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ON THE DUALS OF SMOOTH PROJECTIVE COMPLEX

HYPERSURFACES

Alexandru Dimca and Giovanna Ilardi

Abstract: We first show that a generic hypersurface V of degree d ≥ 3 in the projective complex

space Pn of dimension n ≥ 3 has at least one hyperplane section V ∩H containing exactly n ordinary

double points, alias A1 singularities, in general position, and no other singularities. Equivalently,
the dual hypersurface V ∨ has at least one normal crossing singularity of multiplicity n. Using this

result, we show that the dual of any smooth hypersurface with n, d ≥ 3 has at least a very singular
point q, in particular a point q of multiplicity ≥ n.
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1. Introduction

Let S = C[x0, . . . , xn] be the graded polynomial ring in n+1 variables with complex
coefficients, with n ≥ 2. Let f ∈ Sd be a homogeneous polynomial such that the
hypersurface V = V (f) : f = 0 in the projective space Pn is smooth. Our main result
is the following.

Theorem 1.1. For any n ≥ 3 and d ≥ 3, a generic hypersurface V ⊂ Pn of degree d
has at least one hyperplane section V ∩H, which has exactly n nodal singularities in
general position.

Here a node is a non-degenerate quadratic singularity, in Arnold notation an A1 sin-
gularity. A nodal hypersurface is a hypersurface having only such nodes as singular-
ities. As usual, a property is generic if it holds for a Zariski open and dense subset
of the parameter space, which is in this case P(Sd). For any smooth hypersurface V
and any hyperplane H, the singularities of the hyperplane section V ∩H are exactly
the points where H is tangent to V . The fact that a generic hypersurface has the tan-
gency points in general position was established in [3]. This means that for a generic,
smooth hypersurface V ⊂ Pn and any hyperplane H ⊂ Pn, the singularities of the
section V ∩H are points in general position in H, i.e., the corresponding vectors in
the vector space associated to H are linearly independent. In particular, there are at
most n singularities in any such section V ∩H when V is generic.

For a smooth hypersurface V (f), consider the corresponding dual mapping

φf : V (f)→ (Pn)∨, x 7→ (f0(x) : f1(x) : · · · : fn(x)),

where we set

fj =
∂f

∂xj
for j = 0, . . . , n.
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Then the dual hypersurface

V (f)∨ = φf (V (f))

has a normal crossing singularity of multiplicity n at the point of the dual projective
space (Pn)∨ corresponding to the hyperplane H if and only if V (f) ∩H has exactly
n singularities of type A1 in general position. To prove this, note that V (f) ∩H has
a node A1 at a point p if and only if the dual mapping φf is an immersion at p;
see for instance the equivalences (11.33) in [6]. Moreover, the tangent space to the
corresponding branch φf (V (f), p) of V (f)∨ at H = φf (p) is given by

p ∈ Pn = ((Pn)∨)∨.

It follows that Theorem 1.1 can be reformulated as follows.

Theorem 1.2. For any dimension n ≥ 3 and degree d ≥ 3, the dual hypersurface V ∨

of a generic hypersurface V ⊂ Pn of degree d has at least one normal crossing singu-
larity of multiplicity n.

Remark 1.3. (i) For any smooth hypersurface V and any hyperplane H, the hy-
perplane section V ∩H has only isolated singularities. Conversely, any hypersur-
face W ⊂ H with only isolated singularities may occur as a section W = V ∩H
for a certain smooth hypersurface V ; see [6, Proposition (11.6)].

(ii) The fact that a generic curve C in P2 of degree d ≥ 4 has only simple tangents,
bitangents, and simple flexes is known classically, and corresponds to the claim
that the dual curve C∨ has only nodes A1 and cusps A2 as singularities. The
number of bitangents of C, which is also the number of nodes A1 of the dual
curve, as a function of d is also known; see [8, p. 277], for the classical approach
using Plücker formulas, or [2] for a modern view-point. It follows from [9, Propo-
sition 2.1] that any smooth quartic curve has at least 16 bitangents (there called
simple bitangents) which correspond to the nodes of the dual curve.

