µ×/µ, which, by (1.5), is included in
the interval [1, 2].

Theorem 2.3. For any pair of real numbers (µ, µ×) satisfying

(2.3) µ× > 5 +
√

17,
µ×

2
≤ µ ≤ µ×,

there exists a p-adic number ξ such that µ×(ξ) = µ× and µ(ξ) = µ. Consequently, the
spectrum of the quotient µ×/µ is equal to the whole interval [1, 2].

The restriction µ× > 5 +
√

17 in Theorem 2.3 comes from the proof and has no
reason to be best possible. We believe that (2.3) can be replaced by the inequalities
max{2, µ×/2} ≤ µ ≤ µ×. The proof of Theorem 2.3 is technical. First, we construct
in Section 5 well-approximable p-adic numbers ζ whose best approximations are con-
trolled in a suitable way. Then, in Section 6, we show how to modify the Hensel
expansion of ζ to get a p-adic number ξ satisfying the conclusion of Theorem 2.3.

Let dim denote the Hausdorff dimension. The p-adic analogue of the theorem of
Jarńık and Besicovitch ([9, 10]) asserts that, for every real number µ ≥ 2, we have

dim({ξ ∈ Qp : µ(ξ) ≥ µ}) = dim({ξ ∈ Qp : µ(ξ) = µ}) =
2

µ
;

see [3] for a more general p-adic result. Combining this result with (1.5) and an easy
covering argument given in Section 4, we deduce that

dim({ξ ∈ Qp : µ×(ξ) ≥ µ×}) = dim({ξ ∈ Qp : µ×(ξ) = µ×}) =
2

µ×

holds for every real number µ× ≥ 2. Consequently, the spectrum of µ× is equal to
the whole interval [2,+∞]. It would be interesting to construct explicitly, for any
real number µ× ≥ 2, a p-adic number ξ×µ satisfying µ×(ξ×µ ) = µ×. For µ× ≥ 4, such
examples are given in Theorem 2.1.

Problem 2.4. For any real number µ× with 2 ≤ µ× < 4, construct explicitly a p-adic
number ξ×µ such that µ×(ξ×µ ) = µ×.

The construction presented in Section 5 below may be helpful for answering Prob-
lem 2.4. However, if we impose the additional natural condition µ×(ξ×µ ) > µ(ξ×µ ), new
difficulties occur.

In a subsequent work, we will study more closely the classical and uniform multi-
plicative exponents of p-adic numbers whose Hensel expansion is given by a classical
combinatorial sequence, like the Thue–Morse sequence or a Sturmian sequence. Let
us just note that the p-adic Thue–Morse number

ξTM = 1 + p3 + p5 + p6 + p9 + p10 + · · · ,

whose Hensel expansion is given by the Thue–Morse word over {0, 1}, satisfies
µ(ξTM ) = 2 (see [7]) and µ×(ξTM ) ≥ 3, where presumably this inequality is in
fact an equality.

3. Upper bounds for the uniform exponent µ̂×

In the main result of this section, we improve the trivial upper bound 4 given
in (1.8) for the exponent of uniform approximation µ̂×.
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Theorem 3.1. Any irrational p-adic number ξ satisfies

µ̂×(ξ) ≤ 3 +
2

µ×(ξ)− 2
,(3.1)

µ×(ξ) ≥ µ̂×(ξ)2 − 3µ̂×(ξ) + 3,(3.2)

and

µ̂×(ξ) ≤ 5 +
√

5

2
= 3.6180 . . .(3.3)

The first assertion of Theorem 3.1 is stronger than the third one only when µ×(ξ)

exceeds 3 +
√

5 = 5.23 . . .
If µ̂×(ξ) ≥ 3, then the combination of (3.1) and (3.2) gives

µ̂×(ξ) ≤ 3 +
2

µ̂×(ξ)2 − 3µ̂×(ξ) + 1
,

thus

(µ̂×(ξ)− 1)(µ̂×(ξ)2 − 5µ̂×(ξ) + 5) ≤ 0,

and we obtain (3.3). Therefore, to establish Theorem 3.1, it is sufficient to prove (3.1)
and (3.2).

Note that (3.2) is of interest only for putative ξ with µ̂×(ξ) > 3. Combined
with (1.5) it implies that

µ(ξ) ≥ µ̂×(ξ)2 − 3µ̂×(ξ) + 3

2
.

In particular, if µ̂×(ξ) > (3 +
√

13)/2 = 3.3027 . . . , then µ(ξ) > 2, thus, ξ is very well

approximable. In other words, if µ(ξ) = 2, then µ̂×(ξ) ≤ (3 +
√

13)/2.
We display an immediate consequence of (3.1).

Corollary 3.2. Any p-adic Liouville number ξ satisfies µ̂×(ξ) ≤ 3.

In view of Corollary 2.2, the upper bound 3 for Liouville numbers obtained in
Corollary 3.2 is best possible. We cannot exclude that µ̂× is always bounded by 3.

For the proof of Theorem 3.1, we introduce the sequence (x×k , y
×
k )k≥1 of multiplica-

tive best approximations to ξ, defined in Section 7. We are able to get the stronger
conclusion µ̂×(ξ) ≤ 3 under certain conditions.

Theorem 3.3. Assume that at least one of the following two claims holds:

(i) There exist c > 0 and arbitrarily large k such that |x×k | ≥ c|y×k | and |x×k+1| ≥
c|y×k+1|.

(ii) There exist c > 0 and arbitrarily large k such that |x×k | ≤ c|y×k | and |x×k+1| ≤
c|y×k+1|.

Then we have µ̂×(ξ) ≤ 3.

The upper bound 5+
√
5

2 in Theorem 3.1 is obtained when, simultaneously, |x×2k| is

very small compared to |y×2k| and |x×2k+1| is very large compared to |y×2k+1|, or vice
versa, for every sufficiently large integer k. We cannot exclude the existence of a p-adic
number whose sequence of multiplicative best approximations has this property.

The main difference with the classical setting occurs when we estimate the p-adic
value of the difference between distinct rational numbers. Let x, y, x′, y′ be nonzero in-
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tegers, not divisible by p and such that xy′ 6= x′y. Then, |x/y−x′/y′|−1p = |xy′−x′y|−1p
is at most equal to |xy′| + |x′y|, which can be much larger than the product |xy|1/2
times |x′y′|1/2, in particular when simultaneously |x| is much larger than |y| and |y′| is
much larger than |x′|. Thus, we cannot avoid using the trivial estimate |xy′−x′y|−1p ≤
2 max{|x|, |y|}max{|x′|, |y′|}, which involves the sup norm.

It follows from (3.2) that

dim({ξ ∈ Qp : µ̂×(ξ) ≥ µ×}) ≤ 2

(µ×)2 − 3µ× + 3
, µ× ∈

[
3,

5 +
√

5

2

]
.

Our results motivate the following question.

Problem 3.4. Determine the Hausdorff dimension of the sets

{ξ ∈ Qp : µ̂×(ξ) ≥ µ×}, {ξ ∈ Qp : µ̂×(ξ) = µ×}, µ× ∈
[
2,

5 +
√

5

2

]
.

