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Abstract: We relate the complexity of both differential and q-difference equations of order one and

degree one and their solutions. Our point of view is to show that if the solutions are complicated, the
initial equation is complicated too. In this spirit, we bound from below an invariant of the differential

or q-difference equation, the height of its Newton polygon, in terms of the characteristic factors of a
solution. The differential and the q-difference cases are treated in a unified way.
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1. Introduction

The “Poincaré problem”, which consists in finding an upper bound for the algebraic
degree of an invariant curve of a polynomial differential equation in the complex
plane [22], has greatly influenced the study of singular holomorphic foliations. See [4,
8, 9, 10, 11, 12, 14, 15, 16, 17, 19, 21, 23, 24, 25] for just a possibly biased
collection of relevant citations. A related problem, which might be called the local
Poincaré problem, consists in trying to find upper bounds for the multiplicity at a
point of an invariant analytic curve of a holomorphic foliation defined in a germ of
complex surface. As a matter of fact, the solution to this problem in the non-dicritical
case is an essential part of the proof of the main result in [9]: deg(Γ) ≤ deg(F) + 2,
where Γ is an invariant algebraic curve of a holomorphic foliation F in CP2 with no
dicritical singularities and deg stands for the degree. In this work, we focus on this
local problem, and solve it at the same time for differential and q-difference equations,
as we shall show.

As the original Poincaré problem is stated for differential equations, the usual
techniques for solving it are geometric in nature and derived from the general theory
of singularities of curves and of plane holomorphic foliations. There is, however, a less
known and powerful tool called the Newton polygon or diagram [20], introduced by the
renowned physicist and mathematician as a tool for computing solutions of algebraic
equations, and later applied by Cramer [13] for computing power series y =

∑
ι>0 aιx

ι

with rational exponents that are solutions of analytic equations f(x, y) = 0. This tool,
which is purely algorithmic and makes no reference to the geometric nature of the
problem, can be applied to any two-variable problem involving power series for which
one seeks a solution in terms of well-ordered power series in one of the variables. In [5],
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this technique is applied to differential equations in two variables, whereas in [2], it
is used in the context of q-algebraic equations. The modifications required for these
applications are minimal, and one can unify the arguments and state general results
regardless of the context.

Specifically, let σ denote either the differential operator y(x) 7→ dy(x)/dx or the
q-difference one y(x) 7→ y(qx), and let P ≡ A(x, y)+B(x, y)σ(y) be a “first order and
first degree” polynomial in the operator σ: A(x, y) and B(x, y) are power series over C,
and a solution of P = 0 is a power series with rational exponents s(x) ∈

⋃
m∈N C[[x 1

m ]]
such that P (x, s(x)) ≡ 0. Given such an analytic differential or q-difference equation
in two variables, our main objective is to compute an upper bound for the complexity
of a power series solution s(x) in terms of some property of the original equation.
Obviously it is critical to consider the right notion of complexity. Notice that if γ is
the local, possibly formal, plane branch given by the parametrization (x, s(x)), then
there is no way to bound the multiplicity of γ in terms of algebraic invariants of the
equation and, specifically, its multiplicity: the differential equation nx dy−my dx = 0,
with m,n ∈ N and gcd(m,n) = 1, has multiplicity 1 but its power series solutions
are s(x) = cx

m
n for any c. The curve (x, cxm/n) has multiplicity min(m,n) if c ∈ C∗,

that can be arbitrarily large. For q-difference equations, the same issue occurs with
the equations y − q

n
mσ(y) = 0 of multiplicity 0, where σ is the q-difference operator:

the solutions are s(x) = cx
m
n for c ∈ C. This problem cannot be overcome, which leads

to seeking a different criterion for the complexity of a Puiseux power series solution.
In this paper, we consider the characteristic exponents of s(x) as the measure of

such complexity, following the point of view of [8]. Notice that the characteristic expo-
nents of s(x) are intimately related to the Puiseux characteristic of the curve Γ defined
by (x, s(x)) [26] but, when Γ is tangent to x = 0, one has to use the well-known inver-
sion formula [27, 1] in order to compute one set of exponents from the others. The
characteristic exponents are significant invariants for germs of plane curves: for in-
stance, their number, which has come to be called the genus, is deeply related to
the topology of the curve γ, as it measures the levels of interlacing of the associated
knot [26]. Given s(x) ∈

⋃
m∈N C[[x 1

m ]] with s(0) = 0, let g ≥ 0 be the genus of s(x)
and n its multiplicity. One can derive, from the characteristic exponents, positive in-
tegers r1, . . . , rg, which we later call the characteristic factors in Definition 2, that are
greater than 1 and such that if n is the least common denominator of the exponents
of s(x), then r1 · · · rg = n. Our results hinge on these factors and the notion of the

dicritical exponent. Assume s(x) =
∑

aix
i/m is a solution of P = 0. Roughly speak-

ing, an exponent k/m of s(x) is dicritical if, for all but finitely many c ∈ C, there
exists another solution sc(x) of P = 0 such that sc(x) −

∑
i<k aix

i/m = xk/mu(x)
where u(0) = c. We include a brief excursus in Subsection 2.6 relating our definition
to the classical definition of the dicritical divisor of a singular holomorphic foliation.

In what follows, P ≡ A(x, y) + B(x, y)σ(y) is an operator with A(x, y), B(x, y) ∈
C[[x, y]] such that A(0, 0) = B(0, 0) = 0, and s(x) ∈

⋃
m∈N C[[x 1

m ]], with s(0) = 0 is
a solution of P = 0 with r1, . . . , rg its characteristic factors. After constructing the
Newton diagram N (P ), we shall attach to P and s(x) several invariants: H(P ), the
height of P , which is the topmost vertex of N (P ); the multiplicity of P , ν0(P ), which
is the minimum multiplicity of A(x, y) and B(x, y); and a number H(P, s(x)), a kind
of relative height, which is, roughly speaking, the topmost vertex of the part of N (P )
corresponding to the order of s(x), ord(s(x)). By definition, we have

H(P ) ≥ H(P, s(x)), for any s(x),

and also,
ν0(P ) + 1 ≥ H(P, s(x)), if ord(s(x)) ≥ 1.
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Our main results provide bounds of H(P ) and of ν0(P ) from below in terms of the
characteristic factors r1, . . . , rg.

Theorem A. If 1 ≤ i1 < · · ·< id ≤ g is the sequence of indices of dicritical charac-
teristic exponents of s(x), then

H(P ) ≥ H(P, s(x)) ≥
g∏

j=1

rj −
d∑

k=1

(
ik∏
j=1

rj −
ik−1∏
j=1

rj

)
.

If, moreover, ord(s(x)) ≥ 1, then ν0(P ) + 1 is greater than or equal to the right hand
side of the inequality.

By convention and unless expressly stated otherwise, we consider that an empty
sum is equal to 0 and that an empty product is equal to 1. In particular, the right
hand side is equal to 1 if g = 0. Note that if no characteristic exponent corresponds
to a dicritical element, then Theorem A reads

H(P ) ≥ H(P, s(x)) ≥ r1 · · · rg.
The inequality can be improved with every instance of consecutive dicritical charac-
teristic exponents (Lemma 13). In this way, one obtains a simplified form in which
no assumptions need to be made about the dicritical exponents.

Corollary A. Let r1, . . . , rg be the characteristic factors of s(x). Then

H(P ) ≥ H(P, s(x)) >

g−1∏
j=1

rj −
g−2∏
j=1

rj .

If, moreover, ord(s(x)) ≥ 1, then ν0(P ) is greater than or equal to the right hand side
of the inequality.

We can improve this result in the differential (see [8]), in the generic q-difference,
and in the contracting, i.e. |q| < 1, q-difference cases. To this end, we introduce the
concept of reasonable equations (see Definition 17), that encompasses the previous
cases.

Theorem B. If s(x) is a Puiseux solution of genus g of the reasonable equation P =
0, then

H(P ) ≥ H(P, s(x)) ≥ r1 · · · rg−1.

If, moreover, ord(s(x)) ≥ 1, then one also has ν0(P ) + 1 ≥ r1 · · · rg−1.

As a consequence we get also a bound for the genus g of a solution s(x), namely
g ≤ 1 + log2(H(P )), and if ord(s(x)) ≥ 1, then g ≤ 1 + log(ν0(P ) + 1).

We end our paper showing how the bound for the multiplicity of a differential
equation found in [8] can be obtained exclusively by means of the Newton polygon
using our technique. Let ν0(F) be the multiplicity at 0 ∈ C2 of the singular foliation
defined by the differential equation A(x, y) dx + B(x, y) dy = 0, assuming A(x, y)
and B(x, y) have no common factors.

Corollary B. Let F be a germ of singular holomorphic foliation in a neighborhood of
the origin in C2 that has a formal irreducible invariant curve Γ whose characteristic
factors are r1, . . . , rg. Then, we obtain

ν0(F) ≥ r1 · · · rg−1,

where an empty product is 1.

To summarize, we apply the Newton polygon technique simultaneously to both
differential and q-difference equations in order to obtain lower bounds for the height
of the Newton polygon in terms of the characteristic factors of a solution s(x) that
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parametrizes an irreducible curve. Similar results were first proved in [8] in the dif-
ferential case using geometric techniques related to the desingularization of the curve
defined by s(x). Those bounds are valid in the differential and the generic q-difference
case, which includes the contracting (|q| < 1) case. In the case of a non-generic non-
contracting q-difference equation P , those lower bounds for H(P ) are just somewhat
worse. A final section is devoted to improving the bound in the case of differential
equations, and obtaining the same bound as in [8], just with the Newton polygon
technique.

Acnowledgment. This work was greatly improved thanks to the many suggestions
of an anonymous referee.

2. Notation and preliminary results

From now on, a complex number q ∈ C∗ is chosen with |q| ≠ 1, and also a specific
determination of the complex logarithm, which we shall denote by log(z) for z ∈ C
whenever required. There is no indetermination, as the reader will notice.

Let σ be one of the following operators on the set of Puiseux series over x with
non-negative exponents:

(1) σ

(∑
i≥0

aix
i/n

)
=


∑
i≥0

i

n
aix

(i−n)/n,

∑
i≥0

qi/naix
i/n.

The first one will be called the differential operator and the second one the q-difference
operator. The operator σ is extended to a variable y giving σ(y) = y1 (the variable
“operated”). This way, we can write any differential equation of order and degree
one, or any q-difference equation in which the q-difference operation only appears to
degree and order one, as

(2) A(x, y) +B(x, y)y1 = 0.