(iii) The fact that a surface S ⊂ P3 of degree d ≥ 3 admits tritangent planes H is
well known, and there are formulas for the number of these planes in terms of
the degree d; see for instance [13, Section (8.3)]. The fact that, for S generic
of degree d ≥ 5, the singularities of S ∩ H are exactly three nodes follows
from [14, Proposition 3]. For a generic hypersurface V ⊂ Pn, with n ≥ 4 and
d = deg V ≥ n+2, it follows from [14, Proposition 4] that all the singularities of
a hyperplane section V ∩H are double points (not necessarily A1 singularities)
in number at most n.

Using the above results for generic hypersurfaces, one can prove the following result,
holding for any smooth hypersurface.

Theorem 1.4. For any dimension n ≥ 3 and degree d ≥ 3, the dual hypersurface V ∨

of a smooth hypersurface V ⊂ Pn of degree d has either a singularity of multiplicity n
with the corresponding tangent cone a union of hyperplanes, or a singularity of mul-
tiplicity > n. Moreover, a smooth hypersurface V ⊂ Pn of degree d, where n, d ≥ 3,
has at least one hyperplane section V ∩H whose total Tjurina number τ(V ∩H) is at
least n.

We recall that for an isolated hypersurface singularity (X, 0) : g = 0 defined by a
germ g ∈ R = C[[y1, . . . , yn]], we define its Milnor number µ(X, 0) and its Tjurina
number τ(X, 0) by the formulas

µ(X, 0) = dimR/Jg and τ(X, 0) = dimR/(Jg + (g)),
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where Jg is the Jacobian ideal of g in R. For a projective hypersurface W having only
isolated singularities, we define its total Milnor number µ(W ) and its total Tjurina
number τ(W ) by the formulas

µ(W ) =
∑
p

µ(W,p) and τ(W ) =
∑
p

τ(W,p),

where both sums are over all the singular points p ∈ W . For any point H ∈ V ∨ it is
known that

multH(V ∨) = µ(V ∩H),

where multp(Y ) denotes the multiplicity of a variety Y at a point p ∈ Y ; see [5].
Hence the first claim in Theorem 1.4 implies that

µ(V ∩H) ≥ n
if multH(V ∨) ≥ n. However, our second claim in Theorem 1.4 is a stronger version
of this inequality, since µ(X, 0) ≥ τ(X, 0), with equality exactly when the singular-
ity (X, 0) is weighted homogeneous; see [12].

Acknowledgement. We would like to thank the referee for the very careful reading
of our manuscript and for her/his suggestions to improve the presentation.

2. Proof of Theorem 1.1

The starting point is Remark 1.3(i) above. We first consider the projective space Pn−1

and the subset Zn ⊂ Pn−1 = P(Cn) given by the classes pi of the canonical basis ei,
i = 1, . . . , n, of the vector space Cn.

Proposition 2.1. For any degree d ≥ 3, there is a hypersurface Y ⊂ Pn−1, with n ≥
3, of degree d having as singularities n nodes A1, located at the points in Zn.

Proof: Let y = (y1, . . . , yn) be the coordinates on Pn−1. We first consider the case d =
3 and take Y to be the hypersurface g(y) = 0, where

g(y) =
∑

1≤i<j<k≤n

yiyjyk.

It is easy to see that Y has an A1-singularity at each point pi, for i = 1, . . . , n. Now
we show that there are no other singularities. Note that for the partial derivative gi
of g with respect to yi we have

(2.1) gi(y) =
∑

1≤j<k≤n, j 6=i, k 6=i

yjyk.

Assume that gi(y) = 0 for i = 1, . . . , n and take the sum of all these equations. In
this way we get

(2.2)
∑

1≤j<k≤n

yjyk = 0.

Subtracting the equation (2.1) from (2.2) we get

(2.3) yi
∑

1≤j≤n, j 6=i

yj = 0.

