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Abstract: We collect some peculiarities of higher-order fractional Laplacians (−∆)s, s > 1, with

special attention to the range s ∈ (1, 2), which show their oscillatory nature. These include the
failure of the polarization and Pólya–Szegő inequalities and the explicit example of a domain with

sign-changing first eigenfunction. In spite of these fluctuating behaviours, we prove how the Faber–

Krahn inequality still holds for any s > 1 in dimension one.
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1. Introduction

The fractional Laplacian operator, usually denoted by (−∆)s, s ∈ (0, 1), is the
nonlocal integral operator

(1) (−∆)su(x) = cn,s lim
ε↓0

∫
{y∈Rn:|y|>ε}

u(x)− u(x+ y)

|y|n+2s dy.

It is naturally associated to the stochastic analysis of some Lévy processes, in par-
ticular of the α-stable ones, since it arises as their infinitesimal generator. For this
reason, it has been used in models from mathematical finance, population dynamics,
quantum mechanics, and electrostatics, among others. We refer to [6, 10, 11, 17] for
an introduction to the basic features and a more comprehensive list of applications of
the operator. From an abstract perspective, the family {(−∆)s}s∈(0,1) can be thought
of as a collection of operators interpolating the identity and the Laplacian; indeed, at
least for u ∈ C∞c (Rn),

lim
s↓0

(−∆)su = u,

lim
s↑1

(−∆)su = −∆u;

see [11, Proposition 4.4].
Here, we are mainly concerned with powers of the Laplace operator greater than 1,

which we call higher-order fractional Laplacians. Although the integral expression
in (1) cannot be extended to s > 1 in a straightforward way, it is possible to de-
fine (−∆)s, s > 1, as the pseudo-differential operator

(2) F [(−∆)su](ξ) = |ξ|2sFu(ξ) for ξ ∈ Rn, u ∈ C∞c (Rn),

where F denotes the Fourier transform. For s ∈ (0, 1), the above and (1) coincide by
properly choosing the normalizing constant cn,s; see [31, Chapter 5, Lemma 25.3, and
Theorem 26.1]. With definition (2), the family {(−∆)s}s>0 interpolates the (local)
polyharmonic operators – or also poly-Laplacians – (−∆)s, s ∈ N, for which we refer
to the monograph [18].
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Boundary problems driven by a poly-Laplacian require several boundary conditions
in order to be well posed, and this is due to the high order of the operator. One way
of prescribing boundary conditions is to impose that the solution u satisfies

u =
∂u

∂ν
= · · · = ∂s−1u

∂νs−1
= 0 at the boundary, for s ∈ N,

where ν denotes the normal unit vector to the boundary. These go under the name
Dirichlet conditions and they represent the pointwise analogue of variationally solving
equations in the Sobolev space Hs

0 .
When coupled with Dirichlet conditions, poly-Laplacians present an oscillatory

behaviour. This may be exemplified by the failure of the weak maximum principle

(3) (−∆)su ≥ 0 in Ω (u ∈ Hs
0(Ω), s ∈ N \ {1}) 6=⇒ u ≥ 0 in Ω.

It was first noted in 1908 [21] that, in dimension n = 2, there are annular do-
mains for which (3) occurs for the bi-Laplacian s = 2. It was then conjectured that
(3) was not the case for convex domains: this is known in the literature as the Boggio–
Hadamard conjecture. But this conjecture was proved to be false [13] for some rectan-
gular domains and, later on, several other counterexamples were built; these include
for s, n = 2: an infinite strip [14], (most) infinite wedges [32], the punctured disk [28],
and eccentric ellipses [16]. As to this last counterexample, it is worth mentioning that,
on top of the simple geometry of the domain, it is possible to provide completely ele-
mentary counterexamples in terms of polynomials [33]: this highlights how the above
mentioned oscillations are deeply written in the nature of higher-order operators and
they do not arise as singular phenomena. For s = 3 we refer to [34] and for s = 4
to [35] for elementary explicit counterexamples. For s ∈ N even and any space dimen-
sion, the lack of maximum principles can be deduced by the analysis of the oscillations
of the first eigenfunction carried out in [24].

Another interesting (and extremely difficult) problem for the bi-Laplacian with
Dirichlet conditions is the Faber–Krahn inequality. It states that the first eigenvalue
of any domain is larger than the first eigenvalue of the ball with the same measure.
This has been proved independently for n = 2 in [27] and for n = 2, 3 in [7], while
it remains completely open for higher dimensions. Both [27] and [7] are based on
the previous analysis carried out in [37] which, in turn, borrows the idea of Talenti’s
principle [36, Theorem 1].

As the collection {(−∆)s}s∈(1,2) connects the Laplacian with the bi-Laplacian,
one could legitimately wonder in which way this oscillatory behaviour appears in the
transition from s = 1 to s = 2. Our analysis here aims at contributing to answer this
question, by showing that as soon as s > 1 oscillatory phenomena emerge to a large
extent.

First of all, let us recall that, on the fractional and nonlocal side s ∈ (1,∞) \ N,
it was first proved in [3] that “almost” no disconnected domain can satisfy the weak
maximum principle whenever s ∈ (2k − 1, 2k) with k ∈ N: the prototypical domain
here can be thought of as the union of two disjoint balls (bear in mind that the discon-
nection of the domain is overruled by the nonlocality of the operator). A somewhat
more precise analysis in [2, Theorem 1.10] studied the sign of the Green function of
such two-ball domain, noticing in particular how the Green function is positive (if
the balls have equal radii) for s ∈ (2k, 2k + 1), k ∈ N, and thus the above mentioned
counterexample cannot extend also to this range of s. Later, counterexamples on ec-
centric ellipsoids for s ∈ (1,

√
3 + 3/2) were constructed in [5], therefore covering the

exponents s ∈ (2, 3).
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Another interesting property found in [26] deals with the Dirichlet energy1

(4) Es(u, u) =

∫
Rn

|ξ|2s|Fu(ξ)|2 dξ

of the Nemytskii operator u 7→ |u|: it holds that

Es(u, u) ≤ Es(|u|, |u|) for s ∈ (1, 3/2),

where the equality holds only if u is of constant sign. This is in particular equivalent
to

Es(u+, u−) ≥ 0 for s ∈ (1, 3/2),

where u+, u− denote respectively the positive and the negative parts of u.
The purpose of the present note is to collect a series of remarks on the behaviour

of higher-order fractional Laplacians. In particular, we show that:

• The polarization inequality for s ∈ (1, 3/2) is reversed with respect to what
happens for s ∈ (0, 1] – see Definition 3.1 and Theorem 3.8. The polarization of
a function is a rearrangement with respect to a hyperplane and it is a useful tool
in proving symmetry of solutions to elliptic and parabolic problems: we refer
to [41] and the many references therein for a survey on this matter. Among the
applications of the polarization, it is worth mentioning that it can approximate
several other notions of rearrangement (including the spherical decreasing one)
and that, as a consequence, a number of rearrangement inequalities can be
deduced from the polarization inequality; see [39].
• The Pólya–Szegő inequality fails for s ∈ (1,∞); see Subsection 4.2. Contrarily

to what happens for the polarization, the Pólya–Szegő inequality is not reversed;
see Subsection 4.1. This inequality compares the energy of the spherical decreas-
ing rearrangement (or, also, Schwarz symmetrization) – see Definition 4.1 – of a
function with the energy of the original function. For s ∈ (0, 1) the Pólya–Szegő
inequality has been proved in [29, equation (14)]; recall that this inequality
implies the Faber–Krahn inequality.
• On a two-ball domain, the first eigenvalue is simple and the first eigenfunction

is symmetric and positive for s ∈ (2k, 2k+ 1), k ∈ N, whilst it is antisymmetric
and positive on one ball (and negative on the other) for s ∈ (2k− 1, 2k), k ∈ N;
see Theorem 5.4.
• Again on a two-ball domain, when the balls have equal radii, maximum princi-

ples are recovered for antisymmetric “positive” data for s ∈ (2k, 2k+ 1), k ∈ N,
and for symmetric positive data for s ∈ (2k− 1, 2k), k ∈ N; see Proposition 5.5.
• Despite the results concerning the polarization and the Pólya–Szegő inequali-

ties, the Faber–Krahn inequality still holds for any s ∈ (1,∞) at least in dimen-
sion n = 1; see Theorems 6.4 and 6.6.

2. Notations and reminders about higher-order fractional
Laplacians

In the following we will need some notations and known facts about the analysis
of higher-order fractional Laplacians, which we recall here below for future reference.

We will denote by b·c the integer part of a real number, i.e.,

bsc = max{m ∈ Z : m < s}, s ∈ R.

1This could be equivalently introduced as the quadratic form which is naturally associated to (−∆)s

as defined in (2). For s = 0 it coincides with the square of the L2 norm.
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Note that, with this definition, bsc = s − 1 whenever s ∈ N. If N denotes the set of
positive integer numbers, then N0 = N ∪ {0} and 2N0, 2N0 + 1 denote respectively
the sets of even and odd nonnegative integers. The symbols ∨ and ∧ will denote
respectively the max and min operations between real numbers, namely

a ∨ b = max{a, b}, a ∧ b = min{a, b}, for a, b ∈ R.
By ωn we mean the volume of the unit ball in Rn,

ωn =
2πn/2

nΓ(n/2)
.

Given a measurable A ⊂ Rn, we denote by 1A its characteristic function.
The fractional Laplacian (−∆)s as defined in (2) admits the pointwise representa-

tion (see [4])

(−∆)su(x) :=
κn,s

2

∫
Rn

δbsc+1u(x, y)

|y|n+2s
dy,

where

δbsc+1u(x, y) :=

bsc+1∑
k=−bsc−1

(−1)k
(

2bsc+ 2
bsc+ 1− k

)
u(x+ ky) for x, y ∈ Rn

is a finite difference of order 2bsc+ 2, and κn,s is the positive constant given by

κn,s :=


22sΓ(n/2 + s)

πn/2Γ(−s)

(bsc+1∑
k=1

(−1)k
(

2bsc+ 2

bsc+ 1− k

)
k2s

)−1

, s 6∈ N,

22sΓ(n/2 + s) s!

2πn/2

(
s+1∑
k=2

(−1)k−s+1

(
2s+ 2

s+ 1− k

)
k2s ln(k)

)−1

, s ∈ N.

Recalling the quadratic form in (4), the fractional Sobolev space Hs(Rn) is defined
as

Hs(Rn) = {u ∈ L2(Rn) : Es(u, u) <∞}.
On a bounded open domain Ω ⊂ Rn the Sobolev space associated with homogeneous
boundary conditions is

Hs0(Ω) = {u ∈ Hs(Rn) : u = 0 in Rn \ Ω}.
The bilinear form induced by (4) is

Es(u, v) =

∫
Rn

|ξ|2sFu(ξ)Fv(ξ) dξ

and it admits also the following equivalent representations:

(5) Es(u, v) =

Es−bsc((−∆)
bsc/2

u, (−∆)
bsc/2

v) if bsc ∈ 2N0,

Es−bsc(∇(−∆)
(bsc−1)/2

u,∇(−∆)
(bsc−1)/2

v) if bsc ∈ 2N0 + 1.

A consequence of this representation is that, if u, v ∈ Hs(Rn) with uv ≡ 0 in Rn, then

(6) Es(u, v) = (−1)
bsc+1 cn,s

2

∫
Rn

∫
Rn

u(x) v(y)

|x− y|n+2s dx dy,

where

cn,s =
22sΓ(n/2 + s)

πn/2|Γ(−s)|
> 0;

see [3, Lemma 4.4] and [26, Theorem 2]. Equation (6) should be borne in mind, as it
will play a crucial role in the following.
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3. A (reversed) polarization inequality

In the following, let Σ be an open half-space in Rn. Denote by τΣ : Rn → Rn the
reflection around ∂Σ.

Definition 3.1. The polarization of a function u : Rn → R is given by

uΣ : Rn −→ R, uΣ(x) =

{
u(x) ∨ u(τΣ(x)) for x ∈ Σ,

u(x) ∧ u(τΣ(x)) for x ∈ Rn \ Σ.

Note that we may also write

(7) uΣ(x) =
u(x) + u(τΣ(x))

2


+
|u(x)− u(τΣ(x))|

2
for x ∈ Σ,

−|u(x)− u(τΣ(x))|
2

for x ∈ Rn \ Σ,

and it holds that

(8) uΣ + uΣ ◦ τΣ = u+ u ◦ τΣ in Rn.

Recall that Es(u, u) = Es(uΣ, uΣ) for s = 0, 1 (see, e.g., [41]) whereas, for s ∈ (0, 1),
we have

(9) Es(uΣ, uΣ) ≤ Es(u, u),

where the inequality is strict if uΣ 6= u (see, e.g., [8, 19, 40]). In the following,
we consider s ∈ (1, 3/2) and show that (9) is reversed; see Theorem 3.8 below. The
fact that uΣ ∈ Hs(Rn) whenever u ∈ Hs(Rn) follows immediately from (7) and [9,
Théorème 1].

Lemma 3.2. Let s ∈ (0, 1), Σ an open half-space in Rn, and v ∈ Hs(Rn) such
that v ◦ τΣ = −v, i.e., v is antisymmetric with respect to ∂Σ. Then v1Σ ∈ Hs0(Σ) and

Es(v1Σ, v1Σ) ≤ Es(v, v).

Proof: The statement follows from the proof of [23, Lemma 3.2] (see also [22, Lem-
ma 3.2]).

Proposition 3.3. Let s ∈ (1, 3/2), Σ an open half-space in Rn, and v ∈ Hs(Rn)
such that v ◦ τΣ = −v, i.e., v is antisymmetric w.r.t. ∂Σ. Then v1Σ ∈ Hs0(Σ).

Proof: By translation and rotation invariance, we may assume that Σ = {x1 > 0}, so
that τΣ(x) = τΣ(x1, x

′) = (−x1, x
′). Note that v1Σ ∈ H1

0(Σ). Next recall that by [20,
Corollary 1.4.4.5] we have Hs−1

0 (Σ) = Hs−1(Σ) for s ∈ (1, 3/2). In particular, for
any i = 1, . . . , n, we have (∂iv)1Σ ∈ Hs−1(Σ) and thus also ∂i(v1Σ) = (∂iv)1Σ ∈
Hs−1

0 (Σ).