We end this section with a remark. It follows from Theorem 3.1 that any p-adic

number ξ with µ̂×(ξ) = 5+
√
5

2 also satisfies µ×(ξ) = 3 +
√

5. A similar situation
occurs with the extremal numbers defined by Roy [16]. These are transcendental real
numbers α whose uniform exponent of quadratic approximation takes the maximal
possible value, that is, for which we have ŵ2(α) = (3+

√
5)/2. Roy ([16]) proved that

they satisfy

(3.4) 1 + w∗2(α) = 3 +
√

5, 1 + ŵ2(α) =
5 +
√

5

2
,

where w∗2 and ŵ2 denote classical and uniform exponents of quadratic approximation.
Subsequently, Moshchevitin ([15]) established that every irrational, non-quadratic
real number α satisfies

w∗2(α) ≥ ŵ2(α)(ŵ2(α)− 1),

that is,

(3.5) 1 + w∗2(α) ≥ (1 + ŵ2(α))2 − 3(1 + ŵ2(α)) + 3,

with equality when α satisfies (3.4). Furthermore, by [6, Inequality (2.5)], we also
have

(3.6) 1 + ŵ2(α) ≤ 3 +
2

(1 + w∗2(α))− 2
,

with equality when α satisfies (3.4). Since (3.5) and (3.6) are analogous to (3.2) and
(3.1), respectively, this may suggest that the bounds of Theorem 3.1 are best possible.

4. Proofs of Theorem 2.1 and of the metrical statements

We begin with a brief proof of the metrical statements given in Sections 1 and 2. We
direct the reader to [2, Chapter 6] for a concise introduction to the metric theory of
p-adic numbers. Recall that for a p-adic number ξ and a positive integer k, the Haar
measure of the closed disc D(ξ, pk) centered at ξ and of radius pk,

D(ξ, pk) = {ζ ∈ Qp : |ζ − ξ|p ≤ p−k},

is equal to p−k.
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Let ε > 0 be given. Let ξ be a p-adic number in Zp for which there are infinitely
many integer pairs (x, y) with xy 6= 0 and |yξ−x|p < (|xy|)−1−ε. Then, for every X ≥
2, there are infinitely many pairs (x, y) of coprime integers with |xy| ≥ X and |ξ −
x/y|p < (|xy|)−1−ε. Thus, ξ is an element of the set⋃

|xy|≥X

D(x/y, |xy|−1−ε),

whose Haar measure is

�
∑

1≤x≤X

∑
y≥X/x

(xy)−1−ε +
∑

1≤y≤X

∑
x≥X/y

(xy)−1−ε +
∑
x,y≥X

(xy)−1−ε � X−ε(logX).

Since the latter quantity tends to 0 as X tends to infinity, we deduce that the Haar
measure of the set of p-adic numbers ξ satisfying µ×(ξ) > 2 + 2ε is zero. As ε is
arbitrary, we conclude that almost all ξ satisfy µ×(ξ) ≤ 2.

Similarly, for a given real number µ× ≥ 2, the sum∑
x,y≥1, xy≥X

(xy)−sµ
×/2

converges for every s > 2/µ×. This eventually implies that

dim({ξ ∈ Qp : µ×(ξ) ≥ µ×}) ≤ 2

µ×
.

We omit the details.

Proof of Theorem 2.1: Let ξ be as in the theorem and define the rational integers

Qk =

k∑
j=0

paj , k ≥ 1.

Then with ck = ak+1/ak for k ≥ 1 we get

|ξ −Qk|p =

∣∣∣∣ ∞∑
j=k+1

paj
∣∣∣∣
p

� p−ak+1 � Q−1k+1 � Q
−ck
k , k ≥ 1.

This in particular shows that µ(ξ) ≥ d and µ×(ξ) ≥ 2d, since there are arbitrarily
large k such that ck is arbitrarily close to d. The equality µ(ξ) = d was established
in [5]. By (1.5), this gives µ×(ξ) ≤ 2d and proves (2.1). Set Q×k =

√
Qk for k ≥ 1.

For a given integer X, let k be the index defined by Q×k ≤ X < Q×k+1. We then have

Q×k =
√
Qk · 1 ≤ X, |ξ −Qk|p � (Q×k )−2ck .

Let M be the largest integral power of p smaller than X/Q×k . Then√
(M · 1) · (M ·Qk) ≤ X

and

|Mξ −MQk|p �M−1(Q×k )−2ck �
Q×k
X

(Q×k )−2ck � X
1−2ck
ck
−1

= X
−3+ 1

ck .

By the definition of c, we get the lower bound µ̂×(ξ) ≥ 3 − 1/c in (2.2). The upper
bound follows from (3.1).
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5. Auxiliary results

The following easy lemma will be used several times in the sequel of the paper.

Lemma 5.1. Let ξ be in Qp. If (x1, y1) and (x2, y2) are two linearly independent
pairs of integers, then, setting

Xi = max{|xi|, |yi|}, Li = |yiξ − xi|p, i = 1, 2,

we have

1 ≤ 2X1X2 max{L1, L2}.

Lemma 5.1 easily implies that every irrational p-adic number ξ satisfies µ̂(ξ) ≤ 2,
thus µ̂(ξ) = 2, a fact already stated in Section 1.

Proof: It follows from the identity

x1y2 − x2y1 = y1(y2ξ − x2)− y2(y1ξ − x1)

that

|x1y2 − x2y1|p ≤ max{|y2ξ − x2|p, |y1ξ − x1|p}.
Since x1y2 6= x2y1, we get

|x1y2 − x2y1|p ≥
1

|x1y2 − x2y1|
≥ 1

|x1y2|+ |x2y1|
≥ 1

2X1X2
.

The combination of these inequalities proves the lemma.

The proof of Theorem 2.3 is semi-constructive and uses

Theorem 5.2. For any µ̃ > 2 and any ε > 0, there exists ξ in Zp with the following
properties. There exists a sequence ((xj,0, xj,1))j≥1 of pairs of coprime integers not
divisible by p, whose moduli tend to infinity, satisfying the following properties:

(i) We have

|xj,0| � |xj,1|, |xj,1ξ − xj,0|p � |xj,0|−µ̃ � |xj,1|−µ̃, j ≥ 1.

(ii) We have

lim
j→∞

log |xj+1,0|
log |xj,0|

=∞.

(iii) For every integer pair (z0, z1) linearly independent of any pair (xj,0, xj,1) with j≥
1, we have

(5.1) |z1ξ − z0|p � max{|z0|, |z1|}−2−ε.

The first property implies µ(ξ) ≥ µ̃. The second one states that there are large gaps
between consecutive very good approximations. The third one asserts that at most
finitely many of the other approximations are very good, thus (when ε < µ−2) we have
µ(ξ) = µ̃. We note that (5.1) may be sharpened; indeed, using refined estimates the
proof actually yields the lower bound�ε Z

−2(logZ)−1−ε, where Z = max{|z0|, |z1|}.

Preparation for the proof of Theorem 5.2: Fix ε > 0. We first construct a p-adic num-
ber ξ in such a way that we control the quality of its best rational approxima-
tions, apart possibly from some good approximations (x, y), for which |yξ − x| �
max{|x|, |y|}−2−ε.
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More precisely, for a given sequence (µn)n≥1 with µn ≥ 2 + ε for n ≥ 1, we find ξ
as the p-adic limit of a sequence of rationals pn/qn with pn � qn and upon writing

Li = |piqi+1 − pi+1qi|p, Hi = max{|pi|, |qi|}, i ≥ 0,

we have

(5.2) H−µnn ≤ Ln ≤ pH−µnn , n ≥ 1,

and (5.1) holds for any (z0, z1) linearly independent of all pairs (pn, qn).
We use Schneider’s continued fraction algorithm (see e.g. [4]) to construct a se-

quence pn/qn that converges at some given rate with respect to the p-adic metric to
some p-adic number ξ. Start with

p−1 = 1, q−1 = 0, p0 = 0, q0 = 1.