Before defining the concept of solutions we gather all the equations we are going
to study under a single concept:

Definition 1. An m-covered equation is an equation (2) where:

(i) Both A(x, y) and B(x, y) are formal power series in C[[x 1
m , y]] with A(0, 0) =

B(0, 0) = 0;
(ii) y1 stands for σ(y), where σ is any of the operators in equation (1).

We say that the equation is covered if it is m-covered for some m ∈ N. A solution
of such an equation is a Puiseux series s(x) in

⋃
m∈N C[[x 1

m ]] such that (as a Puiseux
series)

A(x, s(x)) +B(x, s(x))σ(s(x)) = 0

holds, where σ is the appropriate operator. Finally, the order oσ of σ is 0 for the
q-difference operator and 1 for the differential operator.

Our aim is to use the Newton–Puiseux polygon (from now on just Newton polygon)
to relate the complexity of the solutions of a 1-covered equation (2) to some specific
invariant. Along the way, we carry out some auxiliary operations that transform
equation (2) into m-covered equations for m possibly higher than 1: this explains why
Definition 1 is relevant. From now on, we fix a Puiseux power series

(3) s(x) =
∑
i≥1

aix
i/n ∈

⋃
m∈N

C[[x
1
m ]],
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where n is the minimal m ∈ N such that s(x) ∈ C[[x 1
m ]]. Indeed, if s ̸≡ 0, n is the

least common denominator of the exponents having a non-zero coefficient: in technical
terms, s(x) is a reduced power series and the series s(x) is a formal power series if
and only if n = 1. In the case of differential equations, we shall consider, in the last
section, the analytic branch Γ associated with s(x), and relate its multiplicity to the
notion of multiplicity of the associated foliation. This requires us to perform a change
of coordinates, that will be introduced in the last section, which has no equivalent in
the q-difference case.

There are two cases: either n = 1 or there exists a first index e1 such that ae1 ̸= 0
and e1/n ̸∈ Z. In the former case we define g = 0 whereas in the latter case we write

e1
n

=
p1
r1

with p1, r1 mutually prime with r1 ≥ 2. Assuming ei, pi, ri are defined, either
r1 · · · ri = n and we define g = i or there exists a first index ei+1 such that aei+1 ̸= 0

and ei+1/n ̸∈ 1
r1···riZ, and write

(4) r1 · · · ri
ei+1

n
=

pi+1

ri+1

with gcd(pi+1, ri+1) = 1 and ri+1 ∈ N≥2. This construction ends at some g ≥ 0 when
r1 · · · rg = n.

As we shall work with power series and only in the case of foliations we shall con-
sider the associated germ of analytic curve, we use the following definition, associated
with s(x) and not with the germ of curve Γ defined by it. However, the genus is a
measure both of the complexity of s(x) and of the topological complexity of Γ [26]:

Definition 2. The numbers e1, . . . , eg are called the characteristic exponents of s(x),
and the factors r1, . . . , rg will be called the characteristic factors. The number g of
characteristic exponents is the so-called genus of s(x). If g = 0, then n = 1 and the
Puiseux series s(x) is said to be non-singular.

2.1. The Newton polygon. Given a covered equation such as (2), the Newton
polygon or diagram is a graphical help for computing its solutions. Its construction
follows.

Fix a covered equation P = P (x, y, y1) ≡ A(x, y) +B(x, y)y1 = 0 and write

(5) A(x, y)=
∑

aιjx
ιyj=

∑
Aιjx

ιyj , B(x, y)=
∑

bιjx
ιyj=

∑
Bι−oσ j+1x

ιyj ,

where ι ∈ Q≥0 and j ∈ N, where we use ι instead of i to emphasize that it may not
be an integer. The supports of A(x, y) and B(x, y) are the sets

supp(A) = {(ι, j) : Aιj ̸= 0} and supp(B) = {(ι, j) : Bιj ̸= 0}
respectively. The support of B is obtained from {(ι, j) : bιj ̸= 0} by pushing one step
up, because of the factor y1, and one step left in the case of differential equations,
because σ decreases the order of each monomial xµ by one.

Definition 3. The cloud of points of P is the set C(P ) = supp(A) ∪ supp(B).

Consider the following subset of R≥−1 × R≥0:

Q(P ) =
⋃

(ι,j)∈C(P )

(ι, j) + (R≥0 × R≥0),

where we place a positive quadrant at each point of the cloud.

Definition 4. The Newton polygon N (P ) of P is the convex envelope of Q(P ).
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Example 1. Consider the equation

(6) P ≡ y4 + x3y3 + xy2 − x3y + x5 + (xy3 − x2y)y1.

Its Newton polygon is shown in Figure 1. The points (1, 4) and (2, 2), the unfilled
circles, correspond to (xy3 − x2y)y1 in the q-difference case. The Newton polygon,
however, is the same, in this case, for both equations.

1 2 3 4 5 6 7 8

1

2

3

4

5

6L1/2(P )

L5(P )

L1(P )

Figure 1. Cloud of points, Newton polygon, and some supporting lines (see
Definition 7) of the equation P = 0 in (6). The two unfilled points correspond

only to the q-difference case, whereas the filled ones correspond to both cases.

2.2. Newton polygon and solutions. The interest of this construction will be-
come apparent (hopefully) at the end of this section. Take s(x) as in (3). From now
on, we fix a covered equation

P ≡ A(x, y) +B(x, y)y1 = 0,

and denote by σ the corresponding operator.

Definition 5. The k-th truncation of s(x) is the Puiseux series

sk(x) =
∑

0<i≤k

aix
i/n.

Note that the truncation includes the term akx
k/n of s(x). By convention, s0(x) =

0.

Definition 6. The k-th substitution (of s(x), but this will always be implicit) in P
is the equation

Pk ≡ A(x, y + sk(x)) +B(x, y + sk(x))(y1 + σ(sk(x))) = Ak(x, y) +Bk(x, y)y1,

where sk(x) is the k-th truncation of s(x) (thus, P0 = P ). The total substitution of s
in P is the equation

P∞ ≡ A(x, y + s(x)) +B(x, y + s(x))(y1 + σ(s(x))).

As Pk = Ak(x, y)+Bk(x, y)y1, the expressions A
k
ιj , B

k
ιj will denote the corresponding

coefficients of Ak(x, y) and Bk(x, y), following (5).

Notice that if R(x, y, y1) = Pk, then

R(x, y + ak+1x
(k+1)/n, y1 + σ(ak+1x

(k+1)/n)) = Pk+1,

and the definition of Pk can be made iterative, substitution by substitution. This
is Newton and Cramer’s construction, which allowed the latter to find approximate
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solutions of algebraic equations. Some geometric concepts are required for the proper
application of the Newton polygon to solving covered equations.

Definition 7. Given µ ∈ R>0, let Lµ(P ) denote the line

Lµ(P ) ≡
{
(i, j) ∈ R2 : j =

−1

µ
i+ α

}
with αmaximum satisfying the following property: if L+

µ (P ) ≡ {(i, j) | j ≥ −i/µ+α},
thenN (P ) ⊂ L+

µ (P ). This line will be called the supporting line of N (P ) of co-slope µ.

Notice that Lµ(P ) ∩N (P ) is either a vertex of N (P ) or a side:

Definition 8. The element of co-slope µ of N (P ) is

EP,µ = Lµ(P ) ∩N (P ),

and it will be called either the vertex of co-slope µ or the side of co-slope µ if EP,µ

is a single point or otherwise. We shall denote Ek,µ = EPk,µ and, because Ek,k/n will
be our main concern, Ek = Ek,k/n.

We stress the fact that Ek is the element of co-slope k/n after applying the k-th
substitution, whereas Ek−1,k/n is the element of the same co-slope just before that sub-
stitution has been applied. We refer the reader to the later example of Subsection 2.3
for this important distinction.

Example 2. In Figure 1, the elements EP,µ for µ ∈ [1/2, 2] are the following. To
begin with, EP,1/2 is the segment joining (0, 4) and (1, 2) that corresponds to the
dashed line L1/2(P ). Then, for 1/2 < µ < 2, EP,µ is just the vertex (1, 2). Finally,
EP,2 is the segment from (1, 2) to (5, 0), which contains the point (3, 1).

Let µ be a co-slope and EP,µ the corresponding element of P . We can unify the
notation for differential and q-difference equations using the δ coefficient:

Definition 9. The δ coefficient corresponding to the co-slope µ is the number:

δµ =

{
µ if P is a differential equation,

qµ if P is a q-difference equation.

This allows us to unify the first key concept:

Definition 10. The initial polynomial of P of co-slope µ is ΦP,µ(C), given by:

ΦP,µ(C) =
∑

(ι,j)∈EP,µ

(Aιj + δµBιj)C
j .

When working with Pk, we shall normally use the notation Φk,µ(C) instead of ΦPk,µ(C).

Definition 11. If the initial polynomial is identically zero, i.e. Φk−1,k/n(C) ≡ 0,
then the exponent k/n of s(x), the element Ek−1,k/n, and the co-slope k/n are called
dicritical.

In Subsection 2.6 we relate this notion to the geometric concept of dicritical folia-
tions.

The following results are classical for differential equations [5, 6] and trivially
extended to q-difference equations (see [2, 7] for instance). Fix P and a solution s(x)
as above.

Lemma 1. For any k > 0, we have

Φk−1,k/n(ak) = 0.
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A cornerstone of the method is that the operation with the term ak does not modify
the Newton polygon “up to the part corresponding to ak−1”:

Lemma 2. If (ι, t) is the topmost point of Ek−1,k/n, then, for any l ≥ k,

N (Pk−1) ∩ (R≥−1 × R≥t) = N (Pl) ∩ (R≥−1 × R≥t),

that is, both polygons are equal at (ι, t) and above. Even more, if

Pk−1 = Ak−1(x, y) +Bk−1(x, y)y1,

then Ak−1
ιt = Al

ιt and Bk−1
ιt = Bl

ιt for any l ≥ k − 1. As a consequence, for all k ≥ 1
and l ≥ k, we have

Ek = El,k/n = EP∞,k/n.

Finally, solutions are characterized by their “flattening” of the Newton polygon
from below:

Theorem (see [5, 2]). Let P ≡ A(x, y) + B(x, y)y1 = 0 be a covered equation and
s(x) a Puiseux series with a0 = 0 (no independent term). The following statements
are equivalent:

(i) The power series s(x) is a solution of P .
(ii) The power series 0 is a solution of P∞.
(iii) The Newton polygon of P∞ has a horizontal side at height greater than 0.