Remark 3.4. We note that the conclusion of Proposition 3.3 does not hold for s ≥ 3/2.
Indeed, for example in the case n = 1 and s = 2, if Σ = {x1 > 0} and v ∈ H2(R) is
odd, then in general v′(0) 6= 0 and thus v1Σ cannot be an element of H2

0(Σ). More
generally, one can check [25, Example 3.1(i)] or [26, Example 1].

Lemma 3.5. Let s ∈ (1, 2), Σ an open half-space in Rn, and w1, w2 ∈ Hs0(Σ)
with w1, w2 ≥ 0 and w1w2 ≡ 0 in Rn. Then

Es(w1, w2 ◦ τΣ) ≤ Es(w1, w2)

and the inequality is strict if w1 and w2 are nontrivial.
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Proof: By density, we may think of w1, w2 ∈ C∞c (Σ) with disjoint supports. Moreover,
since w1w2 ≡ 0 in Rn and wi1Rn\Σ ≡ 0 in Rn, i = 1, 2, we also have w1(w2 ◦ τΣ) ≡ 0
in Rn. Hence, (6) implies

Es(w1, w2 ◦ τΣ) =
cn,s
2

∫
Σ

∫
Rn\Σ

w1(x)w2(τΣ(y))

|x− y|n+2s dy dx

=
cn,s
2

∫
Σ

∫
Σ

w1(x)w2(y)

|x− τΣ(y)|n+2s dy dx

≤ cn,s
2

∫
Σ

∫
Σ

w1(x)w2(y)

|x− y|n+2s dy dx = Es(w1, w2),

since |x− τΣ(y)| ≥ |x− y| for x, y ∈ Σ.

Lemma 3.6. Let s ∈ (1, 3/2), Σ an open half-space in Rn, and w ∈ Hs(Rn) such
that w ◦ τΣ = −w, i.e., w is antisymmetric with respect to ∂Σ. Then

(10) Es(w,w) ≤ Es(|w|1Σ − |w|1Rn\Σ, |w|1H − |w|1Rn\Σ).

Moreover, the inequality is strict if w1Σ is sign-changing.

Proof: By Proposition 3.3 we have w1Σ ∈ Hs0(Σ) and hence also (w1Σ)± = w±1Σ ∈
Hs0(Σ) by [9, Théorème 1], since s < 3/2. Splitting w = w+1Σ−w−1Σ +w+1Rn\Σ−
w−1Rn\Σ and |w| = w+ + w− we have that (10) is equivalent to

− Es(w+1Σ, w
−1Σ) + Es(w+1Σ, w

+1Rn\Σ)− Es(w+1Σ, w
−1Rn\Σ)

− Es(w−1Σ, w
+1Rn\Σ) + Es(w−1Σ, w

−1Rn\Σ)− Es(w+1Rn\Σ, w
−1Rn\Σ)

≤ Es(w+1Σ, w
−1Σ)− Es(w+1Σ, w

+1Rn\Σ)− Es(w+1Σ, w
−1Rn\Σ)

− Es(w−1Σ, w
+1Rn\Σ)− Es(w−1Σ, w

−1Rn\Σ) + Es(w+1Rn\Σ, w
−1Rn\Σ),

or, simply,

Es(w+1Σ, w
+1Rn\Σ) + Es(w−1Σ, w

−1Rn\Σ)

≤ Es(w+1Σ, w
+1Σ) + Es(w+1Rn\Σ, w

−1Rn\Σ).

Using the antisymmetry of w, one has that

w+1Rn\Σ = (w−1Σ) ◦ τΣ and w−1Rn\Σ = (w+1Σ) ◦ τΣ,

so that we only need to show

Es(w+1Σ, (w
−1Σ) ◦ τΣ) ≤ Es(w+1Σ, w

−1Σ),

since the scalar product is invariant under reflections. This last inequality holds in
view of Lemma 3.5.

Proposition 3.7. Let s ∈ (1, 3/2), Σ an open half-space in Rn, and u ∈ Hs(Rn).
Then

Es(uΣ, uΣ ◦ τΣ) ≤ Es(u, u ◦ τΣ).

Moreover, this inequality is strict if uΣ 6= u.

Proof: First note that

4Es(u, u ◦ τΣ) = Es(u+ u ◦ τΣ, u+ u ◦ τΣ)− Es(u− u ◦ τΣ, u− u ◦ τΣ).
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Using this observation and (7), it follows that

4Es(uΣ, uΣ◦τΣ)−4Es(u, u◦τΣ) = Es(u−u◦τΣ, u−u◦τΣ)−Es(uΣ−uΣ◦τΣ, uΣ−uΣ◦τΣ)

since u+ u ◦ τΣ = uΣ + uΣ ◦ τΣ by definition. Noting that u− u ◦ τΣ is antisymmetric
with respect to ∂Σ and that

uΣ − uΣ ◦ τΣ = |u− u ◦ τΣ|1Σ − |u− u ◦ τΣ|1RN\Σ,

the assertion follows from Lemma 3.6.

Theorem 3.8. Let s ∈ (1, 3/2) and Σ an open half-space in Rn. Then for all u ∈
Hs(Rn) we have uΣ ∈ Hs(Rn) and

Es(uΣ, uΣ) ≥ Es(u, u).

Moreover, this inequality is strict if uΣ 6= u.

Proof: Recall identity (8). Note that

Es(uΣ, uΣ) =
1

2
Es(uΣ, uΣ) +

1

2
Es(uΣ ◦ τΣ, uΣ ◦ τΣ)

=
1

2
Es(uΣ + uΣ ◦ τΣ, uΣ + uΣ ◦ τΣ)− Es(uΣ, uΣ ◦ τΣ)

=
1

2
Es(u+ u ◦ τΣ, u+ u ◦ τΣ)− Es(uΣ, uΣ ◦ τΣ)

= Es(u, u) + Es(u, u ◦ τΣ)− Es(uΣ, uΣ ◦ τΣ).

Note that we have used (8). The claim hence follows from Proposition 3.7.

4. The Pólya–Szegő inequality

We start by recalling the definition of the symmetric decreasing rearrangement.
We retrieve the definitions in [36].

Definition 4.1. Given a measurable function u : Rn → R the decreasing rearrange-
ment of u is the function

ũ : [0,∞) −→ [0,∞)

t 7−→ inf{τ ≥ 0 : |{|u| > τ}| < t}

and the spherical decreasing rearrangement is

u∗ : Rn −→ [0,∞)

x 7−→ ũ(ωn|x|n).

4.1. An example. Consider v ∈ Hs0(B1), nonnegative, radial, and radially decreas-
ing. Note that we can also write v(x) = w(|x|), x ∈ Rn, for some w : [0,∞)→ [0,∞).

Fix x0 ∈ Rn, |x0| > 2, and define

u(x) := v(x) + va,x0
(x), va,x0

(x) := v(ax− x0), x ∈ Rn, a ≥ 1.