Then |p−1q0 − q−1p0| = 1. Then recursively, for n ≥ 0, let

(5.3) pn+1 = pn + bn+1pn−1, qn+1 = qn + bn+1qn−1,

where each bn = pgn is an integer power of p to be suitably chosen. For all n, since
|bn|p = b−1n we calculate

|pnqn+1 − pn+1qn|p = |pn(qn + bn+1qn−1)− qn(pn + bn+1pn−1)|p

= |bn+1(pnqn−1 − pn−1qn)|p

=
1

bn+1
· |pn−1qn − pnqn−1|p.

Setting Ln = |pnqn+1 − pn+1qn|p and Hn = max{pn, qn} for n ≥ 0, we see that

(5.4) Ln =
1

bn+1
· Ln−1, n ≥ 1.

Set b1 = 1. Then, p1 = q1 = H1 = 1 and it is easy to see that none of the pn, qn
with n ≥ 1 is divisible by p, hence∣∣∣∣pn+1

qn+1
− pn
qn

∣∣∣∣
p

= |pnqn+1 − pn+1qn|p =
1

bn+1
· |pn−1qn − pnqn−1|p.

Set b2 = p2. Then, p2 = 1 and q2 = H2 = p2 + 1. Since p1 = q1 = 1, it follows
from (5.3) that Hn = qn for n ≥ 0. Since bn ≥ p for n ≥ 2, the rational numbers pn/qn
form a Cauchy sequence and thus converge with respect to the p-adic metric to some
p-adic number ξ. Observe that

|qnξ − pn|p =

∣∣∣∣ξ − pn
qn

∣∣∣∣
p

=

∣∣∣∣pn+1

qn+1
− pn
qn

∣∣∣∣
p

= |pn+1qn − pnqn+1|p = Ln, n ≥ 2,

where the second equality holds because∣∣∣∣ξ − pn+1

qn+1

∣∣∣∣
p

<

∣∣∣∣ξ − pn
qn

∣∣∣∣
p

.

Set b3 = p. Since H3L2H2 = (H2 + p)p−3H2 > p and

Hn+1LnHn ≥ bn+1Hn−1 ·
Ln−1
bn+1

·Hn = HnLn−1Hn−1, n ≥ 3,

we get that

(5.5) H2
nLn−1 > HnLn−1Hn−1 > p, n ≥ 3.

It follows from (5.3) and the choice b1 = 1, b2 = p2 that

(5.6) qn+1 = Hn+1 = Hn + bn+1Hn−1 ≤ 2 max{Hn, bn+1Hn−1}.
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Assume that for some fixed integer N ≥ 2 we have constructed p1/q1, . . . , pN/qN
with the desired approximation properties. We describe how to choose bN+1 (or gN+1)
to get the next pN+1/qN+1. Set γN = LN−1HNHN−1 and observe that the inequality

(5.7) LN−1 ≤ γN ·H−1N H−1N−1

holds. Now, define recursively

gn+1 =

⌊
logHµn

n Ln−1
log p

⌋
, n ≥ N,

which is the largest integer such that bn+1 = pgn+1 ≤ Hµn
n Ln−1. We readily conclude

from (5.4) that then indeed (5.2) holds for all n ≥ 1. Furthermore, it follows from (5.5)
and µn ≥ 2 that gn+1 ≥ 1 for n ≥ 3.

By an easy induction, it follows from (5.3) that pk � qk for k ≥ 1. Moreover, it is
clear from the recursion (5.3) that pn and qn are coprime for all n.

Let us estimate the growth of the height sequence (Hn)n≥1. For the initial value n =
N , in the event that the maximum in (5.6) is bn+1Hn−1 = bN+1HN−1, by (5.4)
and (5.2) we have

HN+1 ≤ 2bN+1HN−1 = 2
LN−1
LN

HN−1 ≤ 2LN−1H
µN
N HN−1

= 2HµN
N (LN−1HN−1) ≤ 2γNH

µN−1
N ,

(5.8)

where we have used our induction assumption (5.7). Then by (5.8) in view of (5.2)
for n (which we have verified above) we have

LN ≤ pH−µNN ≤ 2pγN ·H−1N+1H
−1
N .

In other words, in the next step, similarly to (5.7), we have

LN ≤ γN+1H
−1
N+1H

−1
N , γN+1 = 2pγN .

Thus, similarly as in (5.8) above, we infer

HN+2 ≤ 2γN+1H
µN+1−1
N+1 .

Iterating this process we see that there exists a real number c > 1 such that, for
all n ≥ N , we have

(5.9) Ln ≤ γN (2p)n ·H−1n+1H
−1
n � cn ·H−1n+1H

−1
n

and

(5.10) Hn ≤ γN (4p)n ·Hµn−1−1
n−1 � cn ·Hµn−1−1

n−1 .

Otherwise, if the maximum in (5.6) is HN+1, then we directly get

HN+1 ≤ 2HN ≤ 2HµN−1
N ,

since µn ≥ 2 + ε > 2, which is even stronger than the estimates derived in the first
case and we infer the same result.

It follows from (5.5) and (5.2) that

p < Hn+1HnLn ≤ Hn+1Hn(pH−µnn ), n ≥ 3,

thus Hn+1 ≥ H1+ε
n for large n. This shows that the sequence (logHn)n≥2 grows

exponentially fast, so in particular

cn = Ho(1)
n , n→∞.

It then follows from (5.9) and (5.10) that, for every η > 0, we have

(5.11) Ln �η H
−1+η
n+1 H−1+ηn , Hn �η H

µn−1−1+η
n−1 , n ≥ 2,

where the implicit positive constants depend only on η.
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Now take an integer pair (z0, z1) which satisfies

(5.12) |z1ξ − z0|p ≤ Z−2−ε/2,
where Z=max{|z0|, |z1|}. We assume that (z0, z1) is linearly independent of all (pn, qn)
and that z0 and z1 are coprime. Let k be the index such that Lk ≤ |z1ξ−z0|p < Lk−1.
It then follows from Lemma 5.1 that

1 ≤ 2Hk−1ZLk−1.

Combined with (5.2), this gives

Z ≥
H
µk−1−1
k−1

2p
,

thus, by (5.11), we obtain
logHk

logZ
≤ 1 + η,

for arbitrarily small η > 0 and large enough k. On the other hand, again by Lemma 5.1
and (5.12), we get

1 ≤ 2ZHk|z1ξ − z0|p ≤ 2Z−1−ε/2Hk,

thus

Hk ≥
Z1+ε/2

2
.

By choosing η = ε/3, we end up with a contradiction for large k. Thus, (5.12) cannot
hold if Z is large enough.

