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WHICH ARE QUOTIENTS OF A PRODUCT OF CURVES
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Abstract: This paper deals with cyclic covers of a large family of rational normal surfaces that can

also be described as quotients of a product, where the factors are cyclic covers of algebraic curves.

We use a generalization of the Esnault–Viehweg method to show that the action of the monodromy
on the first Betti group of the covering (and its Hodge structure) splits as a direct sum of the same

data for some specific cyclic covers over P1.

This has applications to the study of Lê–Yomdin surface singularities, in particular to the action
of the monodromy on the mixed Hodge structure, as well as to isotrivial fibered surfaces.
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Introduction

The general framework of this paper is the study of the cohomology of cyclic covers
of normal projective surfaces ramified along a curve, i.e., a Weil divisor.

In the smooth case, for instance the projective plane, cyclic coverings of P2 ramified
along a curve have been intensively studied since Zariski [33, 34]. The first approaches
used the degree of the Alexander polynomial of the complement of the ramification
locus to calculate the irregularity of the covering ramified along the curve with order
the degree of the curve. In the 1980’s a series of papers ([18, 17, 21, 29, 22, 3])
allowed for a computation of the irregularity of the covering that was independent of
its fundamental group.

The problem of computing the irregularity and structure of cyclic (or more gener-
ally, abelian) covers is relevant in its own right, e.g. in [1, 28] for the non-cyclic case,
with a focus on their global structure (including their singularities, whether the base
is smooth or singular). Note that the first Betti numbers (i.e., twice the irregularity)
of arbitrary finite abelian coverings can be retrieved from those of finite cyclic covers.

Our main motivation for this work, however, stems from the study of surface sin-
gularities. An important invariant of a singular surface in C3 is the mixed Hodge
structure of the cohomology of its Milnor fiber [14, 15, 16]. In the isolated case this
structure can be described by using the Steenbrink spectral sequence [31] associated
with the semistable reduction of a resolution of the singularity [27]. A crucial in-
gredient to understand this spectral sequence is the fact that the restriction of the
semistable reduction to each of the exceptional divisors of the resolution is a cyclic
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branched covering ramified on a normal crossing divisor on a smooth surface. Es-
nault and Viehweg’s theory ([18]) can be used to compute the equivariant first Betti
numbers of these coverings (by the Hodge symmetries only these are needed).

In practice, however, either the embedded resolutions are too difficult to compute
or their structure is too complicated, and only a few explicit examples are known in
the literature.

The first named author computed in [2] the Hodge structure of superisolated sur-
face singularities [23], providing a counterexample to Yau’s conjecture [32].

In order to simplify this combinatorial problem, the third named author used in [25]
embedded Q-resolutions instead, which are less complicated. For these resolutions, one
needs to deal with cyclic branched coverings of surfaces with quotient singularities.
This motivated us to develop a generalization of Esnault and Viehweg’s theory to
this setting [6]. An explicit embedded Q-resolution is constructed for Lê–Yomdin
surface singularities in [24]. In [26], it is shown that only cyclic covers ramified along
Q-normal crossing divisors are required both for weighted projective planes and for
the type of surfaces studied in this paper.

The construction of the surfaces studied in this work involves three cyclic branched
covers:

P1 P1, G P1, F(d) P1.
z zκ

mκ τ

κ:1

πF

d:1

The cover τ will be interpreted as an orbifold map τ : G→ O, where O is an orbifold
whose underlying manifold is P1 and has r orbifold points (the images of the branching
points); in the same way mκ induces an orbifold structure P1

d,d with two orbifold points

of order d at 0, ∞. We consider a surface S as a diagonal quotient of G× P1 by the
action of Z/κ; see (2.3) for details. The cover πF appears as the restriction to the
second factor in the vertical part of the pull-back of π and τ2:

G× F(d) Sd

G× P1 S

P1 × P1

1G×πF π

τ2

τ×mκ
τ3

The normal surface S has 2r cyclic quotient points. There are several isotrivial fibra-
tions hidden in the diagram above. The composition of τ3 with the first projection can
be seen as a ruled surface S → O; the composition of τ3 with the second projection
is an isotrivial fibration S → P1

d,d.
The surface Sd inherits an F(d)-isotrivial fibration structure Sd → O and the main

goal of the paper is to compute its cohomology of degree 1, more precisely its eigen-
decomposition by the monodromy of π. The surface Sd is also the finite quotient
of G× F(d) by a non-free action of Z/κ.

The case r = 2 was studied in [4] and some results will be used here. The orbifolds
in [4] are rational, while in this work they are arbitrary orbifolds supported in P1.

This family can also be constructed by a series of weighted blow-ups and blow-
downs of the Hirzebruch surface Σα. This fact allows us to determine the class groups
of those surfaces S starting from particular presentations of Picard groups of Hirze-
bruch surfaces.

Our strategy to describe the cyclic coverings is to use a generalization of the Esnault
and Viehweg’s theory for cyclic coverings of smooth surfaces, developed in [18], to
normal surfaces with quotient singularities (see [6]).



Cyclic coverings of rational normal surfaces 361

From an algebraic point of view, a d-cyclic covering X̃ → X of a projective normal
surface X with at most quotient singularities ramified along a Weil divisor D is
determined by the choice (and existence) of a divisor class H ∈ Cl(X) satisfying D ∼
dH. As long as Cl(X) has no torsion, the mere existence of H is enough. Otherwise,
the choice of the particular H ∈ Cl(X) is also necessary (see Example 3.10). In this

context, if D is a Q-normal crossing divisor, the decomposition of H1(X̃,C) into
invariant subspaces with respect to the action of the monodromy of the cover can
be retrieved from the Hodge decomposition of H1(X̃,OX̃) ⊕H0(X̃,Ω1

X̃
), where the

invariant subspaces of the first term are naturally isomorphic to H1(X,OX(L(l)))

for certain divisors L(l), l = 0, . . . , d − 1, and H0(X̃,Ω1
X̃

) ∼= H1(X̃,OX̃). In case

X = P1×P1 it is well known that this Hodge decomposition by the monodromy splits
into two factors Hh ⊕ Hv, that correspond to the restriction of the covering π to a
vertical and a horizontal fiber of the birule of X; see Subsection 1.3.

The family of surfaces S presented here has a similar splitting that is described in
detail in this paper. In order to do that, the concept of the greatest common vertical
covering for a family of coverings will be introduced. For an explicit solution of the
original problem, a description of the cohomology H∗(S,OS(D)) of a Weil divisor D is
given. Such cohomology is often concentrated in a single degree. Concrete formulas are
given in Section 3. The main result of this paper is proved in Section 4 (Theorem 4.12)
and it refers to the H1-eigenspace decomposition by the monodromy.

Theorem A. Let Sd be the cyclic covering of S associated with (d,D,H), D ∈
Div(S), H ∈ Cl(S), D ∼ dH, where D has Q-normal crossings. Then

H1(Sd,OSd) ∼= Hh ⊕Hv,
where

• Hv is the 1-cohomology of the structure sheaf of the restriction of an intermediate
cover of π to a rational horizontal fiber and
• Hh is the 1-cohomology of the structure sheaf of the greatest common vertical

cover of an intermediate cover.

In particular, H1(Sd,OSd) splits as a direct sum of the cohomology of two cyclic
covers of P1 and the splitting respects the eigenspaces of the monodromy and the
Hodge structure.

The notions of the rational horizontal fiber and the greatest common vertical cover
will be explained in the work; the degrees of intermediate covers will be made explicit
in the text.

As an outline of the paper, in Section 1, the general theory of Esnault and Viehweg
is reviewed for the sake of completeness. Section 2 is devoted to the description of
the family of surfaces S and their divisor class group. In Section 3 we give explicit
formulas for the cohomology of Weil divisors on S, proving when this cohomology is
concentrated in a single degree. In Section 4, the main results are stated and proved.
Some relevant examples are given in Section 5, including isotrivial fibered surfaces.
The paper ends with cyclic covers appearing in weighted Lê–Yomdin singularities; see
Section 6.

Acknowledgement

We want to thank the anonymous referees of the manuscript for their insightful
comments, which have helped improve the exposition of this paper.

1. Esnault and Viehweg’s method

For notation, let ζm := exp 2π
√
−1

m .
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1.1. Cyclic covers of abelian quotient singular surfaces. In [18] the authors
set the theory of ramified cyclic covers of projective smooth varieties. In this paper
we are going to use a generalization of this theory for projective normal surfaces
having cyclic quotient singularities [6]. Let X be either a projective smooth variety

or a projective surface with cyclic quotient singularities. A cyclic cover π : X̃ → X
is algebraically determined by three data (d,D,H) where D is linearly equivalent
to dH. The number of sheets of π is d and the ramification locus is a divisor D. We
emphasize that H ∈ Cl(X) while D is a true Weil divisor in Div(X) and not just a
linear equivalence class in Cl(X). Let

D :=

r∑
i=0

niDi

be the decomposition of D into irreducible divisors. Such a cyclic cover is defined
topologically by a morphism ρ : H1(Xreg \ D,Z) → Z/d. If µi is a meridian of Di,
then σ(µi) ≡ ni mod d. Usually one thinks of D as an effective divisor with 0 < ni < d
but actually the numbers ni are only defined mod d and the divisor does not need to
be effective. If the meridians of D generate H1(Xreg \D,Z), no more data are needed,
but if not, different covers may have the same ramification divisor. To determine the
cover one needs another Weil divisorH such thatD ∼ dH; to be more precise, only the
class of H matters. The cover is the normalization of the zero locus of a multisection
of the fiber bundle OX(H) associated with the isomorphism OX(H)⊗d ∼= OX(D).
The datum d is fixed; the divisor H can be replaced by any other linearly equivalent
divisor. Moreover, given any divisor A we can replace D by D+dA and H by H +A.
In particular, the data (d,D,H) can be replaced by (d, D̃, 0), where D̃ := D − dH.

Note finally that the number of connected components of X̃ is the index of
ρ(H1(Xreg \ D,Z)) in Z/d. If X is smooth and simply connected, then this num-
ber coincides with gcd(d, n1, . . . , nr). We will state later what happens in the cyclic
quotient case.

It is possible to track algebraically the action of the 1-cohomology of the mon-
odromy σ : X̃→X̃ of the covering. In fact, it is possible to get this action onH1(X,OX)
and then derive the action on H1(X,C) via the Hodge decomposition. The theorem
below has been proved in [18] in the smooth case and in [6, Theorem 2.3] in the cyclic
quotient case (we restrict our attention to H1).

Theorem 1.1. With the previous notations, if D is a divisor with simple Q-normal
crossings, then

H1(X̃,OX̃) =

d−1⊕
l=0

H1(X,OX(L(l))), L(l) = −lH +

r∑
i=1

⌊
lni
d

⌋
Di,

where the monodromy of the cyclic covering acts on H1(X,OX(L(l))) by multiplication
by ζld.

Remark 1.2. The above divisors have nicer expressions if we apply them to (d, D̃, 0).
If we assume that

(1.1) D̃ = D − dH =

n∑
i=1

miDi,

then

L(l) =

n∑
i=1

⌊
lmi

d

⌋
Di.
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Note also that the condition on Q-normal crossings is applied only to the reduction
of D̃ mod d.

Let B be any Weil divisor in X. Then, since B · D̃ = 0, we have:

(1.2) L(l) ·B =

n∑
i=1

⌊
lmi

d

⌋
Di ·B −

n∑
i=1

lmi

d
Di ·B = −

n∑
i=1

{
lmi

d

}
Di ·B.

In particular, if B is effective and it does not have common components with D̃, then
L(l) · B ≤ 0. Moreover, L(l) · B = 0 if and only if l is a multiple of d

gcd(d,m) where

m = gcd{mi | Di ·B 6= 0}.

If we perform a (weighted) blow-up of π̂ : X̂ → X, then we obtain a new cyclic

cover $ by pulling back our original cover π. If π is defined by (d, D̃, 0), then $ is

defined by (d, π̂∗D̃, 0). Note that as D̃ ∼ 0, it is an integral Cartier divisor and then

in particular π̂∗D̃ is also an integral Cartier divisor. It is determined by D and the
multiplicity in π̂∗D̃ of the exceptional divisor of π̂.

Example 1.3. Let us suppose that (X,P ) ∼= 1
n (a, b) and we perform a (p, q)-weighted

blow-up π̂ : X̂ → X; for simplicity, assume n, a, b are pairwise coprime and gcd(p, q) =

1. Let e := gcd(n, pb− qa). Assume that D̃ is as in (1.1), and let νi be the (p, q)-mul-
tiplicity of Di (it vanishes if P /∈ Di). Let E be the exceptional component of π̂ and

let us denote by Di the strict transform of Di in X̂ (the context will indicate which
divisor we are referring to). Then,

π̂∗D̃ =
1

e

(
n∑
i=1

νimi

)
E +

n∑
i=1

miDi.

If D̃ is a simple Q-normal crossing divisor mod d, then it is also the case for π̂∗D̃.

Definition 1.4. Let (W,P ) be a germ of type 1
n (a, b), where n, a, b are pairwise

coprime. This space admits two special expressions, namely 1
n (1, b′) or 1

n (a′, 1), where
a′, b′ are well defined mod n. A weighted blow-up of W is said to be special if it is of
weight (a′, 1) or (1, b′).

These special blow-ups have nice properties. The curvettes of the exceptional com-
ponents are the extremal smooth curve germs of W . For example, if a′, b′ are reduced
mod n, then they are the first step of the Jung–Hirzebruch resolutions.

Lemma 1.5. Let (W,P ) be a germ of type 1
n (a′, 1) ∼= 1

n (1, b′), gcd(a′, n)=gcd(b′, n)=
1. Let πx, πy be the special weighted blow-ups of weights (a′, 1), (1, b′), respectively,
with exceptional components Ex, Ey. We denote by µx, µy, µex, µey suitable meridians
of {x = 0}, {y = 0}, Ex, Ey, in W \ {xy = 0}.

(i) The local fundamental group of W \ {P} is cyclic of order n; µex and µey are
(separately) generators of this group.

(ii) The local fundamental group of W \ {y = 0} is Z. The sets {µex} and {µey, µy}
generate this group (separately). A similar statement holds for W \ {x = 0}.

(iii) The local fundamental group of W \ {xy = 0} is Z2. The sets {µex, µx} and
{µey, µy} generate this group (separately).

Proof: Iterating the special blow-ups one obtains the Jung–Hirzebruch resolution
of W . Using Mumford’s method [27] a presentation of the distinct fundamental groups
(generated by the meridians of all divisors) is given and the result follows.
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Note that we are not asking the coverings π, $ above to be connected. In the
classical case (X smooth and simply connected) it is easy to relate the number of
connected components and the arithmetic of the coefficients of D. If we drop the
smoothness, more conditions are needed.

Proposition 1.6. Let X be a simply connected projective surface with normal cyclic
quotient singularities. Let π : X̃ → X be a cyclic branched cover associated with
(d,D,H), where D has smooth components and Q-normal crossings mod d. Let

σ̂ : X̂ → X be the composition of one special blow-up for each singular point of X.
Let m be the greatest common divisor of d and the coefficients of the divisor σ̂∗(D−

dH). Then X̃ has m connected components.

Proof: Let σY : Y → X be the minimal resolution of the singularities of X. Let

DY := d

{
σ∗Y (D − dH)

d

}
, HY := −

⌊
σ∗Y (D − dH)

d

⌋
.

Let us denote also

D̂ := d

{
σ̂∗(D − dH)

d

}
, Ĥ := −

⌊
σ̂∗(D − dH)

d

⌋
.

Let E be an exceptional component of σ̂; its multiplicity in D̂ coincides with the mul-
tiplicity of its strict transform in DY . The same applies for the irreducible components
of D.

Since X is simply connected, it is the case for Y . Then H1(Y \ DY ,Z) is gener-
ated by the meridians of the irreducible components of DY . Let C be an irreducible
component of DY and µC the class of its meridians. Let ρ : H1(Y \ DY ,Z) → Z/d
be the morphism determining the covering over Y (which has the same number m

of connected components as X̃). Recall that ρ(µC) is the coefficient of C in DY

(mod d). Then, m equals the greatest common divisor of d and the coefficients of the
divisor DY .