For t ∈ R, consider the superlevels of u, i.e., At = {x ∈ Rn : u(x) > t}. It holds that

|At| = |{x ∈ Rn : u(x) > t}| = |{x ∈ Rn : v(x) > t}|+ |{x ∈ Rn : v(ax) > t}|,

so that the symmetrization A∗t of At coincides with

A∗t = B(0, ω−1/n
n (|{x ∈ Rn : v(x) > t}|+ |{x ∈ Rn : v(ax) > t}|)1/n).
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We now compute u∗, the spherical decreasing rearrangement of u. By definition,

u∗(y) = inf{t ∈ R : y ∈ A∗t },

where

y ∈ A∗t if and only if |y|n < ω−1
n |{x ∈ Rn : v(x) > t}|+ ω−1

n |{x ∈ Rn : v(ax) > t}|
= |{z > 0 : w(z) > t}|n + |{z > 0 : w(az) > t}|n

= |w−1(t)|n +

∣∣∣∣w−1(t)

a

∣∣∣∣n =

(
1 +

1

an

)
|w−1(t)|n,

which implies

u∗(y) = w

(
a|y|

(1 + an)
1/n

)
= vb,0(y), b :=

a

(1 + an)
1/n

, for y ∈ Rn.

Let us now compare the Sobolev energies:

Es(u, u) = Es(v, v) + 2Es(v, va,x0) + Es(va,x0 , va,x0)

= (1 + a2s−n)Es(v, v) + 2Es(v, va,x0
) ≥ (1 + a2s−n)Es(v, v),

Es(u∗, u∗) = Es(vb,0, vb,0) = b2s−nEs(v, v) =
a2s−n

(1 + an)
(2s−n)/n

Es(v, v);

here we must note that

(11)
a2s−n

(1 + an)
(2s−n)/n

< 1 + a2s−n, a > 1,

so that we find

(12) Es(u∗, u∗) < Es(u, u).

Indeed, (11) is equivalent to

(1 + an)
1−2s/n

< 1 + (an)
1−2s/n

, a > 1,

which holds by the subadditivity of t 7→ tγ for t ≥ 1, γ ≤ 1.

4.2. A counterexample. Let us consider n = 1, restrict s ∈ (1, 3/2), and define
for M > 1

u(x) :=



0 for x ≤ −2,

x+ 2 for − 2 < x ≤ 0,

−x+ 2 for 0 < x ≤ 1,

1 for 1 < x ≤ 2M − 1,

−x+ 2M for 2M − 1 < x ≤ 2M,

0 for x > 2M.

The spherical rearrangement of u is

u∗(x) :=


−|x|+ 2 for 0 ≤ |x| ≤ 1,

1 for 1 < |x| ≤M,

−|x|+M + 1 for M < |x| ≤M + 1,

0 for |x| > M + 1.
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x

u(x)

x

u∗(x)

−2 0 1 2M−1 2M

1

2

−M−1 −M −1 0 1 M M+1

1

2

Figure 1. The graphs of u and u∗.

Let us now explicitly compute the Dirichlet energies associated to both functions.
As to u, we have (we are going to extensively use translation invariance and (5))

Es(u, u) = Es−1(u′, u′)

= Es−1(1(−2,0) − 1(0,1) − 1(2M−1,2M),1(−2,0) − 1(0,1) − 1(2M−1,2M))

= Es−1(1(−2,−1) + 1(−1,0) − 1(0,1) − 1(2M−1,2M),

1(−2,−1) + 1(−1,0) − 1(0,1) − 1(2M−1,2M))

= 4Es−1(1(0,1),1(0,1))− 2Es−1(1(−2,−1),1(0,1))− 2Es(1(−2,−1),1(2M−1,2M))

− 2Es−1(1(−1,0),1(2M−1,2M)) + 2Es−1(1(0,1),1(2M−1,2M)),

whereas

Es(u∗, u∗) = Es−1(1(−M−1,−M) + 1(−1,0) − 1(0,1) − 1(M,M+1),

1(−M−1,−M) + 1(−1,0) − 1(0,1) − 1(M,M+1))

= 4Es−1(1(0,1),1(0,1))+4Es−1(1(0,1),1(M,M+1))−4Es−1(1(−1,0),1(M,M+1))

− 2Es−1(1(−M−1,−M),1(M,M+1))− 2Es−1(1(−1,0),1(0,1)).

Summing up,

Es(u, u)− Es(u∗, u∗) =− 2Es−1(1(−2,−1),1(0,1))− 2Es(1(−2,−1),1(2M−1,2M))

− 2Es−1(1(−1,0),1(2M−1,2M)) + 2Es−1(1(0,1),1(2M−1,2M))

− 4Es−1(1(0,1),1(M,M+1)) + 4Es−1(1(−1,0),1(M,M+1))

+ 2Es−1(1(−M−1,−M),1(M,M+1)) + 2Es−1(1(−1,0),1(0,1))

=− 2Es−1(1(0,1),1(−2,−1))− 2Es(1(0,1),1(2M+1,2M+2))

− 2Es−1(1(0,1),1(2M,2M+1)) + 2Es−1(1(0,1),1(2M−1,2M))

− 4Es−1(1(0,1),1(M,M+1)) + 4Es−1(1(0,1),1(M+1,M+2))

+ 2Es−1(1(0,1),1(2M+1,2M+2)) + 2Es−1(1(0,1),1(−1,0))

=− 2Es−1(1(0,1),1(−2,−1)) + 2Es−1(1(0,1),1(−1,0))

− 2Es−1(1(0,1),1(2M,2M+1)) + 2Es−1(1(0,1),1(2M−1,2M))

− 4Es−1(1(0,1),1(M,M+1)) + 4Es−1(1(0,1),1(M+1,M+2)).

As Es−1(1(0,1),1(−1,0)) < Es−1(1(0,1),1(−2,−1)) – because the kernel is radially de-
creasing and the interactions are negative by (6) – and Es−1(1(0,1),1(M,M+1)) → 0
as M ↑ ∞ (along with the other similar terms), we deduce that there exists M∗(s) > 0
such that for any M > M∗(s)

(13) Es(u, u) < Es(u∗, u∗).
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Remark 4.2. A close inspection of Es(u, u)−Es(u∗, u∗) can actually show thatM∗(s) =
1 for any s ∈ (1, 3/2). Indeed, let us define the functions

f : [1,∞) −→ R
r 7−→ −2Es−1(1(0,1),1(r,r+1))

and
g : [1,∞) −→ R

r 7−→ f(r + 1)− f(r).

As f is positive and decreasing, g is negative and

Es(u, u)− Es(u∗, u∗) = g(1)− 2g(M) + g(2M − 1).

Note that the following identities hold for r > 1:

f(r) = c1,s−1

∫ 1

0

∫ 1

0

(y − x+ r)1−2s dy dx,

f ′′′(r) = c1,s−1(1− 2s)(−2s)(−1− 2s)

∫ 1

0

∫ 1

0

(y − x+ r)−2−2s dy dx < 0

so that

g′′(r) = f ′′(r + 1)− f ′′(r) < 0 for r > 1.

Using twice a second-order Taylor expansion centred at M with the remainder in
Lagrange form, one deduces

Es(u, u)− Es(u∗, u∗) = g(1)− 2g(M) + g(2M − 1) = g′′(ξ)(M − 1)2 < 0.

Remark 4.3. In view of (12) and (13), it follows immediately that a Pólya–Szegő
inequality or a reversed version of it cannot hold.