Completion of the proof of Theorem 5.2: We choose for (µn)n≥1 the sequence

2 + ε, µ̃, 2 + ε, 2 + ε, . . . , 2 + ε, µ̃, 2 + ε, 2 + ε, . . . ,

with very long blocks of 2+ε separating two occurrences of µ̃. We identify xj,1 = qσ(j)
and xj,0 = pσ(j) for all j ≥ 1, where the injective map σ : N → N is defined so that
σ(j) is the j-th index, where µn = µ̃. The property gcd(p, xj,0xj,1) = 1 holds since
we have noticed that gcd(p, pnqn) = 1 for all n. Moreover, the large gaps guarantee
the second claim of the theorem. It then follows from the observations above that
gcd(xj,0, xj,1) = 1 and xj,0 � xj,1 for all j, and the estimate |xj,1ξ − xj,0|p � x−µ̃j,0 is

immediate from (5.2). For the remaining pn/qn with n not in the image of σ, we have
µn = 2+ ε, and the estimate (5.1) is implied by (5.2) again. For all other pairs (z0, z1)
we have already shown that (5.12) does not hold if max{|z0|, |z1|} is large enough.
This completes the proof.

6. Proof of Theorem 2.3

We prove Theorem 2.3 by using a similar strategy as in [17, Theorem 3.7]. The
idea is to start with a p-adic number ζ given by Theorem 5.2 and to change its
Hensel expansion by replacing its digits by 0 in certain large intervals Ji in order to
obtain a p-adic number ξ with the requested properties. This will induce good integer
approximations to ξ and thereby imply that µ×(ξ) is rather large, say µ×(ξ) ≥ sµ(ζ)
for some real number s ≥ 1. We will see that the good approximations xj,0/xj,1
to ζ give rise to equally good rational approximations yj,0/yj,1 to ξ, thereby showing
µ(ξ) ≥ µ(ζ) as well. The most technical part is to show that there are no better
rational approximations, that is, to verify the upper bounds µ(ξ) ≤ µ(ζ) and µ×(ξ) ≤
sµ(ζ). Here we essentially use the method developed in [17, Theorem 3.7] to show
that putative good approximations to ξ would induce good approximations to ζ which
are not among the xj,0/xj,1, in contradiction with Theorem 5.2.
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Proof of Theorem 2.3: Fix t in [1, 2] and µ > 2. Let ζ be in Zp, which satisfies the
hypotheses of Theorem 5.2 for a small enough ε with 0 < ε < 1/2 depending on µ
(this will be made more precise later) and with

µ(ζ) = µ̃ = tµ.

Let (xj,0, xj,1)j≥1 denote the sequence of integer pairs given by Theorem 5.2. Without
loss of generality, we assume xj,0 > 0 for j ≥ 1 and that x1,0 and |x1,1| are large. Let
the Hensel expansion of ζ be

ζ =

∞∑
i=0

aip
i, ai ∈ {0, 1, . . . , p− 1}.

For j ≥ 1, set σj = blog xj,0/ log pc so that

xj,0 � |xj,1| � pσj .
Then the second claim of Theorem 5.2 implies that σj+1/σj tends to infinity with j.
Partition the integers greater than or equal to σ1 into the intervals Ij := [σj , σj+1)∩Z.

We construct ξ with the desired properties by manipulating the Hensel expan-
sion of ζ. First, we derive from the sequence (σj)j≥1 two other positive integer se-
quences (τj)j≥1, (νj)j≥1 defined by

(6.1) νj = btµσjc+ C, τj = bµνjc,
for some large positive integer constant C. For x1,0 and |x1,1| sufficiently large, we
have

σ1 < ν1 < τ1 < σ2 < ν2 < τ2 < · · · ,
and since the quotient σj+1/σj tends to infinity with j we also have

(6.2) lim
j→∞

σj+1

τj
=∞.

Let
Jj = {νj , νj + 1, . . . , τj} = [νj , µνj ] ∩ Z, j ≥ 1,

so that Jj ⊆ Ij , for j sufficiently large. Consider the p-adic number

ξ =

∞∑
i=0

bip
i, bi ∈ {0, 1, . . . , p− 1},

derived from ζ by setting

bi =


0, i ∈ ∪j(Jj \ {νj , τj}),
1, i ∈ ∪j{νj , τj},
ai, i /∈ ∪jJj .

In other words the Hensel expansions of ξ and ζ coincide outside the intervals Jj ,
whereas the digits of ξ are all zero inside Jj , except at the first and last position of
any Jj , where for technical reasons we put the digit 1. We will show that

(6.3) µ×(ξ) = 2µ, µ(ξ) = µ̃ = tµ,

if µ is sufficiently large. This will prove the theorem as t is arbitrary in [1, 2].
We start with the easiest of the four inequalities, namely

(6.4) µ×(ξ) ≥ 2µ.

Define the integers

(6.5) Nj =

νj∑
i=0

bip
i, j ≥ 1.
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Clearly Nj � pνj . Moreover, as ξ has digits 0 at places ranging from νj+1 to τj−1 ≈
µνj , the integers Nj approximate ξ at the order roughly µ, hence

(6.6) |ξ −Nj |p � p−τj � p−νjµ � N−µj = (
√

1 ·Nj)−2µ.

We directly deduce (6.4) from (6.6). We note that |ξ−Nj |p ≥ p−τj since bτj = 1, and
furthermore, since bνj = 1, in fact we get Nj � pνj . So we can refine (6.6) as

(6.7) |ξ −Nj |p � p−νjµ � N−µj .

Next we show that

(6.8) µ(ξ) ≥ tµ.

By (6.7) the pairs (x0, x1) = (Nj , 1) induce approximations of quality exactly µ. By
manipulating the pairs (xj,0, xj,1) associated to ζ, we construct better approximating
sequences (yj,0)j≥1, (yj,1)j≥1 such that, for any given ε1 > 0 and sufficiently large j,
we have

(6.9) |yj,1ξ − yj,0|p � max{|yj,0|, |yj,1|}−tµ+ε1 .

This obviously implies (6.8). In the sequel, ε2, ε3, . . . denote positive real numbers
that can be taken arbitrarily small as the index j tends to infinity.

To construct suitable yj,0, yj,1, recall that |xj,0| � |xj,1| � pσj and σj < νj < τj <
σj+1 for j ≥ 1, with

lim
j→∞

νj
σj

= tµ, lim
j→∞

σj+1

τj
= +∞, lim

j→∞

τj
νj

= µ.

For i ≥ 1 define

ui =
∑
j∈Ji

ajp
j − pνi − pτi , u(i) = u1 + u2 + · · ·+ ui.

Notice that by construction ζ − ξ is the infinite sum u1 + u2 + · · · .
Moreover, assuming that ε < (µ− 2)/2, we note that

(6.10) pτi(
1
2−ε) � |u(i)| � pτi , i ≥ 1.

The right-hand estimate is obvious. If the left-hand one is not satisfied, then aj = 0
for bηic ≤ j ≤ τi − 1, where ηi :=

(
1
2 − ε

)
τi and aτi = 1. But then the integer Mi =∑

j≤bηic ajp
j satisfies

|ζ −Mi|p � p−τi �M
−τi/ηi
i �M

−1/( 1
2−ε)

i = M
−2−ε− 3ε+2ε2

1−2ε

i ,

a contradiction with Theorem 5.2 for large i.
We claim that if we set

(6.11) yj,0 = xj,0 − u(j−1)xj,1, yj,1 = xj,1,

then indeed (6.9) holds. We rearrange

|yj,1ξ − yj,0|p = |xj,1(ξ + u(j−1))− xj,0|p
= |xj,1(ξ + u(j−1) − ζ) + (xj,1ζ − xj,0)|p
≤ max{|xj,1(ξ + u(j−1) − ζ)|p, |xj,1ζ − xj,0|p}.