This comes from the fact that the whole set of meridians generate H1(Y \DY ,Z).
But Lemma 1.5 implies that only the strict transforms of the irreducible components
of D̂ suffice and the result follows.

Let π be a cyclic cover of a surfaceX with cyclic quotient singular points, associated
with (d,D,H), where D is a simple Q-normal crossing divisor. Let C ⊂ X be an
irreducible curve (with only unibranch points) such that the union of C and the
support of D is a Q-normal crossing divisor. Then, πC := π| : π

−1(C) → C is a
(maybe non-connected) cyclic cover of the curve C. In the smooth case it is easy to
obtain the divisors defining this cover. In the cyclic quotient case some work has to
be done.

Let P1, . . . , Ps ∈ C∩SingX and let σ̂ : X̂ → X be a composition of weighted blow-
ups at P1, . . . , Ps such that the strict transform of C (still denoted by C) is contained

in the regular part of X̂, which exists because of the Q-normal crossing condition.
Let π̂ be the pull-back of π by σ̂. Note that πC and π̂C can be identified.

The covering π̂ is associated with a triple (d, D̂, Ĥ) obtained as follows. Consider

D̃ = D − dH; then σ̂∗D̃ = D̂ − dĤ, where the support of D̂ is contained in the
support of the Q-divisor π∗(D).

Proposition 1.7. Let C ⊂ X be an irreducible curve (with only unibranch points)
such that the union of the support of D with C has Q-normal crossings.

Then, the divisor DC of C defining πC has support at D ∩ C ≡ D̂ ∩ C, and the
multiplicity of each point P ∈ D̂∩C is the coefficient of the irreducible component Di

of D̂ containing P .
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Proof: We add some blow-ups of X such that σ̂ is as in Proposition 1.6. The extra
blow-ups do not affect the multiplicities of the components intersecting C and then
the result follows.

Note that, since the Cl(P1) is completely determined by the degree, we deduce that

d divides degDC and HC is a divisor of degree degDC
d .

1.2. Application to covers of P1. We are going to study the characteristic poly-
nomial and the H1-eigenspace decomposition of a d-cyclic covering of P1 associated
with a divisor

D =

s∑
j=1

mj〈pj〉,
s∑
j=1

mj = dh, h ∈ Z,

i.e., degH = h; no coprimality conditions are assumed. Then we have

L(l) ∼ −lH +

s∑
j=1

⌊
lmj

d

⌋
〈pj〉 degL(l) = −

s∑
j=1

{
lmj

d

}
.

Note that L(l) depends only on l mod d and L(0) = 0. Let n := gcd(d,m1, . . . ,mr)

and d̂ = d
n , m̂j :=

mj
n . Then

degL(l) = −
s∑
j=1

{
lm̂j

d̂

}
and actually L(l) depends only on l mod d̂. We conclude that for l ∈ {0, 1, . . . , d− 1}:

(1.3) h1(P1,OP1(L(l))) =


0 if l ≡ 0 mod d̂,

−1 +

s∑
j=1

{
lm̂j

d̂

}
otherwise.

Geometrically the d-cyclic cover of P1 associated with D is the disjoint union of

n copies of a d̂-cyclic cover of P1 associated with 1
nD ∈ Div(P1), where the monodromy

exchanges cyclically these copies. Applying Lemma B.1 the characteristic polynomial
of the monodromy is

(1.4) ∆(t) =
(tn − 1)2(td − 1)s−2

s∏
j=1

(tgcd(d,mj) − 1)
.

Note that we have obtained more than that since we have the monodromy action on
the Hodge structure of the covering space.

1.3. Normal crossing covers of P1×P1. We illustrate the coverings ramified along
normal crossing divisors on surfaces, studying P1×P1. Let π : X̃ → P1×P1 be a cover
associated with (d,D,H), where D is a normal crossing divisor. The condition D ∼
dH completely determines H using bidegrees (this is the first difference with reducible
normal fake quadrics, see Definition 2.3, since their class group may not be torsion-
free).

The cohomology of X̃ can be studied using Theorem 1.1 (or more precisely the orig-
inal theorem of Esnault and Viehweg), for which we need to know the 1-cohomology
of some divisors. The following result is well known.
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Proposition 1.8. Let S be a section and let F be a fiber of P1 × P1. Then:

(i) dimH0(P1 × P1;O(aS + bF )) =

{
(a+ 1)(b+ 1) if a, b ≥ 0,

0 otherwise.

(ii) dimH1(P1 × P1;O(aS + bF )) =

{
(a+ 1)(b+ 1) if a, b ≤ −2,

0 otherwise.

(iii) dimH2(P1 × P1;O(aS + bF )) =

{
−(a+ 1)(b+ 1) if (a+ 2)(b+ 2) < 0,

0 otherwise.

b = 0

a = 0

H0 = H1 = H2 = 0

H0

H2 H1

H1

Figure 1. Map of the cohomology of H∗(P1 × P1;O(aS + bF )), where S is a
section and F is a fiber.

This result is a direct consequence of the following:

(H1) The space dimH0(P1×P1;O(aS+bF )) is isomorphic to the space of polynomials
of bidegree (a, b) and (i) follows.

(H2) Using Serre duality (ii) follows.
(H3) Using Riemann–Roch and combining the previous results, (iii) follows.

Actually we are only interested in H1 for a, b ≤ 0 and only for (a, 0), (0, a), a < 0,
the contribution is positive. Let us decompose D = νvDv +νhDh+νmDm, where Dv,
Dh, Dm are primitive (their multiplicities are coprime), and all the components of Dv

have bidegree of type (0, b), all the components of Dh have bidegree of type (a, 0),
and all the components of Dh have bidegree of type (a, b), a, b > 0. The following
result is well known.

Theorem 1.9. The space H1(X̃;OX̃) is decomposed as a direct sum H1(X̃v;OX̃v )⊕
H1(X̃h;OX̃h) where πv : X̃v → F is the restriction to F ∼= P1 of the intermediate

cover of degree gcd(d, νh, νm) and πh : X̃h → S is the restriction to S ∼= P1 of the
intermediate cover of degree gcd(d, νv, νm).
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2. Reducible normal fake quadrics

2.1. A ramified covering of the projective line. For the sequel we need to define
an orbifold O, with the following data. The orbifold is supported by P1 = C ∪ {∞}
and the orbifold points are γ1, . . . , γr ∈ C ⊂ P1, r ≥ 0, of orders d1, . . . , dr ∈ Z>1.
Let us consider also qi ∈ {1, . . . , di − 1}, gcd(di, qi) = 1, i = 1, . . . , r, such that

(2.1) α =

r∑
i=1

qi
di
∈ Z.

This imposes strong conditions on d1, . . . , dr. For instance,

dr divides lcm(d1, . . . , dr−1).

In particular if κ := lcm(d1, . . . , dr), then κ2 divides d1 · . . . · dr (see Remark 2.12).
There is an orbifold κ-cyclic covering τ : G→ O associated with the epimorphism

(well defined from (2.1))

πorb
1 (O) = 〈µ1, . . . , µr | µ1 · . . . · µr = 1, µd11 = · · · = µdrr = 1〉 Z/κ,

µi qi
κ

di
mod κ;

the covering τ was mentioned in the introduction. The position of the orbifold points
has an influence on the analytic type of G but not on its topological type. The
following result is a direct consequence of the definition of a cover associated with an
epimorphism onto a cyclic group.

Lemma 2.1. There exists a unique generator η : G→ G of the monodromy of τ such
that for any i ∈ {1, . . . , r} and p ∈ τ−1(γi) there exists a local coordinate y of G
centered at p such that

η
κ
di (y) = ζqidiy.

Using the Riemann–Hurwitz method, one can compute the genus of G:

2− 2g(G) = χ(G) = κ(2− r) +

r∑
i=1

κ

di
= κχorb,

where

(2.2) χorb := χorb(O) = 2−
r∑
i=1

(
1− 1

di

)
∈ Z

1

κ
.

Lemma 2.2. With the previous notations, if r > 2, then g(G) > 0 and χorb ≤ 0.

Proof: It is enough to prove that χorb ≤ 0. Since r > 2 and

χorb ≤ r

2
+ 2− r =

4− r
2

,

it is enough to rule out the case r = 3.
In that case χorb can be positive only if (d1, d2, d3) is one of the following: (2, 2, n),

(2, 3, 3), (2, 3, 4), or (2, 3, 5), but none of them satisfy (2.1).
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2.2. Definition and description of a reducible normal fake quadric. Recall
the classical definition of a fake quadric as a smooth projective surface with the
same rational cohomology as, but not biholomorphic to, the quadric surface P1 × P1.
Examples of fake quadrics are quotients of a product of two smooth projective curves
by a free diagonal action. Such surfaces are called reducible (also called isogenous to
a product of curves of an unmixed type; see [12, 10]). We extend this concept to
reducible normal fake quadrics, where the freeness condition is dropped.

Let us consider the following (Z/κ)2-Galois and Z/κ-Galois covers:

S := (G× P1)/(Z/κ)

G× P1 P1 × P1

(p, z) (τ(p), zκ)

τ2

The action defining S is given by a diagonal action

(2.3) (1 mod κ, (p, z)) (η(p), ζ−1
κ z).

Definition 2.3. The surface S := (G× P1)/(Z/κ) with the action (2.3) is called the
reducible normal fake quadric associated with τ .

C

E

F1 Fr

. . . P1 × P1

τ2

C

E

F1 Fr

. . .G× P1

C0

E0

A1 Ar. . .S

1
d1

(1, q1) 1
dr

(1, qr)

1
d1

(1,−q1) 1
dr

(1,−qr)

Figure 2. Covering construction of S.

The reason for the name reducible normal fake quadric will be clarified by the
following description.

Lemma 2.4. Let S be the reducible normal fake quadric associated with τ . It is a nor-
mal ruled surface πS : S → P1, [(p, z)] 7→ τ(p) with two sets Sing(C) := {P1, . . . , Pr}
and Sing(E) := {Q1, . . . , Qr} of singular points (of cyclic quotient type). The follow-
ing holds:

(S1) The curves C := τ2(G × {0}) and E := τ2(G × {∞}) are sections of πS with
self-intersection 0.

(S2) There are fibers Ai of πS such that {Pi} = Ai ∩ C and {Qi} = Ai ∩ E.
(S3) The type of Pi is 1

di
(1,−qi) and the type of Qi is 1

di
(1, qi).
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Proof: Figure 2 describes S as a middle cover. We can identify C and E with C ∪
{∞} ≡ P1, where Pi and Qi become γi. Let p ∈ G such that Pi = [(p, 0)]. A neigh-
borhood of Pi in S is isomorphic to a neighborhood of the origin in C2/µdi , where
µdi = 〈ζ〉 is the cyclic group of di-roots of unity in C∗ and the action is defined by

ζ · (y, z) = (ζqiy, ζ−1z),

and thus the type of Pi as a quotient singular point is calculated. Since z−1 is a local
coordinate at ∞, the type of Qi is computed in the same way. The self-intersection
computation is straightforward.

Remark 2.5. The surface S does not determine the original data given by (d1, . . . , dr)
and (q1, . . . , qr). For instance, interchanging 0 and ∞ in P1 and choosing η−1 as a
generator of the monodromy of τ results in the same surface S, which is associated
with the data (d1, . . . , dr), q

′
i := di−qi, and α′ := r−α. However, note that in general

replacing η by η` with gcd(`, κ) = 1 does not result in a surface isomorphic to S.

2.3. An alternative construction. There is an alternative description of reducible
normal fake quadrics in terms of generalized Nagata operations of ruled surfaces.
Consider a reducible normal fake quadric S as above and (di, qi), i = 1, . . . , r, such
that α :=

∑r
i=1

qi
di
∈ Z as in Lemma 2.4.

Lemma 2.6. The surface S and the smooth ruled surface Σα both have a common
weighted blown-up space obtained as follows.

(i) From S: composition of (1, qi)-weighted blow-ups of Qi.
(ii) From Σα: composition of (di, qi)-weighted blow-ups at points in a section with

self-intersection α.

Cα

E−α
F1 Fr

. . .Σα

(di, qi)-blow-ups

π̂ρ

C0

E−α
F1 Fr

. . .

A1

1
d1

(1,−q1)

1
q1

(1,−d1) Ar A2
i = − 1

diqi

F 2
i = − di

qi

Ŝ

C0

E0

A1 Ar. . .S

(1, qi)-blow-ups
1
d1

(1, q1) 1
dr

(1, qr)

Figure 3. Blow-up construction of S.
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Proof: The proof is depicted in Figure 3. Let us start from S. We perform the com-
position of the (1, qi)-weighted blow-ups at Qi, i = 1, . . . , r; if (ui, vi) are the local
variables, then E (resp. Ai) is given by ui = 0 (resp. vi = 0). Let F1, . . . , Fr be the
exceptional components. From [9, Theorem 4.3] we obtain that (F 2

i )Ŝ = −diqi . For

the strict transforms we have

(A2
i )Ŝ = (A2

i )S −
12

diqi
= − 1

diqi
, (E2)Ŝ = (E2)S −

r∑
i=1

q2
i

qidi
= −

r∑
i=1

q2
i

qidi
= −α.

Since the centers of the blow-ups are disjoint to C, we still have (C2)Ŝ = 0. More-

over, the surface Ŝ is smooth along E, and Ŝ has cyclic quotient singular points of
type 1

qi
(1,−di) at Fi ∩Ai.

Note that:

π̂∗(Fi) = Fi + diAi, π̂∗(C) = C +

r∑
i=1

qiAi,

ρ∗(Ai) = Ai +
1

di
Fi, ρ∗(E) = E +

r∑
i=1

qi
di
Fi.

The surface Ŝ along Ai looks like the exceptional component of a weighted blow-up of
type (di, qi) at a smooth point. This shows that the stated weighted blow-ups of Σα
also yield Ŝ.

Remark-Definition 2.7. As a consequence of Lemmas 2.4 and 2.6, associated with
any (di, qi), i = 1, . . . , r, such that gcd(di, qi) = 1 and α :=

∑r
i=1

qi
di
∈ Z, there is a

reducible normal fake quadric, say S. According to Remark 2.5, this correspondence
is not one to one, but we can still refer to S as the reducible normal fake quadric
associated with (di, qi), i = 1, . . . , r.

Summarizing, the following describes the numerical relationship between the more
relevant divisors on S:

A2
i = E2 = C2 = F 2 = 0, F · C = F · E = 1, C ·Ai = E ·Ai =

1

di
,

where F is a generic fiber of πS .

Remark 2.8. The surface S admits another map πG : S → P1 corresponding to the
map [(p, z)] 7→ zκ. The fiber corresponding to 0 is κC, the fiber corresponding to ∞
is κE, and the other fibers are isomorphic to G (and they will again be denoted by G).
These curves admit a simple characterization.

Lemma 2.9. Let D ⊂ S be an irreducible curve.

(i) If D · F = 0, then D is equal to one of these curves: A1, . . . , Ar or a generic
fiber F of πS. A linear combination of such divisors will be called a vertical
divisor.

(ii) If D · C = 0, then D is equal to one of these curves: C, E, or a curve G. A
linear combination of such divisors will be called a horizontal divisor.

A linear combination of irreducible divisors which are neither vertical nor horizontal
will be called a slanted divisor.

Proof: Let us start with (i). Let p ∈ D and w := πS(p) ∈ P1. Note that π−1
S (w) is

either A1, . . . , Ar or a fiber F ; then D ·π−1
S (w) = 0 and D∩π−1

S (w) 6= ∅. Since D and

π−1
S (w) are irreducible the only option is D = π−1

S (w). For (ii) we follow the same
ideas using the map πG.
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2.4. Weil divisor class group. Consider S the reducible normal fake quadric as-
sociated with (di, qi), i = 1, . . . , r, such that gcd(di, qi) = 1 and α :=

∑r
i=1

qi
di
∈ Z

as defined in Remark-Definition 2.7. The descriptions of S given in Section 2 to-
gether with [4, §2.3] are the main ingredients for the computation of the Weil divisor
class group Cl(S). Despite Σα having a simple class group isomorphic to Z2, note
the following description of this group in terms of the divisor classes involved in the
construction of Σα:

Cl(Σα) = 〈C,E, F, F1, . . . , Fr | E ∼ C − αF, F ∼ F1 ∼ · · · ∼ Fr〉,

where F is a generic fiber. In order to obtain Cl(Ŝ), see Figure 3, the previous gen-
erators need to be replaced by their strict transforms, the classes of the exceptional
components added, and the linear equivalence relations rewritten in terms of the new
generators (see [4, Proposition 2.10]):

(2.4) Cl(Ŝ)=

〈
C,E, F, F1, . . . , Fr, A1, . . . , Ar | E∼C+

r∑
i=1

qiAi−αF, F ∼Fi+diAi

〉
.