5. Analysis of the two-ball domain

In this section, let D1, D2 ⊂ Rn be two open balls with D1 ∩ D2 = ∅ and Ω =
D1 ∪D2. We perform a spectral analysis of the operator (−∆)s on the space Hs0(Ω),
by showing what we announced in the introduction, i.e., that the first eigenvalue is
positive and simple, with an associated eigenfunction which is possibly sign-changing
according to the value of s: this is done in Subsection 5.1. Moreover, we improve
the analysis carried out in [3] and [2] by giving sufficient conditions under which
maximum principles are recovered on Ω: this is done in Subsection 5.2.

5.1. The first eigenfunction.

Lemma 5.1. For U ⊂ Rn open and bounded, denote by

λ(U) := min
u∈Hs

0(U)
u6=0

Es(u, u)

‖u‖2L2(U)

the first Dirichlet eigenvalue of (−∆)s in U . Then λ(U) > 0 and it is attained by
some ϕ ∈ Hs0(U).

The proof of this lemma is standard and we omit it here.
In the following, we denote by π±i , i = 1, 2, the projections of Hs0(Di) onto their

positive and negative cones, as defined and analysed in Appendix A.

Proposition 5.2. Let bsc ∈ 2N0 + 1. The function ϕ̃ = 2π+
1 ϕ1 − ϕ1 + 2π−2 ϕ2 − ϕ2

satisfies

(14) ‖ϕ̃‖L2(Ω) ≥ ‖ϕ‖L2(Ω), Es(ϕ̃, ϕ̃) ≤ Es(ϕ,ϕ).

If instead bsc ∈ 2N0, then ϕ̃ = 2π+
1 ϕ1 − ϕ1 + 2π+

2 ϕ2 − ϕ2 satisfies (14).
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Proof: Let us suppose bsc ∈ 2N0 + 1; the case bsc ∈ 2N0 will follow under suitable
minor modifications.

By the maximum principle on balls [1, Theorem 1.1] and (23), it holds that π+
1 ϕ1 ≥

ϕ1 and π−2 ϕ2 ≤ ϕ2. One has

|ϕ| ≤ |ϕ1 − π+
1 ϕ1 + π+

1 ϕ1|+ |ϕ2 − π−2 ϕ2 + π−2 ϕ2| = 2π+
1 ϕ1 − ϕ1 − 2π−2 ϕ2 + ϕ2 = |ϕ̃|

and this proves the claim about the L2 norm. Also,

Es(ϕ̃, ϕ̃) = Es(2π+
1 ϕ1 − ϕ1 + 2π−2 ϕ2 − ϕ2, 2π

+
1 ϕ1 − ϕ1 + 2π−2 ϕ2 − ϕ2)

= Es(2π+
1 ϕ1 − ϕ1, 2π

+
1 ϕ1 − ϕ1) + Es(2π−2 ϕ2 − ϕ2, 2π

−
2 ϕ2 − ϕ2)

+ 2Es(2π+
1 ϕ1 − ϕ1, 2π

−
2 ϕ2 − ϕ2)

≤ Es(ϕ1, ϕ1) + Es(ϕ2, ϕ2)− 2Es(ϕ1, ϕ2)

+ 4Es(π+
1 ϕ1 − ϕ1, π

−
2 ϕ2) + 4Es(π+

1 ϕ1, π
−
2 ϕ2 − ϕ2)

≤ Es(ϕ,ϕ),

(15)

where we have used (28) and the inner product of functions with segregated sup-
ports (6).

Lemma 5.3. λ(Ω) < min{λ(D1), λ(D2)}. As a consequence, ϕ 6≡ 0 in D1 and ϕ 6≡ 0
in D2.

Proof: Suppose, without loss of generality, that λ(D1) ≤ λ(D2). Denote by u1 ∈
Hs0(D1) and u2∈Hs(D2) the normalized (positive) eigenfunctions associated to (−∆)s

on D1 and D2 respectively. For any α ∈ [0, 1]:

Es(
√

1− α2 u1 + (−1)bscαu2,
√

1− α2 u1 + (−1)bscαu2)

= (1− α2)λ(D1) + α2λ(D2) + 2(−1)bscα
√

1− α2 Es(u1, u2).

When α > 0 is very small, one has α2λ(D2) + 2(−1)bscα
√

1− α2 Es(u1, u2) < 0 and
therefore there is a suitable choice α∗ ∈ (0, 1) such that

Es(
√

1− α2
∗ u1 − α∗u2,

√
1− α2

∗ u1 − α∗u2) < λ(D1) ≤ λ(D2),

which proves the first claim.
If it were ϕ ≡ 0 in D2, then it would also hold that

ϕ ∈ Hs0(D1), Es(ϕ,ϕ) = λ(Ω) < λ(D1),

which contradicts the definition of λ(D1).

Theorem 5.4. λ(Ω) is simple.
If bsc ∈ 2N0 + 1, then ϕ is of one sign on D1 and of the opposite one in D2.
If instead bsc ∈ 2N0, then ϕ is of constant sign in Ω.

Proof: Let us suppose bsc ∈ 2N0 + 1; the case bsc ∈ 2N0 will follow after suitable
minor modifications.

In the notations of Proposition 5.2, we already know that

Es(ϕ̃, ϕ̃) ≤ Es(ϕ,ϕ)

and, in view of (15), equality can hold only if

Es(π+
1 ϕ1, π

−
2 ϕ2 − ϕ2) + Es(π+

1 ϕ1 − ϕ1, π
−
2 ϕ2) = 0.

This last condition in turn holds if and only if one of the following is true:

(i) π+
1 ϕ1 = 0 and π−2 ϕ2 = 0, which means that ϕ1 ≤ 0 and ϕ2 ≥ 0;

(ii) π−2 ϕ2 = ϕ2 and π+
1 ϕ1 = ϕ1, which means that ϕ2 ≤ 0 and ϕ1 ≥ 0;
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(iii) ϕ1 = 0 or ϕ2 = 0, but in this case the minimizing condition would be broken;
see Lemma 5.3.

This proves the claim about the sign of the eigenfunction.
Suppose now that we have two minimizers ϕ and ψ. Without loss of generality

(by the previous claim, they are necessarily of one sign on each ball) we can suppose

that ϕψ ≤ 0 in Ω. Define, for any t ∈ [0, 1], wt := tϕ +
√

1− t2ψ. One can verify
that wt is either still a minimizer or trivial. In the first case, wt must be of one sign
on each ball and, since w1 = ϕ and w0 = ψ are of opposite sign throughout Ω, there
must exist a t1 ∈ (0, 1) such that wt1 = 0 in D1. This feature is not compatible with
minimality (compare with (iii) above) so we must conclude wt1 = 0 in Ω. Thus ϕ
and ψ are not linearly independent.

5.2. Partial recovery of maximum principles.

Proposition 5.5. Suppose |D1|= |D2|=ωn and dist(D1, D2) ≥ 2. Denote by τ : Rn →
Rn the inversion of Rn such that τ(D1) = D2. Let g ∈ L2(D1), g ≥ 0, and f ∈ L2(Ω),
f = g − (−1)bscg ◦ τ ; then the weak solution u ∈ Hs0(Ω) of

(−∆)su = f in Ω

is of the form u = v − (−1)bscv ◦ τ , v ∈ Hs0(D1), with v ≥ 0 in D1.

