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NEW LOCAL T1 THEOREMS ON NON-HOMOGENEOUS SPACES
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Abstract: We develop new local T'1 theorems to characterize Calderén-Zygmund operators that
extend boundedly or compactly on LP(R™, p1), with p a measure of power growth.

The results, whose proofs do not require random grids, have weaker hypotheses than previously
known local T'1 theorems since they only require a countable collection of testing functions. Moreover,
a further extension of this work allows the use of testing functions supported on cubes of different
dimensions.

As a corollary, we describe the measures p of the complex plane for which the Cauchy integral
defines a compact operator on LP(C, u).
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1. Introduction

The T'1 theorem characterizes the boundedness of Calderén—Zygmund operators T'
in terms of the functions 7T'1 and T*1. On the other hand, the local T'1 theorem
attains a similar characterization using the action of T and T™ over a system of
indicator functions (xq)gego of all cubes with edges parallel to the coordinate axes.

The idea of a local T'1 theorem was first introduced in 1990 by M. Christ [3] in
connection with the geometric description of removable compact sets for bounded
analytic functions (known as Pailenvé’s problem). His motivation was that, in prin-
ciple, finding a system of local testing functions should be easier than identifying
a single function over which the operator behaves well globally. This approach was
shown to be right at the turn of the century when F. Nazarov, S. Treil, and A. Vol-
berg proved the first local T'1 and Tb theorems for non-doubling measures in [18]
and [21] (see also [20] and [22]). Since then, research work on this subject has been
continuously growing with special focus on more general criteria of boundedness ([1],
[13], [12]), variants that apply to new settings ([11], [10], [14]) and applications
to PDEs ([9]).The articles [7], [8], [2], [16] and the books [4], [5], [15], [24] provide
detailed accounts of the evolution of this theory.

A few years ago, papers [25], [26] presented global T'1 and Tb theorems charac-
terizing the compactness of Calderén—Zygmund operators. These results can be used
to prove the compactness of many double layer potential operators [26]. In turn, this
allows us via Fredholm theory ([6]) to deduce invertibility of the Laplacian on a large
class of domains. Following this line of research, the current paper introduces a local
T1 theorem for non-doubling measures, that is, a criterion of boundedness and com-
pactness that relies on the action of the operator over a family of indicator functions
of dyadic cubes (Theorems 4.1 and 4.2).

Most proofs of T'1 theorems on non-doubling spaces employ randomization methods
([18], [20], [21], [22], [12], [13], [14]). The reason for this is the fact that, when using
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the kernel decay, estimates of the dual pair (T'xr, xs) grow logarithmically with both
the distance between the cubes I, J and the ratio between their side lengths. To
overcome this issue, the probabilistic approach considers grids of general cubes rather
than only the grid of dyadic cubes. In the space of all these grids, cubes with close
boundaries and very different sizes are rare, and thus they can be assigned a small
probability. Then, by averaging among all grids, the contribution of such cubes can
be made arbitrarily small. The costs of this method include a delicate technique of
decomposition called surgery, and the requirement by hypothesis of a non-countable
family of testing functions (one for each cube in R™). The recent work [17] develops
a local T'b theorem for non-doubling measures without the use of random grids. But
the result still requires the use of a non-numerable family of testing measures.

We introduce a new proof approach that does not use random grids and instead
explicitly addresses the contribution of close cubes with very different sizes. To work
with such cubes, the method proceeds, broadly speaking, as follows: in the dual
pair (T'f, g), we decompose each argument function as the sum of two functions with
supports in the interior of dyadic cubes and in their boundaries respectively. Then
we estimate the dual pair with functions supported inside nearby cubes by summing
telescoping sums and using that the measure of the part of each open cube close to
the boundary can be made arbitrarily small. Finally, for the dual pair over functions
supported on the boundary we take translated cubes so that the functions are sup-
ported on the interior of these translated cubes and we apply a recursion process. This
work is mostly carried out at the end of the proof of Theorem 4.2 in Subsections 10.6
to 10.8.

The new theorem allows the use of a countable family of testing functions and
opens up the possibility of extending the results to new settings such as manifolds
and fractal sets.

Regarding compactness, we provide an application to the Cauchy integral operator
with a non-doubling Radon measure p, which is defined by

Cut )= [ 2 dutw).

It is known that if the measure is defined by the indicator function of a unit line
segment S, that is, dugs = x5 dH', with H' the one-dimensional Hausdorff measure
in C, then C, is bounded but not compact on L?*(ug). On the other hand, if the
measure is defined by the indicator function of a unit square @, that is, dug = xg dm,
with m the Lebesgue measure in C, then Cy,, is compact on L?(pug). Theorem 4.4
describes for which measures p of the complex plane the Cauchy integral operator C,,
can be compactly extended on L2(j).

The outline of the paper is as follows. In Sections 2, 3, and 4 we introduce some
notation, define the class of operators under study, and state the main results respec-
tively. In Section 5, we study a smooth truncation of the kernel, while in Section 6 we
describe the Haar wavelet system. Section 7 contains two technical results on some
auxiliary functions. Section 8 focuses on obtaining estimates for the action of the op-
erator over Haar wavelets. In Section 9 we deal with the paraproducts, and Section 10
is devoted to the proof of the main result, Theorem 4.2.

Acknowledgements. I want to express my appreciation to 71 A}%, and my gratitude
to Professors Oscar Blasco, Anthony Carbery, Neil Lyall, and Gerardo Mendoza for
their unreserved support. I also thank the reviewers for their valuable work, which
helped to improve the manuscript.
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2. Notation

2.1. Cubes and dyadic cubes. Let C be the family of cubes in R™ defined by tensor
products of intervals of the same length, namely, I =[], [ri,r; + 1), with r;,l € R.

For each cube I € C, we denote its center by ¢(I), its side length by £(I), and its
boundary in the Euclidean topology of R™ by OI.

Let Dy be the family of dyadic cubes I = [[;_, 27*[ji, j; + 1), with j;, k € Z. Let
D; be the family of open dyadic cubes I =[], 27*(ji, j; + 1), with j;, k € Z.