(6.12)

By assumption the latter term satisfies

(6.13) |xj,1ζ − xj,0|p � x−tµj,0 .
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To estimate the former expression, note that by construction the Hensel expansions
of ξ + u(j−1) and ζ coincide up to the (νj − 1)-th digit (the last digit before the
interval Jj starts). Thus, we have

(6.14) |xj,1(ξ + u(j−1) − ζ)|p ≤ |ξ + u(j−1) − ζ|p � p−νj � x
−νj/σj
j,0 � x−tµj,0 ,

where the last estimate follows from (6.1). By combining (6.12), (6.13), and (6.14),
we derive

(6.15) |yj,1ξ − yj,0|p � x−tµj,0 � |xj,1|
−tµ = |yj,1|−tµ.

Now for given ε2 > 0 and j large enough, we get from (6.2) the estimate

|u(j−1)| � pτj−1 < pε2σj � xε2j,0.

Combined with (6.15) and xj,0 � |xj,1|, this gives

(6.16) |yj,0| = |xj,0 − u(j−1)xj,1| � xj,0 + |u(j−1)| · |xj,1| � |xj,1|1+ε2 = |yj,1|1+ε2 ,
hence we derive (6.9) from (6.15), and consequently (6.8) follows.

At this point we notice that the reverse inequality |yj,0| � |yj,1| follows similarly
via

(6.17) |yj,0| = |xj,0 − u(j−1)xj,1| � |xj,1| · |u(j−1)| ≥ |xj,1| = |yj,1|,
where we use that xj,0 � |xj,1| and the fact that |u(j)| tends to infinity with j
by (6.10). So we keep in mind for the sequel that all the integers xj,0, |xj,1|, |yj,0|, |yj,1|
are of comparable size, in the sense that, for every η > 0 and for every sufficiently
large j, we have

max{xj,0, |xj,1|, |yj,0|, |yj,1|} ≤ (min{xj,0, |xj,1|, |yj,0|, |yj,1|})1+η.
Next we show the reverse estimate

(6.18) µ(ξ) ≤ tµ.
Assume otherwise that there are integers x, y with max{|x|, |y|} arbitrarily large and
θ > tµ such that

(6.19) |yξ − x|p ≤ max{|x|, |y|}−θ.
We may assume that x and y are coprime. We distinguish two cases.

Case 1: The pair (x, y) is among the pairs ±(yj,0, yj,1) defined in (6.11) above. We
show the reverse estimate to (6.9), that is,

(6.20) |yj,1ξ − yj,0|p � max{|yj,0|, |yj,1|}−tµ, j ≥ 1.

This clearly contradicts (6.19) for these pairs. By assumption the reverse estimate
to (6.13) holds as well, i.e.

|xj,1ζ − xj,0|p � x−tµj,0 .

Recall that for a, b in Qp with |a|p 6= |b|p we have |a+ b|p = max{|a|p, |b|p}. Now by
taking C large enough in (6.1), we can guarantee that

|xj,1(ξ + u(j−1) − ζ)|p < |xj,1ζ − xj,0|p,
thus we get

|xj,1ζ − xj,0|p = |xj,1(ξ + u(j−1))− xj,0|p = |yj,1ξ − yj,0|p,
by (6.11). We conclude that

|yj,1ξ − yj,0|p � x−tµj,0 � |xj,1|
−tµ = |yj,1|−tµ ≥ max{|yj,0|, |yj,1|}−tµ,

which is our desired lower bound (6.20).
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Case 2: The pair (x, y) is not among the pairs ±(yj,0, yj,1). Write

H = max{|x|, |y|}.
In fact we show that then

(6.21) |yξ − x|p � H−µ−ε3 .

Since µ ≤ tµ this clearly implies (6.18). Note that the bound is optimal as by (6.7) it
is attained with ε3 = 0 by (x, y) = (Nj , 1). However, by the same argument, we can
exclude these pairs and the pairs (−Nj ,−1) in our investigation. For other pairs, we
verify (6.21) indirectly by showing that any pair (x, y) that violates the inequality in-
duces a reasonably good rational approximation to ζ which is not among the xj,0/xj,1,
contradicting the third claim of Theorem 5.2. So, assume that for some (x, y) as above
we have

(6.22) |yξ − x|p ≤ H−µ−ε3 .
Below (6.17) we noticed that |yj,1| = |xj,1| and |yj,0| are of comparable size, all being
roughly equal to xj,0 � |xj,1|. In particular, the sequences (|yj,0|)j≥1 and (|yj,1|)j≥1
are increasing. For a pair (x, y) satisfying (6.22), let h be the index with

max{|yh,0|, |yh,1|} < H ≤ max{|yh+1,0|, |yh+1,1|}.
By (6.22),

max{|yh,0|, |yh,1|}H|yξ − x|p ≤ H2−µ−ε3 <
1

2
,

thus Lemma 5.1 and (6.9) imply that

1 ≤ 2 max{|yh,0|, |yh,1|}H max{|yh,0|, |yh,1|}−tµ+ε1 .
Likewise, again by (6.9),

max{|yh+1,0|, |yh+1,1|}H|yh+1,1ξ − yh+1,0|p <
1

2
,

thus Lemma 5.1 and (6.22) imply that

1 ≤ 2 max{|yh+1,0|, |yh+1,1|}H|yξ − x|p ≤ 2 max{|yh+1,0|, |yh+1,1|}H1−µ−ε3 .

Consequently, we have established that

(6.23) max{|yh+1,0|, |yh+1,1|}
1

µ−1+ε4 � H � max{|yh,0|, |yh,1|}tµ−1−ε4 .
However, the right-hand estimate is not sufficient. We show the stronger lower bound

(6.24) H � max{|yh,0|, |yh,1|}tµ(µ−1)−ε5 ,
again by application of Lemma 5.1. For simplicity write

s =
logH

log xh,0
.

Recalling that all xj,0, xj,1, yj,0, yj,1 are in absolute value roughly of the same size,
we have to show s ≥ tµ(µ− 1)− ε6 for arbitrarily small ε6 > 0. According to (6.23),
upon increasing ε4 to take into account the implied constants if necessary, we can
assume s ≥ tµ − 1 − ε7 for arbitrarily small ε7 > 0. On the one hand, with Nj as
in (6.5) we deduce from (6.6) that

max{|yξ − x|p, |ξ −Nh|p} � max{H−µ−ε3 , p−νhµ}
and, since

H = xsh,0, pνh � xνh/σhh,0 � xtµh,0,
we get

max{|yξ − x|p, |ξ −Nh|p} � x
−µmin{tµ,s}
h,0 .
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On the other hand, as gcd(x, y) = gcd(Nj , 1) = 1 and we have assumed (x, y) 6=
±(Nj , 1), these pairs are linearly independent. Hence, from Lemma 5.1 and Nh �
pνh � xtµh,0, we get

max{|yξ − x|p, |ξ −Nh|p} � H−1N−1h � x−s−tµh,0 .

This gives the lower bound

(6.25) s+ tµ+ ε8 ≥ µmin{s, tµ}.
If s ≤ tµ, then we get s ≤ tµ/(µ−1) +ε8. However, in view of s ≥ tµ−1−ε7 noticed
above, as ε7 and ε8 can be arbitrarily small this gives a contradiction as soon as

µ > 1 +
tµ

tµ− 1
= 2 +

1

tµ− 1
.

Since tµ ≥ µ > 2 a sufficient condition is

(6.26) µ > 3.