Therefore, if s(x) =
∑

aix
i/n is a solution of P , then ai is a root of the corre-

sponding initial polynomial Φi−1,i/n(C). If this holds for each i, then s(x) is indeed a
solution of P . Due to Lemma 2, the polygon construction is, thus, an iterative process
in which each coefficient ai is a zero of the initial polynomial of the unique element
of Pi−1 of co-slope i/n. Furthermore, also by Lemma 2, this latter element is to the
right and not above the element of Pi−1 of co-slope (i− 1)/n.

The following definition covers all the main invariants associated to P and s(x).

Definition 12. Let P ≡ A(x, y) + B(x, y)y1 = 0 be a covered equation and s(x) be
a Puiseux series with order ord(s(x)) > 0. The height of P , denoted by H(P ), is the
ordinate of the leftmost vertex of N (P ). Consider a co-slope µ and the corresponding
element EP,µ of P of co-slope µ. The top (or height) of EP,µ is the highest ordinate
of the points of EP,µ, and the bottom of EP,µ is the lowest. They will be denoted
as Top(EP,µ) and Bot(EP,µ), respectively. We denoteH(P, s(x)) = Top(EP,µ) for µ =
ord(s(x)). Finally, the multiplicity of P at the origin is

ν0(P ) = min{ord(x,y)(A(x, y)), ord(x,y)(B(x, y))}.

Remark 3. As N (P ) has a finite number of sides, we have

(i) The map µ → Top(EP,µ) is a decreasing function from R+ to Z.
(ii) For any µ ∈ R+, we have H(P ) ≥ Top(EP,µ); in particular for any s(x),

H(P ) ≥ Top(EP,µ) ≥ H(P, s(x)), 0 < µ ≤ ord(s(x)).

If, moreover, ord(s(x)) ≥ 1, then

ν0(P ) + 1 ≥ Top(EP,1) ≥ H(P, s(x)).

(iii) There is µ0 > 0 such that H(P ) = Top(EP,µ) for any 0 < µ < µ0.

We are interested, for a 1-covered equation P , in bounding H(P ) and H(P, s(x))
from below in terms of the characteristic factors of a solution. In lay terms, we wish
to prove that an equation with a complicated solution must already be “complicated”
where the complexity is measured by H(P ) or H(P, s(x)). In the last section, devoted
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to the case of differential equations, we shall see how, up to a linear change of coor-
dinates, the multiplicity of the associated foliation at 0 ∈ C2 is greater than or equal
to H(P, s(x)) − 1. We shall use our general results to bound this multiplicity from
below.

Lemma 2 implies the following property which we shall use freely:

Lemma 4. For any k ≥ 0,

Top(Ek−1,k/n) = Top(Ek) ≥ Bot(Ek) ≥ Top(Ek,(k+1)/n) = Top(Ek+1).

Remark 5. Let (ι0, 0) be the point of intersection of the x-axis and Lk/n(Pk). Later

on we shall see that Ak
ι00 = Φk−1,k/n(ak) in equation (9). Thus, Lemma 1 gives

Top(Ek) ≥ Bot(Ek) ≥ 1 for any k ≥ 1: after each substitution, the element Ek does
not meet the x-axis. On the other hand, Lemma 4 implies Bot(Ek) ≥ Top(El−1,l/n)
for k < l. Moreover, if for some j with k < j < l the element Ej contains more than
one vertex, then Bot(Ek) > Top(El−1,l/n) because, in this case,

Bot(Ek) ≥ Top(Ej) > Bot(Ej) ≥ Top(El−1,l/n).

This last remark is quite relevant because it will provide a descent argument for
our bounds. We shall see in Lemma 6 that all characteristic exponents k/n, except
possibly the last one, give rise to sides in the Newton polygon, i.e. Top(Ek) > Bot(Ek).
Moreover, one of our main results (Proposition 11) provides a qualitative estimate of
the gap between Bot(Ek) and Top(Ek).

2.3. An example. For the benefit of the reader, we include an exhaustive example
in this section, in order to clarify the technique, the notation, and some of the results.

Consider the differential equation associated with the following polynomial:

(7) P0 = y4+4y3x+5y2x2+2yx3+yx4+4x5+x7+(−y3x−4y2x2−5yx3−2x4+3x5)y1.

We know in advance – this is the initial assumption in this work – that P0 admits a
solution with the following Puiseux expansion:

s(x) = −x−
√
11x3/2 − 121

30
x2 + · · · ,

where the exponents of the remaining terms belong to 1
2Z and are greater than 2.

Thus, e1 = 3 is the single characteristic exponent of s(x). So, setting n = 2, we

have a2 = −1, a3 = −
√
11, a4 = − 121

30 . The clouds of points, Newton polygons
corresponding to each substitution, and their respective elements are depicted in
Figure 2. These substitutions are computed in the following paragraphs. Recall that
δk/n = k/n = k/2 because P0 is differential and n = 2.

(i) The first exponent is 1 = 2/2, so that k = 2. Thus, the relevant element
of N (P1) = N (P0) is E1,2/2. The initial polynomial is

Φ1,2/2(C) = (1− 1)C4 + (4− 4)C3 + (5− 5)C2 + (2− 2)C ≡ 0,

that is, E1,2/2 is a dicritical element.

(ii) Once the substitution y = y − x is performed, we obtain

P2 ≡ y4 + xy3 + x4y + x7 + (−xy3 − x2y2 + 3x5)y1,

whose element E2 := E2,2/2 of co-slope 1 is, in this case, a shorter subseg-
ment of E1,2/2. Notice that it might have been a single point or, if E1,2/2 were
shorter, it might have been longer but by Remark 5, Bot(E2) ≥ 1, in any case.
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Following s(x), the next relevant element is E2,3/2, which corresponds to the
single characteristic exponent e1 = 3, which gives r1 = 2. The initial polyno-
mial P2,3/2(C) is

Φ2,3/2(C) = −1

2
C3 +

11

2
C,

whose roots are C = 0 and C = ±
√
11, that include, certainly, a3 = −

√
11.

(iii) Performing the substitution y = y−
√
11x3/2 corresponding to a3x

3/2, we obtain

P3 = y4 − 5
√
11
2 x

3
2 y3 − 3

√
11
2 x

5
2 y2 + xy3 + 33

2 x3y2 + x4y + 11
3
2

2 x
9
2 y − 121

2 x6 + x7

+ (−xy3 − x2y2 + 3
√
11x

5
2 y2 + 2

√
11x

7
2 y − 33x4y − 8x5 + 11

3
2x

11
2 )y1,

whose element E3 is, in this case, of the same length as E2,3/2 but contains a
new point with non-integral x-coordinates: (5/2, 2). As e1 = 3 is a characteristic
exponent, there must be at least one such point in the cloud, as we shall show
in Lemma 7. The element E3,4/2 corresponding to a4 is the side joining (4, 1)
and (6, 0). The initial polynomial is

Φ3,4/2(C) = −15C − 121

2
,

whose unique root is, certainly, a4 = − 121
30 .

(iv) Finally, after the substitution corresponding to a4, we obtain P4, whose Newton
polygon is also depicted.

Notice that the Newton polygon N (Pk−1) coincides with N (Pl) for l ≥ k from
Top(Ek−1,k/n) up, as per Lemma 2. Also, Ek,k/n = El,k/n for l ≥ k, as in the diagram
corresponding to N (P4).

0 1 2 3 4 5 6 7 8

1

2

3

4

E1,2/2

N (P1)

0 1 2 3 4 5 6 7 8

1

2

3

4 E2,2/2 = E2

E2,3/2

N (P2)

0 1 2 3 4 5 6 7 8

1

2

3

4

E3 = E3,3/2

E3,4/2

N (P3)

0 1 2 3 4 5 6 7 8

1

2

3

4
E2

E3

E4,5/2

N (P4)

Figure 2. Newton polygons and relevant elements for P0 in (7). Notice that
Ek,k/n is later referred to as Ek.
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2.4. Characteristic exponents. A remarkable property of the characteristic expo-
nents of s(x) in terms of the Newton polygon is that each one (except possibly the
last one), say k/n, gives rise to a whole side in N (Pk) and, by Lemma 2, in N (Pl)
for l > k. This fact, already noted in (iii) of Subsection 2.3, and which we now prove,
is essential to find our bounds.

Lemma 6. Assume that P is 1-covered, i.e. the initial equation has only integer
exponents, and let s(x) be a solution as above. If k = eℓ for some ℓ = 1, . . . , g − 1,
then the Newton polygon of Pk (and, by Lemma 2, of Pj for j > k) has a side of
co-slope k/n; that is, Ek is indeed a side, not just a vertex. If eg is not dicritical, then
the result holds also for k = eg.

Proof: Assume k = eℓ with ℓ ≤ g. Let Φ(C) = Φk−1,k/n(C) be the corresponding

initial polynomial. By recurrence, C(Pk−1) is included in 1
r1···rℓ−1

Z×Z, so that all the

points have abscissa with denominator at most r1 · · · rℓ−1. Let (ι, t) be the topmost

vertex of Ek−1,k/n, corresponding to the terms Ak−1
ιt xιyt +Bk−1

ιt xι+oσyt−1y1. In par-

ticular, t = Top(Ek−1,k/n). Performing the substitution y = y + akx
k/n at the terms

of Pk−1 corresponding to the point (ι, t), we get

Ak−1
ιt xι(y + akx

k/n)t +Bk−1
ιt xι+oσ (y + akx

k/n)t−1(y1 + σ(akx
k/n))

= Ak−1
ιt xιyt +Bk−1

ιt xι+oσyt−1y1 + (tAk−1
ιt + δk/nB

k−1
ιt )akx

ι+k/nyt−1

+ (t− 1)Bk−1
ιt akx

ι+k/n+oσyt−2y1 + · · · ,

where the dots indicate terms whose ordinates in N (Pk) are strictly less than t − 1.
Recall that δk/n is either k/n or qk/n, depending on P being a differential or q-
difference equation. Note that (ι+k/n, t−1) does not belong to C(Pk−1) since ι+k/n ̸∈

1
r1···rℓ−1

Z. Moreover, (ι, t) is the only point in C(Pk−1) contributing to (ι+k/n, t−1)

when we perform the substitution. Thus, it suffices to show that either (t−1)Bk−1
ιt ak ̸=

0 or tAk−1
ιt + δk/nB

k−1
ιt ̸= 0 to obtain (ι+ k/n, t− 1) ∈ C(Pk).