Now, let Ay = 0 and Aa, ..., A\, € RT such that \; € RT\ (U;;ll (A +Q)). Without

loss of generality, we can assume A} < Ay < --- < A, < 1. Let a; = A\;(1,...,1) € R™.
For i € {1,...,n}, we define the families of cubes
(1) %D:ai+D1:{ai+I:I€D1},

with a; + I € C such that c¢(a; + I) = a; + ¢(I) and £(a; + I) = £(1).

For each grid 7;D, we define its first quadrant as R}"" = a; + R™*, where R™+ =
{z = (x1,...,2,) €ER" : z; > 0}.

We write any particular instance of the families of cubes 7;D (and D}, defined
later in this section) simply as D. We often call these cubes dyadic, using the term
loosely. We also denote any particular instance of the families of cubes 7;D, which is
defined in a similar way as 7;D, simply by D.

Given a measurable set Q@ C R", let D(Q2) be the family of dyadic cubes I € D
such that I C Q.

For A > 0, we write Al for the cube such that ¢(AI) = ¢(I) and £(A]) = M(I). We
write B = [-1/2,1/2)™ and By = AB. We also denote by AD the family of cubes AT
with I € D.

For I € D, we define the children of I, denoted by ch([), as the collection of dyadic
cubes I’ C I such that ¢(I') = ¢(I)/2, and the parent of I as I, € D, that is, the only
cube in D such that I € ch(l,). If Q@ € D and I € D(?), then I, C Q.

We define the friends of I, denoted by I'", as the collection of cubes J € D such that
£(J) = ¢(I) and dist(I,J) = 0, where dist(I,J) denotes the Euclidean set distance
between I and J.

2.2. Pairs of cubes: eccentricity and relative distances. Given I,J € C, if
0(J) <L), we write INJ =J, IV J =1, while if £(I) < £(J), we write [ A J =1,
IvJ=J.

We define (I, J) as the only cube containing I U J with the smallest possible side
length and such that Y., ¢((Z,J)); is minimum. We note that ¢((I, J)) =~ dist(Z, J)+
LIV J).

Let [I,J] be the unique cube satisfying £([I, J]) = dist(Z, J), AL, J] NI # @, and
AI,JINJ # 0 for any A > 1, and such that >, ¢([Z, J]); is minimum.

We define the eccentricity and the relative distance of I and J as

(I ) dist(1, J)
IV J) orvy’

ec(I,J) = rdist(f,J) =1+
We define the inner boundary of I as ©; = I’ech(l) OI', and the inner relative
distance of J and I by

dist(I A J, Drvy)

inrdist(, J) = 1+ (I NJ)
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2.3. Lagom cubes. For M € N, we define Cy; as the family of cubes in C such that
2—M < o) < 2M and rdist(I, Boa ) < M. We call the cubes in Cj; lagom cubes.

We write Dy = Cpr N D, 'D% =D \ D, DM(Q) =Dy N D(Q), and D?W(Q) =
DS, ND().

2.4. Grids of dyadic cubes of lower dimensions. We write D = D;. Let D"
be the set defined by the union of 91 for all I € D;. This set is the union of countably
many affine Euclidean spaces of dimension n — 1. Then let D"~! be the family of
dyadic cubes in D", namely, the cubes of dimension n — 1 of the form

171'[2 i gi +1) X g x H 27 i, ji + 1),
1=l+1
where [ € {1,...,n}, ji,k € Z, and oy € {Q_kjl,Q_k(jl + 1)}. We use the convention
that [T;2y 27" (i, ji + 1) = e and [T, 1 27" i, ji + 1) = .

We continue recursively. For 0 < r < n, we define 8D"t! as the union of 81 for
all I € D™, where OI denotes the border of I in the Euclidean topology of R™*!. In
this way OD"*! is the union of countably many affine Euclidean spaces of dimension 7.
Finally, we define D" as the family of r-dimensional dyadic cubes in D" *1.

3. Measure, kernel, and operator

3.1. Non-homogeneous measure. We describe the class of measures for which
the theory applies.

Definition 3.1. Let u be a Radon measure on R™, which without loss of generality
we assume to be positive.
We say that p has power growth if there is 0 < @ < n such that

2) u(I) S eI)”
for all I € C.
We now define three densities of the measure: for I € C, let
(1)
I =
p(I) (e’
INB(t, A INB(t, A
D sy HIOBEN) a0 B(Y)
tel A tel A
o< <£(I) AS0

where B(t,\) ={z € R" : [t —z| < A}, and given 0 < § <1,

pout Z E mI !

st

We denote
(3) pu(I) = pin(I) + pous(1)-

Remark 3.2. In the definition of p;, one can substitute the balls B(t,A) by dyadic
cubes just by taking the smallest Q € D(I) with B(t,\) C Q.
The sum in the definition of pyy,t is comparable to

X op(tn) dt o~ ops (28D
/1 O(ED) ¢5+1 ~2 2 02+ D)

k>0
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If p satisfies the power growth for n-dimensional cubes of D, then it satisfies
the same power growth for r-dimensional cubes of Dj. To show this, we note that
each r-dimensional dyadic cube I € D} is on the border of an n-dimensional dyadic
cube @ € D with the same side length and then pu(I) < u(Q) < 4(Q)* = ¢(I)*.

3.2. Compact Calderén—Zygmund kernel and its associated operator. We
now describe the class of kernels and operators for which the theory applies.

Throughout the paper, |-| denotes the norm on P (R™) for any 1 < p < co. However,
to simplify notation, in some inequalities we reason as if we were using [°°(R™). For
other norms, the results hold just by replacing < with <.

Definition 3.3. Let u be a positive Radon measure on R"™ with power growth 0 <
a<n.