If s > tµ, then we derive from (6.25) that s + tµ + ε8 ≥ tµ2 or equivalently s ≥
tµ(µ− 1)− ε8. Thus, as ε8 can be arbitrarily small, we have shown (6.24).

Next observe that the triangle inequality gives

|x+ yu(h) − yζ|p = |(x− yξ) + y(ξ + u(h) − ζ)|p ≤ max{|x− yξ|p, |y(ξ + u(h) − ζ)|p},
so combined with (6.14) applied for j = h+ 1 and with (6.22) we conclude that

(6.27) |x+ yu(h) − yζ|p � max{x−tµh+1,0, H
−µ−ε3}.

From (6.23) and since |yh,0| � |yh,1|1+ε2 = |xh,1|1+ε2 by (6.16), we use that µ > 2
and t ≥ 1 to check that

H � x
1

µ−1+ε9

h+1,0 � xth+1,0,

so the right-hand expression in the maximum in (6.27) is larger than the left-hand
one. With (6.23) and (6.24), and since |yj,1|, |yj,0|, and xj,0 are of comparable size
and τh/σh tends to (tµ)µ = tµ2 with h by (6.1), we estimate

max{|y|, |x+ yu(h)|} ≤ |x|+ |y| · |u(h)| ≤ H +H · pτh+1 � H · xτh/σhh,0

� H · (H
1

(µ−1)tµ
+ε10)τh/σh � H2+ 1

µ−1+ε11 .

To sum up, we have shown

max{|y|, |x+ yu(h)|} � H2+ 1
µ−1+ε11 ,(6.28)

|x+ yu(h) − yζ|p ≤ H−µ−ε3 .
From (6.28), we get

− log |x+ yu(h) − yζ|p
log max{|y|, |x+ yu(h)|}

≥ (µ+ ε3) · logH

log max{|y|, |x+ yu(h)|}

≥ (µ+ ε3) ·
(

2 +
1

µ− 1
+ ε11

)−1
>
µ2 − µ
2µ− 1

− ε12.

Thus we have found integers z0, z1 with

− log |z1ζ − z0|p
log max{|z0|, |z1|}

≥ µ2 − µ
2µ− 1

− ε12.

Thereby, as ε10 can be arbitrarily small, if

(6.29) µ >
5 +
√

17

2
,
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then µ2−µ
2µ−1 > 2 and we have constructed an approximation of order greater than 2

to ζ. If ε > 0 from Theorem 5.2 for our ζ has been chosen small enough (depending
on the given µ), concretely for

ε =
1

2

(
µ2 − µ
2µ− 1

− 2

)
,

by the assumptions of the theorem and since gcd(x, y) = gcd(xj,0, xj,1) = 1, this

implies (x + yu(h), y) = (xj,0, xj,1) for some j. We assume this is the case and will
derive a contradiction.

We first show that j cannot exceed h. Note that the case j = h + 1 has already
been treated in Case 1. Since xj,0 � |xj,1| and |u(j)| tends to infinity with j by (6.10),
we must have

|x| � |y| · |u(h)| � xj,0 · pτh � xj,0 · xτh/σhh,0 � xj,0 · xtµ
2

h,0 .

If j ≥ h + 2, then this clearly contradicts |x| ≤ H � xh+1,0 from (6.23). Now, we
assume that j ≤ h. It follows from (6.14) that

|ξy − x|p = |ξxj,1 − xj,0 + xj,1u
(h)|p

= |(u(h) + ξ − ζ)xj,1 + (ζxj,1 − xj,0)|p
≥ |ζxj,1 − xj,0|p − |(u(h) + ξ − ζ)xj,1|p
� x−tµj,0 − x

−tµ
h+1,0.

Now the crude estimate xh+1,0 � x
σh+1/σh
h,0 � x

τh/σh
h,0 � xtµ

2

h,0 � x4h,0 � x4j,0 suffices
to derive

|ξy − x|p � x−tµj,0 .

But on the other hand by assumption (6.22) and (6.24) we get

|ξy − x|p � H−µ � x
−tµ2(µ−1)+ε13
j,0 .

The combination of the latter inequalities gives the desired contradiction and ends
the proof of (6.18). Thus, by (6.8), we have µ(ξ) = tµ.

In view of (6.4), it only remains for us to show

(6.30) µ×(ξ) ≤ 2µ.

We again distinguish between rationals yj,0/yj,1 and other rationals. Concerning the
first family, again because |yj,0| and |yj,1| are of comparable size and by (6.20), we
indeed derive that

|yj,1ξ − yj,0|p �
(√
|yj,0 · yj,1|

)−tµ−ε14
.

Thus the exponent restricted to this family satisfies µ×(ξ) ≤ tµ+ε14 ≤ 2µ+ε14. Since
ε14 can be taken arbitrarily small the claim follows. Finally for the latter family, where
(x, y) 6= ±(yj,0, yj,1) and xy 6= 0, we conclude with (6.21) via

|yξ − x|p � max{|x|, |y|}−µ−ε3 ≥ (
√
|xy|)−2µ−2ε3 ,

again giving µ×(ξ) ≤ 2µ + 2ε3, and the claim (6.30) follows as ε3 can be taken
arbitrarily small. The proof of (6.3) is complete. Thus, we have established that
µ×(ξ) = 2µ.

We see that µ > (5+
√

17)/2 is the most restrictive one among the conditions (6.26),

(6.29) we have collected on the way, which imposes µ× = 2µ > 5 +
√

17, that is, the
restriction made in the theorem.
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7. Proofs of Theorems 3.1 and 3.3

Proof of (3.1) in Theorem 3.1: Assume µ×(ξ) > 2 since (3.1) is trivial otherwise. As-
sume that for some µ > 2 there exist nonzero coprime integers x, y with |xy| arbitrarily
large and such that

(7.1) |yξ − x|p = (Q×)−µ, Q× =
√
|xy|.

Set Q = max{|x|, |y|}. Define A in [1, 2] and τ by

Q = (Q×)A, τ =
µ−A

2
.

In the sequel, ε1, ε2, . . . denote positive real numbers that can be taken arbitrarily
small as Q× tends to infinity. Set

X = (Q×)τ−ε1 .

By (7.1), for any positive integer M with
√
|Mx ·My| = MQ× ≤ X, we have

|Myξ −Mx|p ≥M−1(Q×)−µ ≥ Q×

X
(Q×)−µ

≥ X−
µ−1
τ −1−ε2 = X−

2(µ−1)
µ−A −1−ε2 .

(7.2)

Consider an integer pair (x̃, ỹ) linearly independent of (x, y) and with
√
|x̃ỹ| ≤ X. Set

X̃ := max{|x̃|, |ỹ|} and observe that X̃ ≤ X2. By construction, we have

|yξ − x|p = (Q×)−µ = Q−
µ
A ≤ Q−1X−2 ≤ Q−1X̃−1,

where we have used that

X2 = (Q×)µ−A−2ε1 = Q
µ−A
A −ε3 .

It then follows from Lemma 5.1 that

|ỹξ − x̃|p � Q−1X̃−1 � Q−1X−2 = X−2−
A

τ−ε1

= X−2−
A
τ −ε4 = X−

2µ
µ−A−ε4 .

(7.3)

Since µ can be chosen arbitrarily close to µ×(ξ), we deduce from (7.2) and (7.3) that

(7.4) µ̂×(ξ) ≤ sup
A∈[1,2]

max

{
3µ×(ξ)− 2−A
µ×(ξ)−A

,
2µ×(ξ)

µ×(ξ)−A

}
.