As in [4, Proposition 2.12], a presentation of the class group for a blow-down can easily
be obtained if the exceptional components are part of the presentation of the class
group of the source, and hence presentation (2.4) comes in handy. In this situation,
it is enough to “forget” those exceptional components, that is,

(2.5) Cl(S) =

〈
C,E, F,A1, . . . , Ar | E ∼ C +

r∑
i=1

qiAi − αF, F ∼ diAi

〉
.

Proposition 2.10. The class group Cl(S) has the following structure as an abelian
group:

(2.6) Cl(S) ∼= Z2 ⊕
r−1⊕
i=1

Z/mi,

where mi := d̂i
d̂i−1

, d̂0 = 1, and d̂i = gcd
({∏

j∈I dj
}
I⊂{1,...,r}, |I|=i

)
.

Moreover, the following holds:

(Cl1) The free part is generated by the class of C and the class of a suitable linear
combination of A1, . . . , Ar (which is a rational multiple of F ).

(Cl2) The torsion part has order m1 · . . . ·mr−1 = d1·...·dr
κ .

(Cl3) The element T := E−C ∈ Tor Cl(S) has maximal order κ = mr−1 in Tor Cl(S).

Remark 2.11. Note that there might be more than one subgroup of order κ in Tor Cl(S),
but the one generated by T will be specially useful for our purposes. Note that T is
horizontal since it is the difference of two sections, but it is also vertical as it is linearly
equivalent to

∑r
i=1 qiAi − αF .

Proof: From the presentation matrix one can easily see that Cl(S) is the direct sum of
the free subgroup ClC(S) := Z〈C〉 and ClF (S) := Z〈A1, . . . , Ar〉. Note that ClF (S)⊗Z
Q = Q〈F 〉 (of dimension 1) and that Tor Cl(S) ⊂ ClF (S). This shows part (Cl1).

The presentation matrix for ClF (S) is given asd1 . . . 0 −dr
...

. . .
...

...
0 . . . dr−1 −dr

 .

Its Fitting ideals are (d̂i), i = 1, . . . , r − 1, and hence its invariant factors are mi :=
d̂i
d̂i−1

, which ends the structure shown in (2.6).
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Part (Cl2) follows from the formula d̂r−1 :=gcd
(
d1·...·dr
d1

, . . . , d1·...·drdr

)
= d1·...·dr

lcm(d1,...,dr) ,

see (A.4) in the appendix, and the definition of κ = lcm(d1, . . . , dr).
For part (Cl3), note that from the presentation matrix it follows that the maximal

order of Tor Cl(S) is κ. Hence, it remains to verify that the order of T is κ,

κT ∼ κ(E − C) ∼ κ
r∑
i=1

qiAi − καF ∼

(
r∑
i=1

κ

di
qi − κα

)
F = 0.

Then κT ∼ 0. To check that κ is exactly the order of T , we need Lemma 2.13 below.
Assume that another integer κ1 satisfies κ1T ∼ 0. Then, di divides κ1qi. Since qi
and di are coprime, κ1 is a multiple of di, and hence it is a multiple of κ. The fact
that κ is precisely mr−1 is a consequence of another arithmetic property; see (A.5) in
the appendix.

Remark 2.12. Note that only part (Cl3) depends on the condition (2.1). Also, as a
consequence of parts (Cl2) and (Cl3), note that κ divides d1·...·dr

κ and thus κ2 di-
vides d1 · . . . · dr.

Lemma 2.13. Let D ∈ ClF (S). Then, there are unique f, ai ∈ Z, 0 ≤ ai < di,
i = 1, . . . , r, such that

D ∼
r∑
i=1

aiAi + fF.

Proof: If D had two representations as in the statement, then the difference would
represent 0 as a combination 0 =

∑r
i=1 aiAi + fF ∈ ClF (S), where −di < ai < di.

Then, this expression would be a linear combination of F − diAi and hence di would
divide ai, which can only happen if ai = 0. This implies f = 0.

Note the following additional linear equivalences G ∼ κC ∼ κE given by the
projection πG.

Remark 2.14. There are canonical ways to represent a divisor class in S up to linear
equivalence, but for technical reasons we will often use non-canonical expressions.
However, one can apply Lemma 2.13 to find a unique representative for a divisor
class. Note that any divisor D is linearly equivalent to a non-unique expression of the
form

cC + eE +
r∑
i=1

aiAi + fF.

The term cD := F ·D = c+ e ∈ Z is intrinsic to D. Hence, D ∼ cDC + D̂, where

D̂ =

r∑
i=1

(ai + eqi)Ai + (f − eα)F ∈ ClF (S).

Using Lemma 2.13 on D̂ one obtains the canonical form

(2.7) D ∼ cDC +

r∑
i=1

âiAi + f̂F,

where

(D1) cD = F ·D ∈ Z,
(D2) âi ≡ (ai + eqi) mod di are integers in [0, di), and

(D3) f̂ = f + a− â ∈ Z, for â :=
∑r
i=1

âi
di
∈ Z 1

κ and a :=
∑r
i=1

ai
di
∈ Z 1

κ .
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By Lemma 2.13, the triple (cD, (âi)i=1,...,r, f̂) characterizes the linear equivalence
class of D. Also, note that

ϕD := C ·D = f̂ + â = f + a ∈ Z
1

κ
,

and, moreover, the pair (C · D,F · D) = (ϕD, cD) ∈ Z 1
κ × Z determines the linear

class of D up to torsion.

In a natural way, we have the following exact sequence involving the horizontal
part ClH(S) := Z〈C,E〉 of Cl(S):

(2.8) 0 Z⊕ Z/κ ∼= ClH(S) Cl(S) Z⊕
r−2⊕
i=1

Z/mi 0.

Remark 2.15. By (2.7), the condition for D to be in ClH(S) is equivalent to ϕD = 0
and âi ≡ 0 mod di. By (D2), the latter is equivalent to the existence of a solution of

(2.9) x ≡ aiq−1
i mod di, ∀i = 1, . . . , r.

2.5. Canonical divisor. In the forthcoming calculations, the role of the class of the
canonical divisor on S will be essential. The following result describes it.

Proposition 2.16. The divisor

KS := −(C + E) + (r − 2)F −
r∑
i=1

Ai

is a canonical divisor of S.

Proof: Recall the blow-up-down construction starting from Σα described in Figure 3.
A canonical divisor of Σα is −(C +E +F +F ′), where F and F ′ are two fibers. It is
more convenient to consider the following linearly equivalent divisor:

KΣα := −(C + E) + (r − 2)F −
r∑
i=1

Fi.

Recall KŜ = π̂∗KΣα +Kπ̂, where Kπ̂ is the relative canonical divisor of π̂ : Ŝ → Σα.
Since the divisor KΣα is logarithmic at the centers of the blow-ups, then

KŜ := −(C + E) + (r − 2)F −
r∑
i=1

(Ai + Fi).

The direct image under ρ gives the result.

Remark 2.17. Note that KS · F = −2 and KS · C = −χorb.

3. Cohomology of line bundles

Let D be a Weil divisor of S. The main goal of this section is to compute the
cohomology groups Hi(S,OS(D)) for i = 0, 1, 2. The key point in these calculations
relies on the interpretation of the global sections of OS(D) as global sections of a line
bundle on a weighted projective plane, that is, the vector space of quasihomogeneous
polynomials of a fixed degree satisfying certain vanishing conditions. Then, Serre’s
duality and the Riemann–Roch formula for normal surfaces is applied to obtain the
second cohomology group and the Euler characteristic, respectively. Finally, the first
cohomology group is obtained as a side product. For this reason, we have organized
this section in four parts, where the different objects are studied, namely Subsec-
tion 3.1, global sections; Subsection 3.2, Euler characteristics; Subsection 3.3, general
vanishing results; and Subsection 3.4, special cases (the last two both serve us to
understand the first cohomology group).
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3.1. Global sections. Consider D a Weil divisor in S. By (2.5), its class in Cl(S)
can be written as cC + eE +

∑r
i=1 aiAi + fF , where c, e, ai ∈ Z, i = 1, . . . , r, that is,

D ∼ cC + eE +

r∑
i=1

aiAi + fF ∼ cD C +

r∑
i=1

âiAi + f̂F,

where the right-most expression is unique, as described in Remark 2.14. Note, how-
ever, that c, e, ai are not uniquely determined by D, since the group Cl(S) is not
torsion-free and C, E, Ai are not linearly independent.

Cα

E−α
F1 Fr

. . .Σα
π0

Cα

F1 Fr

. . . P2
(1,1,α)

1
α

(1, 1)

Figure 4. Birational transformation to P2
(1,1,α)

.

Recall that S is birationally equivalent to P2
(1,1,α) following the diagram

P2
(1,1,α) Σα Ŝ S,

π0 π̂:=π1◦···◦πr ρ

π

where

ρ∗(Ai) = Ai +
1

di
Fi, ρ∗(E) = E +

r∑
i=1

qi
di
Fi, ρ∗(C) = C,

π∗(Fi) = Fi +
1

α
E + diAi, π∗(C) = C +

r∑
i=1

qiAi, π∗(F ) = F +
1

α
E.

By the projection formula for normal surfaces (see [30, Theorem 2.1])

H0(S,OS(D)) ' H0(Ŝ,OŜ(D′)),

where

D′ := bρ∗(D)c = cC + eE +

r∑
i=1

aiAi + fF +

r∑
i=1

⌊
eqi + ai
di

⌋
Fi.

Using the morphism π, there is a natural identification of the global sections ofOŜ(D′)
with those of OP2

(1,1,α)
(π∗(D

′)). More precisely, according to [6, Proposition 4.2(2)],

H0(Ŝ,OŜ(D′))'

{
H∈C[x, y, z](1,1,α),d

∣∣∣∣ multE′(π
∗(H))≥multE′(π

∗(π∗(D
′))−D′)

∀E′ ∈ Exc(π) = {E,A1, . . . , Ar}

}
,

where C[x, y, z](1,1,α),d denotes the (1, 1, α)-quasihomogeneous polynomials in x, y, z
of degree d := deg(1,1,α)(π∗(D

′)).
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Note that

π∗(D
′) = cC + fF +

r∑
i=1

⌊
eqi + ai
di

⌋
Fi,

which has degree d = αc+ f +
∑r
i=1

⌊
eqi+ai
di

⌋
= αcD + f̂ , and thus

π∗(π∗(D
′))−D′ =

1

α

(
r∑
i=1

⌊
eqi + ai
di

⌋
− eα+ f

)
E

+

r∑
i=1

(
cqi +

⌊
eqi + ai
di

⌋
di − ai

)
Ai.

(3.1)

Using that (c+e) = D ·F = cD (see (D1)) and eqi+ai−
⌊
eqi+ai
di

⌋
di ≡ (eqi+ai) ≡ âi

mod di (see (D2)), the coefficient of Ai in (3.1) can be rewritten as cDqi− âi and that

of E as f̂
α .

Assume, without loss of generality, that π0 : Σα → P2
(1,1,α) is the (1, 1)-blow-up at

the point [0 : 0 : 1] ∈ P2
(1,1,α). Then,

multE(π∗(H)) =
1

α
ord(H(x, y, 1)).

Also assume that Fi is the line in P2
(1,1,α) given by x−γiy = 0, i = 1, . . . , r (γi 6= γj , if

i 6= j), and C = {z = 0} so that Fi∩C = {[γi : 1 : 0]}. Then πi is the (di, qi)-blow-up
at a smooth point (γi, 0) ∈ C2 with local coordinates (x, z). Hence

multAi(π
∗(H)) = ord(H(xdi + γi, 1, z

qi)).

Summarizing, H0(S,OS(D)) can be identified via π and ρ with the vector space
of (1, 1, α)-quasihomogeneous polynomials H(x, y, z) in x, y, z satisfying

(3.2)


deg(H(x, y, z)) = cDα+ f̂ = cDα+ f + a− â = d,

ord(H(x, y, 1)) ≥ f̂ = f + a− â,
ord(H(xdi + γi, 1, z

qi)) ≥ cDqi − âi, ∀i = 1, . . . , r,

where a =
∑r
i=1

ai
di

and â =
∑r
i=1

âi
di

, as described in Remark 2.14.

To describe the contribution of the different cohomology spaces Hi(S,OS(D)) it is
very convenient to construct a lattice that will encode relevant properties of divisor
classes.

Definition 3.1. We shall define the divisor lattice L := Z 1
κ × Z ⊂ Q2 and the

map Cl(S)→ L given by D 7→ `D := (ϕD, cD) = (D ·C,D ·F ) ∈ L. By the discussion
in Remark 2.14, this map is onto. Moreover, its kernel is given by the torsion part
of Cl(S). In particular, given a lattice point ` ∈ L, there are exactly d1·...·dr

κ divisor
classes in Cl(S) whose images coincide with ` ∈ L.

For instance, the following proposition states that H0(S,OS(D)) 6= 0 is only pos-
sible if `D sits on the first quadrant L≥0 := L ∩Q2

≥0 (lattice axes included) of L.

Proposition 3.2. Using the previous notation,

(3.3) H0(S,OS(D)) 6= 0 `D ∈ L≥0;

see the left-hand side of Figure 5.
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Proof: We will use the intersection theory for weighted projective planes developed
in [9, Proposition 5.2]. Choose H(x, y, z) ∈ H0(S,OS(D)) different from zero.

Since F is generic, H and F do not have common components and the intersec-
tion H ∩ F consists of a finite number of points. Moreover,

d

α
=

deg(H) · deg(F )

α
= H · F =

∑
P∈P2

(1,1,α)

(H · F )P ≥ (H · F )[0:0:1] =
ord(H(x, y, 1))

α
.

Therefore d≥ord(H(x,y,1)). Recall that d=cDα+f̂ and, due to (3.2), ord(H(x,y,1))≥
f̂ = f + a− â. Hence cDα ≥ 0 and D · F = cD = c+ e ≥ 0.

Let us now check that D ·C ≥ 0. Assume H(x, y, z) = zmH ′(x, y, z), m ≥ 0, where
H ′ and C = {z = 0} do not have common components. According to (3.2),

deg(H ′(x, y, z)) = α(c−m) +

r∑
i=1

⌊
eqi + ai
di

⌋
= f̂ + (cD −m)α,

ord(H ′(x, y, 1)) ≥ f̂ ,

ord(H ′(xdi + γi, 1, z
qi)) ≥ (cD −m)qi − âi, ∀i = 1, . . . , r.

We apply Bézout’s identity to H ′ and C and obtain

f̂ + (cD −m)α =
deg(H ′) · deg(C)

α
= H ′ · C

=
∑

P∈P2
(1,1,α)

(H ′ · C)P ≥
r∑
i=1

(H ′ · C)Fi∩C .
(3.4)

It can be checked that multAi(π
∗(H ′)) = ord(H ′(xdi + γi, 1, z

qi)) ≤ di(H
′ · C)Fi∩C .

Indeed, since this is a local problem, one can assume γi = 0, that is, Fi = {x = 0}
and C = {z = 0}. If (H ′ · C)Fi∩C = n, then xn is a term of H ′(x, 1, z) and thus
ord(di,qi)(H

′(x, 1, z)) ≤ ndi. The multiplicity of π∗(H ′) along Ai equals the (di, qi)-or-
der of H ′(x, 1, z) because πi is nothing but the (di, qi)-blow-up at the point Fi ∩ C.
Then, using (2.1), one has

(3.5)

r∑
i=1

(H ′·C)Fi∩C ≥
r∑
i=1

multAi(π
∗(H ′))

di
≥

r∑
i=1

(cD −m)qi − âi
di

= (cD−m)α−â.

Combining (3.4) and (3.5) gives â+ f̂ = a+ f ≥ 0, as desired.