Proof: The solution u ∈ Hs0(Ω) is given by the Green representation

u(x) =

∫
Ω

GΩ(x, y) f(y) dy, x ∈ Ω.

Using the symmetry of f , u can be alternatively written

u(x) =

∫
D1

[GΩ(x, y)− (−1)bscGΩ(x, τ(y))]g(y) dy, x ∈ Ω.

We claim that

(16) GΩ(x, y)− (−1)bscGΩ(x, τ(y)) ≥ 0, x, y ∈ D1.

The Green function GΩ(x, ·) can be represented, for x ∈ D1, by making use of the
Poisson kernel (see [2, Proposition 3.4]) as

GΩ(x, y) =


GD1

(x, y) +

∫
D2

ΓD1
(y, z)GΩ(x, z) dz, y ∈ D1,∫

D1

ΓD2(y, z)GΩ(x, z) dz =

∫
D2

ΓD1(τ(y), z)GΩ(x, τ(z)) dz, y ∈ D2,

and thus

GΩ(x, y)− (−1)bscGΩ(x, τ(y)) = GD1
(x, y) +

∫
D2

ΓD1
(y, z)GΩ(x, z) dz

− (−1)bsc
∫
D2

ΓD1(y, z)GΩ(x, τ(z)) dz, x, y ∈ D1.

Denoting wx(y) := GΩ(x, y)− (−1)bscGΩ(x, τ(y)), x ∈ D1, y ∈ Ω, we have for y ∈ D1

wx(y) = GD1
(x, y) +

∫
D2

ΓD1
(y, z)wx(z) dz

= GD1(x, y) +

∫
D2

ΓD1(y, z)GD1(x, τ(z)) dz

+

∫
D2

(∫
D2

ΓD1(y, z)ΓD1(z, ξ) dz

)
wx(ξ) dξ.
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The rest of the proof consists of two different steps: the first one is to prove

(17) GD1
(x, y) +

∫
D2

ΓD1
(y, z)GD1

(x, τ(z)) dz ≥ 0, x, y ∈ D1,

when dist(D1, D2) ≥ 2; once this is done, the second one is to bootstrap the resulting
inequality

(18) wx(y) ≥
∫
D2

(∫
D2

ΓD1(y, z)ΓD1(z, ξ) dz

)
wx(ξ) dξ

to get (16) in the end, as desired.
As to (17), we use the explicit expression of GD1 known as Boggio’s formula (see [1,

Theorem 1.1], [12, Theorem 1], or also [15, Remark 1]),

GD1
(x, y) = kn,s

(1− |x|2)s(1− |y|2)s

|x− y|n
∫ 1

0

ηs−1

(ρ(x, y)η + 1)n/2
dη, x, y ∈ D1,

ρ(x, y) =
(1− |x|2)(1− |y|2)

|x− y|2
,

kn,s =
Γ(n/2)

22sπn/2Γ(s)2
,

and the explicit formula for the Poisson kernel ΓD1
(see [2, Theorem 1.1])

ΓD1(y, z) =
(−1)bscγn,s
|y − z|n

(
1− |y|2

|z|2 − 1

)s
, y ∈ D1, z ∈ Rn \D1,

γn,s =
Γ(n/2)

πn/2Γ(s− bsc) Γ(1− s+ bsc)
.

In order to get (17) we estimate

kn,s
(1− |x|2)s

|x− y|n
∫ 1

0

ηs−1

(ρ(x, y)η + 1)n/2
dη − γn,s

∫
D2

GD1
(x, τ(z))

|y − z|n(|z|2 − 1)
s dz

≥ kn,s
s

(1− |x|2)s

((1− |x|2)(1− |y|2) + |x− y|2)n/2
− γn,s

2n

∫
D2

GD1(x, τ(z)) dz,

where we have used dist(D1, D2) ≥ 2. Next,∫
D2

GD1
(x, τ(z)) dz =

∫
D1

GD1
(x, z) dz

gives rise to the torsion function of D1 (see [30, Lemma 2.1])∫
D1

GD1(x, z) dz =
Γ(n/2)

22sΓ(n/2 + s)Γ(1 + s)
(1− |x|2)s

so that

kn,s
(1− |x|2)s

|x− y|n
∫ 1

0

ηs−1

(ρ(x, y)η + 1)n/2
dη − γn,s

∫
D2

GD1
(x, τ(z))

|y − z|n(|z|2 − 1)
s dz

≥ kn,s
s2n

(1− |x|2)s − γn,s
2n

Γ(n/2)

22sΓ(n/2 + s)Γ(1 + s)
(1− |x|2)s,
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where we have used dist(D1, D2) ≥ 2 and (1−|x|2)(1−|y|2)+|x−y|2 ≤ 4 for x, y ∈ D1.
The above estimate provides (17) if we check

1

sΓ(s)2
− 1

Γ(s− bsc) Γ(1− s+ bsc)
Γ(n/2)

Γ(n/2 + s)Γ(1 + s)
≥ 0,

which, by using standard properties2 of the Γ function, is equivalent to

(19)
sin((s− bsc)π)

π

Γ(n/2)Γ(s)

Γ(n/2 + s)
≤ 1.

We now use the integral representation of the Beta function in order to deduce

Γ(n/2)Γ(s)

Γ(n/2 + s)
=

∫ 1

0

rn/2−1(1− r)s−1
dr ≤

∫ 1

0

rn/2−1 dr =
2

n
≤ 2.

This proves (19) and, therefore, (17).
From the above, (18) follows and we can proceed as in [2] to conclude the proof.

Theorem 5.6. Under the assumptions of Proposition 5.5, the weak solution v ∈
Hs0(D1) of

(−∆)sv − (−1)
bsc

(−∆)s(v ◦ τ) = g in D1

is nonnegative.

Proof: It follows immediately from Proposition 5.5.

6. The Faber–Krahn inequality in dimension one

In this section we restrict to n = 1 and consider an open set Ω ⊂ R with |Ω| = 2.
We denote

Ω =
⋃
k∈M

Ik, where Ik’s are disjoint open intervals, M⊆ N,

ϕ =
∑
k∈M

ϕk, ϕk ∈ Hs0(Ik), for any k ∈M.

Lemma 6.1. For any s > 0 and k ∈ M, any first eigenfunction ϕ is of one sign
in Ik.

Proof: Denote by π+
k the projection onto the positive cone C+(Ik) as defined in (20)-

(21). Consider the function

ϕ̃ = ϕ− 2ϕk + 2π+
k ϕk ∈ H

s
0(Ω)

and compute

‖ϕ̃‖L2(Ω) = ‖ϕ− ϕk‖L2(Ω\Ik) + ‖2π+
k ϕk − ϕk‖L2(Ik).

If ϕk changes sign, then |ϕk| = |ϕk−π+
k ϕk+π+

k ϕk| < 2π+
k ϕk−ϕk in Ik by the strong

maximum principles3 on intervals and (23). Therefore ‖ϕ‖L2(Ω) < ‖ϕ̃‖L2(Ω).
Furthermore,

Es(ϕ̃, ϕ̃) = Es(ϕ−ϕk, ϕ−ϕk)+Es(2π+
k ϕk−ϕk, 2π

+
k ϕk−ϕk)+2Es(2π+

k ϕk−ϕk, ϕ−ϕk)

≤ Es(ϕ− ϕk, ϕ− ϕk) + Es(ϕk, ϕk) + 2Es(2π+
k ϕk − ϕk, ϕ− ϕk)

= Es(ϕ,ϕ) + 4Es(π+
k ϕk − ϕk, ϕ− ϕk)

by (28). Up to changing the sign of ϕ−ϕk, we deduce Es(ϕ̃, ϕ̃) ≤ Es(ϕ,ϕ) by (6).