A function K: (R x R™)\ {(t,z) e R* xR" : t = 2} — C is a Calderén-Zygmund
kernel if it is bounded on compact sets of its domain and there exist 0 < 6 < 1 and
bounded functions L, S, D: [0,00) — [0, 00) satisfying

(jt—#|+ |z — :c/|>)“ F(t,z)

|t — x| [t — x|’

() K(t,2) — K(t2)| < (

with F(t,z) = L(|t — z|)S(|t — z|)D(|t + z|), whenever 2(|t — /| + |z — 2'|) < |t — z|.
We say that K du x du is a compact Calderén—Zygmund kernel if (4) holds and

(6) |, Jim LDpu(D)= lim SUD)pu(D)= = lm  D(xdist(I,B))p,(I) = 0.

The purpose of the function F' in (4) is to estimate the tails of sums indexed by
dyadic cubes, especially in the theorems on compactness. When summing over an
infinite collection of cubes, the tails are defined by those cubes that are very large, or
very small, or those with intermediate size but at a large distance from the origin. The
functions L, S, D are used to control the contributions of large, small, and distant
cubes respectively.

Remark 3.4. Since a dilation of a function satisfying any of the limits in (5) satisfies
the same limit, that is, Dy(Lp,)(a) = L(A"ta)p,(A"1a) also satisfies the first limit,
we omit universal constants in the arguments of the functions.

We note that, without loss of generality, L and D can be assumed to be non-in-
creasing, while S can be assumed to be non-decreasing. Otherwise, we define

L(r) =sup{L(s) : s > r},
D(r) =sup{D(s) : s > r},
S(r) =sup{S(s): 0 < s <r}.

The functions £, D are non-increasing, S is non-decreasing, and, since they are greater
than the original functions L, D, and S respectively, they satisfy (4). Then one can
use the newly defined functions instead.

Notation 3.5. Given three cubes I, I, I3 € C, we denote

F(l, I, Ts) = L(U(1)S((T)) D(xdist (55, B))
and F(I) = F(I,1,I). Then the limits in (5) can be compactly written as
(6) lim sup F(I)p,(I)=0.

M—o0 I€DS,
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The two expressions are equivalent because DS, contains the cubes that are large,
small, or distant. Therefore, when €(I) tends to infinity, since the functions S and D
are bounded, we have

lim F(I)p,(T) = lim L((I)S(UD) D(xdist(T, B))p(1)

S 1SNl Plloc , lim L(E(I))p,(I) = 0.
(I)—oo
Similar reasoning applies when either £(I) tends to zero orrdist(I,B) tends to infinity.
Given 0 < § <1, we define

(7) D(1) =" 27" D(xdist(2"1, B)).
k>0

If D satisfies (5), then by Lebesgue’s dominated convergence theorem so does D.

In [25] it was proved, when @ = n = 1, that the smoothness condition (4) and

the mild assumption lim,_, o K(t,2) = 0 imply the following pointwise decay
condition:
F(t,x)
8 Kt < :
(5) Kt 2)] £ e

with F(t,z) = L(|t — z|)S(]t — «|)D(|t + «|). This is also the case when F' = 1.

Definition 3.6. A linear operator 7' is associated with a Calderén—Zygmund kernel K
if the representation

(9) Tf(x)= [ [O)K(tz)dp(t)
Rﬂ,
holds for all functions f bounded and compactly supported, and z ¢ supp f.

By (8) and the properties of f and «, the previous integral is absolutely convergent
with

/ () Kt )| dult) < IIfIILw(m(M'

4. Statements of main results

We denote Kronecker’s delta by §: 6(z) = 1 if z = 0 and 6(z) = 0 otherwise. We
denote by |z| the floor function, that is, the greatest integer less than or equal to .

Theorem 4.1. Let p be a positive Radon measure on R™ with power growth 0 <
a < n. Let T be a linear operator with a Calderéon—Zygmund kernel and measure p as
in (9). Letl<p<oo, and k=n—|a] +d(a— |a]).
Then the following statements are equivalent:
(i) T extends to a bounded operator on LP(u).
(ii) There exist k grids of n-dimensional cubes, T;D as in (1) withi € {1,2,...,k},
such that the testing condition

* 1
(10) IxtTxr1ll2ny + X1 T X1l 2y S (1)2

holds for all I € T,DUAT;D.
(ili) For the k grids D} of r-dimensional cubes as defined in Subsection 2.4 with
re{n,n—1,...,n—k+1}, T satisfies (10) for all I € D U4D5}.

Theorem 4.1 follows from the proof of the result below.
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Theorem 4.2. Let p be a positive Radon measure on R™ with power growth 0 <
a < n. Let T be a linear operator with a Calderén—Zygmund kernel and measure p as
in (9). Letl<p<oo, and k=n—|a] +d(a— |a]).
Then the following statements are equivalent:
(i) T extends to a compact operator on LP(u).
(ii) Kdp X dup is a compact Calderén—Zygmund kernel and there exist k grids of
n-dimensional cubes, T;D as in (1) with i € {1,2,...,k}, such that

(11) b Txall o + X T2 S p0)? Pr(l)
for all I € T;,DUAT; D, with Fy bounded and satisfying
(12) lim sup Fr(I)=0.

M—=00 1e(T;D)8,UA(Ti D),

(i) Kdp x du is a compact Calderdn—Zygmund kernel and for the k grids of r-di-

mensional cubes D} as in Subsection 2.4 withr € {n,n—1,...,n —k + 1} we
have that T satisfies (11) for all I € D5 U 4Dy, with Fr bounded and satisfying
lim sup Fr(I)=0.

M09 1&(Dy)5,U4(Dp)54
To be used in forthcoming results and the proof of Theorem 4.2, we provide the

following notation:

Notation 4.3. Let L, S, D be the functions of Notation 3.5. We denote
(13) Fx(I,J) = LI A J)SI A J))(D(xdist((I, J),B)) + D(inrdist(Z, J)I A J))

and Fx(I) = Fx(I,I).
Let p,, Fx, Fr be as defined in (3), (13), and (11) respectively. We write Kro-
necker’s delta by 6. We define

(14) Fu(1.J) = sup Fie(R. $)pu(RV S) + Fr(D(I. )
ScJ

and F,(I) = F,(I,I).
We apply the previous result to the Cauchy integral operator

cunE = [ L )

The cases when 0 < o < 2 with o # 1 are already known. For o = 1, we obtain the
following result.