For µ×(ξ) ≥ 4 it is readily checked that, for any A in [1, 2], the quantity on the left
is greater than or equal to the quantity on the right. Hence, for µ×(ξ) ≥ 4, we have
proved that

(7.5) µ̂×(ξ) ≤ sup
A∈[1,2]

3µ×(ξ)− 2−A
µ×(ξ)−A

= 3 +
2

µ×(ξ)− 2
.

Since (7.5) clearly holds if µ×(ξ) < 4 (recall that µ̂×(ξ) ≤ 4 is always true), this
proves the first claim (3.1) of the theorem.

Actually, in the preceding proof, we have shown a slightly stronger result than (7.4),
which we state in the following corollary for later use.
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Corollary 7.1. Let ξ be an irrational p-adic number. Assume that there exist A
in [1, 2] and an infinite sequence S of pairs of nonzero integers (x, y) such that

lim sup
(x,y)∈S,max{|x|,|y|}→∞

− log |yξ − x|p
log
√
|xy|

= µ×(ξ)

and

lim
(x,y)∈S,max{|x|,|y|}→∞

log max{|x|, |y|}
log
√
|xy|

= A.

Then, we have

(7.6) µ̂×(ξ) ≤ max

{
3µ×(ξ)− 2−A
µ×(ξ)−A

,
2µ×(ξ)

µ×(ξ)−A

}
.

In particular, if we have A = 1, that is, if |x| and |y| are of comparable size for every
pair (x, y) in S, then we obtain µ̂×(ξ) ≤ 3.

Proof: The estimate (7.6) comes directly from the proof of Theorem 3.1 above. For
the last assertion, observe that when A = 1 the left-hand side of the maximum in (7.6)
is equal to 3, while the right-hand side is at most equal to 3 when µ×(ξ) ≥ 3.

For a given p-adic number ξ with

(7.7) inf
x,y 6=0

|xy| · |yξ − x|p = 0

(this can be assumed, since otherwise µ×(ξ) = µ̂×(ξ) = 2), we define the sequence
of integer pairs ((x̃×k , ỹ

×
k ))k≥1 by taking a pair of coprime integers (x, y) minimizing

|yξ − x|p among all the integer pairs with 0 <
√
|xy| ≤ Q, and letting the positive

real number Q grow to infinity. Write Q̃×k =
√
|x̃×k ỹ

×
k | for k ≥ 1. By construction,

we have

Q̃×1 < Q̃×2 < · · · , |ỹ×1 ξ − x̃
×
1 |p > |ỹ

×
2 ξ − x̃

×
2 |p > · · · .

However, we cannot guarantee that Q̃×k |ỹ
×
k ξ − x̃

×
k |p > Q̃×k+1|ỹ

×
k+1ξ − x̃

×
k+1|p for ev-

ery k ≥ 1. Therefore, we extract a subsequence ((x̃×ik , ỹ
×
ik

))k≥1 from ((x̃×k , ỹ
×
k ))k≥1,

where i1 = 1 and, for k ≥ 1, the index ik+1 is the smallest index j > ik such that

Q̃×j |ỹ
×
j ξ − x̃

×
j |p < Q̃×ik |ỹ

×
ik
ξ − x̃×ik |p. This gives an infinite subsequence since ξ satis-

fies (7.7).

To simplify the notation, put x×k = x̃×ik , y×k = ỹ×ik , and Q×k = Q̃×ik , for k ≥ 1.

For k ≥ 1, by construction, |y×k+1ξ − x
×
k+1|p is smaller than |My×k ξ −Mx×k |p as

soon as the positive integer M satisfies M ≤ Q×k+1/Q
×
k . Observe that, by the remark

on the coprimality of x and y following Definition 1.1, we have

µ×(ξ) = lim sup
k→∞

− log |y×k ξ − y
×
k |p

logQ×k

and

µ̂×(ξ) = 1 + lim inf
k→∞

− log |y×k ξ − y
×
k |p − logQ×k

logQ×k+1

.

We begin with an auxiliary result relating the sequence (Q×k )k≥1 with µ×(ξ)
and µ̂×(ξ).

Lemma 7.2. With the above notation, we have

lim sup
k→∞

logQ×k+1

logQ×k
≤ µ×(ξ)− 1

µ̂×(ξ)− 1
.
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Proof: By the definitions of the limsup and of the liminf, we get that, for every ε > 0
and every large k, we have

(µ×(ξ) + ε) logQ×k ≥ − log |y×k ξ − x
×
k |p

and

(µ̂×(ξ)− 1− ε) logQ×k+1 ≤ − log |y×k ξ − x
×
k |p − logQ×k .

This gives

(µ̂×(ξ)− 1− ε) logQ×k+1 ≤ (µ×(ξ)− 1 + ε) logQ×k ,

and the lemma follows.

Proof of Theorem 3.3: We establish (i) and observe that (ii) can be proved analo-
gously.

Assume that we have |x×k | � |y
×
k | and |x×k+1| � |y

×
k+1|. Recall that Q×k =

√
|x×k y

×
k |.

Define αk and βk by

(Q×k )αk = |x×k |, (Q×k )βk = |y×k |,
and note that αk +βk = 2. Define µk (it would be more appropriate to write µ×k , but
for the sake of readability we choose to drop the ×) by

|y×k+1ξ − x
×
k+1|p < |y

×
k ξ − x

×
k |p = (Q×k )−µk .

Now, as in Lemma 5.1, we get

|x×k+1y
×
k − x

×
k y
×
k+1|p = |y×k+1(y×k ξ − x

×
k )− y×k (y×k+1ξ − x

×
k+1)|p ≤ (Q×k )−µk .

Thus,

|x×k+1y
×
k − x

×
k y
×
k+1| ≥ (Q×k )µk ,

which implies that

max{|x×k+1y
×
k |, |x

×
k y
×
k+1|} � (Q×k )µk .

Set δk = min{αk, βk}. Since |x×k | � |y
×
k |, we may assume that δk = βk (if necessary,

we absorb the numerical constant in �). We have either

|x×k+1| �
(Q×k )µk

|y×k |
= (Q×k )µk−βk ,

which gives

Q×k+1 =
√
|x×k+1y

×
k+1| ≥

√
|x×k+1| � (Q×k )

µk−δk
2 ,

or

|x×k+1| � |y
×
k+1| �

(Q×k )µk

|x×k |
= (Q×k )µk−αk � (Q×k )µk−2+δk ,

which gives

Q×k+1 =
√
|x×k+1y

×
k+1| ≥ (Q×k )µk−2+δk .

To sum up, we have proved that

logQ×k+1

logQ×k
≥ min

{
µk − δk

2
, µk − 2 + δk

}
.

Let ε > 0 be a given real number. For k large enough, it then follows from the proof
of Lemma 7.2 that

(7.8)
logQ×k+1

logQ×k
≤ µk − 1

µ̂×(ξ)− 1
+ ε.
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We deduce that

µ̂×(ξ) ≤ 1 + max

{
2µk − 2

µk − δk
,

µk − 1

µk − 2 + δk

}
+ ε̃

≤ 1 + max

{
2µk − 2

µk − 1
,
µk − 1

µk − 2

}
+ ε̃ = 1 + max

{
2,
µk − 1

µk − 2

}
+ ε̃,

where ε̃ tends to 0 with ε. If µk ≤ 3 for arbitrarily large k as above, then the upper
bound µ̂×(ξ) ≤ 3 follows from (7.8). Otherwise, we have µk > 3 for every sufficiently
large k and, since ε can be taken arbitrarily small, we conclude that µ̂×(ξ) ≤ 3, as
asserted.