Notice that ak ̸= 0 because eℓ is a characteristic exponent, so that it appears
explicitly in s(x). If t > 1, then either Bk−1

ιt ̸= 0, so that (t − 1)Bk−1
ιt ak is not

zero, or (tAk−1
ιt + δk/nB

k−1
ιt ) = tAk−1

ιt is not zero. Thus, we can consider t = 1 and

Ak−1
ι1 + δk/nB

k−1
ι1 = 0 from now on. In particular we obtain Ak−1

ι1 ̸= 0 ̸= Bk−1
ι1 .

We claim that t = 1 and Ak−1
ι1 +δk/nB

k−1
ι1 = 0 imply that eℓ is dicritical and ℓ = g,

finishing the proof. As t = 1, the condition Ak−1
ι1 +δk/nB

k−1
ι1 = 0 implies that Φ(C) ≡

(Ak−1
ι1 + δk/nB

k−1
ι1 )C + Φ(0) ≡ Φ(0). Since Φ(ak) = 0, we deduce that Φ(C) ≡ 0.

Thus, k = eℓ is dicritical. Also, since for k′ ≥ k we have

1 = Top(Ek−1,k/n) = Top(Ek) ≥ Top(Ek′) > 0

by Lemma 4 and Remark 5, we deduce Top(Ek′) = 1 for k′ ≥ k. We claim that
k′/n ∈ 1

r1···rℓZ for any k′ ≥ k such that ak′ ̸= 0. This property implies ℓ = g by the
definition of characteristic exponents.

Let us show the claim. By construction, the property is satisfied by k. Assume it
holds for any k ≤ k′ < k′0 and suppose, aiming at contradiction, that k′0/n ̸∈ 1

r1···rℓZ
and ak′

0
̸= 0. Since δk/n ̸= δk′

0/n
, we get

A
k′
0−1

ι1 + δk′
0/n

B
k′
0−1

ι1 = Ak−1
ι1 + δk′

0/n
Bk−1

ι1 ̸= Ak−1
ι1 + δk/nB

k−1
ι1 = 0
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by Lemma 2. Note that C(Pk′
0−1) ⊂ 1

r1···rℓZ × Z as a consequence of the induction

hypothesis. This property, together with ι ∈ 1
r1···rℓZ and k′0/n ̸∈ 1

r1···rℓZ, implies

A
k′
0−1

ι+k′
0/n 0 = 0. Since

Φk′
0−1,k′

0/n
(C) = (A

k′
0−1

ι1 + δk′
0/n

B
k′
0−1

ι1 )C +A
k′
0−1

ι+k′
0/n 0,

0 is the unique root of Φk′
0−1,k′

0/n
, contradicting Φk′

0−1,k′
0/n

(ak′
0
) = 0.

The proof of the previous result implies that the Newton polygon after a substitu-
tion corresponding to a characteristic exponent has points in a grid with a different
scale in the variable x. Namely:

Lemma 7. Assume that P is 1-covered. Let k ∈ Z>0, and let r be the minimum
integer such that C(Pk−1) ⊂ 1

rZ × Z. If Top(Ek) > 1, then k is a characteristic

exponent if and only if the cloud of points of Pk is not included in 1
rZ× Z.

The fact that Top(Ek) > 1 corresponds to the case t > 1 in the previous proof,
which guarantees that the point (ι+ k/n, t− 1) belongs to C(Pk), and by definition,
ι+k/n ̸∈ 1

rZ. This hypothesis is necessary: the solutions y = Cxm/n of the differential
equation P ≡ my − nxy′ = 0, which has the single point (0, 1) in its cloud, leave the
cloud of points invariant after the substitution y = y + Cxm/n.

2.5. Decomposing the initial polynomial. By Lemma 1, the coefficient ak is
always a root of the corresponding initial polynomial Φk−1,k/n(C), which is the basis of
Newton’s technique. This means that Bot(Ek) ≥ 1 for all k; see Remark 5. However,
we can obtain much more information about the element Ek and the equation Pk if
we study the transformation of Ek−1,k/n into Ek as a parametric family depending on

a complex parameter C, that is, by studying the substitution y = y + Cxk/n instead
of y = y + akx

k/n. This is, in the differential case, similar to studying the whole
exceptional divisor corresponding to xk/n and the singularities and regular points
of the strict transform of the foliation given by P at the corresponding exceptional
divisor. This study is carried out by means of the k-th initial form, which gathers all
that information. It also provides an additive decomposition of Φk−1,k/n(C) into two
terms: one corresponding to the algebraic part of Pk, and the other to the one with y1.
This decomposition and its consequences are key in further results. We follow [5] in
the definition, leaving s(x) implicit.

Fix k ≥ 1 from now in this section, and let

Pk(C) := Pk−1(x, y + Cxk/n, y1 + σ(Cxk/n))

be the k-th substitution with a complex parameter C instead of ak. Writing

Pk(C) = Ak(C)(x, y) +Bk(C)(x, y)y1 =
∑

Ak
ιj(C)xιyj +Bk

ιj(C)xι+oσyj−1y1,

the property Pk(ak) = Pk implies Ak
ιj(ak) = Ak

ιj and Bk
ιj(ak) = Bk

ιj for any (ι, j),

where Ak
ιj and Bk

ιj were defined in Definition 6. Notice also that Pk(0) = Pk−1,

Ak
ιj(0) = Ak−1

ιj , and Bk
ιj(0) = Bk−1

ιj .

Definition 13. The k-th initial form of P for s(x) is the polynomial in C given by
the expression:

Ink(C) =
∑

(ι,j)∈Lk/n(Pk−1)

Ak
ιj(C)xιyj +Bk

ιj(C)xι+oσyj−1y1.
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From bottom to top, Ink(C) can be rewritten as

(8) Ink(C)=Ak
ν 0(C)xν+

t∑
j=1

Ak
ν−jk/n j(C)xν−jk/nyj+Bk

ν−jk/n j(C)xν−jk/n+oσyj−1y1,

where t = Top(Ek−1,k/n) = Top(Ek) and ν = ι + tk/n if (ι, t) is the topmost vertex
of Ek−1,k/n. For the sake of simplicity, as k is fixed throughout all this section, we
set, for the remainder of this section, ιj := ν − jk/n, and write:

Ink(C) = Ak
ι0 0(C)xν +

t∑
j=1

Ak
ιj j(C)xν−jk/nyj +Bk

ιj j(C)xν−jk/n+oσyj−1y1,

because we are mostly interested in Aιjj(C) and Bιjj(C), and their pairwise relations,
for j = 1, . . . , t.

The following two polynomials decompose Φk−1,k/n(C) into two parts: one corre-
sponding to the terms without y1 in Ink(C), and the other to those with y1. They
will be key in many later computations:

αk(C) =

t∑
j=0

Ak
ιj j(0)C

j =

t∑
j=0

Ak−1
ιj j C

j ,

βk(C) =

t∑
j=1

Bk
ιj j(0)C

j−1 =

t∑
j=1

Bk−1
ιj j Cj−1.

By definition, the initial polynomial Φk−1,k/n(C) satisfies

Φk−1,k/n(C) = αk(C) + δk/nCβk(C).

The following result is the basis of the relevance of this decomposition [5, cf. equa-
tion (1)]. Recall that t = Top(Ek−1,k/n) = Top(Ek) in this subsection:

Lemma 8. With the notation above, let f (r)(C) denote ∂rf
∂Cr (C) for any function f(C).

Then:

Ak
ι0 0(C) = Φk−1,k/n(C),(9)

Ak
ιj j(C) =

1

j!
Φ

(j)
k−1,k/n(C)− δk/n

1

(j − 1)!
β
(j−1)
k (C), j = 1, . . . , t,(10)

Bk
ιj j(C) =

1

(j − 1)!
β
(j−1)
k (C), j = 1, . . . , t,(11)

Ak
ιj j(C) + δk/nB

k
ιj j(C) ≡ 1

j!
Φ

(j)
k−1,k/n(C), j = 1, . . . , t.(12)

Specifically, Ak
ιtt(C) = Ak−1

ιtt and Bk
ιtt(C) = Bk−1

ιtt are independent of C (this is already

known by Lemma 2), and finally, Ak
ι00(C) = 0 if and only if Φk−1,k/n(C) = 0.

The following proof is rather technical but its gist is to transform Pk−1 and Pk(C)
into new equations whose elements Ek−1,k/n correspond to a vertical side of the same
height. When written like this, the argument becomes a direct application of Taylor’s
formula.

Proof: Define the polynomial

I(y, y1) = Ink(0) = Ak
ι0 0(0)x

ν +

t∑
j=1

Ak
ιj j(0)x

ν−jk/nyj +Bk
ιj j(0)x

ν−jk/n+oσyj−1y1.
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Rather than compute Ink(C) directly, we will do so in three steps. Each step is
an algebraic change of indeterminates that does not correspond to a differential or
q-differential change of indeterminate, but the composition of the three does. First,
we substitute y by xk/ny and y1 by δk/nx

k/n−oσy1 and notice how αk(y) and βk(y)
can be used to rewrite the result:

I1(y, y1) := I(xk/n y, δk/n x
k/n−oσ y1)

= Ak
ι0 0(0)x

ν

+

t∑
j=1

Ak
ιj j(0)x

ν−j k/nxj k/nyj +Bk
ιj j(0)x

ν−jk/nx(j−1)k/nyj−1δk/n x
k/n y1

= xν · {αk(y) + δk/n βk(y) y1}.

Then we translate by C both y and y1 and expand α(C + y) and β(C + y) using
Taylor’s formula:

I2(y, y1) := I1(C + y, C + y1) = xν(αk(C + y) + δk/n βk(C + y)(C + y1))

= xν

(
t∑

j=0

1

j!
α
(j)
k (C) yj + δk/n(C + y1)

t−1∑
j=0

1

j!
β
(j)
k (C)yj

)

= xν

(
t∑

j=0

1

j!
(α

(j)
k (C)+δk/n C β

(j)
k (C))yj+δk/n

t∑
j=1

1

(j−1)!
β
(j−1)
k (C)yj−1y1

)
.

Finally, we undo the first transformation:

Ink(C) = I2(x
−k/n y, δ−1

k/n x
−k/n+oσ y1)

= xν

(
t∑

j=0

1

j!
(α

(j)
k (C) + δk/n C β

(j)
k (C))x−j k/nyj

+ δk/n

t∑
j=1

1

(j − 1)!
β
(j−1)
k (C)x−(j−1)k/nyj−1δ−1

k/nx
−k/n+oσy1

)

=

t∑
j=0

1

j!
(α

(j)
k (C) + δk/n C β

(j)
k (C))xν−j k/nyj

+

t∑
j=1

1

(j − 1)!
β
(j−1)
k (C)xν−jk/n+oσyj−1y1.