Theorem 4.4. Let u be a positive Radon measure on the complex plane C such that
w(I) < UI) for each I € D. Let 1 < p < oo. Then the following statements are
equivalent:

(i) Cu is bounded on LP(p).
(ii) There exist two grids of two-dimensional cubes, T;D with i € {1,2} as defined
in (1), such that the testing condition

(15) IxiCruxallzag S p(d)?
holds for all I € T,DUAT;D.
(iii) For the grids of dyadic squares D% and dyadic line segments Dé as defined in
Subsection 2.4, we have that (15) holds for all I € D5 U 4Dy with r € {2,1}.
Furthermore, the following statements are also equivalent:
(i) C, is compact on LP(u).
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(ii") There exist two grids of two-dimensional cubes, T;D with i € {1,2} as defined
in (1), such that (15) holds and

C
lim  sup pu(I)= lim sup w _
M—00 1e(T;D)8, M—=00 1¢(T;D)s,UA(Ti D)5, w(I)z

iii’) For the grids of dyadic squares D% and dyadic line segments D} as defined in
a d
Subsection 2.4, we have that (15) holds and

C
lim  sup pu(I)= lim sup W =0.
M=e0 1e(Dp)s, M=o re(p),uamps,  wll)?
We end this section with a technical remark. By duality and density, to prove the

boundedness of T' it is enough to show

(16) ‘<Tfa g>lt| S ||f||L2(/L)||g||L2(/L)

for all functions f, g that are bounded and compactly supported on a cube @, with
implicit bound in (16) independent of f, g, and Q. The next lemma proves that we
can make one more assumption on f and g.

Lemma 4.5. To prove the boundedness of T it is enough to show |(Tf,g).| <
I fllL2qyllgllLzquy for all functions f, g that, in addition to the previous properties,
are supported on the interior of the first quadrant of each grid T;D.

Proof: Let fq(z) = f(x—a), Ky(t,2) = K(t—a,z—a), po(A) = p(—a+ A), T, be the
operator with associated kernel K, and associated measure j, as in (9), F, ,(I) =
Fu(—a+1),and F,7(I) = Fr(—a+1).

We note three facts that can be directly proved from the given definitions:

e K, is a Calderén—Zygmund kernel satisfying the smoothness condition (4) with
the same constant as K;

e 1, is a Radon measure of power growth satisfying (2) with the same exponent «
and constant as p;

o Iy ., Fur are bounded with the same bounds as F), and Fr respectively, and

satisfy the limits stated in (6) and (12) respectively.

Furthermore, we have | fo |2, = fin [F(t = ) du(t — a) = [|f22(. [(F. 9)ul =
|(fas9a) .|, and for = € a +sup f,

(Tfale) =Tf(a—a)= | fOK (2~ a)du()
Flt = @)K (t — a2 — a) dyt — 0) = Tul(fo) (@),

.-
Then
IX1Taxrll 22y = 1(X1) =a(Tax1)-allL2(w) = IX—a+1TX—at1llL2()
< Fr(—a+ Du(—a+1)7 = Fyp(Ipa(I)7.

Similarly for (T*),. This implies that T, satisfies the testing conditions (11) with the
same constant as T'.
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Therefore, if we prove that

(17) (T (fa)s 9a)ial S Il fall L2 llgall 22

for all operators T with the same constants as 7" and all measures i with the same
exponent and constant as p, we will have

(TF, 9)ul = (T f)a gadpa| = [{Ta(fa), ga) e |

S W fallzua 190l 22ua) = 112y 9122 )-

We now note that if supp f C @, then supp f, C a + Q. We then define a =
A(1,...,1) with X large enough such that A > 10max |A;| for all A; as in (1). In this
way a + @, and thus the supports of f, and g, which are the argument functions
in (17), are all contained in the interior of the first quadrant of each grid 7;D. O

5. Truncated operators

In this section we define and study the properties of a particular type of smooth
truncations of Calderéon—Zygmund operators. We start with a technical result.

Lemma 5.1. Let I € C, and x € I. Then
1
——du(t) <L) p (D).
[ = ) < dnon(n

Proof: For k > 0,let Sy, = {t € I /|t — x| < 27%¢(I)} and Cy = Si \ Skr1 = {t € I :
2-R+DY(T) < |t — x| < 27%¢(I)}. Then

1 2(&—1)(k+1)
[ mo=3
k

Wﬂ(sk \ Sk+1)
>0

S DY 2R (u(Sk) — plSi)).

k>0

To prove the result, we write Ir = £(I)17¢ ZkR:O 20=Dk(q, — ak+1), where ap =
1(Sk). Then we bound Ig uniformly on R. By Abel’s formula, we have

R
Ig = E(I)l_a (GO _ aR+12(a—1)R + Zak(2(a—1)k _ 2(@—1)(k—1))).
k=1

Since ag < u(I) = p(I(1)* < pin(1)L(I)*, for the first term we have ¢(I)1=%ag <
£(I)pin(1).
Similarly, since
ap1 = p(Sri1) < p(I N Bw, 27 FDUT))) < pin(1)27 V(D)
the absolute value of the second term can be bounded by
(D' apea 2V S UD) pia (127 < 6T pin(D)-

Meanwhile, since a, = u(Sk) < pin(I)27%¢(1), the absolute value of the last
term is bounded by

=

R
(DY a2 VR — 27Ty S pw(1) Y278 S D pin (D). m
k=1 k=1

We now define the following smooth truncation of an operator associated with a
Calderén—Zygmund kernel.
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Definition 5.2. Let ¢ be a smooth function such that 0 < ¢(z) < 1, sup¢ C [—2,2],
¢(z) =1 for all |z] <1 and 0 < |¢'(z)| <2.