Theorem 3.3. Let D ∼ cC + eE+
∑r
i=1 aiAi + fF be a Weil divisor on the normal

surface S. The dimension of H0(S,OS(D)) as a C-vector space is

h0(S,OS(D)) =

cD∑
j=0

max{bj(D), 0},

where

bj(D) := 1 + ϕD −
r∑
i=1

{
ai + (j − c)qi

di

}
∈ Z.

In particular, h0(S,OS(D)) does not depend on the position of the singular points
of S, but only on the singular types {(di; 1, qi)}ri=1 and the class of D in Cl(S).
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Proof: We come back to the description given in (3.2) by considering H(x, y, z) a
generic (1, 1, α)-weighted homogeneous polynomial of degree d. Hence, let us write

(3.6) H(x, y, z) =
∑
j≥0

hd−αj(x, y)zj ,

where hd−αj(x, y) is a homogeneous polynomial of degree d− αj.
Let jmax =

⌊
d
α

⌋
denote the maximum value of j such that d − αj ≥ 0. Then

H(x, y, 1) =
∑
j≥0 hd−αj(x, y) and its order is

ord(H(x, y, 1)) = d− αjmax = (cD − jmax)α+ f̂ ,

which is greater than or equal to f̂ if and only if jmax ≤ cD. Hence the sum in (3.6)
runs from j = 0 to j = cD.

The condition ord(H(xdi + γi, 1, z
qi)) ≥ cDqi − âi, ∀i = 1, . . . , r, implies that

hd−αj(x, y) is of the form

hd−αj(x, y) =

r∏
i=1

(x− γiy)mijgj(x, y),

where gj(x, y) is a homogeneous polynomial of degree d− αj −
∑r
i=1mij , where

mij =

⌈
(cD − j)qi − âi

di

⌉
≥ 0.

Since the degrees of freedom of gj(x, y) is its degree plus 1 if the degree is non-negative,
or zero otherwise, the required dimension is

cD∑
j=0

max

{
1 + d− αj −

r∑
i=1

mij , 0

}
.

Note that

1 + d− αj −
r∑
i=1

mij = 1 + f̂ + (cD − j)α−
r∑
i=1

⌈
(cD − j)qi − âi

di

⌉

= 1 + (f̂ + â) +

r∑
i=1

(
(cD − j)qi − âi

di
−
⌈

(cD − j)qi − âi
di

⌉)

= 1 + ϕD −
r∑
i=1

{
âi + (j − cD)qi

di

}

= 1 + ϕD −
r∑
i=1

{
ai + (j − c)qi

di

}
.

The last equality follows from the fact that

ai + (j − c)qi
di

− âi + (j − cD)qi
di

=
ai + eqi − âi

di
∈ Z.

Once a formula for computing h0(S,OS(D)) has been found, the last part of the
statement easily follows.

As a consequence one can determine the region of L where H2(S,OS(D)) 6= 0 is
concentrated.
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Corollary 3.4. Using the previous notation,

(3.7) H2(S,OS(D)) 6= 0 −`D ∈ (χorb, 2) + L≥0;

see the middle part of Figure 5. In this case,

h2(S,OS(D)) =

−(2+cD)∑
j=0

max{bj(KS −D), 0}

and

bj(KS −D) = 1− (ϕD + χorb)−
r∑
i=1

{
−1− ai + (c+ j + 1)qi

di

}
.

Proof: By Serre’s duality, h2(S,OS(D)) = h0(S,OS(KS−D)). Recall that the canon-
ical divisor of S is KS = −C − E −

∑r
i=1Ai + (r − 2)F . Then,

KS −D = (−1− c)C + (−1− e)E +

r∑
i=1

(−1− ai)Ai + (r − 2− f)F.

From Proposition 3.2, h0(S,OS(KS − D)) 6= 0 implies that (KS − D) · F ≥ 0 and
(KS − D) · C ≥ 0, or equivalently, D · F ≤ KS · F = −2 and D · C ≤ KS · C =
−
∑r
i=1

1
di

+ r − 2 = −χorb, as claimed.
The second part of the statement follows from Theorem 3.3 applied to KS−D.

3.2. Euler characteristic. The main purpose of this section is to compute the Euler
characteristic of the sheaf OS(D). As above, assume that

D ∼ cC + eE +

r∑
i=1

aiAi + fF,

where c, e, f, ai ∈ Z, i = 1, . . . , r, and recall that KS = −C−E−
∑r
i=1Ai+ (r−2)F .

In order to calculate χ(S,OS(D)), we will use the Riemann–Roch formula on singular
normal surfaces from [11, §1.2], see also [13], that is,

(3.8) χ(S,OS(D)) = χ(S,OS) +
D · (D −KS)

2
+RS(D).

Recall that the correction term RS(D) is a sum of local invariants associated with
each singular point P of S and the local class of D at P . In our case

(3.9) RS(D) =

r∑
i=1

RS+
i

(D) +

r∑
i=1

RS−i
(D),

where S±i denotes the local singularity type 1
di

(1,±qi).
First note that S is a rational surface (it is birationally equivalent to a weighted

projective plane) and hence χ(S,OS) = 1. Also, using the fact that C and E are
numerically equivalent to each other, D and KS can numerically be described as

D ≡ cD C + ϕDF, KS ≡ −2C − χorbF.

Then,

D2 = 2cD ϕD,

D ·KS = −cD χorb − 2ϕD,

D2 −D ·KS = 2(cD + 1)ϕD + cD χ
orb,

and therefore

(3.10) χ(S,OS(D)) = 1 + (cD + 1)ϕD +
1

2
cD χ

orb +RS(D).
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In order to continue with this calculation, we need to understand the local contri-
bution of each RS±i

(D) to the correction term RS(D).

Consider d, q∈Z any three integers and denote by S± the cyclic singularity 1
d (1,±q).

Since RS±(D) only depends on the local class of the divisor D, we can consider it as
a map RS± : Weil(S±)/Cart(S±) ∼= Z/dZ → Q. The following result gives a closed
formula for the combined contribution RS+(n) + RS−(n −mq) with the convention

that
∑k2
j=k1

f(j) = 0 if k1 > k2.

Lemma 3.5. Under the conditions above, let n,m ∈ Z be such that m ≥ −1. Then,

RS+(n) +RS−(n−mq) = −
m∑
j=0

{
n+ (j −m)q

d

}
+m

d− 1

2d
.

Proof: For m ≥ 0, we proceed by induction on m. The first case, namely RS+(n) +
RS−(n) = −

{
n
d

}
, was already proved in [4, Proposition 2.16(2)]. To be precise, in

loc. cit. the result was stated in terms of the so-called ∆-invariant. In this context,
the relationship between ∆ and R is simply given by RS+(n) = −∆S+(−n) (see [13,
Introduction]). Similarly, m = 1 is a direct consequence of [4, Proposition 2.16(1)]
and the case m = 0.

Assume the result is true for m ≥ 1 and we will prove it for m+1. The cases m = 1,
m = 0, and the induction hypothesis tell us respectively that

RS+(n) = −RS−(n− q)−
{
n− q
d

}
−
{n
d

}
+
d− 1

2d
,

0 = RS+(n− q) +RS−(n− q) +

{
n− q
d

}
,

RS−(n− q −mq) = −RS+(n− q)−
m∑
j=0

{
n− q + (j −m)q

d

}
+m

d− 1

2d
.

Adding up these three equations gives the result for m+ 1.
It remains to prove the case m = −1, that is, RS+(n)+RS−(n+q) = −d−1

2d , which
is again a reformulation of [4, Proposition 2.16(1)].

Theorem 3.6.

χ(S,OS(D)) =



cD∑
j=0

bj(D) if cD ≥ 0,

0 if cD = −1,

−(cD+2)∑
j=0

bj(KS −D) if cD ≤ −2.

Proof: The result will follow after combining (3.8), (3.9), (3.10), and Lemma 3.5.

RS(D) =

r∑
i=1

(RS+
i

(D) +RS−i
(D))

=

r∑
i=1

(RS+
i

(eE + aiAi) +RS−i
(cC + aiAi))

=

r∑
i=1

(RS+
i

(ai + eqi) +RS−i
(ai − cqi)).
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By Lemma 3.5, applied to d = di, q = qi, n = ai + eqi, m = cD ≥ −1, each summand
can be rewritten in terms of fractional parts so that

RS(D) =

r∑
i=1

(
−

cD∑
j=0

{
ai + (j − c)qi

di

}
+ cD

di − 1

2di

)
.

Hence

χ(S,OS(D))=1 + (cD+1)ϕD +
1

2
cD χ

orb−
r∑
i=1

cD∑
j=0

{
ai + (j − c)qi

di

}
+

1

2
cD

r∑
i=1

di − 1

di

=1 +
1

2
cD

(
χorb +

r∑
i=1

di − 1

di

)
+

cD∑
j=0

(
ϕD −

r∑
i=1

{
ai + (j − c)qi

di

})

=

cD∑
j=0

bj(D),

as claimed.
In particular, when cD = −1, one has χ(S,OS(D)) = 0. The last part of the

statement follows from Serre’s duality and the fact that D ·F = cD ≤ −2 implies that
(KS −D) · F = −(cD + 2) ≥ 0.

3.3. General vanishing results. According to Theorem 3.3, Corollary 3.4, and
Theorem 3.6, the Euler characteristic of the sheaf OS(D) coincides with the dimension
of H0 (resp. H2) as long as bj(D) ≥ 0 (resp. bj(KS −D) ≥ 0), ∀j. In this section we
will investigate when each one of these conditions holds. This will affect the vanishing
of the first cohomology group. As above, we assume that

(3.11) D ∼ cC + eE +

r∑
i=1

aiAi + fF ∼ cD C +

r∑
i=1

âiAi + f̂F,

where (cD, {âi}i=1,...,r, f̂) are uniquely determined by the canonical form of D (see
Remark 2.14), and `D = (C ·D,F ·D) = (ϕD, cD) (see Definition 3.1).

Figure 5 depicts a projection of D ∈ Cl(X) onto the divisor lattice (ϕD, cD) ∈ L
(see Definition 3.1) and it describes regions where cohomological triviality is assured
for all divisor classes corresponding to each value (ϕ, c) ∈ L. Combining these, one
obtains in Figure 6 four cones where cohomology is concentrated in one degree.

The following result is obtained combining the previous results on global sections
and Euler characteristics. It describes the general regions of L where the cohomology is
concentrated in a single degree. The statement of the following theorem is summarized
in the right-hand side of Figure 5.

Theorem 3.7. Let D be as in (3.11). Then the following holds:

(i) If `D ∈ (−χorb,−2) + L>0, then h∗(S,OS(D)) is concentrated in degree 0.

(ii) If −`D ∈ L>0, then h∗(S,OS(D)) is concentrated in degree 2.

(iii) If `D = (ϕD, cD) ∈ L with either
(a) ϕD < 0 and cD ≥ 0, or

(b) ϕD > −χorb and cD ≤ −2,
then h∗(S,OS(D)) is concentrated in degree 1.

(iv) If cD = −1, then hi(S,OS(D)) = 0 for i = 0, 1, 2.
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Proof: To prove (i), let us assume ϕD > −χorb and cD > −2. Note that the maximum
value of

{
n
di

}
is reached when n = di − 1. Then,

bj(D) = 1 + ϕD −
r∑
i=1

{
ai + (j − c)qi

di

}
≥ 1 + ϕD −

r∑
i=1

di − 1

di
= ϕD + χorb − 1.

Under the current hypotheses this number is an integer strictly greater than −1 and
hence max{bj(D), 0} = bj(D). By Theorems 3.3 and 3.6, h0(S,OS(D))=χ(S,OS(D)).
Corollary 3.4 provides the vanishing of H2(S,OS(D)) and thus the vanishing of
H1(S,OS(D)).

Part (ii) is a consequence of Serre’s duality.
Part (iii) follows from (3.3) in Proposition 3.2 and (3.7) in Corollary 3.4.
Finally, for part (iv) note that, if cD = −1, then h0(S,OS(D)) = h2(S,OS(D))

= 0 from Proposition 3.2 and Corollary 3.4, respectively. Then h1(S,OS(D)) =
−χ(S,OS(D)) = 0 from Theorem 3.6 and the result follows.

cD = 0

ϕD = 0

`D = (0,0)

H0 = 0

(−χorb,−2)

H2 = 0

ϕD = −χorb

(0,0)

(−χorb,−2)

H1 = 0

Figure 5. Vanishing of Hj .

3.4. Special cases. For our goal in Section 4 we are interested in finding explicit for-
mulas for h1(S,OS(D)) when −`D ∈ L≥0. By Theorem 3.7, one has h1(S,OS(D)) = 0
whenever−`D ∈ L>0. The rest of this section will be devoted to the special case−`D ∈
L≥0 and either ϕD = 0 or cD = 0.

The simplest case, which we want to exclude, is D ∼ 0, for which h0(S,OS(D)) = 1
and h1(S,OS(D)) = h2(S,OS(D)) = 0. Note that in this case ϕD = cD = 0.

Let us first consider the case cD = 0, ϕD ≤ 0. Using the canonical form of D and
using cD = 0, one has

D ∼
r∑
i=1

âiAi + f̂F.

One has the following explicit formula for h1(S,OS(D)).

Proposition 3.8. Let D be such that −`D = (−ϕD, 0) ∈ L≥0 and D 6∼ 0. Then,

h0(S,OS(D)) = h2(S,OS(D)) = 0

and

(3.12) h1(S,OS(D)) = −1−
r∑
i=1

⌊
âi
di

⌋
− f̂ .

In particular, if `D = (0, 0), then

(3.13) h1(S,OS(D)) = −1 +

r∑
i=1

{
âi
di

}
.
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Proof: By Corollary 3.4, h2(S,OS(D)) = 0. On the other hand, cD = 0 together with
Theorem 3.3 implies h0(S,OS(D)) = max{b0(D), 0}, where

Z 3 b0(D) = 1 + ϕD −
r∑
i=1

{
âi
di

}
= 1 + f̂ +

r∑
i=1

⌊
âi
di

⌋
.

Since ϕD ≤ 0, D 6∼ 0, and b0(D) ∈ Z, one deduces that b0(D) ≤ 0 and thus
h0(S,OS(D)) = 0.

Recall that χ(S,OS(D)) = b0(D) and the equality for h1(S,OS(D)) holds.

H0 = H1 = H2 = 0

H0

H2 H1

H1

cD = −2

cD = 0

ϕD = −χorb
ϕD = 0

Figure 6. Cohomology concentrated in a single degree.

Now consider the case D 6∼ 0 and −`D=(0,−cD) ∈ L≥0. Note that h0(S,OS(D))=
0 and, by Theorem 3.6 and Corollary 3.4,

h1(S,OS(D)) =

−(2+cD)∑
j=0

(−bj(KS −D) + max{bj(KS −D), 0}),

where in this case

bj(KS −D) = 1− χorb −
r∑
i=1

{
−1− ai + (c+ j + 1)qi

di

}

≥ 1− χorb −
r∑
i=1

(
di − 1

di

)
= 1− χorb − r +

r∑
i=1

1

di
= −1.

(3.14)

Hence

(3.15) h1(S,OS(D)) = #{j ∈ {0, 1, . . . ,−(2 + cD)} | bj(KS −D) = −1}.

Proposition 3.9. Let D be a divisor in S such that `D = (0, cD) with cD < 0.

(i) If D /∈ ClH(S) := Z〈C,E〉, then H1(S,OS(D)) = 0.
(ii) If D ∈ ClH(S), that is, D ∼ cC+eE+gG for some c, e, g ∈ Z (cD = c+e+κg <

0), then

h1(S,OS(D)) = −1−
⌊ c
κ

⌋
−
⌊ e
κ

⌋
− g.
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Proof of Proposition 3.9: From Theorem 3.7, if cD = −1, then hi(S,OS(D)) = 0,
i = 0, 1, 2, and the formula holds.