Proof of (3.2) in Theorem 3.1: First, note that (3.2) clearly holds when µ̂×(ξ) ≤ 3,
since we then have

µ̂×(ξ)2 − 3µ̂×(ξ) + 3 ≤ µ̂×(ξ) ≤ µ×(ξ).

Consequently, we assume throughout this proof that µ̂×(ξ) > 3. By (3.1), we then
have

3 < µ×(ξ) < +∞.
Observe also that (3.2) can be rewritten as

(7.9) µ̂×(ξ) ≤
3 +

√
4µ×(ξ)− 3

2
.

Define µk by

|x×k ξ − y
×
k |p =

(√
|x×k y

×
k |
)−µk

= (Q×k )−µk ,

and αk, βk, δk by

(Q×k )αk = |x×k |, (Q×k )βk = |y×k |, δk = min{αk, βk}.
We can assume that

µ×(ξ) = lim sup
`→∞

µ2`,

and, in view of Theorem 3.3, that for all large even integers k we have

|x×k | > |y
×
k |, |x×k+1| < |y

×
k+1|.

Then δk = βk. Below, k denotes a sufficiently large even integer.
Let ε > 0 be a given real number. Proceeding as in the preceding proof, but with

the pairs (x×k , y
×
k ) and (x×k+2, y

×
k+2), which satisfy the inequalities |x×k+2| > |y

×
k+2| and

|x×k | > |y
×
k |, we get

logQ×k+2

logQ×k
≥ min

{
µk − δk

2
, µk − 2 + δk

}
+ ε,

for k large. On the other hand, from the proof of Lemma 7.2 we get

logQ×k+2

logQ×k
=

logQ×k+2

logQ×k+1

·
logQ×k+1

logQ×k
≤
(

µk − 1

µ̂×(ξ)− 1

)2

+ ε.

The combination of the latter inequalities gives

µ̂×(ξ) ≤ 1 +

√
max

{
2(µk − 1)2

µk − δk
,

(µk − 1)2

µk − 2 + δk

}
+ ε̃,

where ε̃ tends to 0 with ε. Take an increasing sequence (kj)j≥1 of even integers such
that

µ×(ξ) = lim
j→∞

µkj .
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By extracting a subsequence if needed, we may assume that the sequence (δkj )j≥1
converges and we put

δ = lim
j→∞

δkj .

We deduce that

µ̂×(ξ) ≤ 1 + max

{√
2

µ×(ξ)− δ
(µ×(ξ)− 1),

µ×(ξ)− 1√
µ×(ξ)− 2 + δ

}
.

Observe that in the maximum the right-hand term is larger than the left-hand term
if and only if µ×(ξ) ≤ 4− 3δ. Consequently, if µ×(ξ) ≤ 4− 3δ ≤ 4, then we get

µ̂×(ξ) ≤ 1 +
µ×(ξ)− 1√
µ×(ξ)− 2

.

Taking into account that µ×(ξ) > 3, a rapid calculation shows that this inequality
implies (7.9), as wanted.

So we may assume µ×(ξ) > 4− 3δ and thus

µ̂×(ξ) ≤ 1 +

√
2

µ×(ξ)− δ
(µ×(ξ)− 1).

Observe that Corollary 7.1 applied with A = 2− δ gives

(7.10) µ̂×(ξ) ≤ max

{
3µ×(ξ)− 2−A
µ×(ξ)−A

,
2µ×(ξ)

µ×(ξ)−A

}
,

where the maximum is given by the left-hand term if and only if we have A ≤ µ×(ξ)−2.
We distinguish two cases.

Case 1: Assume that A ≤ µ×(ξ)− 2, that is, µ×(ξ) ≥ 4− δ. Then

(7.11) µ̂×(ξ) ≤ min

{
3µ×(ξ)− 4 + δ

µ×(ξ)− 2 + δ
,

√
2

µ×(ξ)− δ
(µ×(ξ)− 1) + 1

}

holds. In view of (7.9), we can assume that

3µ×(ξ)− 4 + δ

µ×(ξ)− 2 + δ
>

3 +
√

4µ×(ξ)− 3

2
,

that is,

δ <
3µ×(ξ)− 2− (µ×(ξ)− 2)

√
4µ×(ξ)− 3

1 +
√

4µ×(ξ)− 3
.

Using this bound for δ, we derive from (7.11) that

µ̂×(ξ) < 1 +

√
(µ×(ξ)− 1)(1 +

√
4µ×(ξ)− 3)√

4µ×(ξ)− 3− 1
= 1 +

1 +
√

4µ×(ξ)− 3

2
,

which gives the bound (7.9).
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Case 2: We assume that A > µ×(ξ)− 2, that is, µ×(ξ) < 4− δ ≤ 4. Then (7.10) gives

µ̂×(ξ) ≤ 2 +
2A

µ×(ξ)−A
=

2µ×(ξ)

µ×(ξ)− 2 + δ

and we get

(7.12) µ̂×(ξ) ≤ min

{
2µ×(ξ)

µ×(ξ)− 2 + δ
,

√
2

µ×(ξ)− δ
(µ×(ξ)− 1) + 1

}
.

In view of (7.9), we can assume that

2µ×(ξ)

µ×(ξ)− 2 + δ
>

3 +
√

4µ×(ξ)− 3

2
,

that is,

δ <
µ×(ξ) + 6− (µ×(ξ)− 2)

√
4µ×(ξ)− 3

3 +
√

4µ×(ξ)− 3
.

Using this bound for δ, we derive from (7.12) that

µ̂×(ξ) < 1 +

√
(µ×(ξ)− 1)2(3 +

√
4µ×(ξ)− 3)

(µ×(ξ)− 3) + (µ×(ξ)− 1)
√

4µ×(ξ)− 3
.

A careful computation shows that, since µ×(ξ) ≥ 3, we get (7.9).

As noticed above Corollary 3.2, the upper bound (3.3) followsfrom (3.1) and (3.2).
The proof of Theorem 3.1 is complete.
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[9] V. Jarńık, Sur les approximations diophantiques des nombres p-adiques, Rev. Ci. (Lima) 47

(1945), 489–505.

[10] É. Lutz, Sur les approximations diophantiennes linéaires P -adiques, Actualités Scientifiques

et Industrielles [Current Scientific and Industrial Topics] 1224, Hermann & Cie, Paris, 1955,
106 pp.

[11] K. Mahler, Zur Approximation P -adischer Irrationalzahlen, Nieuw Arch. Wiskd. 18(2) (1934),

22–34.

http://dx.doi.org/10.1307/mmj/20195785
http://dx.doi.org/10.1017/CBO9780511565991
http://dx.doi.org/10.1017/CBO9780511565991
http://dx.doi.org/10.1090/S0002-9939-2010-10491-4
http://dx.doi.org/10.4064/aa8372-7-2016
http://dx.doi.org/10.1007/s10231-016-0602-7
http://dx.doi.org/10.1007/s10231-016-0602-7
https://doi.org/10.1112/S0010437X07002801
https://doi.org/10.1112/S0010437X07002801


26 Y. Bugeaud, J. Schleischitz
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