Let Q = [—2",2"]" such that £(Q) > 4 and v = \/n27° such that 0 < v < 1. We
define the kernel

o=t -o(152)) ) 45)

Let T, o be the operator with kernel K, q.

In the next result we prove that 7', o is bounded with a bound that depends on ~y
and @, while it has a Calderéon-Zygmund kernel whose estimates are uniform on ~
and @. Later we show that T, o satisfies a variation of the testing condition, which
is close to being uniform on v and Q. That is enough for our purposes in the proof
of the main result.

Lemma 5.3. The operator T, g is bounded with bounds depending on v and Q.
Moreover, K. ¢ is a Calderon—Zygmund kernel with parameter 0 < 6 < 1 and constant
independent of v and Q.

Proof: We first show that K, g is a bounded function: by (8),

1 t— 1
ot 5 o (1-9(57)) < 50

The last inequality holds because when |t — x| < 7 we have qﬁ(‘t;ﬂ/ml) = 1 and so,
the second factor is zero. Then, since K, g is bounded and supported on @ x @, for
f,g € L*(n) we have by the Cauchy—Schwarz inequality

(Tafall = [ 5, a0 70ate) dute) duta)

< </Q/Q|KW,Q(t,m)|2du(t)du(x))2||f||L2(M)||g||L2(M)

wmQ)
S oz £l z2mllgll L2 (-

This proves that the operator T ¢ is bounded.

We now show that K, g is a Calderén-Zygmund kernel. We prove the appropriate
estimate for A = |K, o(t,z) — K, o(t',x)|, the work for |K, q(t,z) — K, q(t, )]
being similar. Let ¢, ¢/, z be such that 2|t — | < |t — z|. We note that this inequality
implies [t —x| < |t/ —z|+ [t —¢| < |t/ — x|+ |t —x|/2 and so, |t — 2| < 2|t' — z|. Then

A= wten—x(iig )y ) (- (=)
K |‘¢<4|t|> <4t/>‘¢<4lw|>(1¢(lt;x|)>
(o () o 5|

Since 2|t — ¢/| < |t — x| we can use the kernel smoothness condition (4) and the fact
that ¢ is bounded, to estimate the first term by a constant times

<Itt’>6F(t’w) = b,

[t—z|) |t—=| |t — x|t
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If the second term is non-zero, then x € @, and either t € Q or t' € Q. If t € Q, we
have |t — x| < |t| + |z| < €(Q). Meanwhile, if ' € @, we get |t — x| < 2|t/ — x| <
2()¢'| + |z|) < 26(Q). Then, by the kernel decay condition (8), the fact that ¢ is
bounded, and the mean value theorem on ¢ with bounded derivative, the second
term can be estimated by a constant times

F(to) |t =l o Fto) [t—#] _ |t—t]°
t—zl* Q) T lt—a[*ft—x] T |t — x|

F(t,x).

If the third term is non-zero, then ¢,z € @, and either [t —xz| < 2y or [t/ —z| < 2v. In
the latter case we have |t — x| < 2|t/ — x| < 4. Then, by using again the kernel decay,
that ¢ is bounded and the mean value theorem on ¢, we can estimate this third term
by a constant times

Ft,a) |lt— o]~ |t —al| _ Fto) [t—t] _ |t~ ¢
[t —afo Y Sl—alt t—al = f—alots

F(t,x). O

For the next result, we denote

F,o(I) = (S() + LUQ) %) + D(E(Q))) x(y 10000 (U)X (0,100 (D))

Lemma 5.4. The operator T, q satisfies the following testing condition: for I €
D(10Q),

1
Ix1Ty.ox1llezwy S GUI)u(I)?,
where G(I) = F,(I)+Fy q(I)pin(I) and the implicit bound is independent of v and Q.

Remark 5.5. When F' = 1, since F, g(I) < 1, the result implies that T, ¢ satisfies
the testing condition uniformly on v and Q.

When limps— o0 SUp;epe uspe, Fiu(I) = 0, due to the factors x(y,100(q) (€(1)) and
X[0,10¢(@) (|c(I)]), we also have limps oo SUD7epe UaDS, G(I)=0.

Moreover, since lim, ;o limyg)—oo Fy,(I)pin(I) = 0, one can make the func-
tion G(I) arbitrarily close to F),(I).

Proof: By symmetry of the kernel K, g with respect to the variables ¢, x, it is clear
that the computations to prove the testing condition on T o also work for T*Q
Therefore, we write the calculations only for T, . We are going to show that for
all I € DUAD we have ||x;T ,QXIHLQ(M) < G(I)?u(I), with G bounded and such that
limps— o0 SUP epe Lape, G(I) = 0.

We also note that if ¢(I) < ~, then x;T5 oxr = 0. Therefore, we assume v < ¢(I).
With this and the fact that I C 10Q, we have x[,,10¢(0)](¢(I)) = X[0,10¢(Q) (lc(I)]) = 1.
Then we do not need to work with such factors.

Since K, ¢ is bounded, we can write HX]T%QXI”%Z(H) as

( (|t Y |))"’<f(g|)) dnlt) 2¢(f(5')>2du(x) — Int.
alt]  4)x|

By the mean value theorem, there exists £ € (ﬁ7 W) such that

ANZ (Y J2)
(18) ¢<f<@)‘¢(«@))+$(© 1w
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Accordingly, we bound Int by the sum of two terms:

o (-of1571) |

¢<£1(|5|)>4 dp(x)
[| [ w0 (1-6(22) )00 o e 2¢(€4(|§2))2 o),
which we bound in different ways.

Since 0 < ¢(x) < 1, sup¢ C [—2,2], and ¢(x) =1 for all |z| < 1, we estimate Inty
by a constant times

/1(/ tel |K(t7$)dﬂ(t)>2du(x)+/l

y<[t—z|<2y

Int1 =

and

(19) Intg =

du(x).

| o Kl

2y<[t—z|

By the kernel decay and the fact that |[t—x| < 2y implies F(¢,z) S S(|t—=z]) < S(v),
the first term can be bounded by a constant times

20) /1< /7 |f(_t QT) du(t))zdu(m < S(y)? /1 Wdﬂ(f)

<1<
<SP pin(1)?pu(I) S G(I)?u().