From the last equalities we can already infer:

Ak
ι0 0(C) = αk(C) + δk/n C βk(C) = Φk−1,k/n(C),

Ak
ιj j(C) =

1

j!
(α

(j)
k (C) + δk/n C β

(j)
k (C)), j = 1, . . . , t,

Bk
ιj j(C) =

1

(j − 1)!
β
(j−1)
k (C), j = 1, . . . , t.
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By induction on j, we obtain

Φ
(j)
k−1,k/n(C) = α

(j)
k (C) + δk/n C β

(j)
k (C) + j δk/n β

(j−1)
k (C),

whence

Ak
ιj j(C) =

1

j!
Φ

(j)
k−1,k/n(C)−

δk/n

(j − 1)!
β
(j−1)
k (C),

as desired. Equation (12) is an immediate consequence of equations (10) and (11).

Recall that Pk = Pk(ak) = Pk−1(x, y + akx
k/n, y1 + σ(akx

k/n)). In the following
result, we see how the information about Ink(C) provided by Lemma 8 allows us to
better understand the properties of the particular case C = ak and more precisely of
the element Ek obtained after the k-th substitution.

Corollary 9. Let b = Bot(Ek). With the notation of Lemma 8, the following state-
ments hold:

(i) In any case, the multiplicity of ak as a root of βk(C) is at least b− 1.
(ii) If Φk−1,k/n(C) ̸≡ 0 (non-dicritical case), then the multiplicity of ak as a root

of Φk−1,k/n(C) is at least b.
(iii) If Φk−1,k/n(C) ≡ 0 (dicritical case), then

(13) Ak
ιj j(C) + δk/nB

k
ιj j(C) = 0

for all C ∈ C and j = 1, . . . ,Top(Ek), and in particular for C = ak.

Proof: The last statement is an immediate consequence of equation (12) and the
dicritical condition Φk−1,k/n(C) ≡ 0.

There are no points in Ek with ordinate less than b by definition. Since

(14) β
(j−1)
k (ak) = (j − 1)!Bk

ιj j(ak) = 0

for j = 0, . . . , b − 1 by equation (11), we deduce statement (i). Moreover, we obtain

Φ
(j)
k−1,k/n(C) = 0 for any 0 ≤ j ≤ b− 1 by equation (12). Statement (ii) follows.

2.6. An excursus on dicritical elements. In the arguments to come, the appear-
ance of a dicritical characteristic exponent is problematic. In the setting of differential
equations, this mirrors the fact that dicritical divisors appearing in the reduction of
singularities of a holomorphic 1-form “complicate” the combinatorial structure of the
residues and indices associated with the exceptional divisors (see [3], for instance).

Consider the family of analytic branches s′k,c(x) given by the k-truncation of s(x)
with ak replaced by a complex parameter c, with c ̸= 0:

s′k,c(x) =

k−1∑
i=1

aix
i/n + cxk/n.

This family of curves admits a common desingularization in a sequence πk of point
blow-ups, ending at an exceptional divisor which, for the sake of economy, we shall
callDk. Each non-zero c ∈ C corresponds to a pointQc ∈ Dk, and throughQc passes a
single non-singular curve Γc, transverse toDk, such that the parametrization of πk(Γc)
coincides with s′k,c(x).

Let P = A(x, y) + B(x, y)y1 be differential, and F be the foliation associated
with ω = A(x, y) dx + B(x, y) dy. Let Fk be the strict transform of F by πk. In the
non-dicritical case, i.e. Φk−1,k/n(C) ̸≡ 0, the divisor Dk is invariant by Fk. The roots c
of Φk−1,k/n(C) correspond precisely with the singular points Qc of Fk in Dk.

The dicritical case, where Φk−1,k/n(C) ≡ 0, is totally different. Indeed, it is easy to
prove that for those c ∈ C∗ such that Bot(Ek) = 1, there exists a power series sk,c(x)
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in C[[x 1
n ]], that coincides with s′k,c(x) up to order ≤ k/n, which is a solution of P

(see [7], for instance). In such a case, the F-invariant curve Γc, whose parametrization

is sk,c(x), satisfies that its strict transform Γ̃c by πk intersectsDk atQc, Qc is a regular

point of Fk, and Γ̃c is a smooth curve transverse to Dk. However, there may be special
points in Dk, that is, values of c, where Fk is either singular or tangent to Dk, and
these are the ones we need to control, as ak may be one of them. It is these points
which present a challenge. The following straightforward consequence of Lemma 8
asserts that these challenging points are finite in number.

Corollary 10. Assume Ek−1,k/n is dicritical. Consider the point (ι1, 1) of the
line Lk/n(Pk) of height 1. Then

Bk
ι11(C) ̸≡ 0.

As a consequence, if Bot(Ek) > 1, then ak is a root of the polynomial Bk
ι11(C).

Proof: If Bk
ι11(C) ≡ 0, then βk(C) ≡ 0 by equation (11). We obtain Bk

ιtt = 0, where
(ιt, t) = Top(Ek), by applying again equation (11). Since (ιt, t) is a vertex of Pk, we
deduce Ak

ιtt ̸= 0. As Ek−1,k/n is dicritical, and δk/n ̸= 0, Corollary 9(iii) implies that

both Ak
ιtt and Bk

ιtt are non-zero, contradicting Bk
ιtt = 0.

Finally, by their nature, dicritical exponents impose strict relations between the
coefficients in A(x, y) and those in B(x, y) belonging to the corresponding element.
This is precisely item (iii) in Corollary 9: whenever Ak

ιj , B
k
ιj come from a dicritical

element Ek−1,k/n, then Ak
ιj = −δk/nB

k
ιj . This equality will play an essential role in

all our arguments in the dicritical case. Among many other things, it will prevent the
existence of immediately consecutive dicritical elements (Lemma 13), and, even more,
the existence of consecutive elements Ek, Ek+1, . . . , El with Ek, El dicritical, and the
ones in between satisfying a “bad” property (Lemma 20). Remarkably, this latter
fact is true for differential equations and most q-difference equations, and this is the
only point on which the two types of equations differ. We shall gather the differential
and these generic q-difference equations under the concept of reasonable equations
(Definition 17).

In summary, dicriticalness is, in some sense, a complication but its very nature
imposes conditions which can be taken advantage of to overcome most of said com-
plication.

3. Main result

We show Theorem A, Corollary A, and Theorem B in this section. As a starting
point, let P be a 1-covered equation – that is, with only integral exponents – and let

s(x) =
∑
i≥1

aix
i/n

be a solution of P in Puiseux form. Let e1, . . . , eg be the characteristic exponents
of s(x) and r1, . . . , rg be the characteristic factors.

Before proceeding, we provide some definitions and notation which will simplify
the statements.

Definition 14. For an integer k ≥ 1, the factor corresponding to k, denoted by ρk,
is defined as follows:

(i) If k is not a characteristic exponent, then ρk = 1,
(ii) otherwise, if k is equal to the characteristic exponent el, then ρk = rl.

That is, ρel = rl and ρk = 1 if k is not a characteristic exponent.
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The main relation between Top(Ek) and Bot(Ek) – notice that this is after the
substitution of the term akx

k/n – when k is a characteristic exponent is:

Proposition 11. Let k ∈ N. We have

(i) If Ek−1,k/n is non-dicritical or ρk = 1, then

Bot(Ek) ≤
Top(Ek)

ρk
.

(ii) If Ek−1,k/n is dicritical, then

Bot(Ek) ≤
Top(Ek)

ρk
+

ρk − 1

ρk
,

or, what amounts to the same, Top(Ek) ≥ ρk Bot(Ek)− (ρk − 1).

Both inequalities are sharp.

Examples of equality are, for the non-dicritical case, the algebraic equation P ≡
yn−x = 0, where k = 1, ρk = n, Bot(Ek) = 1, and Top(Ek) = n, and for the dicritical
case, P ≡ py − nxy1 = 0 in the differential setting and P ≡ qp/ny − y1 = 0 in the
q-algebraic one, where gcd(p, n) = 1, k = p, ρk = n, and Bot(Ek) = Top(Ek) = 1.

Proof of Proposition 11: Since Bot(Ek) ≤ Top(Ek), the result is obvious if ρk = 1.
Thus, we can assume that k = el for some characteristic exponent el. For brevity, let
Φ(C) = Φk−1,k/n(C) be the initial polynomial of the element Ek−1,k/n. The argument
hinges on Lemma 8, but there are two cases.

Non-dicritical case. This means that Φ(C) ̸≡ 0. Let h be the multiplicity of 0 as
a root of Φ(C) (h may be 0). As el is a characteristic exponent, Lemma 6 implies
that Ek is indeed a side of the Newton polygon N (Pk), of co-slope k/n. Write, as
in Lemma 8, Φ(C) = αk(C) + δk/nCβk(C). As Φ(C) ̸≡ 0, it has degree less than or
equal to Top(Ek−1,k/n) = Top(Ek).

Let (ι,Top(Ek−1,k/n)) be the topmost vertex of Ek−1,k/n, which is also the topmost
vertex of Ek by Lemma 2. We claim that any (ι′, j′) ∈ C(Pk−1)∩Ek−1,k/n, with j′ ≤
Top(Ek−1,k/n), satisfies that s := Top(Ek−1,k/n) − j′ is a multiple of rl. Note that
Ek−1,k/n and Ek both have co-slope el

n = pl

r1···rl , where gcd(pl, rl) = 1 by equation (4).
We have

ι′ = ι+ s
k

n
= ι+ s

pl
r1 · · · rl

.

As (ι′, j′) and (ι,Top(Ek−1,k/n)) belong to Lk/n(Pk−1), then ι′ and ι belong to Z
r1···rl−1

.