2We need in particular the Euler’s reflection formula: Γ(α)Γ(1− α) = π
sin(πα)

for α ∈ C \ Z.
3This follows by the positivity of the Green function on balls; see [1, 12].
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Lemma 6.2. For any s > 0, if there exist k, h ∈M, k 6= h, such that dist(Ik, Ih) = 0,
then there exists x0 ∈ R such that Ik∪{x0}∪Ih is connected and λ(Ω∪{x0}) ≤ λ(Ω).

Proof: This simply follows by the inclusion Hs0(Ω) ⊆ Hs0(Ω ∪ {x0}).

6.1. When the integer part of s is even.

Proposition 6.3. Let bsc ∈ 2N0. Then ϕ ≥ 0 in Ω.

Proof: By Lemma 6.1 we already know that ϕ is of one sign on each connected
component of Ω, so that ϕ+, ϕ− ∈ Hs0(Ω). As bsc ∈ 2N0 by assumption, one has
by (6)

Es(|ϕ|, |ϕ|) = Es(ϕ+, ϕ+) + Es(ϕ−, ϕ−) + 2Es(ϕ+, ϕ−)

< Es(ϕ+, ϕ+) + Es(ϕ−, ϕ−)− 2Es(ϕ+, ϕ−) = Es(ϕ,ϕ).

Theorem 6.4. Let bsc ∈ 2N0. Then λ(−1, 1) ≤ λ(Ω) for any open set Ω ⊂ R
with |Ω| = 2. Moreover, equality holds if and only if Ω is an interval.

Proof: By Lemma 6.2, we can restrict our attention to those Ω’s satisfying dist(Ik,Ih)>
0 for all k, h ∈M, k 6= h.

Let x0 ∈ R \ Ω be such that (−∞, x0) ∩ Ω 6= ∅ 6= Ω ∩ (x0,+∞). Write ϕ =
ϕ1(−∞,x0) + ϕ1(x0,+∞). We have

Es(ϕ,ϕ) = Es(ϕ1(−∞,x0), ϕ1(−∞,x0)) + Es(ϕ1(x0,+∞), ϕ1(x0,+∞))

+ 2Es(ϕ1(−∞,x0), ϕ1(x0,+∞)).

By Proposition 6.3 and the fact that bsc ∈ 2N0, the last term is nonpositive; indeed

Es(ϕ1(−∞,x0), ϕ1(x0,+∞)) = −c1,s
2

∫ x0

−∞

∫ +∞

x0

ϕ(x)ϕ(y)

(y − x)
1+2s dy dx.

Since there exists ε>0 such that (x0−ε, x0)∩Ω = ∅, then substituting ϕ(y)1(x0,+∞)(y)
with ϕ(y + ε)1(x0,+∞)(y) gives

−
∫ x0

−∞

∫ +∞

x0−ε

ϕ(x)ϕ(y + ε)

(y − x)
1+2s dy dx = −

∫ x0

−∞

∫ +∞

x0

ϕ(x)ϕ(y)

(y − x− ε)1+2s dy dx

≤ −
∫ x0

−∞

∫ +∞

x0

ϕ(x)ϕ(y)

(y − x)
1+2s dy dx.

We then deduce that λ(Ω) is minimized when Ω is connected.
We now prove the second claim in the statement. In order to do so, we only need

to prove that, for any x0 ∈ (−1, 1), the following holds:

λ(−1, 1) < λ((−1, 1) \ {x0}).

This is a direct consequence of the strong maximum principle in (−1, 1), which can be
stated as a corollary of the positivity of the Green function; see [1, Theorem 1.1].

6.2. When the integer part of s is odd.

Proposition 6.5. Let bsc ∈ 2N0 +1. Suppose that Ω ⊂ R is an open set with |Ω| = 2
and that M is finite. Then λ(−1, 1) ≤ λ(Ω) and equality holds if and only if Ω is an
interval.
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Proof: Suppose that Ω is not connected: by Lemma 6.2, we can also suppose that

δ0 = min{dist(Ik, Ih) : k, h ∈M, k 6= h} > 0.

In this case, ϕ changes sign in Ω: this simply follows from Lemma 6.1 and (6) and,
moreover, ϕ+, ϕ− ∈ Hs0(Ω). Consider the function

uδ(x) = ϕ+(x)− ϕ−(x− δ), x ∈ R,
where δ ranges in the largest open interval I such that {x ∈ R : ϕ+(x) > 0} ∩ {x ∈
R : ϕ−(x−δ)>0}=∅ for any δ∈I: this interval is not empty because, by assumption,
contains at least (−δ0, δ0). It holds that uδ ∈ Hs(R) and, moreover, ‖uδ‖L2(R) =
‖ϕ‖L2(R). Also,

Es(uδ, uδ) = Es(ϕ+, ϕ+) + Es(ϕ−, ϕ−)− c1,s
∫
R

∫
R

ϕ+(x)ϕ−(y − δ)
|x− y|1+2s dx dy

= Es(ϕ+, ϕ+) + Es(ϕ−, ϕ−)− c1,s
∫
R

∫
R

ϕ+(x)ϕ−(y)

|x− y − δ|1+2s dx dy.

We now differentiate twice in δ and obtain

1

c1,s

d2

dδ2
Es(uδ, uδ) = −(1 + 2s)

d

dδ

∫
R

∫
R

ϕ+(x)ϕ−(y)

|x− y − δ|2+2s sgn(x− y − δ) dx dy

= −(1 + 2s)
d

dδ

∫
R

∫ +∞

y

ϕ+(x)ϕ−(y)

(x− y − δ)2+2s dx dy

+ (1 + 2s)
d

dδ

∫
R

∫ y

−∞

ϕ+(x)ϕ−(y)

(y + δ − x)
2+2s dx dy

= −(1 + 2s)(2 + 2s)

∫
R

∫ +∞

y

ϕ+(x)ϕ−(y)

(x− y − δ)3+2s dx dy

− (1 + 2s)(2 + 2s)

∫
R

∫ y

−∞

ϕ+(x)ϕ−(y)

|x− y − δ|3+2s dx dy

= −(1 + 2s)(2 + 2s)

∫
R

∫
R

ϕ+(x)ϕ−(y)

|x− y − δ|3+2s dx dy<0, for any δ∈I.

From this we deduce that I 3 δ 7→ Es(uδ, uδ) is minimized at one of the two extremal
points of I: this configuration cannot be minimal again for Lemma 6.2. So, the first
eigenvalue of Ω would be larger than the one of a domain with one less connected
component. The conclusion follows by iterating the above (recall that M is finite by
assumption).

Theorem 6.6. Let bsc ∈ 2N0 + 1. Then λ(−1, 1) ≤ λ(Ω) for any open set Ω ⊂ R
with |Ω| = 2.