To deal with the second term, we denote D, ={t € I : |t—x| < 2y} and DS = I\ D,.
Since XDe = XI — XD,» the second term can be written as

[ 10w @F duta) < [ 6@ dute) + [ 70, @)F duto)
The new first term equals
IXrTx1lI22q) S Fr1)*u(]) < GU)? (D),
where we have used the testing condition (11) and Fr < F,, < G.

For the second term, we denote D = {(t,z) € I x I : |t — z| < 2v}, and g(z) =

T(xp,)(z) for x € I. Then we are going to prove that ||x7gl/z2(,) < G(I)u(I)2 or,

Nl =

equivalently, that for all ®; € L?(u) with support on I and ||®;]|p2(,) < p(I)
have |(®;.g)| S G(Du(I).

Let I; € Dy(I) such that I; x I; C D is maximal inside D with respect to the
inclusion. Therefore, ¢(1;) is the same for all cubes and it is comparable to v. In fact,
U(I;) = 2v/+/n. Let I, , be the parent of I; and let 41, ,, € C such that c(41; ) = c(L;p),
and ¢(41; ,) = 40(1; ;). Then we can choose two subcollections of bi-cubes I; , X I; ,,
and 41;44 p X 4144 p, satisfying the following: they completely cover the union of D
and aset D' C {(t,z)eIxI): vy < |t—z| < 87}, the cubes 41, , are pairwise disjoint,
and the intersection I; , N4, ) is either empty or it is a cube that belongs to ch(I; ;).
In some cases that intersection is exactly I;.

we
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T
,’D
4l 44
P ’ z |z
D 7
T 4
. 7’
Iz+4,p sl 4
/7 4
1+’ ,
7’ 7 d
7’
. 7’
I1,p s 7
7|7
4li—a,p ARG
4 7|z
7’
7z
Iq‘,—4,p 7z 7|7
Ii74 7| 7

We denote the indexes in Z™ corresponding to the bi-cubes in each collection as O
and & respectively. Therefore, we can write

XD(t7 1‘) = Z XI; p (t)XIi,p (l‘)—‘rz X4Ii,p(t)x41i,p (.Z‘) - Z XI; (t)XIi ('r>_XD' (t, l‘)
€O €€ i/Il‘C[j’p
jeo
With this, we have

(@) <> ®rxa,, Txr )+ Y (@rxar, ,» Txar,,)|
€O 1€E

+ Y W@ T + 1@l 2ol Txor | 2
i/QiCQj,p
JjEO
Now, as we did in (20), we can estimate the last term by a constant times

(I

te
y<|t—x|<8y

On the other hand, by the testing condition for 7" on the cubes I; , and Cauchy’s
inequality, the first term is bounded by

S @, ezl Txr ey S D 1®rxa, |2y Prlip)uli,)

K (t,2) du(ﬂ) du<x>) <o),

Nl

€O €O
3 3
< (S, ) (S utn) s
1€O €O

We have used that in I; , we have |t —z| < ~, and so we get Fir(L;,) S Sr(v) < G(I),
where from (12), St satisfies lim,_,o St(y) = 0.

Now, since the cubes I; , C I have the same side length, they are pairwise disjoint.
Then 3,0 u(lip) < p(I) and

Do lerxr, 72 = Z/ |1 (2)? du(z) < [|@1172(,) < ud)-
i€eO ico’lip
With this, we get

S @ rxr 2l Txr, 2 < G ud).
€O
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Similar computations using the testing condition for T on the cubes 4I; , (which
are also pairwise disjoint) and I; respectively prove the corresponding inequalities for
the second and third terms. This finishes the work to estimate Int;.

To deal with the second term Ints, we note the following fact. If ¢,z € 271Q, then
d)(%) = d)(f(l—g)) = 1 and so for |t| # |z| we have, from equality (18), that the corre-
sponding ¢ satisfies ¢’(£) = 0. This implies that the integrand in (19) is zero. Moreover,

when [t| = |z| we have ¢'(£) = 0 by definition, and so the integrand is again zero. In
other words, if the integrand in (19) is non-zero, then (¢,z) € (@ xQ)\ (271Q x271Q)
and |t| # |z|. In that region we have |z — t| + |z + ¢| > max (|z — t|, |z + t|) > c€(Q),
with ¢ = \/n/4. With this,

o If [z —t] > cl(Q)2, then F(t,x) S L(|t — z|) S L(U(Q)%) < Fy o(I).
o If [z — t| < cl(Q)2, then
o+ 1] > cl(Q) = |t — x| > Q)2 (LQ)? — 1) Z cl(Q)/2,
since £(Q) > 4 implies £(Q)z — 1 > £(Q)z /2. With this and (8),

|t + 2| s
M) SDEQ)2) < Fy ().

Now we reason as follows. Since 0 < ¢(z) < 1, 0 < |¢/(z)| < 2, and ¢(z) =
for |z| <1, the second term is bounded by

O (W e CEE TR PYE e

< (07 ) er KON 2v0t) du(t)>2du(fﬂ)

[t—a]

<[ [ e st eatd o) (o)

[t—z|>y

b0 [ (g [ e s @) i)

[t—z|>v

F(t,z) < D(1+

By Lemma 5.1, the last expression is bounded by a constant times

Fot? [ <€(Z2)Pin(f)€(f)> du(z) < Fy (1) pu(1)20(I) < G(Iu(D),

where we have used that since I C 10Q, we have (1) < (Q). O

6. Haar wavelet systems and the characterization of compactness
6.1. The Haar wavelet system.

Definition 6.1. Let p be a measure on R™. For R € DUD with pu(R) # 0 we denote
the average (f)r fQ ). For R € D with u(R) =0, we set (f)r = 0.