It follows that
s
pl
rl

= r1 · · · rl−1(ι
′ − ι) ∈ Z

and thus s is of the form s = rl r for some r ∈ Z≥0. As a consequence, Ak−1
ι′j′ and Bk−1

ι′j′

are 0 except possibly when j′ = Top(Ek−1,k/n)− rl r for r ∈ Z≥0. Thus, Φ(C) can be
written as

Φ(C) = ChΦ(Crl),

that is, Φ(C) is, except for the factor Ch, a polynomial in Crl . This implies that any
root of Φ(C) different from 0 has multiplicity at most (deg(Φ(C))− h)/rl. Let m be
the multiplicity of ak as a root of Φ(C). Since el is a characteristic exponent, ak ̸= 0,
so that m ≤ (deg(Φ(C))−h)/rl. Corollary 9 states that m ≥ Bot(Ek), as Ek−1,k/n is
non-dicritical. Thus, as Top(Ek) = Top(Ek−1,k/n), we obtain

(15) Bot(Ek) ≤ m ≤ deg(Φ(C))− h

rl
≤ Top(Ek)

rl
=

Top(Ek)

ρk
,

as desired.
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Dicritical case. Denote by (ιj , j) the point of ordinate j in Lk/n(Pk−1). If Φ(C) ≡ 0,
which is the dicritical condition, write 0 = Φ(C) = αk(C) + δk/nCβk(C). Denote

b = Bot(Ek). We have Ak
ιbb

+ δk/nB
k
ιbb

= 0 by equation (13). Since b = Bot(Ek), at

least one of them is non-vanishing and hence Ak
ιbb

̸= 0 and Bk
ιbb

̸= 0. By definition,

Bk
ιjj

(ak) = 0 for j = 1, . . . , b − 1, so that by (11) in Lemma 8 or equation (14) we

have β
(j−1)
k (ak) = 0 for j = 1, . . . , b − 1. Moreover, we have β

(b−1)
k (ak) ̸= 0 since

Bk
ιbb

̸= 0. Thus, ak is a root of multiplicity precisely b − 1 of βk(C). Let h ≥ 1
be the multiplicity of 0 as a root of Cβk(C). Considering that rl is a novel factor
of the denominator of k/n, the same argument as in the previous case shows that

both αk(C)/Ch and Cβk(C)/Ch are, indeed, polynomials in Crl . On the other hand,
dicriticalness also gives that βk(C) has degree equal to Top(Ek)− 1. Thus, we get

Bot(Ek)− 1 = b− 1 ≤ deg(Cβk(C))− h

rl
=

Top(Ek)− h

rl
,

from which it follows that

Bot(Ek) ≤
Top(Ek)

rl
+

rl − h

rl
≤ Top(Ek)

ρk
+

ρk − 1

ρk
,

as desired. The last inequality is an equality if h = 1, i.e. if βk(0) ̸= 0.

Corollary 12. If Ek−1,k/n is non-dicritical and the equality Bot(Ek) = Top(Ek)/ρk
holds, then Φk−1,k/n(C) is of the form Φk−1,k/n(C)=u(Cρk−aρk

k )Bot(Ek) for some u ∈
C∗.

Proof: First assume ρk = 1. Since the degree of Φk−1,k/n(C) is at most Top(Ek) and
ak is a root of Φk−1,k/n(C) of multiplicity at least Bot(Ek) (Corollary 9), it follows

that Φk−1,k/n(C) = u(C − ak)
Bot(Ek) for some u ∈ C∗.

Now assume ρk > 1 and consider the notation in the proof of Proposition 11.
The equality Bot(Ek) = Top(Ek)/ρk implies by (15) that h = 0 and deg(Φ(C)) =
Top(Ek). As a consequence, Φ(C) is a polynomial in Cρk with a non-vanishing root ak
of multiplicity deg(Φ(C))/ρk. Thus Φ(C) = u(Cρk −aρk

k )Bot(Ek) for some u ∈ C∗.

3.1. Proof of Theorem A. Denote µ = ord(s(x)) and let k0 = nµ. Since the
coefficients ai of s(x) are zero for i = 1, . . . , k0 − 1, we have that P = Pk0−1 and

H(P ) ≥ H(P, s(x)) = Top(EP,µ) = Top(Ek0−1,k0/n) = Top(Ek0
).

We split the proof into two cases.
Assume d = 0, that is, there are no dicritical characteristic exponents. We obtain

Top(Ek0) ≥
∏g

j=1 rj ≥ 1 by applying Proposition 11 iteratively from j ≥ k0, and the

fact that Top(Ej,(j+1)/n) ≤ Bot(Ej,j/n) for any j, as in Lemma 4.
Now suppose d ≥ 1. We get Top(Ek0) ≥ r1 · · · ri1−1 Top(Eei1

) by successive appli-
cations of the non-dicritical case of Proposition 11. Using again Proposition 11, now
in the dicritical case, we get

(16) r1 · · · ri1−1 Top(Eei1
) ≥ r1 · · · ri1 Bot(Eei1

)− (r1 · · · ri1 − r1 · · · ri1−1),

which gives, taking into account that Bot(Eei1
) ≥ Top(Eei1+1),

Top(Ek0) ≥ r1 · · · ri1 Top(Eei1+1)− (r1 · · · ri1 − r1 · · · ri1−1).

We obtain the desired bound

Top(Ek0
) ≥

g∏
j=1

rj −
d∑

k=1

(
ik∏
j=1

rj −
ik−1∏
j=1

rj

)
by iterating this argument.
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3.2. Bound without assumptions on dicritical exponents. We shall see next
that dicritical elements cannot be immediately consecutive, which will provide us with
a bound in which the dicritical elements play no role.

Lemma 13. Let Q = (κ, b) be the bottom point of the element Ek. Assume Ek−1,k/n

is dicritical. Then the point Q does not belong to any later dicritical element. As
a consequence, if k is a characteristic exponent, then either the next characteristic
exponent eℓ is non-dicritical or the element Eeℓ satisfies

Top(Eeℓ) ≤ b− 1.

Proof: Let Ak
κb, B

k
κb be the coefficients of Pk = Ak(x, y)+Bk(x, y)y1 corresponding to

the point Q. As Ek−1,k/n is dicritical, Φk−1,k/n(C) ≡ 0, and by equation (13) applied
to j = b and C = ak,

Ak
κb + δk/nB

k
κb = 0,

so that δk/n = −Ak
κb/B

k
κb. We claim that Q does not belong to a dicritical ele-

ment Em−1,m/n with m > k. By Lemma 2 and b ≥ Top(Ek,(k+1)/n), A
k
κb = Am

κb and

Bk
κb = Bm

κb for m > k. If Em−1,m/n were dicritical, we should have

Ak
κb + δm/nB

k
κb = 0,

which is a contradiction. Here we use the condition |q| ≠ 1 in the case of q-difference
equations, so that qm/n ̸= qk/n. The result now follows straightforwardly.

The first consequence of this lemma is:

Corollary 14. If eℓ, eℓ+1 are two consecutive dicritical characteristic exponents, then

Top(Eeℓ+1
) ≤ Bot(Eeℓ)− 1 <

Top(Eeℓ)

rℓ
.

As a consequence, if eℓ, eℓ+1, . . . , eℓ+p is a sequence of consecutive dicritical charac-
teristic exponents with p ≥ 1, then

(17) Top(Eeℓ+p
) <

Top(Eeℓ)

rℓ · · · rℓ+p−1
.

We can now proceed to prove Corollary A.

Proof of Corollary A: In Theorem A, we can improve the inequality as follows: we
say that eℓ is a terminally dicritical characteristic exponent if eℓ is dicritical and ei-
ther ℓ = g or eℓ+1 is non-dicritical. By equation (17) in Corollary 14, the argument
giving equation (16) in the proof of Theorem A can be restricted to terminally dicrit-
ical exponents. Hence, if ℓ1, . . . , ℓs is the sequence of indices of terminally dicritical
exponents,

Top(Ek0
) ≥

g∏
j=1

rj −
s∑

k=1

(
ℓk∏
j=1

rj −
ℓk−1∏
j=1

rj

)

=

(
g∏

j=1

rj −
ℓs∏
j=1

rj

)
+

s∑
k=2

(
ℓk−1∏
j=1

rj −
ℓk−1∏
j=1

rj

)
+

ℓ1−1∏
j=1

rj ,

(18)

where all the terms in parentheses are non-negative.
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If ℓs < g, i.e. the last characteristic exponent is non-dicritical, then

Top(Ek0
) ≥

g∏
j=1

rj −
ℓs∏
j=1

rj ≥
g∏

j=1

rj −
g−1∏
j=1

rj ≥
g−1∏
j=1

rj >

g−1∏
j=1

rj −
g−2∏
j=1

rj

because rg ≥ 2. Otherwise, if ℓs = g and s = 1, then (18) becomes

Top(Ek0) ≥
g∏

j=1

rj −

(
g∏

j=1

rj −
g−1∏
j=1

rj

)
=

g−1∏
j=1

rj >

g−1∏
j=1

rj −
g−2∏
j=1

rj .

When ℓs = g and s > 1 then we reason as follows: all the terms in the inner summation
in (18) are non-negative, and the largest one is the one with k = s because rj ≥ 2.
Thus, by keeping just this term, we obtain(

g∏
j=1

rj −
ℓs∏
j=1

rj

)
+

s∑
k=2

(
ℓk−1∏
j=1

rj −
ℓk−1∏
j=1

rj

)
+

ℓ1−1∏
j=1

rj

≥

(
g∏

j=1

rj −
g∏

j=1

rj

)
+

g−1∏
j=1

rj −
ℓs−1∏
j=1

rj +

ℓ1−1∏
j=1

rj >

g−1∏
j=1

rj −
g−2∏
j=1

rj

because ℓs−1 ≤ g − 2.

Corollary A is the best we can say in general for any kind of covered equation.
However, for generic or contracting q-difference equations and for general differential
equations, we can be more precise. The genericity condition for q-difference equations
we shall state becomes clear after Lemmas 15 and 17 below.

3.3. Reasonable equations: relations between consecutive dicritical ele-
ments. As we explained above, the dicritical property not only affects the initial
polynomial Φk−1,k/n(C) but also creates relations between the coefficients Ak

ιj and Bk
ιj

falling on a point (ι, j) in the dicritical element Ek. These relations, which in some
sense bring to mind the concept of residues or indices for a singular holomorphic
foliation along a non-singular separatrix, will be key to discern what kind of covered
equations admit an even sharper bound of H(P ) in terms of the factors r1, . . . , rg.
Hence the name given to the following concept.

Definition 15. Consider the element Ek with topmost vertex (ι, t) and lowest ver-
tex (κ, b). Using (8), we define the k-th top and bottom residues as

Resk =
Ak

ιt(0)

Bk
ιt(0)

=
Ak−1

ιt

Bk−1
ιt

, Resk =
Ak

κb(ak)

Bk
κb(ak)

respectively. By convention, ∗/0 = ∞ (as 0/0 does not happen by definition).

The following result gives a necessary condition for the inequality in case (i) of
Proposition 11 being an equality, which is the worst case for our bounds.