If we assume that yi1 6= 0 and yi2 6= 0 for some indices 1 ≤ i1 < i2 ≤ n, the
equation (2.3) implies that yi1 = yi2 . Hence, for any singular point y0 of Y , there is
an integer a with 1 ≤ a ≤ n such that a coordinates of y0 are equal to 1, and the
remaining n−a coordinates are 0. The equation (2.3) implies that only the case a = 1
is possible, and hence y0 is one of the points pi. This completes the proof in the
case d = 3.
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Next we look at the case d = 4 and take Y to be the hypersurface g(y) = 0, where

g(y) =
∑

1≤i<j≤n

y2i y
2
j .

It is easy to see that Y has an A1-singularity at each point pi, for i = 1, . . . , n. Now
we show that there are no other singularities. In this case we have

(2.4) gi(y) = 2yi
∑

1≤j≤n, j 6=i

y2j .

If we assume gi(y) = 0 for all i, and that yi1 6= 0 and yi2 6= 0 for some indices 1 ≤
i1 < i2 ≤ n, the equation (2.4) implies that y2i1 = y2i2 . Hence, for any singular point y0

of Y , there is an integer a with 1 ≤ a ≤ n such that a coordinates of y0 are equal
to ±1, and the remaining n − a coordinates are 0. The equation (2.4) implies that
only the case a = 1 is possible, and hence y0 is one of the points pi. This completes
the proof in the case d = 4.

Finally, to treat the case d > 4, let

hi(y) = yd−2i

∑
1≤j≤n, j 6=i

y2j .

Note that hi has a singularity of type A1 at pi and vanishes of order d − 2 > 2 at
the other points pj , for j 6= i. Consider the linear system spanned by h1, . . . , hn.
It is easy to see, repeating the argument already used twice above, that the base
locus h1 = · · · = hn = 0 of this linear system is exactly the set Zn. It follows, by
Bertini’s theorem, that a generic member Y of this linear system is smooth except
possibly at the points of Zn. The choice of the hi implies that Y has an A1 singularity
at each point in Zn.

Now we give a proof of Theorem 1.1 stated in the introduction. Using Remark 1.3(i)
and Proposition 2.1, it follows that, in any dimension n ≥ 3 and degree d ≥ 3, there
are smooth hypersurfaces V (f) ⊂ Pn of degree d which have at least one nodal
hyperplane section V (f) ∩H, with exactly n singularities in general position.

Let B = P(Sd)0 be the set of points in P(Sd) corresponding to polynomials f ∈ Sd

such that the hypersurface V (f) : f = 0 is smooth. Let A(n, d) ⊂ B be the subset of
such hypersurfaces V (f), which have at least one hyperplane section V (f) ∩H, with
exactly n singularities A1 in general position. We know already that A(n, d) 6= ∅. It
is easy to see that A(n, d) is a constructible (or semialgebraic) subset in B. Indeed,
consider the subset

Γ ⊂ B × (Pn)n

consisting of pairs (f, q), where f ∈ B, q = (q1, . . . , qn) ∈ (Pn)n, such that the points

qj = (qj0 : qj1 : · · · : qjn) ∈ Pn

are linearly independent, that is, they span a hyperplane H(q) in Pn, and the following
conditions hold:

(2.5)

n∑
i=0

qji fi(q
k) = 0 for any j, k = 1, . . . , n

and

(2.6) Hess(f)(qj) 6= 0 for any j = 1, . . . , n,
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where Hess(f) is the Hessian polynomial of f . In fact, the equation (2.5) for k = j
tells us that qj ∈ V (f) for any j = 1, . . . , n. Moreover, it says that the point qj is on
the tangent space TqkV (f). This implies that

TqkV (f) = H(q) for any k = 1, . . . , n.