Assume cD ≤ −2, ϕD = 0, and H1(S,OS(D)) 6= 0. According to (3.15), one has
to study when bj(KS −D) = −1. This happens precisely when the inequality (3.14)
becomes an equality

(3.16)

r∑
i=1

{
−1− âi + (cD + j + 1)qi

di

}
=

r∑
i=1

di − 1

di
,

which happens if and only if

−1− âi + (cD + j + 1)qi ≡ (di − 1) mod di,

i.e., there exists a solution for the system (2.9). Then, (i) has been proved.
Let us prove (ii). Since G ∼ κC, it is enough to show the result for g = 0. Then

D ∼ cC + eE and the condition given in (3.16) becomes

r∑
i=1

{
−1 + (c+ j + 1)qi

di

}
=

r∑
i=1

di − 1

di
,

which implies j ≡ −(c + 1) mod di. In particular, there is a 0 ≤ j0 < κ, such that
j0 ≡ −(c+ 1) mod κ. Moreover,

j0 = −(c+ 1)− κ
⌊
−c− 1

κ

⌋
.

The system (2.9) has ` := h1(S,OS(D)) ≥ 0 solutions in {0, 1, . . . ,−(cD+2)}, namely

j0 + (`− 1)κ ≤ −(cD + 2) < j0 + `κ.

This way `− 1 can be described as an integer satisfying

−(cD + 2)− j0
κ

− 1 < `− 1 ≤ −(cD + 2)− j0
κ

.

In other words ` = 1 +
⌊−(cD+2)−j0

κ

⌋
and then

h1(S,OS(D)) = 1 +

⌊
−(cD + 2)− j0

κ

⌋
= 1 +

⌊
−e− 1

κ
+

⌊
−c− 1

κ

⌋⌋
= 1 +

⌊
−e− 1

κ

⌋
+

⌊
−c− 1

κ

⌋
= −1−

⌊ e
κ

⌋
−
⌊ c
κ

⌋
.

The last equality follows from (A.2).

To summarize, Theorems 3.3 and 3.6 together with Serre’s duality show that the
Betti numbers hi(S,OS(D)) are determined by the divisor class of D.

In addition, there are four translated cones in the divisor lattice L, as shown in
Figure 6, where the cohomology is concentrated in a single degree. Moreover, the
dimensions hi(S,OS(D)) are in fact determined by the image `D in one of these
translated cones.

The remaining threshold area is special in two directions. First, Betti numbers are
not necessarily concentrated in a single degree anymore, and second, they need not
be determined by `D.

To end this section, an example of the special behavior in the threshold area is
provided.
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Example 3.10. Let us consider the surface S associated with (di) = (3, 3, 3, 3) and
(qi) = (1, 2, 1, 2). In this case α = 2, χorb = − 2

3 , and κ = 3. According to Proposi-

tion 2.10, Cl(S) ' Z2×(Z/3Z)3. The free part is generated by the classes of C and A4

and the torsion part by the classes of A1 −A4, A2 −A4, A3 −A4. Let

D1 = A1, D2 = 2A1 −A2, D3 = 2A1 −A2 +A3 −A4.

Note that `Di = `3C+Di =
(

1
3 , 0
)

is in the threshold area since 0 < ϕDi < −χorb = 2
3 .

The following table can be obtained using Theorems 3.3 and 3.6 together with Serre’s
duality. It shows that Betti numbers of D are not determined by `D.

D1 D2 D3 3C +D1 3C +D2 3C +D3

h0 1 0 0 2 0 1

h1 0 0 1 1 0 2

h2 0 0 0 0 0 0

Table 1. Betti numbers for Di and 3C +Di.

4. H1-eigenspace decomposition and characteristic polynomial of
the monodromy of a ramified cyclic cover

Let us consider a ramified d-cyclic covering of a curve or a normal surface and its
monodromy σ. This monodromy acts on the first cohomology group of the cover and
its characteristic polynomial is called the characteristic polynomial of the monodromy.
For historical reasons we will also use the name Alexander polynomial of the covering
for this characteristic polynomial.

Let π : Sd → S be the d-cyclic cover ramified along a divisor D ∼ dH. Before we
describe its characteristic polynomial, we will discuss two particular cases which will
be essential for the general construction. These special covers are called vertical and
horizontal.

4.1. Vertical coverings. Consider D a vertical divisor, that is,

(4.1) D =

r∑
i=1

aiAi +

s∑
j=1

fjFj ,

where Fj are generic fibers. Note that D is set as a Weil divisor, not only as a divisor
class. Let H be a divisor, such that D ∼ dH for some d ∈ Z>0. The purpose of
this section is to describe the eigenspace decomposition of H1(Sd,C) (also called the
H1-eigenspace decomposition of Sd) for Sd the cyclic cover π : Sd → S of S associated
with (d,D,H). In particular, the characteristic polynomial of the monodromy of the
d-cyclic covering of S coincides with that of πE : Ed := Sd|π−1(E) → E = P1, which is
a d-cyclic covering of a rational curve as described in Proposition 1.7 and its preceding
paragraph.

The following result will be proved.

Proposition 4.1. Consider π : Sd → S the cyclic cover of S associated with (d,D,H)
as described above. Then, the decomposition into invariant subspaces of the mon-
odromy of the cover can be obtained by restricting the covering to a horizontal section
of πS : S → P1 such as E (or C), that is, the decomposition of the cover πE : Ed → E
(πC : Cd → C) associated with (d,DE , HE).
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Proof: Let us break the proof into several steps.

Step 1. Reduction to (d,D, 0).

By the discussion in Subsection 1.1 one can replace (d,D,H) by (d,D − dH, 0).
Also, using the canonical form for H given in (2.7), and since dH ·F = F ·D = 0, one

has H ∼
∑
âiAi + f̂F . In particular, D′ = D − dH is a vertical divisor and hence it

is enough to study the case (d,D′, 0), where

D′ =

r∑
i=1

a′iAi +

s∑
j=1

f ′jFj .

Note that the condition D′ ∼ 0 is equivalent to

ϕD =

r∑
i=1

a′i
di

+
s∑
j=1

f ′j = 0 and(4.2a)

a′i ≡ 0 mod di, i = 1, . . . , r.(4.2b)

Step 2. Calculation of h1(S,OS(L(l))).

To apply Esnault and Viehweg’s method we consider the following divisors for l ∈ Z:

L(l) =

r∑
i=1

⌊
la′i
d

⌋
Ai +

s∑
j=1

⌊
lf ′j
d

⌋
Fj .

Note that L(l) ∼ 0 if and only if

ϕL(l) =

r∑
i=1

1

di

⌊
la′i
d

⌋
+

s∑
j=1

⌊
lf ′j
d

⌋
= 0 and(4.3a) ⌊

la′i
d

⌋
≡ 0 mod di, i = 1, . . . , r.

Subtracting (4.3a) from l
d (4.2a) and using both {x} = x − bxc and {x} ≥ 0 one

deduces

r∑
i=1

1

di

{
la′i
d

}
+

s∑
j=1

{
lf ′j
d

}
= 0

{
la′i
d

}
=

{
lf ′j
d

}
= 0

la′i
d
,
lf ′j
d
∈ Z

for all i = 1, . . . , r and j = 1, . . . , s. This is equivalent to l
dn
∈ Z, where dn = d

n ,

for n := gcd(a′1, . . . , a
′
r, f
′
1, . . . , f

′
s, d). Summarizing, if l is a multiple of dn, then

h1(S,OS(L(l))) = 0. Otherwise, l 6≡ 0 mod dn, using (3.12):

(4.4) h1(S,OS(L(l))) = −
r∑
i=1

⌊⌊ la′i
d

⌋
di

⌋
−

s∑
j=1

⌊
lf ′j
d

⌋
−1 = −

r∑
i=1

⌊
la′i
ddi

⌋
−

s∑
j=1

⌊
lf ′j
d

⌋
−1,

where the last equality follows from (A.1).

Step 3. Restriction to a 1-dimensional cover of P1.

Let us restrict this cover to E (for C it works the same way). We will be using
Proposition 1.7 and the construction before it. Since E contains r singular points,
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say {γ1, . . . , γr} of the surface S, one needs to perform a (1, qi)-weighted blow-up at
each point γi with exceptional component Ei. The total transform of D is

r∑
i=1

a′iAi +

r∑
i=1

a′i
di
Ei +

s∑
j=1

f ′jFj

and hence EC =
∑r
i=1

a′i
di
〈γi〉+

∑s
j=1 fj〈Pj〉, where Pj = E∩Fj and

a′i
di
∈ Z by (4.2b).

The decomposition into invariant subspaces of the monodromy of this cover is
calculated in Subsection 1.2 and it matches that obtained in (4.4).

As a consequence of the proof and (1.4), one has the following specific formulas
for the dimensions of the invariant subspaces and the Alexander polynomials of the
monodromy.

Corollary 4.2. Under the hypothesis of Proposition 4.1, after appropriate reduction
to the case (d,D′, 0) as in (4.1), the dimension of the invariant subspaces is given by

h1(S,OS(L(l))) = −
r∑
i=1

⌊
la′i
ddi

⌋
−

s∑
j=1

⌊
lf ′j
d

⌋
− 1.

Moreover, the characteristic polynomial of the monodromy is

∆1(t) =
(tn − 1)2(td − 1)r+s−2

r∏
i=1

(t
gcd(d,

a′
i
di

) − 1)
s∏
j=1

(tgcd(d,f ′j) − 1)

.

4.2. Horizontal coverings. The second type of special cyclic covers of S are those
associated with (d,D,H), where D is a horizontal divisor, that is,

D = cC + eE +

s∑
j=1

gjGj ∼ dH,

where G1, . . . , Gs are distinct fibers of πG, all of them linearly equivalent to G; see
Remark 2.8.

As was discussed in Subsection 4.1, it is enough to consider the case (d,D−dH, 0).
However, D − dH is not necessarily a horizontal divisor, as described in (2.8). This
subtlety makes this case a bit more involved than the vertical case.

The best reduction one can expect is given by the following result.

Lemma 4.3. There exist γ, η ∈ Z and a divisor T ′ ∈ Tor Cl(S) such that

H ∼ γC + ηE + T ′;

the order of T ′ is a divisor of gcd(d, κ) and the only common multiple of T ′ and T
is 0 (see Remark 2.11 for the definition of T ).

Moreover, there exist integers c′, e′ such that

e = dη + κe′, c = dγ + κc′, c′ + e′ +

s∑
j=1

gj = 0.

Proof: Since gcd(qi, di) = 1, we can assume that

H ∼ γ′C + η′E +

r∑
i=1

qiα
′
iAi + φ′F ;
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recall that C, E, F , Ai form a generator system of Cl(S). Moreover, since diAi ∼ F
and qi, di are coprime, such an expression exists. The condition D ∼ dH is equivalent
to

r∑
i=1

qiα
′
i

di
+ φ′ = 0, c+ e+ κ

s∑
j=1

gj = d(γ′ + η′), e ≡ d(η′ + α′i) mod di.

In particular, gcd(d, di) divides e, i.e.,

lcm(gcd(d, d1), . . . , gcd(d, dr)) = gcd(d, lcm(d1, . . . , dr)) = gcd(d, κ)

also divides e. Note that gcd(d, κ) divides c.
Let η0 be a solution of e ≡ dη′ mod κ; the solutions of this equation are ηh :=

η0 + hκ1, where κ1 := κ
gcd(d,κ) and h ∈ Z. Let

γh :=
c+ e+ κ

∑s
j=1 gj

d
− ηh ∈ Z.

Let Hh := γhC + ηhE = H0 + hκ1T . Note that

D − dHh ∼ (c− dγh)C + (e− dηh)E +

s∑
j=1

gjGj

∼

(
c− dγh + κ

s∑
j=1

gj

)
C + (e− dηh)E ∼ (e− dηh)T ∼ 0.

Then Th := Hh−H = T0 +hκ1T defines a torsion class such that dTh ∼ 0. Since the
maximal order of torsion classes is κ we deduce that gcd(κ, d)Th = 0.

Using the structure of Cl(S) given in Proposition 2.10, let us fix a direct-sum
decomposition where the component of Z/mr−1 = Z/κ is generated by T . The coor-
dinate βh mod κ of Th in this component must satisfy

gcd(κ, d)βh ≡ 0 mod κ βh ≡ 0 mod κ1 βh = β̂hκ1,

and note that β̂h ≡ β̂0 + h mod κ1. Hence for a suitable h the coordinate β̂h of Hh

in T vanishes in Z/κ.
Let us denote γ = γh, η = ηh, and T ′ = Th. They are the values in the statement

(in fact, those values may not be unique but we do not claim that).
The choice of H0 is well defined up to congruence with T1 = κ1T , with order

exactly gcd(κ, d). The definition of γ, η as solutions of a congruence equation ends
the proof.

Reduction 4.4. As an immediate consequence of Lemma 4.3, considering D′ =
D − d(γC + ηE), one can reduce the general case of horizontal coverings to those
associated with (d,D′, T ′), where

(4.5) D′ = κc′C + κe′E +

s∑
j=1

gjGj ∼ 0, T ′ ∼
r∑
i=1

αiAi.

The class T ′ is torsion of order dτ and its only common multiple with T is 0. For
convenience, we denote τ := d

dτ
∈ Z.

These integers c′, e′ are particularly important, since they provide an interesting
feature of the restriction of the covering to the preimage F(d) of a generic fiber F .
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Namely, this cover πF ramifies at κs+ 2 points with ramification indices κc (at PC =
C|F ), κe (at PE = C|F ), and gj , j = 1, . . . , s (at each of the κ points Gj |F =
Pj1 + · · ·+ Pjκ).

(4.6)

F(d) X

F P1

z zκ

πF πX

Actually this cover is the pull-back of a cover πX with ramification indices c (at z = 0),
e (at z =∞), and ramifications gj at s points of C∗.

Definition 4.5. The d-covering πX : X → P1 of (4.6) is called the primitive vertical
cover of π.

The vertical coverings are the restrictions of the covering π to the preimage of the
fibers. The above covering is called primitive because πF can be retrieved from πX
due to (4.5) and how each Gj intersects the fibers at κ points.

This behavior is repeated for each special fiber Ai, replacing κ by κ
di

and taking
into account that the factorization may not work for the restrictions πAi : Ai,(d) → Ai
but only for intermediate covers πAi,d′ : Ai,(d′) → Ai, where d′ is a divisor of d. For
each i, we set ei as the maximal divisor of d such that the following diagram holds:

Ai,(ei) Xei

Ai P1

z z
κ
di

πAi,ei
πX,ei

Definition 4.6. Let ê := gcd(e1, . . . , er). The ê-covering πX,ê : Xê → P1 is called the
greatest common vertical cover of π.

In order to apply Esnault and Viehweg’s method one has to consider the following
divisors for l = 0, d− 1. The divisor for Esnault and Viehweg’s method is

L(l) =

⌊
lκc′

d

⌋
C +

⌊
lκe′

d

⌋
E +

s∑
j=1

⌊
lgj
d

⌋
Gj − lT ′

∼

(⌊
lκc′

d

⌋
+

⌊
lκe′

d

⌋
+ κ

s∑
j=1

⌊
lgj
d

⌋)
C +

⌊
lκe′

d

⌋
T − lT ′.

From Lemma 4.3, one has

lκc′ + lκe′ + κ

s∑
j=1

lgj = lκ

(
c′ + e′ +

s∑
j=1

gj

)
= 0

and hence {
lκc

d

}
+

{
lκe

d

}
+ κ

s∑
j=1

{
lgj
d

}
∈ Z.
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Let

L̃(l) := −

({
lκc′

d

}
+

{
lκe′

d

}
+ κ

s∑
j=1

{
lgj
d

})
C +

⌊
lκe′

d

⌋
T − lT ′,

L(l)−L̃(l)∼

(⌊
lκc′

d

⌋
+

{
lκc′

d

}
+

⌊
lκe′

d

⌋
+

{
lκe′

d

}
+κ

s∑
j=1

(⌊
lgj
d

⌋
+

{
lgj
d

}))
C

∼ lκ
d

(
c′ + e′ +

s∑
j=1

gj

)
C = 0.

(4.7)

Remark 4.7. The common divisor

n := gcd(d, κc, κe, g1, . . . , gs)

of the coefficients of D′ and the degree of the cover will be useful as well as dn := d
n .

Note that n is also the greatest common divisor of d and the coefficients of D before
the reduction.

As a first approach, we will consider the simpler case (d,D′, 0) for a horizontal
divisor D′ ∼ 0, that is, T ′ ∼ 0. In this case, one obtains the following result.