Lemma 15. Let Resk and Resk be the k-th top and bottom residues, respectively.
Assume that the initial polynomial Φ(C) = Φk−1,k/n(C) is of the form Φ(C) =

u(Cρk − aρk

k )Bot(Ek), where Φ(C) has degree Top(Ek), ρk is as in Definition 14, and
u is a non-zero constant (as a consequence, Ek−1,k/n is non-dicritical). Then

Resk = ρkResk + (ρk − 1)δk/n

if Resk ̸= ∞, or Resk = ∞ otherwise.
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Proof: Let (ι, t) be the top point of Ek and (κ, b) its bottom one. Before proceeding,
notice that u = Ak

ιt(0)+δk/nB
k
ιt(0). First assume ρk = 1. Our hypothesis implies t = b

and hence Resk = Resk as desired. From now on we assume ρk > 1 and hence ak ̸= 0.
Analogously to the proof of the non-dicritical case of Proposition 11, we obtain

that all the points in Ek−1,k/n are of the form (ι+ sρkk/n, t− sρk) for some s ∈ Z≥0.
Moreover, since Φ(0) ̸= 0, it follows that t is of the form t = mρk for some m ∈ Z≥0.
Thus, if (ι, j) is a point in Ek−1,k/n, then j = t−sρk = (m−s)ρk for some s ≥ 0. Thus,

Bk−1
ιj ,j

̸= 0, where ιj = ι+(mρk−j)k/n, implies that j is a multiple of ρk. Therefore, the

polynomial Cβk(C) is in fact a polynomial in Cρk of degree at most t. By Corollary 9,
as ak is a root of multiplicity at least b − 1 of βk(C), then either βk(C) = 0 or
Cβk(C) = vCρk(Cρk − aρk

k )b−1 for v = Bk
ιt(0). In the first case Resk = ∞ and

certainly Resk = ∞ as well. From now on we assume βk(C) = vCρk−1(Cρk − aρk

k )b−1

with v ̸= 0. By (11) in Lemma 8, we obtain

Bk
κb(ak) =

1

(b− 1)!
β
(b−1)
k (ak),

which gives, for ξ a primitive ρk-th root of unity,

Bk
κb(ak) =

Bk
ιt(0)

(b− 1)!
aρk−1
k (b− 1)!

ρk−1∏
j=1

(ak − ξjak)
b−1 = Bk

ιt(0)a
(ρk−1)b
k

ρk−1∏
j=1

(1− ξj)b−1.

On the other hand, for the same ξ, we have

1

b!
Φ(b)(ak) = u

ρk−1∏
j=1

(ak − ξjak)
b = ua

(ρk−1)b
k

ρk−1∏
j=1

(1− ξj)b.

Applying equations (10) and (11) of Lemma 8, and the two equalities above, we get

Ak
κb(ak)

Bk
κb(ak)

=
Φ(b)(ak)

b!Bk
κb(ak)

− δk/n =
ua

(ρk−1)b
k

∏ρk−1
j=1 (1− ξj)b

Bk
ιt(0)a

(ρk−1)b
k

∏ρk−1
j=1 (1− ξj)b−1

− δk/n.

And, as u = Ak
ιt(0) + δk/nB

k
ιt(0), we obtain

Resk =
Ak

κb(ak)

Bk
κb(ak)

=
Ak

ιt(0) + δk/nB
k
ιt(0)

Bk
ιt(0)

ρk−1∏
j=1

(1− ξj)− δk/n.

But since
∏ρk−1

j=1 (1− ξj) = (Cρk − 1)′(1), we have
∏ρk−1

j=1 (1− ξj) = ρk, so that

Resk = ρkResk + (ρk − 1)δk/n

as desired.

Corollary 16. Assume that either Ek−1,k/n is dicritical or Bot(Ek) = Top(Ek)/ρk.
Then

(19) Resk = ρkResk + (ρk − 1)δk/n.

Furthermore:

(i) If P is a differential equation and Resk is a real number with Resk ≥ −k/n,
then Resk ≥ −k/n.

(ii) If P is a q-difference equation with q∈R+\{1}, then Resk ≥ −qk/n (resp. Resk ≤
−qk/n) if and only if Resk ≥ −qk/n (resp. Resk ≤ −qk/n).



352 J. Cano Torres, P. Fortuny Ayuso, J. Ribón

Proof: If Ek−1,k/n is dicritical, then all the coefficients of Φk−1,k/n(C) = αk(C) +
δk/nCβk(C) are 0 and equation (13) gives:

Ak
ιjj = −δk/nB

k
ιjj

for each (ιj , j) ∈ Ek, and j = 0, . . . ,Top(Ek−1,k/n), so that (19) is trivial in this case,

with Resk = Resk = −δk/n. When Ek−1,k/n is not dicritical, the result follows from
the fact that Bot(Ek) = Top(Ek) if ρk = 1, and from Lemma 15 if ρk > 1. The other
results follow trivially from that equality.

Our next goal is to improve the lower bound provided by Corollary A. Indeed,
we can obtain a better lower bound in the case of differential equations and, for q-
difference equations, when q is not a root of a certain subset of algebraic equations,
the so-called unreasonable equations, which we shall describe below.

Definition 16. A polynomial Q(z) = zm + um−1z
m−1 + · · ·+ u0 ∈ R[z] is improper

if u0, . . . , um−1 ∈ R+ and 1 ≤ um−1 ≤ um−2 ≤ · · · ≤ u0.

Lemma 17. Any complex root z0 of an improper polynomial Q(z) satisfies |z0| ≥ 1
and |z0| ≤ max

(
u0

u1
, . . . , um−2

um−1
, um−1

1

)
.

Proof: It is obvious that no positive real number can be a root of Q(z). Denote
um = 1. We have

(z − 1)Q(z) = (zm+1 − zm) +

m−1∑
j=0

uj(z
j+1 − zj) = zm+1 +

m∑
j=1

(uj−1 − uj)z
j − u0.

Given z0 ∈ C with |z0| < 1, we obtain∣∣∣∣∣zm+1
0 +

m∑
j=1

(uj−1 − uj)z
j
0

∣∣∣∣∣ < 1 + (um−1 − um) + · · ·+ (u0 − u1) = u0,

so z0 is not a root of Q(z).
Let us prove the other inequality. Denote r = max0≤j<m−1(uj/uj+1). It suffices to

prove that Q̃(z) := zmQ(r/z)/u0 has no roots of modulus less than 1. Since Q̃(z) is
improper, the result is a consequence of the first part of the proof.

Corollary 16 on top and bottom residues has an important consequence on chains
of non-dicritical elements that follow a dicritical one. We want to apply Proposition 11
repeatedly without a priori information on the dicritical exponents in order to obtain a
sharp bound forH(P, s(x)), and henceH(P ) (Theorem B). To this end, it is important
to study situations in which the iterative use of Proposition 11 and Lemma 4 gives
us poor lower bounds. This is the goal of the following result in which we analyze a
“worst case scenario” for a pair of dicritical elements Ek−1,k/n and El,(l+1)/n that are
separated by a chain of non-dicritical elements Ek,(k+1)/n, Ek+1,(k+2)/n, . . . , El−1,l/n.
We shall also see that it can only happen in very special cases of q-difference equations.
This motivates Definition 17, of reasonable equations.

Proposition 18. Assume that Ek−1,k/n is a dicritical element and that for j = k +
1, . . . , l, any element Ej satisfies Bot(Ej) = Top(Ej)/ρj and Top(Ej) = Bot(Ej−1).
Assume also that if ρj > 1, then Ej−1,j/n is non-dicritical for j = k + 1, . . . , l. If the
bottom of El belongs to a dicritical element, then the equation P is q-differential and,
denoting s = q1/n, we have

(20) sl−k + ρl s
l−k−1 + ρl−1 ρl s

l−k−2 + · · ·+ ρk+1 · · · ρl = 0

for some l ≥ l, which implies that q1/n is the root of an improper polynomial.
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Proof: By hypothesis, the bottom of El belongs to a first dicritical element, El,(l+1)/n

with l ≥ l, so that Bot(El) = Top(El,(l+1)/n) = Top(El+1). This implies that we have

Bot(Ej) = Top(Ej) for any l < j ≤ l and Top(Ej) = Bot(Ej−1) for any l < j ≤ l+1.

Moreover, Bot(Ej) = Top(Ej) implies ρj = 1 for any l < j ≤ l by the first case
of Proposition 11. This property, together with the hypotheses, provide Bot(Ej) =

Top(Ej)/ρj for any k < j ≤ l.
If P is a differential equation, then the top and bottom residues of Ek satisfy

Resk = Resk = −k/n because of the dicritical condition and equation (13). Now,
Resk ≥ −k/n implies Resk+1 = Resk ≥ −k/n > −(k + 1)/n, where the first equality
is a consequence of Top(Ek+1) = Bot(Ek). An iterative application of Corollary 16
provides the inequality Resj ≥ −j/n for j = k, . . . , l. This prevents the bottom of

each Ej , k ≤ j ≤ l, from being dicritical at some later step, as Resj should be −m/n
for some m > j otherwise. Thus, P cannot be a differential equation.

We can then assume that P is a q-difference equation. Denoting s = q1/n, let us
show, by induction, that

(21) Resj = sk(s− 1)(sj−k + ρjs
j−k−1 + ρj−1ρjs

j−k−2 + · · ·+ ρk+1 · · · ρj)− sj+1

for any k ≤ j ≤ l, from which the result follows because Resl = −sl+1 by Top(El+1) =
Bot(El) and the dicriticalness of El,(l+1)/n. Equation (21) reads

Resk = sk(s− 1)− sk+1 = −sk

in the base case j = k. In this case, as Ek−1,k/n is dicritical, we get

Resk = Resk = −δk/n = −sk

by (13), so that equation (21) holds indeed for j = k. Suppose equation (21) holds
for some j < l. We have Resj+1 = Resj because Top(Ej+1) = Bot(Ej). Since
Bot(Ej+1) = Top(Ej+1)/ρj+1, Corollary 16 gives the equality

Resj+1 = ρj+1Resj+1 + (ρj+1 − 1)sj+1.

Thus,
Resj+1 = ρj+1Resj + (ρj+1 − 1)sj+1,

so that the induction hypothesis on j gives, then, by direct substitution

Resj+1 = ρj+1(s
k(s− 1)(sj−k + ρjs

j−k−1+ · · ·+ ρk+1 · · · ρj)− sj+1)+ (ρj+1− 1)sj+1.

Inserting the common factor ρj+1 into the parenthesis starting with sj−1, we get

Resj+1 = sk(s− 1)(ρj+1s
j−k + ρjρj+1s

j−k−1 + · · ·+ ρk+1 · · · ρj+1)

− ρj+1s
j+1 + ρj+1s

j+1 − sj+1

= sk(s− 1)(ρj+1s
j−k + ρjρj+1s

j−k−1 + · · ·+ ρk+1 · · · ρj+1)− sj+1.