The equation (2.6) tells us that the singularity of V (f) ∩ H(q) at the point qj is a
node; see for instance [6, equivalence (11.33)]. It is clear that Γ is a constructible set
in B× (Pn)n, since it is defined by finitely many algebraic equalities and inequalities.
Let p1 : B × (Pn)n → B be the first projection and note that A(n, d) = p1(Γ). Using
the Chevalley theorem, see for instance [10, p. 395], we conclude that the set A(n, d)
is constructible in B.

We now show that A(n, d) is a non-empty Zariski open subset in B, and hence it
is dense in B and in P(S)d; see [11, Theorem 2.33]. Let Z = B \ A(n, d). Then Z is
also a constructible set, and [10, Proposition 2, p. 394] implies that the closure of Z
in B in the Zariski topology coincides with its closure in the strong complex topology.
Hence, to show that A(n, d) is a Zariski open subset in B, it is enough to show that
A(n, d) is an open subset of B in the strong complex topology.

We now fix one element f ∈ A(n, d) and show that A(n, d) contains a neighborhood
of f in B. The set B is open, hence there are arbitrarily small open neighborhoods U
of f with f ∈ U ⊂ B. For any polynomial f ′ ∈ U , we consider the gradient map

Φf ′ : Pn → (Pn)∨ given by x 7→ (f ′0(x) : f ′1(x) : · · · : f ′n(x))

and the corresponding dual mapping

φf ′ = Φf ′ |V (f ′) : V (f ′)→ (Pn)∨.

Since f ∈ A(n, d), there is a hyperplane H such that V (f)∩H has n singularities A1

in general position, say at the points pj ∈ Pn, for j = 1, . . . , n. It follows that the
Hessian polynomial Hess(f) of f satisfies Hess(f)(pj) 6= 0 for j = 1, . . . , n and hence
each analytic germ

Φf : (Pn, pj)→ ((Pn)∨, H)

is invertible; see for instance [6, equation (11.10)]. It follows that there is a neighbor-
hood N of H in (Pn)∨ and neighborhoods Nj of pj in Pn for j = 1, . . . , n such that
the restrictions

Φ
(j)
f = Φf |Nj : Nj → N

are analytic isomorphisms, with corresponding inverse mappings

Ψ
(j)
f = (Φ

(j)
f )−1 : N → Nj .

Any polynomial f ′ ∈ U can be regarded as a deformation of f , the parameters
being the coefficients of f ′. Since f depends analytically on these parameters, the

inverse mapping Ψ
(j)
f also depends analytically on these parameters. It follows that,

by choosing small enough neighborhoods U , N , and Nj for j = 1, . . . , n, we have
inverse mappings as above

Ψ
(j)
f ′ : N → Nj

for all f ′ ∈ U . Choose g ∈ Sd a polynomial such that g(pj) 6= 0 for j = 1, . . . , n. Then

hf ′ =
f ′

g

is an analytic function defined on all Nj ’s, if they are chosen small enough. Now define

αf ′ : N → Cn given by y 7→ (hf ′(Ψ
(1)
f ′ (y)), . . . , hf ′(Ψ

(n)
f ′ (y))).
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Notice that we have an obvious equality of (possibly non-reduced) analytic spaces
α−1f (0) = {H}, where H is regarded as a point with its reduced structure. Indeed,

hf = 0 in Nj defines the intersection V (f) ∩ Nj , and Φ
(j)
f (V (f) ∩ Nj) is the trace

on N of the irreducible smooth branch of the dual variety V (f)∨ at the point H ∈
(Pn)∨, whose tangent space at H = Φ

(j)
f (pj) corresponds to the point pj ∈ Pn. The

intersection of these n smooth branches, meeting transversally at H, is exactly the
simple point H. Let D be a small closed ball in N , centered at H, and consider the
restricted mapping

βf ′ = αf ′ |∂D : ∂D = S2n−1 → Cn \ {0}.