We define the averaglng operator by E rf = (f)rxr and the difference operator
by

(21) Asz( T E1f>—ERf= S () e

Iech(R) Iech(R)
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For k € Z, we define
Exf= Y. Erf and Avf=Epf—Exaf= »  Agf.

ReD ReD
L(R)=2""F L(R)y=2""F

Definition 6.2 (Haar wavelets). Let I € DUD. For u(I) # 0 we define the Haar
wavelet function associated with I by

1 1 1
Yr = p(l)? <XI - X1p>,
p() = )
where I, € D is such that I € ch(l,). For u(I) =0 we set ¢y = 0.

Lemma 6.3. For R € DUD and f locally integrable we have
Arf = Z (fsor)dr
Iech(R)
almost everywhere with respect to L.
Proof: If u(R) = 0, then p(l) = 0 for every I € ch(R). With this, both Ap = 0

and ¥ = 0, and so the equality is trivial.

For u(R) # 0, from (21) and p(R){f)r = >, p(D){f)r we have
Iech(R)

Arf= > (Hixi — (Hrxe= > <f>I(XI— :j((]%XR)Z > o 02 (f)rer,

Iech(R) Iech(R) Iech(R)

where the last equality holds even for those terms for which u(I) = 0 since in that
case (f); =0.
Also from (21) we have for each I € ch(R)

(22) (Arf)r={fl1—(fIr
and so
Arf= Y wDPArfrer+{Hr Y, wdier.
Iech(R) Iech(R)

For the first term, we compute the coefficients: for u(I) = 0, we have ¢y = 0 and so
w(D)2(Arf)br =0 = (f,41)1hr. Meanwhile, for ju(I) # 0, we can use (22) to write
W0} @y =0} [ 10 (8 XY o) = (f,00).

We now denote by R’ the union of cubes I € ch(R) such that p(I) # 0. Then for
the second term we have

by — by = _ D
S b= Y phiyr Z)(xf rexe)

Tech(R) Tech(R) Tech(R
(23) n(1)#0 u(I)7#0
o ME) —0
almost everywhere since pu(R\ R') = 0. O
Lemma 6.4. Let f be bounded and compactly supported on Q € D. Then
e [r@e@ao = gin [( 5 e+ Eof))ow dute)
IeD(Q)
2~ M <y(1)

for g bounded and compactly supported on Q.
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Proof: We first note that on the right-hand side of (24) we can write

> (fr)er = > > (.

1eD(Q) ReD Iech(R)
2= M <p(I)<log £(Q) 2= M= <4(R)<log £(Q)

Since f is bounded and compactly supported, we have by Lemma 6.3
> (fn)er = Arf
Iech(R)
p-almost everywhere. Then we can write the right-hand side of (24) as
I
s > S (b (@)g(e) due)

ReD(Q) Iech(R)
2= M= <e(R)<log £(Q)

= lim /Q Z Agf(x)g(x) du(x).

M —o0
—M<k<log £(Q)

Now we choose M € N such that 2= < ¢(Q). For = € Q, we select J € D such that
x€JCQ,and {(J)=2"M. Then, by summing a telescopic series, we get

xq () > Apf(x) = (flaxs(@) = (Noxe(r) = xo(@)(Erm f(z) — Eq f(2)).
—M<k<log £(Q)
That is,
@ X M)+ Eef@) = xal)Eufla)
~ M<k<log £(Q)
With this,
lim < Z A f(z) + EQf(x)) g(x)dp = lim Ey f(x)g(z) du(z).

M— o0 M—o0 Q
—M<k<log £(Q)

Since f is locally integrable, by Lebesgue’s differentiation theorem we have that Fj; f
converges to f pointwise almost everywhere with respect to g when M tends to
infinity. Moreover, since

[Ea f(@)g(@)] S 1l 9]l Lo () x@ ()

we can use Lebesgue’s dominated convergence theorem to conclude the result. O

Similar work shows the validity of the following result:

Lemma 6.5. Recall that D denotes the family of open dyadic cubes and dD denotes
the union of the borders of all dyadic cubes. For I € D, we denote I = I \ oI € D.

Let f be integrable and compactly supported on Q € D. We denote f1 = f — fxop
and let EQf be the average operator as in Definition 6.1 but with cubes in D. Then
the equality

[ st autn) = [at@)( X (i) + Bof)) dute)

1eD(Q)
holds for g bounded and compactly supported on Q.
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6.2. A variation of the Haar wavelet system. We now define a new Haar wavelet
system and show that the analog of Lemma 6.3 holds. These wavelets will be used
when dealing with the paraproducts.

Definition 6.6. Let Q € C, J, € D. We denote c;, = c(J,,). For I € D with u(I) # 0,

we define
0 = iy (X)X o

() p(Ip)
If u(I) =0, we define w?{l} =0.
We omit the dependence of ¢/1"j on the cube Q. We note that ¢ = 0if J,NI, =
(0, and that w?l}} X1 = Y¥rx7 when Jp Ccl.

We define the localized averaging operators by Eg(f) = (f)rxr(cs,)xq and the
corresponding localized differences

Baf=( 3 Eir) - Eaf = (X (rutes)) o~ Dxales, e

Iech(R) Iech(R)

The following result is the analog of Lemma 6.3 for the localized difference operator.
Lemma 6.7. Let R, J, € D, with {(J,) < {(R) and pu(J,) #0. Then
Ag(f) = Z (fooneiy
Iech(R)
for [ bounded and compactly supported.

Proof: If u(R) = 0, then both sides of the equality are zero. If u(R) # 0, we reason
as follows. Since

R)(f)r= [ fdu= fdp = M(I)<f>7
: /R Iech(R / Iech(R) !
w(I) #0 ;L(I)#O
we have
Saln= 3 i (ter) - Eibxnten) o= 3 s,
Iech(R) H Iech(R)
p(I)#0 w(1)#0

Now, by (22), we have (f); = (Arf)r + (f)r and so
Ar(H)= Y wMHARHWM +(Hr > wDighy .