Finally, introducing the zero expression sj+1−k − sj+1−k into the second parenthesis
and operating the second term, we get

Resj+1 = sk(s− 1)(sj+1−k + ρj+1s
j−k + ρjρj+1s

j−k−1 + · · ·+ ρk+1 · · · ρj+1)

− sj+2 + sj+1 − sj+1,

which is equation (21) for j + 1.

Definition 17. We say that P is a reasonable equation if it is a differential equation
or if it is a q-difference equation such that q1/n is not a solution of any equation of
the form (20).
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Remark 19. The following cases provide reasonable q-difference equations; notice that
q ∈ R+ does not imply q1/n ∈ R+, as one might have chosen log(q) to be non-real:

(i) If q is a positive real number, different from 1, and q1/n ∈ R+,
(ii) or |q| < 1,

(iii) or |q| 1
n > max(r1, . . . , rg),

(iv) or q is a trascendental number over Q.

This is a direct consequence of Proposition 18 and Lemma 17 since a non-reasonable
equation only happens if q1/n is a root of an improper polynomial. So in order for a
q-difference equation to be reasonable, q just needs to avoid a countable subset of the
annulus {1 < |q|1/n ≤ max(r1, . . . , rg)}.

The next result is what makes reasonable equations interesting: whenever there are
two dicritical elements, any “fastidious” term (ρk − 1)/ρk between them coming from
item (ii) of Proposition 11 disappears.

Lemma 20. Let P be a 1-covered reasonable equation. Assume the following condi-
tions hold:

(i) The elements Ek−1,k/n and El−1,l/n are dicritical, and
(ii) any characteristic exponent ej with k < ej < l is non-dicritical.

Then

Top(El) <
Top(Ek)

ρk · · · ρl−1
.

Proof: If Top(Ej) < Bot(Ej−1) for some j ∈ {k + 1, . . . , l}, then, applying Proposi-
tion 11 iteratively, we obtain:

Top(Ej) ≤ Bot(Ej−1)− 1 ≤ Bot(Ek)

ρk+1 · · · ρj−1
− 1 ≤

Top(Ek)
ρk

+ ρk−1
ρk

ρk+1 · · · ρj−1
− 1,

which gives

Top(Ej) ≤
Top(Ek)

ρk · · · ρj−1
+

ρk − 1

ρk · · · ρj−1
− 1 <

Top(Ek)

ρk · · · ρj−1
,

and as all characteristic exponents strictly between j and l are non-dicritical, Propo-
sition 11 gives once more the result.

If Top(Ej) = Bot(Ej−1) for all j ∈ {k + 1, . . . , l}, there are two possibilities:

• If Bot(Ej) <
Top(Ej)

ρj
for some j with k < j < l, we get Bot(Ej) ≤ Top(Ej)−1

ρj

and the same argument as above gives

Top(Ej+1) ≤ Bot(Ej) ≤
Top(Ej)− 1

ρj
≤ Top(Ek)

ρk · · · ρj
+

ρk − 1

ρk · · · ρj
− 1

ρj
<

Top(Ek)

ρk · · · ρj

and as the characteristic exponents between j + 1 and l are non-dicritical, the
result follows.

• If Bot(Ej) = Top(Ej)/ρj for all j ∈ {k + 1, . . . , l − 1}, then Proposition 18
implies that Top(El) cannot be equal to Bot(El−1), so that this case cannot
happen, and we are done.
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3.4. Proof of Theorem B. In order to prove Theorem B, we need to be able to
control the elements of P corresponding to exponents k/n for k/n < ord(s(x)): despite
their coefficients being 0, the elements Ek−1,k/n could, in principle, be dicritical,
preventing the desired bound from holding. This is tackled in the next technical
result, from which Theorem B follows trivially, setting m = ord(s(x))n.

Proposition 21. Let s(x) be a Puiseux solution of genus g of the reasonable equa-
tion P = 0 and fix 1 ≤ m ≤ ord(s(x))n. Then

(22) Top(EP,m/n) ≥ r1 · · · rg−1.

The inequality is strict unless, possibly, all the following conditions hold: eg/n is the
unique dicritical exponent of s(x) in Z≥m/n, Bot(Eeg ) = Top(Eeg ) = 1, and for any
m ≤ j < eg, one has Bot(Ej) = Top(Ej)/ρj and Bot(Ej) = Top(Ej+1).

Proof: Since all coefficients of s(x) of index less than m vanish, we have that P =
Pm−1 and Top(Em) = Top(Em−1,m/n) = Top(EP,m/n). Recall that, for any ele-
ment Ek, we have Bot(Ek) ≥ 1 by Remark 5. If there are no dicritical characteristic
exponents, then the result follows from Proposition 11, as

1 ≤ Bot(Eeg ) ≤
Top(Em)

r1 · · · rg
.

Otherwise, let eℓ be the dicritical characteristic exponent with greatest index. By
Proposition 11, we know that

Bot(Eeℓ) ≤
Top(Eeℓ)

rℓ
+

rℓ − 1

rℓ

and an iterative use of the same proposition, Lemma 20, and Corollary 14, if needed,
gives

Top(Eeℓ) ≤
Top(Em)

r1 · · · rℓ−1
.

Combining both inequalities, we obtain

Bot(Eeℓ) ≤
Top(Em)

r1 · · · rℓ
+

rℓ − 1

rℓ
.

Finally, using Proposition 11 for Bot(Eeℓ), taking into account that there are no more
dicritical exponents,

Bot(Eeℓ) ≥ Bot(Eeg )rℓ+1 · · · rg ≥ rℓ+1 · · · rg.

Thus, we obtain

Top(Em) ≥ Bot(Eeg )r1 · · · rg −
rℓ − 1

rℓ
r1 · · · rℓ

and (22) follows from Bot(Eeg ) ≥ 1 and rg ≥ 2.
Assume that the strict inequality does not hold, that is, Top(Em) = r1 · · · rg−1.

This implies that ℓ = g and Bot(Eeg ) = 1. There cannot be more dicritical exponents
other than eg/n in {m, . . . , eg}/n, since Lemma 20 provides strict inequalities. More-
over, we get Top(Eeg ) = rg Bot(Eeg )−(rg−1) = rg−(rg−1) = 1. Finally, an iterative
use of Proposition 11 gives Top(Ej)/ρj = Bot(Ej) and hence Bot(Ej) = Top(Ej+1)
for any m ≤ j < eg.

Taking into account that ri ≥ 2 for i = 1, . . . , g, we get:
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Corollary 22. With the same notation as in Theorem A,

g ≤ 1 + log2(H(P, s(x))) ≤ 1 + log2(H(P )),

and if ord(s(x)) ≥ 1, then g ≤ 1 + log2(ν0(P ) + 1).

4. Multiplicity and height

In the case of singular holomorphic foliations (see [18] for instance), given a Pfaf-
fian 1-form ω = A(x, y) dx + B(x, y) dy with A(x, y), B(x, y) ∈ C{x, y} satisfying
A(0, 0) = B(0, 0) = 0 and gcd(A(x, y), B(x, y)) = 1 that defines a germ of holomor-
phic foliation F at 0 ∈ C2, the multiplicity of F at 0 is

ν0(F) = min{ord(x,y)(A(x, y)), ord(x,y)(B(x, y))},

whose value does not depend on the coordinates (x, y) and is at least 1. In [8],
we proved, using geometric arguments, that, if Γ is an invariant irreducible curve,
which in generic coordinates has characteristic exponents e1, . . . , eg and Puiseux fac-
tors r1, . . . , rg, then the inequality

ν0(F) ≥ r1 · · · rg−1

holds. The natural question is whether we can obtain this result using just the Newton
polygon. The answer is yes. Set P = A(x, y) +B(x, y)y1 and let s(x) be the Puiseux
series expansion corresponding to Γ. Since Γ is an integral curve of ω, then s(x) is a
solution of the differential equation P = 0. After a linear change of coordinates, we
can assume that Γ is not tangent to x = 0; in particular we obtain ordx(s(x)) ≥ 1.
Furthermore, after a generic linear change of coordinates we can also assume the
following facts, depending on whether or not EP,1 is dicritical, which corresponds
to F having an invariant branch tangent to any generic line in (C2, 0):

(i) Either ΦP,1(C) ≡ 0, or in other words, every line through the origin is an
invariant curve of Aν(x, y) dx + Bν(x, y) dy = 0, where Aν and Bν are the
homogeneous components of degree ν = ν0(F) of A and B respectively, this
being the dicritical case.

(ii) Or x = 0 is not an invariant curve of Aν(x, y) dx + Bν(x, y) dy = 0, or equiva-
lently deg(ΦP,1(C)) = ν + 1, the non-dicritical case.

Those assumptions do not change ν0(F). We have the inequality

ν0(P ) = ν0(F) ≥ Top(EP,1)− 1

by definition, and by Proposition 21,

ν0(F) ≥ Top(EP,1)− 1 ≥ r1 · · · rg−1 − 1.

We now prove that the trailing −1 can be removed from the inequality, just using
arguments from the Newton construction.

Proof of Corollary B: The foliation F is singular, so that ν0(F) ≥ 1 and the result
holds for g ≤ 1. We assume henceforward that g > 1.

Assume, aiming at contradiction, that Top(EP,1)=r1 · · · rg−1. By Proposition 21 we
infer that eg/n is the unique dicritical exponent in Z≥1/n and the element Eeg−1,eg/n

is dicritical. Since the exponent 1 is not a characteristic exponent the element EP,1 =
En of co-slope 1 is non-dicritical and, by assumption (ii), there is a point with ab-
scissa −1 in En, which is indeed (−1, ν0(F)+1). As its abscissa is −1, it is the topmost
vertex of En, and we have Resn = 0. Moreover, we have Bot(Ej) = Top(Ej+1) and

hence Resj = Resj+1 for any n ≤ j < eg by Proposition 21. Furthermore, we get
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Bot(Eeg ) = Top(Eeg ) = 1, Bot(Ej) = Top(Ej)/ρj , and Bot(Ej) = Top(Ej+1) for
any n ≤ j < eg. Applying again Proposition 21 and Corollary 16, we obtain

Resj+1 = Resj = ρjResj + (ρj − 1)δj/n

for any n ≤ j < eg. Since Resn = 0, we obtain Resj ≥ 0 for any n ≤ j ≤ eg by

induction. As Reseg ≥ 0, the top vertex of Eeg cannot belong to a dicritical element,
contradicting that Eeg−1,eg/n is dicritical.
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ert, Genève, 1750.
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