Here ∂D is the boundary of the closed ball D. If D is small, it is clear by the above
discussion that αf has no zeros on the compact set ∂D. By continuity, the same is true
for αf ′ , and hence βf ′ is correctly defined for f ′ close to f . Notice that the mapping βf
has degree 1; see for instance [1, Section 5.4] or the topological interpretation of
intersection multiplicity of n divisors in [8, p. 670]. By continuity, it follows that
deg βf ′ = 1 for any f ′ ∈ U . Therefore, for any f ′ ∈ U there is a unique point H ′ ∈
(Pn)∨ such that α−1f ′ (0) = {H ′}. As explained above, this is equivalent to the fact

that the dual hypersurface V (f ′)∨ has a normal crossing singularity of multiplicity n
at the point H ′. Hence H ′ corresponds to a hyperplane section of V (f ′) with n nodes,
that is, f ′ ∈ A(n, d). Therefore U ⊂ A(n, d) and this completes our proof.

3. Proof of Theorem 1.4

Fix V (f) : f = 0 a smooth hypersurface of degree d in Pn, with d, n ≥ 3. In view
of Theorem 1.1, there is a sequence of pairs (V (fm), Hm) such that fm converges
to f in the projective space P(Sd) and V (fm) ∩Hm has n nodes in general position.
By passing to a subsequence, we can assume that qm = Hm converges to a hyper-
plane q = H in (Pn)∨. By passing to the dual hypersurfaces, we get a sequence of
hypersurfaces V (fm)∨ converging to V (f)∨, and a sequence of points qm ∈ V (fm)∨

converging to the point q ∈ V (f)∨ such that (V (fm)∨, qm) is a normal crossing singu-
larity of multiplicity n. If we consider the n-jet at qm of a reduced defining equation Fm

for V (fm)∨ in (Pn)∨, we see that

hm = jnqmFm

is a degree-n homogeneous polynomial which splits as a product of n linearly indepen-
dent linear forms. Let F be a reduced defining equation for V (f)∨ in (Pn)∨. Then Fm

converges to F in P(SD), where D = d(d− 1)n−1; see for instance [7, Theorem 1.2.5].
Hence for the n-jet

h = jnq F

there are the following two possibilities. Either h 6= 0, and then h = limhm in the
corresponding projective space, and so h is a product of n (maybe non-distinct) lin-
ear forms, or h = 0 and then multq V (f)∨ ≥ n + 1. This proves the first claim in
Theorem 1.4. To prove the second claim, note that for m large, we can identify the
hyperplane Hm with H using a linear projection, and in this way V (fm)∩Hm give rise
to a sequence of hypersurfaces Wm in H converging to the intersection W = V (f)∩H.
Let Gm (resp. G) be the reduced defining equation of the hypersurface Wm (resp. W )
in H = Pn−1. If we choose a system of coordinates y = (y1 : · · · : yn) and set
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S′ = C[y1, . . . , yn], let M(Gm) = S′/J(Gm) and M(G) = S′/J(G) denote the cor-
responding Milnor (or Jacobian) algebras of Gm and G. Here J(Gm) (resp. J(G))
denotes the Jacobian ideal of Gm (resp. G) spanned by all the first-order partial
derivatives of Gm (resp. G) with respect to the yj ’s. For k > 0 an integer, we set

M(Gm)k =
S′

J(Gm) +Mk+1
and M(G)k =

S′

J(G) +Mk+1
,

where M is the maximal ideal (y1, . . . , yn) ⊂ S′. Let T = n(d− 2) and recall that the
homogeneous components of the Milnor algebras M(Gm) and M(G) satisfy

dimM(Gm)j = τ(Wm) and dimM(G)j = τ(W ),

for any j > T ; see [4, Corollary 9]. It follows that

dimM(Gm)k = dimM(Gm)T + (k − T )τ(Wm)

and

dimM(G)k = dimM(G)T + (k − T )τ(W ),

for any k > T . Using the semicontinuity of the dimension of a quotient space, we get

dimM(G)k ≥ dimM(Gm)k,

for all k > T . This clearly implies

τ(W ) ≥ τ(Wm) = n

and this proves our second claim.
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