Proposition 4.8. Let π : Sd → S be a horizontal cyclic cover of S associated with
(d,D′, 0). Then its H1-eigenspace decomposition can be described as a direct sum Hh⊕
Hm, where Hm comes from a vertical cover of type (n,−κeT, 0) and Hh comes from the
greatest common vertical cover which is of degree d. Moreover, for any l = 1, . . . , d−1,

(4.8) h1(S,OS(L(l))) =


−1 +

{
lc

d

}
+

{
le

d

}
+

s∑
j=1

{
lgj
d

}
if dn - l,

−1 +

r∑
i=1

{
− l2κeqi

ndi

}
if l = l2dn.

Proof: By (4.7), one obtains

(4.9) cL(l) = L(l) · F = −

({
lκc

d

}
+

{
lκe

d

}
+ κ

s∑
j=1

{
lgj
d

})
≤ 0.

Note that cL(l) = 0 exactly when dn|l, say l = l2dn for some l2 ∈ Z, in which case
L(l) ∼ κe

n l2T . This falls in case (3.13) of Proposition 3.8 for âi = κeqi
n l2 and one can

check that the second part of formula (4.8) follows. For these terms one has

n−1∑
l2=0

h1(S,OS(L(l2dn))) = h1(Sn,OSn),

where Sn is a vertical cover of S associated with (n, 0, κen T ) or equivalently with
(n,−κeT, 0). This is the vertical cover producing Hm.

For the remaining terms cL(l) < 0 and hence, by the vanishing result in Proposi-
tion 3.9 and (A.1), one has

h1(S,OS(L(l))) = −1−
⌊
lc

d

⌋
−
⌊
le

d

⌋
−

s∑
j=1

⌊
lgj
d

⌋
= −1 +

{
lc

d

}
+

{
le

d

}
+

s∑
j=1

{
lgj
d

}
,

where the last equality follows from bxc = x−{x} and c+ e+
∑
gj = 0. This proves

the first part of (4.8).
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Now, let us describe the restrictions of the original d-covering to the curves Ai.
Recall that the d-cover πF : F(d) → F ∼= P1 is the pull-back of a cover πX : X → P1

by the cyclic cover z 7→ zκ.
In order to describe the restriction to Ai one needs to perform a blow-up at the

singular points of S on Ai as explained in Proposition 1.7 and the preceding paragraph.
In particular, it is enough to perform a (q′i, 1)-weighted (resp. (di − q′i, 1)) blow-up
at Ai ∩ E (resp. Ai ∩ C), where qiq

′
i ≡ 1 mod di.

In addition, note that D′ ∼ 0 and horizontal implies that the multiplicity of the
exceptional component Ei (resp. Ci) of the blow-up of Ai ∩ E (resp. Ai ∩ C) is κe

di
(resp. κc

di
), i.e., the following diagram holds:

Ai,(d) X

Ai P1

z z
κ
di

πAi
πX

As a consequence, the covering πX is the greatest common vertical covering of π (the
divisor e of Definition 4.6 is exactly d).

Denote by L
(l)
κ the Esnault–Viehweg divisors in P1 associated with πX . Note that

L(l)
κ =

⌊
lc

d

⌋
PC +

⌊
le

d

⌋
PE +

s∑
j=1

⌊
lgj
d

⌋
PGj ,

where

degL(l2dn)
κ =−

{
l2c

n

}
−
{
l2e

n

}
−

s∑
j=1

{
l2gj
n

}
= −

{
l2c

n

}
−
{
l2e

n

}
=

{
0 if l2c

n ∈ Z,
−1 otherwise.

The last equality follows since l2c
n + l2e

n = −
∑
j
l2gj
n ∈ Z. Hence h1(P1,OP1(L

(l2dn)
κ )) =

0 either way (see (1.3)). This shows that

h1(X,OX) =

d−1∑
l=0

h1(P1,OP1(L(l)
κ )) =

d−1∑
l=0, dn-l

h1(P1,OP1(L(l))),

which ends the proof.

According to Reduction 4.4, the general horizontal case can be given by (d,D′, T ′),
where T ′ ∈ Tor Cl(S) as in Lemma 4.3. The H1-eigenspace decomposition in this case
splits into a purely horizontal part and a vertical one as follows.

Proposition 4.9. Let π : Sd → S be the horizontal cyclic cover of S associated
with (d,D′, T ′). Then its H1-eigenspace decomposition splits as Hh ⊕ Hv, where
Hv comes from the vertical cover associated with (n, dT ′ − κeT, 0) and Hh comes
from the greatest common vertical cover of π which is of degree τ . In particular, it de-
composes as a direct sum of the cohomology of two cyclic covers of P1 and the splitting
respects the eigenspaces of the monodromy and the Hodge structure.

Proof: The proof runs along the lines of that of Proposition 4.8. We will highlight the
differences. Formula (4.9) holds and in this case cL(l) = 0 implies

L(l) ∼ l2
(κe
n
T − dnT ′

)
︸ ︷︷ ︸

=:T ′′

, L(l+dn) ∼ L(l) + T ′′.
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(L1) The case cL(l) = 0 is equivalent to l = l2dn, i.e., L(l) ∼ l2T
′′. The value

of h1(S,OS(L(l))) has been computed in Proposition 3.8. More precisely, this
case corresponds to the vertical cover associated with (n, 0, T ′′) (or equivalently
(n, dT ′ − κeT, 0)) considered in Subsection 4.1.

(L2) If cL(l) < 0, then by the vanishing result in Proposition 3.9, h1(S,OS(L(l))) 6= 0
only if lT ′ ∼ 0. Hence, we assume l = l1dτ . By Proposition 3.9 and (A.1) one
has

h1(S,OS(L(l))) = −1 +

{
l1c

τ

}
+

{
l1e

τ

}
+

s∑
j=1

{
l1gj
τ

}
.

Recall that the condition of Reduction 4.4 implies 0 ∼ D′ ∼ dT ′ ∼ τ(dτT
′) is a

horizontal divisor.

In order to describe the restriction to Ai one needs to perform a blow-up at the singular
points of S on Ai as explained in Proposition 1.7 and the preceding paragraph. In
particular, it is enough to perform a (q′i, 1)-weighted (resp. (di−q′i, 1)) blow-up at Ai∩
E (resp. Ai ∩ C), where qiq

′
i ≡ 1 mod di and hence one can find hi ∈ Z such that

qiq
′
i = 1 + hidi.
In addition, note that D′ ∼ dT ′ ∼ 0 implies the existence of integers δi such that

dαi = diδi (αi is the coefficient of T ′ in Ai). Hence, the multiplicity of the exceptional
component Ei of the blow-up of Ai ∩ E is

κe+ q′iqidαi
di

= e
κ

di
+ dhiαi +

dαi
di

=
κ

di
e+ dhiαi + δi ≡

κ

di
e+ δi mod d,

since the multiplicities are only relevant mod d. Analogously, one can compute the
multiplicity of the exceptional component Ci of the blow-up of Ai ∩ C as κ

di
c− δi.

Summarizing, the restriction of the original d-covering to the curve Ai is a d-cover
of Ai ramified at κ

di
s+2 points with multiplicities κ

di
e+δi (at PEi = Ai∩Ei), κ

di
c−δi

(at PCi = Ai ∩ Ci), and gj , j = 1, . . . , s (at each of the κ
di

points of Gj ∩Ai).
Let us consider the intermediate τ -cover. Recall that dτT

′ ∼ 0. There exists βi
such that dταi = diβi:

diδi = dαi = τ(dταi) = τ(diβi)⇒ δi ≡ 0 mod τ.

These congruences show that the degree of the greatest common vertical cover is τ .
Its characteristic polynomial ∆2,h(t) can be computed with the help of the divi-

sors L
(l1)
τ using again Lemma B.1. The same argument about degL

(l1)
τ shows that

the terms degL
(l1)
τ for which l = l1τ is a multiple of dn do not contribute to this

horizontal part. This completes the proof.

Remark 4.10. The degree of the greatest common vertical cover can be obtained
in two ways. From the above proposition, it can be obtained algebraically in terms
of the torsion order of the divisor T ′. And from the definition, it can be obtained
topologically as the highest divisor of d for which the covers over Ai are pull-backs of
the primitive vertical cover of π.

Corollary 4.11. The characteristic polynomial ∆2(t) of the monodromy of a horizon-
tal cover of S associated with (d,D′, T ′) as above factorizes as ∆2(t) = ∆2,h(t)∆2,m(t),
where ∆2,h(t) and ∆2,m(t) are Alexander polynomials of coverings of P1.

Proof: By Proposition 4.9, the H1-eigenspace decomposition of the cover splits as a
direct sum Hh⊕Hm. By Proposition 4.1, the characteristic polynomial ∆2,m(t) of the
monodromy associated with Hm corresponds to that of the restriction of the vertical
cover (n, 0, T ′′) to E (or C), whereas ∆2,h(t) corresponds to that of the horizontal
τ -cover described in the proof.
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4.3. General case. To end this section, we are in the position to describe the general
case, that is, π : Sd → S is a covering associated with (d,D,H) such that D ∼ dH
and

D =
∑
j∈J

mjDj ∈ Div(S), H = γC + ηE +

r∑
i=1

αiAi ∈ Cl(S),

where mj ∈ Z>0, Dj is an irreducible (effective) divisor, j ∈ J , γ, η, αi ∈ Z, i =
1, . . . , r, and the reduced support Dred of D is a Q-simple normal crossing divisor.
Following Lemma 2.9 we decompose D as

D = νhDh + νvDv + νsDs,

where Dh is horizontal, Dv is vertical, and Ds is slanted (see Lemma 2.9); all of them
are primitive (i.e., the gcd of their multiplicities equals 1). We introduce the following
notation:

dh := gcd(d, νv, νs), dv := gcd(d, νh, νs).

The following result describes the H1-eigenspace decomposition of a general cyclic
cover of S. The notation used is defined in Subsections 4.1 (see Proposition 4.1)
and 4.2 (see Proposition 4.9).

Theorem 4.12. Consider π : Sd → S the cyclic cover of S associated with (d,D,H)
as above. Then H1(S;OS)=Hh⊕Hv, Hv :=H1(Edv ;OEdv ), and Hh :=H1(Xeh ;OX

eh
),

where πE : Edv → E ∼= P1 is the restriction of the intermediate dv-cover to E and
πX : Xeh → P1 is the greatest common vertical cover of the intermediate dh-cover
(eh is a divisor of dh as in Proposition 4.9). The eigenspace decomposition of
H1(S;OS) = Hh ⊕ Hv is the direct sum of the natural eigenspace decompositions
of Hh and Hv. In particular, each factor of the splitting is associated with a P1-cover.

Proof: The divisor L(l) associated with Esnault and Viehweg’s theory is

L(l) = −lH +
∑
j∈J

⌊
lmj

d

⌋
Dj .

Let B ∈ Div(S) be any divisor. Since D ∼ dH, the equality

lH ·B =
l

d

∑
j∈J

mjDj ·B

holds. Taking into account (1.2) in Remark 1.2 one has

cL(l) = L(l) · F ≤ 0 and ϕL(l) = L(l) · C ≤ 0.

According to Theorem 3.7, if they are both negative, then h1(S,OS(L(l))) = 0; the
same happens if l is a multiple of d. The remaining cases for l ∈ Z are considered
below.

(a) cL(l) = 0.
Let us denote J1 = {j ∈ J | cDj 6= 0}, i.e., Dj is a term of either Dh

or Ds. Then cL(l) = 0 if and only if d divides lmj , ∀j ∈ J1; see Remark 1.2.

The latter is equivalent to asking d
dv to divide l. This way l can be written as

l = l1
d
dv for l1 = 0, 1, . . . , dv − 1. In fact, these values measure the action of the

monodromy of the intermediate dv-cover.
Consider the cover of S associated with (dv, νvDv, Hv), where

Hv ∼
d

dv
H − νh

dv
Dh −

νs
dv
Ds.
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This corresponds to a vertical cover. Let us denote by L
(l1)
v the Esnault–Viehweg

divisors associated with this vertical cover. A simple check shows that L
(l1)
v =

L(l1
d
dv ). Hence, this invariant part of the cohomology is described by a vertical

cover of dv sheets in the sense of Subsection 4.1, which can be decomposed as
that of a cover of P1 and has an associated characteristic polynomial ∆1(t).

(b) ϕL(l) = 0.
Analogously to the previous case, one can define J2 = {j ∈ J | ϕDj 6= 0},

i.e., Dj is a term of either Dv or Ds. Then ϕL(l) = 0 if and only if l can be

written as l = l2
d
dh

for l2 = 0, 1, . . . , dh − 1. These values determine the action

of the monodromy of the intermediate dh-cover. Now consider the cover of S
associated with (dh, νhDh, Hh), where

Hv ∼
d

dh
H − νv

dh
Dv −

νs
dh
Ds.

This is a horizontal cover. Analogously to the previous case, one can easily check

that L
(l2)
h = L(l2

d

dh
). Hence, this invariant part of the cohomology is described

by a horizontal cover of dh sheets in the sense of Subsection 4.2, which can be de-
composed as a direct sum of a horizontal cover (greatest common vertical cover)
and a vertical cover, an intermediate cover of order µ0 := gcd(d, νh, νv, νs).

Let us denote by ∆2(t) the characteristic polynomial of the cover of S as-
sociated with (dh, νhDh, Hh), and by ∆2,h(t),∆2,m(t) the characteristic poly-
nomials of the horizontal and vertical covers of the preceding paragraph; see
Corollary 4.11. Note that ∆2(t) = ∆2,m(t)∆2,h(t).

As a word of caution, note that the previous two cases (a) and (b) are not disjoint.
That is why we need to consider a third case that accounts for repetitions.

(c) `L(l) = (0, 0), that is, cL(l) = ϕL(l) = 0.
Combining (a) and (b), this case occurs whenever l = l0

d
µ0

. Consider the

vertical cover of S associated with (µ0, 0, Hm), where

(4.10) Dm = 0, Hm ∼
d

µ0
H − 1

µ0
D.

Note that Hm is a torsion class. This case matches (L1) in Proposition 4.9,
which accounts for the vertical part Hv in the decomposition of the horizontal
cover associated with part (b). In order to see this, it is enough to check that

the divisors L
(l0)
m := L(l0

d
µ0

) and L
(l0

dh

µ0
)

h are related as follows:

L(l0)
m := L(l0

d
µ0

) = L(l0
dh

µ0

d

dh
) = L

(l0
dh

µ0
)

h .

In particular, ∆0(t) = ∆2,m(t).

As a result of the proof one obtains the following.

Corollary 4.13. The characteristic polynomial ∆(t) of the monodromy of a cover

of S associated with (d,D,H) as above factorizes as ∆(t) = ∆1(t)∆2(t)
∆0(t) = ∆1(t)∆2,h(t),

where ∆1(t) and ∆2,h(t) are the Alexander polynomials of covers of P1.

Proof: As a consequence of the proof of Theorem 4.12, the final Alexander polynomial

is ∆1(t)∆2(t)
∆0(t) =

∆1(t)∆2,m(t)∆2,h(t)
∆0(t) . At the end of the proof it is shown that ∆0(t) =

∆2,m(t), which completes the proof.
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5. Examples and applications

5.1. Reducible normal fake quadrics of type (di, qi) = (3, 1), r = 3. Fol-
lowing Remark-Definition 2.7 consider S the surface associated with (di, qi) = (3, 1),
i = 1, 2, 3. In this case α := 1

3 + 1
3 + 1

3 = 1 and χorb = 0 (see (2.2)). Note that

κ := lcm(d1, d2, d3) = 3 and Cl(S) ∼= Z2 ⊕ (Z/3)2 by Proposition 2.10.

Example 5.1. This example will highlight the relevance of the choice of the torsion
class H in the cohomology of the covering of S associated with (d,D,H) as well as
the importance of the greatest common vertical cover introduced in Definition 4.6. We
present different horizontal coverings associated with different torsion divisors whose
cohomology invariants are different as well as their greatest common vertical covers.

Let σa : Ŝa → S be the cover associated with (3, D,Ha), where D := G, Ha :=
C − aT , a = 0, 1, 2 (recall T := E − C). Note that σa is a horizontal cover. One has

L(l) = −lHa +

⌊
l

3

⌋
G = −lHa = laE − l(a+ 1)C.

Applying Reduction 4.4, it is enough to consider the covering of S associated with
(3, D′a, 0), where

D′a = D − 3Ha = −3(a+ 1)C + 3aE +G ∼ 0.