Proof: By Proposition 6.5, we only need to prove that the claim holds when M is
countable. We proceed via a continuity argument. Write

Ω =
⋃
k∈N

Ik, where Ik’s are disjoint open intervals, ΩN =

N⋃
k=1

Ik, for any N ∈ N,

ϕ =
∑
k∈N

ϕk, ϕk ∈ Hs0(Ik), for any k ∈ N, uN =

N∑
k=1

ϕk, for any N ∈ N.
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By the inclusion ΩN ⊂ Ω, one simply has λ(ΩN ) ≥ λ(Ω). Moreover,

λ(Ω) = Es(ϕ,ϕ) = Es(uN , uN ) + 2Es(ϕ− uN , uN ) + Es(ϕ− uN , ϕ− uN )

≥ λ(ΩN )‖uN‖2L2(Rn) + 2Es(ϕ− uN , uN ) + Es(ϕ− uN , ϕ− uN ).

By Proposition 6.5, we have that λ(ΩN ) is greater than the first eigenvalue of the ball
with volume |ΩN |, and then by the scaling properties of (−∆)s

λ(ΩN ) ≥
(

2

|ΩN |

)2s

λ(−1, 1).

We have uN → ϕ in Hs(Rn): indeed, by (5) and since ϕ−uN is supported in Ω\ΩN ,

Es(ϕ−uN , ϕ−uN ) = Es−bsc(D(ϕ− uN ), D(ϕ− uN )), where D=∇(−∆)
(bsc−1)/2

=
c1,s−bsc

2

∫
R

∫
R

|D(ϕ− uN )(x)−D(ϕ− uN )(y)|2

|x− y|1+2s−2bsc dx dy

=
c1,s−bsc

2

∫
Ω\ΩN

∫
Ω\ΩN

|Dϕ(x)−Dϕ(y)|2

|x− y|1+2s−2bsc dx dy

+ c1,s−bsc

∫
R\(Ω\ΩN )

∫
Ω\ΩN

|Dϕ(x)|2

|x− y|1+2s−2bsc dx dy

≤
c1,s−bsc

2

∫
Ω\ΩN

∫
Ω\ΩN

|Dϕ(x)−Dϕ(y)|2

|x− y|1+2s−2bsc dx dy

+ c1,s−bsc

∫
Ω\ΩN

|Dϕ(x)|2 dist(x,R \ (Ω \ ΩN ))−2s+2bsc dx,

which converges to 0 as N ↑ ∞ and ΩN ↗ Ω by, for example, [38, Section 4.3.2,
equation (7)]. We deduce

λ(Ω) ≥ lim
N↑∞

[λ(ΩN )‖uN‖2L2(Rn) + 2Es(ϕ− uN , uN ) + Es(ϕ− uN , ϕ− uN )]

≥ lim
N↑∞

(
2

|ΩN |

)2s

‖uN‖2L2(Rn)λ(−1, 1) = λ(−1, 1).

Appendix A. Projections onto the positive cone

Denote

(20) C+(Ω) := {v ∈ Hs0(Ω) : v ≥ 0}

and note how any ϕ ∈ C∞c (Ω), ϕ ≥ 0, lies inside C+(Ω). Define the map

π+ : Hs0(Ω) −→ C+(Ω)

which associates to w its projection on C+(Ω), that is

(21) Es(w − π+w,w − π+w) ≤ Es(w − v, w − v), for any v ∈ C+(Ω).
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We list below a number of inequalities that are needed throughout the paper:

Es(w − π+w, v − π+w) ≤ 0, for any v ∈ C+(Ω),(22)

0 ≤ Es(π+w − w, v), for any v ∈ C+(Ω),(23)

Es(π+w − w, π+w) = 0,(24)

Es(w, π+w) ≤ Es(w,w),(25)

Es(w, v) ≤ Es(π+w, v), for any v ∈ C+(Ω),(26)

Es(π+w, π+w) ≤ Es(w,w),(27)

Es(2π+w − w, 2π+w − w) ≤ Es(w,w).(28)

Proof of (22): By convexity of C+(Ω)

π+w + t(v − π+w) ∈ C+(Ω), for any t ∈ [0, 1], v ∈ C+(Ω).

So,

Es(w − π+w,w − π+w) ≤ Es(w − π+w − t(v − π+w), w − π+w − t(v − π+w))

= Es(w − π+w,w − π+w)− 2tEs(w − π+w, v − π+w) + t2Es(v − π+w, v − π+w),

which implies

2Es(w − π+w, v − π+w) ≤ tEs(v − π+w, v − π+w), for any t ∈ (0, 1]

and we deduce (22) by considering t arbitrarily small.

Proof of (23): From (22) it follows that

Es(π+w − w, v) ≥ Es(π+w − w, π+w),

where the right-hand side is nonnegative again thanks to (22) by considering the
particular case v = 0.

Proof of (24): As mentioned above, inequality ≤ follows from (22) by considering the
particular case v = 0. Inequality ≥ follows from (23) by considering the particular
case v = π+w.

Proof of (25): Using again (24) we deduce

Es(w, π+w − w) = Es(w − π+w, π+w − w) + Es(π+w, π+w − w) ≤ 0.

Proof of (26): Since both v and π+w belong to C+(Ω), then so does 2π+w+v. Then,
by (22),

0 ≥ Es(w − π+w, (2π+w + v)− π+w) = Es(w − π+w, π+w + v)

= Es(w − π+w, π+w) + Es(w − π+w, v)

and since, by (24), it holds that Es(w−π+w, π+w)≥0, we deduce Es(w−π+w, v)≤0.

Proof of (27): Write (exploiting (24) in all inequalities below)

Es(π+w, π+w)− Es(w,w) = Es(π+w − w, π+w) + Es(w, π+w)− Es(w,w)

≤ Es(w, π+w − w) = Es(w − π+w, π+w − w) + Es(π+w, π+w − w) ≤ 0.

Proof of (28): Write

Es(2π+w − w, 2π+w − w) = Es(w,w) + 4Es(π+w − w, π+w) ≤ Es(w,w),

where we have used (24).
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[9] G. Bourdaud and Y. Meyer, Fonctions qui opèrent sur les espaces de Sobolev, J. Funct. Anal.
97(2) (1991), 351–360. DOI: 10.1016/0022-1236(91)90006-Q.

[10] C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lect. Notes Unione
Mat. Ital. 20, Springer, [Cham]Unione Matematica Italiana, Bologna, 2016. DOI: 10.1007/

978-3-319-28739-3.

[11] E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev
spaces, Bull. Sci. Math. 136(5) (2012), 521–573. DOI: 10.1016/j.bulsci.2011.12.004.

[12] S. Dipierro and H.-C. Grunau, Boggio’s formula for fractional polyharmonic Dirichlet prob-

lems, Ann. Mat. Pura Appl. (4) 196(4) (2017), 1327–1344. DOI: 10.1007/s10231-016-0618-z.
[13] R. J. Duffin, On a question of Hadamard concerning super-biharmonic functions, J. Math.

Physics 27 (1949), 253–258. DOI: 10.1002/sapm1948271253.

[14] R. J. Duffin, The maximum principle and biharmonic functions, J. Math. Anal. Appl. 3(3)
(1961), 399–405. DOI: 10.1016/0022-247X(61)90066-X.
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