By Proposition 4.8 one has

h1(Sa,OSa(L(l))) = −1 +

{
− l(a+ 1)

3

}
+

{
la

3

}
+

{
l

3

}

=

⌊
− l(a+ 1)− 1

3

⌋
−
⌊
− la

3

⌋
=

{
1 if l = 2, a = 1,

0 otherwise.

As a consequence,

h1(Ŝa,OŜa) =

{
1 if a = 1,

0 otherwise.

Let us consider the composition π of the (1, 2)-weighted blow-ups of the points Ai∩C
and the (1, 1)-weighted blow-ups of Ai ∩ E. We will denote by Ci (resp. Ei) the
exceptional component resulting after the blow-up of Ai ∩ C (resp. Ei). Then,

π∗(D′a) = G− 3(a+ 1)C + 3aE +

3∑
i=1

(aEi − (a+ 1)Ci).

The restriction of the covering to a generic fiber F ramifies at the three intersection
points with G and thus π−1(F ) is a curve of genus 1. The restriction of the covering
to Ai ramifies at the point Ai ∩ G with index 1. The other ramification points are
Ai ∩ Ci (with index 2− a) and Ai ∩ Ei (with index a).

In particular, for a = 0, 2, the cover of Ai is rational while for a = 1 it is a curve
of genus 1. Note that τ = 3, hence the three restrictions coincide with their greatest
common vertical covering, and the monodromy of the covering of S coincides with
the monodromy of the covering of each Ai.

On the other hand, if one replaces Ha by H ′a := Ha+A1−A2, then τ ′ = 1 and the

new greatest common vertical covering is the identity, i.e., H1(Ŝ′a,OŜ′a) = 0, where

Ŝ′a denotes the respective covering. Note that the restrictions of both coverings overF
do not change.
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Example 5.2. This example shows the effect of the mixed part, see (4.10), in a
horizontal covering. It also shows an example of a non-connected covering.

Consider σ : Ŝ → S, where S is as at the beginning of Subsection 5.1, with d = 6,
D = 3(C +G), H = 2C. After applying Reduction 4.4 one has a horizontal covering
of S associated with (6, D′, 0), where D′ = 3(G − 3C) ∼ 0 is a horizontal divisor
and n = 3. The induced covering over a generic fiber has three connected components,
each one being a genus 1 curve obtained as a double covering of P1 ramified at four
points (the three intersections with G and the intersection with C). In order to study
the covering over Ai we need to use π as in Example 5.1, to obtain

π∗(D′) = 3

(
G− 3C −

3∑
i=1

EPi

)
,

i.e., the coverings of Ai consist of three copies of P1. In fact, Ŝ has three components
with vanishing 1-homology.

Replacing the H divisor class by H = 2E, the situation over F does not change.
Applying Reduction 4.4 one has D′ = 3(G+ C − 4E), n = 3, dn = 2, and

L(2) = G+ C − 4E ∼ 4(C − E) = −4T ∼ 2T, L(4) ∼ T.
Hence the mixed component of the covering corresponds to a 3-cover ramified over
D = 0 and H = −T , i.e., of type (3, 0, 2T ) ≡ (3,−6T, 0).

Since h1(S,OS(T )) = 0, and h1(S,OS(2T )) = 1 (see (3.12) in Proposition 3.8),
which correspond to the cohomology of a genus 1 curve as a 3-cover of P1. In fact,

π∗(D′) = 3G+ C − 4E +

3∑
i=1

EPi − 4

3∑
i=1

EQi ,

and then the covers over Ai are 6-covers of P1 ramified along three points with rami-
fication indices 3, 1, 2, i.e., a curve of genus 1. The final characteristic polynomial is
(t2 − t+ 1)(t2 + t+ 1).

Finally, replacing the H divisor by H = 2E + A1 − A2, one obtains L(2) = G +
C − 4E − 2A1 + 2A2 ∼ −T − 2A1 + 2A2 ∼ A2 −A3, L(4) ∼ A3 −A2.

The mixed component, that is, the invariant part coming from the greatest com-
mon vertical covering has trivial monodromy. In this case τ = 3, and the horizontal
part is a 2-covering of P1 ramified in principle at three points with ramification in-
dices (3, 1, 2) ≡ (1, 1, 0), i.e., the covering is a P1 and thus its monodromy is trivial.

5.2. A general example of cyclic coverings of reducible normal fake quadrics.
This will describe a general example of a cyclic covering of a reducible normal fake
quadric. The constructive proof of Theorem 4.12 will be applied to this case in or-
der to explicitly exhibit the vertical and horizontal P1-coverings whose H1-eigenspace
invariant subspaces reconstruct the first cohomology of the cyclic covering.

Let us consider the reducible normal fake quadric S associated with the numer-
ical data (d1, d2, d3) = (6, 9, 18) and (q1, q2, q3) = (5, 1, 1) as described in Remark-
Definition 2.7. Note that α = 1, κ = 18, and χorb = − 2

3 .
We consider the divisors

D := 90(C + E) + 15G1 + 165G2 + 18(2A1 +A2 + 2A3),

H := E +G2 + 2A1 − 3A2 +A3.

Since

D−180H = 90(C−E)+15(G1−G2)+18(−18A1+31A2−8A3) ∼ (−54+62−8)F = 0,

the cyclic covering π180 : X → S associated with (180, D,H) is well defined.
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Following the proof of Theorem 4.12 one has to determine the vertical component
of the covering, which is given by (µ1, Dv, Hv), where

µ1 = gcd(180, 90, 90, 15, 165) = 15, Dv = 18(2A1 +A2 + 2A3),

and

Hv = 12H − 6(C + E)−G1 − 11G2 ∼ 6(E − C) + 24A1 − 36A2 + 12A3

∼ 6(5A1 +A2 +A3 − F ) + 24A1 − 36A2 + 12A3

= 54A1 − 30A2 + 18A3 − 6F ∼ F − 3A2.

Applying Reduction 4.4, this vertical covering is associated with (µ1, D
′
v, 0), where

D′v = 18(2A1 +A2 + 2A3)− 15F + 45A2 = 36A1 + 63A2 + 36A3 − 15F.

Using Proposition 4.1 we see that the monodromy of the vertical cover π15 coincides
with the monodromy of the covering restricted to the preimage of E, associated with
the divisor

EC = 6〈γ1〉+ 7〈γ2〉+ 2〈γ3〉 − 15〈∞〉;

the characteristic polynomial of the action of the monodromy on the first cohomology
group of the structure sheaf of the cover is∏

j∈{2,4,6,7,12,14}

(
t− exp

2πj
√
−1

15

)
;

in particular, the characteristic polynomial of the covering is the product of the cy-
clotomic polynomials for 5 and 15. Analogously, for the horizontal part, the covering
is associated with (µ2, Dh, Hh), where

µ2 = gcd(180, 36, 18, 36) = 18, Dh = 90(C + E) + 15G1 + 165G2,

and

Hh=10H−(2A1+A2+2A3)∼10(E+G2)+18A1−31A2+8A3∼10(E+G2)+4(2A3−A2),

which is the expression as in Lemma 4.3, where T ′ = 4(2A3−A2) is a torsion divisor
of order 9 whose least common multiple with T = 5A1 +A2 +A3−F is 0. According
to Reduction 4.4 note that dτ = 9, τ = 2, and

n = gcd(18, 90, 15, 165) = 3.

In other words, one is interested in studying the horizontal covering associated with
(18, D′h, T

′), where

(5.1) D′h = Dh − 18Hh = 90(C − E) + 15(G1 −G2).

The H1-eigenspaces of this covering, according to Proposition 4.9, can be recovered
from its mixed part and its greatest common vertical covering. The mixed part has
already been considered in the vertical component, that is, in (µ1, Dv, Hv) above,
as for the greatest common vertical 2-fold covering of the restrictions to the special
fibers Ai. From (5.1), the double covering of P1 is ramified in principle at four distinct
points with indices

(
90
18 ,−

90
18 , 15,−15

)
which are congruent with (1, 1, 1, 1) mod 2.

Then the characteristic polynomial of this part is ∆2,h(t) = t + 1 (the cover is an
elliptic curve).
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5.3. Application to the cohomology of surfaces which are quotients of a
product of curves. Let us consider a horizontal covering π : X → S of a reducible
normal fake quadric S associated with (d,D, 0), where

D = κ(cC + eE) +

s∑
j=1

gjGj , gcd(κc, κe, g1, . . . , gs) = 1.

The condition on the greatest common divisor implies that the covering πF : F(d) → F ,

the restriction of π on the generic fiber F , is connected, where F(d) := π−1(F ) is a
smooth projective curve. Consider the following diagram:

Y X

G× P1 S

π̃ π

τ2

The covering π̃ is associated with a horizontal divisor of G×P1 where the sequence of
ramification indices is c (at each point in τ−1

2 (F ∩C)), e (at each point in τ−1
2 (F ∩E)),

and gi (at each point in τ−1
2 (F ∩ Gi)), i = 1, . . . , s. Actually Y = G × F(d) and

π̃ = 1G × πF . As a consequence, X is the quotient of G × F(d) and its cohomology
can be computed from the formulas in this work. The action on G× F(d) is not free,
but X admits structures of isotrivial fibrations over orbifolds.

6. Lê–Yomdin singularities

A useful application of cyclic covers of reducible normal fake quadrics is given for
the semistable reduction of (weighted) Lê–Yomdin surface singularities introduced
in [7]. Let (V, 0) := {F = 0} ⊂ (C3, 0) be a hypersurface singularity where F :=
fm+fm+k+ · · · is the weighted homogeneous decomposition of the analytic germ F ∈
C{x, y, z} for some weights θ = (θx, θy, θz). We say (V, 0) is a (θ, k)-weighted Lê–
Yomdin singularity if

V (Jac(fm)) ∩ V (fm+k) = ∅,
where V (Jac(fm)), V (fm+k) ⊂ P2

θ are algebraic varieties in the weighted projective
plane P2

θ = ProjC[x, y, z]θ, C[x, y, z]θ is the θ-graded polynomial algebra over C, and
θ = (deg x, deg y,deg z) = (θx, θy, θz).

The term Lê–Yomdin singularity comes from the original papers by Yomdin [19]
and Lê [20] on hypersurface singularities (see [8] for more details). The Milnor fiber
of a (θ, k)-weighted Lê–Yomdin singularity can be studied by means of Steenbrink’s
spectral sequence [31] associated with the semistable reduction [27, 31, 25] of a
Q-resolution of singularities of (V, 0); see [24] for the non-weighted case.

This resolution is obtained with two types of blow-ups. The first one is the θ-
weighted blow-up of (C3, 0). This first exceptional divisor and its cyclic cover in the
semistable reduction deserve special treatment and they are completely determined by
the projectivized tangent cone V (fm) as a curve in the resulting exceptional divisor,
which is the weighted homogeneous plane P2

θ; see [5, Proposition 5.13].
The other blow-ups are those required for the minimal Q-embedded resolution

of the pair (P2
θ, V (fm)); each weighted blow-up of this embedded resolution yields

a weighted blow-up of the surface singularity as explained in [25, §6.2]. Each one
of these blow-ups contributes with an exceptional divisor which produces (as cyclic
covers) certain divisors in the semistable reduction. Most of the invariants appearing
in Steenbrink’s spectral sequence are birational invariants. In particular, instead of
studying the cyclic covers at the end of the resolution, one can study them at this first
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stage, where they are cyclic covers of quotients of weighted projective planes with a
very precise ramification locus.

For the particular case of superisolated singularities, the strategy in [2] includes
performing an additional birational transformation such that the final result is a
cyclic cover of P1 × P1 ramified along some fibers and sections. The parallel strategy
for weighted Lê–Yomdin singularities replaces P1 × P1 by a reducible normal fake
quadric, the fibers by regular and exceptional fibers, and the sections by curves C,
E, G; see [26]. In the upcoming sections computations will be carried out for the
particular case of the second type of weighted blow-ups, namely where the blown-up
point P is smooth in the partial resolution and where the weights (wx, wy, wz) of ω
are pairwise coprime. Following [25, §6.2], an embedded Q-resolution of V (fm) will
be described first.

6.1. Semistable normalization in dimension 2. In this section, one step of the
Q-resolution of a point V (fm) will be described, namely, a (wx, wy)-blow-up of a
smooth point P0 in a 2-dimensional chart where the local equation of the total trans-
form of the singularity is

xkmxykmyh(x, y) = 0;

the (wx, wy)-multiplicity of h(x, y) is denoted by ν. The condition on the exponents
of x, y is given by the smoothness in dimension 3. The ν-form of h(x, y) is

(6.1)

(
xaxyay

r∏
i=1

(ywx − γixwy )ei

)s
,

where γ1, . . . , γr ∈ C∗ are pairwise distinct, κ := k
s ∈ Z, and gcd(κ, ax, ay, e1, . . . , er)=

1. We denote e :=
∑r
i=1 ei and ν0 := wxax + wyay + wxwye = ν

s . Moreover, this is
related to the third weight of ω by wz = ν0

κ = ν
k ∈ Z.

x1 = 0 y2 = 0
se1 ser

. . .

1
wx

(1,−wy) 1
wy

(−wx, 1)

say sax

y1 = 0

kmy

x2 = 0

kmx

[(x1, y1)] 7→ (xwx1 , x
wy
1 y) [(x2, y2)] 7→ (x2y

wx
2 , y

wy
2 )

Figure 7. Weighted (wx, wy)-blow-up at P0.

The multiplicity of the exceptional divisor is

k(wxmx + wymy) + ν = k

mω︷ ︸︸ ︷
(wxmx + wymy + wz) .

Let u, v ∈ Z such that uwx + vwy = 1. Let us consider the weighted blow-up of
type (Nwx − v, 1) at the quotient singularity of order wx, where N � 0. The multi-
plicity of this auxiliary exceptional divisor (mod kmω) is

(Nwx−v)kmω+kmy+say
wx

≡ kmy + say − kv(wxmx + wymy + wz)

wx

≡ k (umy−vmx)︸ ︷︷ ︸
−c

+s
ay−v(wxax+wyay+wxwye)

wx

≡ s(−κc+ uay − vax − vwye︸ ︷︷ ︸
e∞

).

(6.2)
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We proceed in a similar way with a weighted blow-up of type (1, Nwy − u) at the
quotient singularity of order wy. The multiplicity of this auxiliary exceptional divisor
(mod kmω) is

(6.3) s(κc+ vax − uay − uwxe︸ ︷︷ ︸
e0

).

Hence the gcd of the multiplicity at each new divisor and its neighboring divisors
(which can be replaced by the multiplicities computed above) is

(6.4) s gcd(κmω, e0, e∞, e1, . . . , er) = s gcd(mω, e0, e∞, e1, . . . , er)︸ ︷︷ ︸
δω

.

Note that gcd(δω, κ) = 1 and there exist β1, β2 ∈ Z such that β1δω + β2κ = 1.
Let us summarize the notation and some formulas introduced in this section.

(C1) κ = k
s with the condition gcd(κ, ax, ay, e1, . . . , er) = 1.

(C2) e = e1 + · · ·+ er.

(C3) ν0 = wxax + wyay + wxwye = ν
s .

(C4) wz = ν0
κ = ν

k .

(C5) mω = wxmx + wymy + wz.

(C6) uwx + vwy = 1.

(C7) e0 = vax − uay − uwxe+ κc.

(C8) e∞ = uay − vax − vwye− κc.
(C9) δω = gcd(mω, e0, e∞, e1, . . . , er).

(C10) β1δω + β2κ = 1.

6.2. Semistable normalization in dimension 3. In this section we use the blow-
up performed in Subsection 6.1 at the embedded surface singularity in dimension 3.
In particular, consider a chart where P is the origin and the local equation of the
total transform of the surface singularity V is of the form

(xmxymy )m+kzm(zk − h(x, y)) = 0.

The ν-form of zk − h(x, y) is

s∏
j=1

(
zκ − ζjsxaxyay

r∏
i=1

(ywx − γixwy )ei

)
= zk − xsaxysay

r∏
i=1

(ywx − γixwy )sei .

The exceptional component of the blow-up is isomorphic to P2
ω. The multiplicity of

this divisor equals

(6.5) d := (wxmx + wymy + wz)

δ︷ ︸︸ ︷
(m+ k) = mωδ,

where mω has been introduced in (C5). Since the total transform V ′ of V is linearly
equivalent to the zero divisor, this is also the case for its intersection with E ∼= P2

ω.
This intersection can be decomposed into two terms: the divisor obtained by the
intersection of V ′ with E and with the components of V ′ which are different from E.
The latter can be described as

D := δ(mxX +myY ) +mZ +

s∑
j=1

Gj ,

where

(6.6) X : x=0, Y : y=0, Z : z=0, Gj : zκ − ζjxaxyay
r∏
i=1

(ywx − γixwy )ei =0,
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and the divisors Gj are irreducible. The self-intersection E2 is linearly equivalent to H,
where H is any divisor in P2

ω of degree 1, e.g. H ∼ uX + vY as degωH = 1; see (C6).
Hence the intersection is D − dH ∼ 0, the support of a meromorphic function. From
the point of view of a cyclic cover of degree D the geometric ramification occurs mod d
and this is why we have provided the decomposition D − dH. From these data one
can choose a particular presentation of Cl(P2

ω) as

〈X,Y, Z, F1, . . . , Fr, F | wzX ∼ wxZ,wzY ∼ wyZ,wyX ∼ wxY ∼ F ∼ Fi, 1 ≤ i ≤ r〉,

where G1 ∼ · · · ∼ Gs ∼ κZ, Fi is the line joining [0 : 0 : 1]ω and [1 : γ
1
wx
i : 0]ω, and

F is a generic line through [0 : 0 : 1]ω.
Hence, it makes sense to consider the cyclic covering ramified along (d,D,H). Equiv-

alently, using Reduction 4.4, one can consider the covering associated with (d,D′, 0),
where

D′ = δ(mx − umω)X + δ(my − vmω)Y +mZ +

s∑
j=1

Gj .

In order to express this cover as that of a Q-normal crossing divisor, one needs to
perform some birational transformations. This is where the reducible normal fake
quadrics come into play. Let us start with the (wx, wy)-blow-up of [0 : 0 : 1]ω. The
new surface will be denoted by Σ and the exceptional component of this blow-up
by E. For simplicity, we keep the notation for the strict transforms in Σ. Taking into
account that the total transform of X (resp. Y ) in Σ is X + wx

wz
E (resp. Y +

wy
wz
E),

it is not hard to check that

Cl(Σ)=〈X,Y, Z, F1, . . . , Fr, F, E | wz(uX + vY ) = Z − E,
wyX = wxY = Fi = F, 1 ≤ i ≤ r〉.

The multiplicity of E as a component of the total transform of D′ is

δ
(mx − umω)wx + (my − vmω)wy

wz
= −δ;

see (C4) and (C5) on page 399. By the previous calculations, note that the new
ramification divisor DΣ can be described as

DΣ = δ(mx − umω)X + δ(my − vmω)Y − δE +mZ +

s∑
j=1

Gj .

Next, one can perform generalized Nagata transformations on the fibers over the
following points of E ≡ P1: 0 ≡ [0 : 1], ∞ ≡ [1 : 0], γi ≡ [γi : 1], i = 1, . . . , r. The
goal of these transformations is to separate the divisors Gj from Z keeping them away
from E, which can be done using the following weights:

1

gcd(κ, ax)
(κ, ax) at 0,

1

gcd(κ, ay)
(κ, ay) at ∞, 1

gcd(κ, ei)
(κ, ei) at γi.

Moreover we obtain a reducible normal fake quadric S as in Subsection 2.3, as one
can check by computing the self-intersection of the strict transform of Z in S:

(6.7) (Z ·Z)S = (Z ·Z)Σ−
r∑
i=1

ei
κ
− ax
κwy
− ay
κwx

=
wz
wxwy

−axwx + aywy + wxwye

κwxwy
= 0.

To obtain a full description of S, let us describe its cyclic quotient singular points. If
the new exceptional divisors are denoted by A0, A∞, A1, . . . , Ar, then there are two
singular points on each Ai, i ∈ I = {0, 1, . . . , r,∞}, whose combinatorial data (di, qi),
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as described in Subsection 2.2, can be calculated using [9, Theorem 4.3] in terms of
the invariants introduced in (6.1), (6.2), and (6.3) as, see also (C1), (C7), and (C8):

(6.8) di =
κ

gcd(κ, ei)
, qi =

ei
gcd(κ, ei)

, i ∈ I.

Note that

(6.9) lcmi∈I di =
κ

gcd(κ, ei, i ∈ I)
= κ.

The first equality in (6.9) is a consequence of (6.8) and (A.4) in the appendix. For
the second equality one needs to show

(6.10) gcd(κ, ei, i ∈ I) = 1.

Since Z = Z〈κ, ax, ay, e1, . . . , er〉, it is enough to show that ax, ay ∈ Z〈κ, ei, i ∈ I〉;
see (C1). This is a consequence of(

v −u
wx wy

)(
ax
ay

)
≡
(

0
0

)
mod Z〈κ, ei, i ∈ I〉 and

∣∣∣∣ v −u
wx wy

∣∣∣∣ = 1.

As a word of caution, note that we are not imposing that the values qi be in {1, . . . , di−
1} (see also Remark 2.5), only gcd(di, qi) = 1. There could be other choices of qi
corresponding to different generalized Nagata transformations; their remainder classes
mod di, however, remain unchanged. According to our construction and (6.7), one
can check that α =

∑
i∈I

qi
di

= 0.
Finally, let us compute the total transform DS of DΣ in S. First, the multiplicity

of Ai, i = 1, . . . , r, as a component of DS is given by

m
ei

gcd(κ, ei)
+ s

eiκ

gcd(κ, ei)
= δqi.

On the other hand, the multiplicity of A0 as a component of DS is

δ
ax + κ(mx − umω)

wygcd(κ, e0)
= δ

ax + κmx(1− uwx)− uκ(mywy + wz)

wygcd(κ, e0)

= δ
ax + κmxvwy − uκmywy − u(wxax + wyay + wxwye)

wygcd(κ, e0)

= δ
axv + κc− u(ay + wxe)

gcd(κ, e0)
= δq0.

Analogously, the multiplicity of A∞ is δq∞. Then, the ramification divisor DS is

DS = δ
∑
i∈I

qiAi +mZ − δE +

s∑
j=1

Gj .

Finally, note that

Cl(S) =

〈
A0, A∞, A1, . . . , Ar, F, Z,E | diAi ∼ F, i ∈ I, E − Z ∼

∑
i∈I

qiAi

〉
.

The last step is to apply the contents of Subsection 4.3 to the covering of S associated
with (d,DS , 0). Following the constructive proof of Theorem 4.12 and its notation,
the subset of indices J1 corresponds to the irreducible divisors Z,E,G1, . . . , Gs and
then µ1 = 1 and also µ0 = 1. Then, there is no contribution from the vertical part (a)
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and from the mixed part (c). Let us check the horizontal part (b). The irreducible
components of DS involved in J2 are Ai, i ∈ I, and hence, using (A.3), one obtains

gcd(δmω, δqi, i ∈ I) = δ gcd

(
mω,

ei
gcd(κ, ei)

, i ∈ I
)

= δ gcd

(
mω,

gcd(ei, i ∈ I)

gcd(κ, ei, i ∈ I)

)
= δδω.

The last equality is a consequence of (6.3) and (6.10); see also (C9). Recall that
d = δmω by (6.5) and δω|mω by (6.4). Thus the monodromy of the original d-cover co-
incides with the monodromy of a horizontal (δδω)-cover associated with (δδω, Dh, Hh),
where (see (C10))

Dh = mZ − δE +

s∑
j=1

Gj , Hh = − 1

δω

∑
i∈I

qiAi ∼ −β1

∑
i∈I

qiAi ∼ β1(Z − E)

(one can easily check that the relation Dh − δδωHh ∼ 0 holds).
Finally, after applying the process described in Subsection 4.2, the horizontal cover

satisfies n = 1 and τ = δδω.
As a consequence of Theorem 4.12 and the discussion above, one has the following.

Proposition 6.1. Under the conditions and notation described above, the invariant
subspaces of the monodromy action on the semistable reduction S of (6.6) coincide
with the greatest common (δδω)-covering of the restrictions to the special fibers Ai,
i ∈ I.

Let us re-prove the above result without the use of the torsion arguments. Let us
consider the restriction πF : Fδδω → F of the (δδω)-subcover to a general fiber F . The
ramification happens at Z ∩ F (with multiplicity m), E ∩ F (with multiplicity −δ),
and Gj ∩F (κ points with multiplicity 1). The following congruences mod (δδω) hold:

m ≡ m− δδωβ1 ≡ m− δ(1− β2κ) ≡ κ
m̂︷ ︸︸ ︷

(β2δ − s) .

Then, there is a pull-back diagram

(6.11)

F(d) X

F P1

z zκ

πF πX

where the covering πX has ramification indices m̂ (at 0), 1 (at s points in C∗), and
−(s+ m̂) (at ∞).

A similar diagram exists if we replace F by Ai and κ by κ
di

, for i ∈ I. In order
to see this, one needs to know the multiplicity of the ramification divisor at Z ∩ Ai,
which is obtained by performing a (q′i, 1)-blow-up as in the proof of Proposition 4.8,
i.e., q′iqi = hidi − 1. The computed multiplicity is

δqiq
′
i +m

di
= δhi − s

κ

d− i
.

Also, one needs to check the following congruence mod δδω:

κ
di

(β2δ − s) ≡ δhi − s κdi
κ
di
β2δ ≡ δhi,
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which is equivalent to κ
di
β2 ≡ hi mod δω. Since gcd(di, qi) = 1 and δω is a divisor

of qi the above congruence is equivalent to 1− β1δω = κβ2 ≡ dihi ≡ 1 + qiq
′
i mod δω,

which is obviously true. Then the following diagram also holds:

Ai,(δδω) X

Ai P1

z z
κ
di

πAi
πX

This provides an alternative proof of the result since it means that δδω is the maximal
degree where the diagram (6.11) holds. This describes the curve cover that contains
all the necessary information.

Corollary 6.2. The characteristic polynomial of the monodromy action on the
semistable reduction S of (6.6) is

(t− 1)2−s(tδδω − 1)s

(tδ − 1)(tgcd(m,sδω) − 1)
.

Proof: From Proposition 6.1 we know that it coincides with the characteristic poly-
nomial of πX from (6.11). We use a zeta-function argument. The covering admits a
stratification with a dense strata of Euler characteristic −s, where each point has
δδω preimages (the unramified part). There are s points with only one preimage.
For the other two remaining points the number of preimages are gcd(δδω, m̂) and
gcd(δδω,−m̂− s) = gcd(δδω, β2δ) = δ. Since m̂ = β2δ − s = mβ2 − β1δωs we have(

m̂
δδω

)
=

(
β2 −β1

δω κ

)(
m
sδω

)
,

and as the square matrix is unimodular then gcd(δδω, m̂) = gcd(sδω,m). Hence

(t− 1)2

∆1(t)
=

∆2(t)∆0(t)

∆1(t)
= ζ(t) = (t− 1)s(tδ − 1)(tgcd(sδω,m) − 1)(tδδω − 1)−s.

Appendix A. Basic arithmetic

Some basic well-known properties of the floor and ceiling functions, the greatest
common divisor, and the least common multiple are set out here for completeness.
The purpose is to recall some of the most frequently used properties in this paper so
the reader can be referred to them, simplifying the overall exposition.

A.1. Floor and ceiling. Given a real number a ∈ R, let us denote by bac its integral
part (or floor) and by {a} its decimal part so that one can write

a = bac+ {a},
where bac is the unique integer satisfying a − 1 < bac ≤ a and 0 ≤ {a} < 1. The
ceiling (or roundup) is denoted by dae, it satisfies dae = −b−ac, and it is the unique
integer such that a ≤ dae < a+ 1.

Two more useful properties are used throughout this paper. Let a ∈ R and m,n ∈
Z; then

(A.1)

⌊
bac
n

⌋
=
⌊a
n

⌋
and

⌈
m+ 1

n

⌉
=
⌊m
n

⌋
+ 1,

and, consequently,

(A.2)

⌊
−1−m

n

⌋
= −1−

⌊m
n

⌋
.
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A.2. Greatest common divisor and least common multiple. Let m1, . . . ,mr,
k ∈ Z; then

(A.3) gcd

(
m1

gcd(k,m1)
, . . . ,

mr

gcd(k,mr)

)
=

gcd(m1, . . . ,mr)

gcd(k,m1, . . . ,mr)
.

If, in addition, m ∈ Z is a multiple of all the mi’s, then

(A.4) lcm

(
m

m1
, . . . ,

m

mr

)
=

m

gcd(m1, . . . ,mr)
.

Let d1, . . . , dr ∈ Z \ {0} such that there exist q1, . . . , qr ∈ Z \ {0}, gcd(qi, di) = 1, for
which

r∑
i=1

qi
di
∈ Z;

then

(A.5) lcm(d1, . . . , dr) =
gcd
({

d1·...·dr
di

| i = 1, . . . , r
})

gcd
({

d1·...·dr
didj

| i, j = 1, . . . , r, i 6= j
}) .

The first two results are classical; let us proof this last one (the technique can easily
be adapted by the reader for the other proofs). The hypothesis implies that for any i,
di divides the lcm of all the dj ’s but di.

Fix a prime number p and consider the valuation νp associated with this prime. Let
ni := νp(di). For the sake of simplicity, let us order the numbers d1, . . . , dr such
that n1 ≤ · · · ≤ nr. The condition that dr divides lcm(d1, . . . , dr−1) implies that
nr ≤ max(n1, . . . , nr−1) = nr−1 ≤ nr, i.e., nr = nr−1. The p-valuation of the left-
hand side of (A.5) equals max(n1, . . . , nr) = nr. The p-valuation of the numerator of
the right-hand side equals

min
1≤i≤r

((n1 + · · ·+ nr)− ni) = (n1 + · · ·+ nr)− max
1≤i≤r

(ni) = n1 + · · ·+ nr−1.

The p-valuation of the denominator of the right-hand side equals

min
1≤i<j≤r

((n1 + · · ·+nr)−ni−nj) = (n1 + · · ·+nr)− max
1≤i<j≤r

(ni+nj) = n1 + · · ·+nr−2

and we obtain that both sides have the same p-valuation. Since it is valid for all
primes, the equality follows.

Appendix B. Coverings of the projective line

The following proof was inspired by the calculations in [31, p. 547].

Lemma B.1. Let F : Y → X be a cyclic branched covering of e sheets between two
orientable compact surfaces. Denote by ∆ the characteristic polynomial of the mon-
odromy of F acting on the cohomology groups. Assume Y has r connected components.
Then,

∆H1(Y )(t) =
(tr − 1)2 · (te − 1)−χ(X̌)∏

Q∈R(tµ(Q) − 1)
,

where R is the ramification set of F , X̌ := X \ R, and µ(Q) denotes the number of
preimages of Q.
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Proof: Let us write Y̌ := Y \ F−1(R). Since F| : Y̌ → X̌ is a topological covering of

e sheets, one gets that ∆H0(Y̌ )(t) ·∆
−1
H1(Y̌ )

(t) = (te − 1)χ(X̌). On the other hand, by

virtue of Mayer–Vietoris, there is an exact sequence

0 H1(Y ) H1(Y̌ ) H0(Y \ Y̌ ) H2(Y ) 0.

Therefore

∆H1(Y )(t) =
∆H0(Y̌ )(t) · (te − 1)−χ(X̌) ·∆H2(Y )(t)

∆H0(Y \Y̌ )(t)
.

The monodromy on H0(Y̌ ) ∼= H2(Y ) is the rotation of the corresponding r ir-
reducible components. Hence its characteristic polynomial is tr − 1. Finally, every
point Q ∈ R gives the factor tµ(Q) − 1 in ∆H0(Y \Y̌ )(t).
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[14] P. Deligne, Théorie de Hodge I, in: Actes du Congrès International des Mathématiciens (Nice,

1970), Tome 1, Gauthier-Villars Éditeur, Paris, 1971, pp. 425–430.
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[16] P. Deligne, Théorie de Hodge, III, Inst. Hautes Études Sci. Publ. Math. 44 (1974), 5–77.
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