Iech(R) Ie(cIl;;IE)
o

We have as before that u(I)2 (Agf)r = (f,¢r).
On the other hand, now let R’ be the union of cubes I € ch(R) such that u(I) # 0.
Since u(R) = S reanm (1), we have

u(I1)#0
1o w(l
> unie = 3 (len) - Hintes,))xa
Iech(R) Iech(R) K
H(D)£0 ()0

= (XR’(CJ,,) - XR(CJp))XQ = —XR\R' (CJ,,)XQ
With this,
Ar(f) = Z (Fonvy = (A rxrr(cs,)Xq-

Iech(I,)
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If xp\r(cs,) # 0, then ¢(.J,) € R\R’, which implies RN.J,, # (). Since £(.J,) < {(R),
we have J, C R and so J, C I for some I € ch(R). Since u(J,) # 0, we deduce
w(I) # 0, which implies J, C I C R’. But this is contradictory with ¢(J,) € R\ R’
and so XR\R/ (C.]p) = 0. ]

6.3. Orthogonality and Bessel inequality of the Haar wavelet systems. The
following lemma summarizes the orthogonality properties of the Haar wavelets.

Lemma 6.8. Let I,J € D or I,J € D. Then [;(x)du(z) = 0. If u(I) = 0, then
(V1,0 1) =0, while if u(I) # 0, then
(5(1, I )
WD A))

where we denote §(1,J) =1 if I = J and zero otherwise. In addition, if u(I) # 0, we
Zi41
have |[¢r||page S p(I)~" 7%,

Proof: The first equality is trivial. Equality (25) is also trivial when I, N J, = 0.
When I, C Jp, 9 is constant on the support of 1); and so the dual pair is zero due
to the mean zero of 1;. Symmetrically, we have the same result when J, C I,,.

On the other hand, for J, = I,,, we have

N

(25) (Wr,05) = 6(Lp, Jy)u(I)? u(J)

_ oot oot [(xa@) xn (@) (xu(x)  xg, (@) -
) =it [ Gt =5 ) Gy~ ey ) e
_oonkoona Lo pdnJd)  pd)
= #D2ul) uu)( u(7) u<1p>>'
For I # J, since I NJ = 0, we have
_ DEp()e
(Ur,95) = — AR

while for I = J, we get

o) (i = 5 )

On the other hand, for u(I) # 0,

L1 1
< (D3 [ —— _t
1llpae < n(l)? (M(I)HXI”LQ(M) + (L) IXI,,LQ(H))

) < 2u(n) 4+

Il
=
=

-

7 N
=
—

~
N—

»ra\‘H

_|_
=
—

~
N—

-Q\‘H

since p(I) < p(Ip). O

Although these Haar wavelets do not constitute an orthogonal system of functions,
they still satisfy Parseval’s identity, as we see in the next lemma.

Lemma 6.9. For f € L*(u) supported on Q € D, we have
ey = 3 KE0n)E +11Bof 2.

1eD(Q)
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Proof: We have from Lemma 6.4

e = [ Fe) @) duta)
= lim f(zx (
M~>oo/ 1eD(Q)
2= M <p(I)

:]\}l—r>noo Z <f’wl><fawl>+<fa<f>QXQ>

IeD(Q)
2~ M<p(1)

= > UL+ (HHmQ). 0

1eD(Q)

U, iV () + EQf<x>) d(x)

Corollary 6.10. For f € L?(u) supported on Q € D, we have
If = Eoflizqy= > IfHenl

1eD(Q)

With this, || 172,y = 1EQf720u) + If = Eqfll7z(,-
Proof: By Lemma 6.9,
If = Baflizgy = D If = Eafivn)P +(f - Eaflon(@ = 3. I(fvnf,
IeD(Q) IeD(Q)
since I C @ implies (Eq f,vr) =0, and f — Eqgf has zero mean. O
6.4. Characterization of compactness. In this subsection, we explain how to

use the Haar wavelets to characterize compactness on L?(u) of Calderén—Zygmund
operators.

Definition 6.11. Let (¢7)7ep be a Haar wavelet system of L2(u). For every M € N
and @ € C we define the lagom projection operator by

Puf= > (fivnvr,
IeDM(Q)

where (f,¢r) fRW z)du(x). We omit from the notation the dependence
of the operator with respect to Q. We also define Pi;f = f — Py f. We note that
Piif = P

Remark 6.12. When we deal with boundedness, we can consider M =0 and so Py, f =
0 and Pi; f = f.

Lemma 6.13. For f € L?(u) supported on Q € C,
1Paif = EQflZ2q = Z [(f, )]
1€D5,(Q)
Proof: By Parseval’s identity as in Corollary 6.10 we have
(26)  \Parf — EQfliequ = If = Puf — Eofllizg = Y. W — Puf,von)*.

IeD(Q)
w(I)#0
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Now, for I € D with p(I) # 0,

(27) (Pufovry= > (Lo Wrdn) = > (fon) s ¢r),

JEDM(Q) Jech(I)
since from (25), (¢, 9r) = 0if I, # Jp.
With this, we reason by considering two cases.

(a) If I € D§;(Q), we have I, # J, for all J € Dy (Q). Then, from (27), (Pap f,¢r1) =

0 and thus (f — Pa f,¢r) = (f. ¥r)-
(b) If I € Dp(Q), by using again (25), we have

B N 1 o(1,J) _ 1
<PMfﬂ/JI>—J€§Ip)<f’w7> )z pJ) < n(l) u(@))

- <f71/11>*

. UL
(1)

ST (fwnnld)E.

Jech(I,)

1

By (23), we know 3_ ;¢ o,y 1(J)2¢ = 0 a.e. with respect to y. Then
> (et = [ 1) ()34, (@) du() = 0.
Jech(Ip) JEch(Ip)
Then from (28) we get (Parf,vr) = (f,v¥r) and thus (f — Py f,91) =0
With both results, we end the equality in (26) as follows:
1Pz f — Eqfll7zq = Z [(f )] [
1eD5,(Q)

Remark 6.14. Previous work also shows that

IPrflZogn = D, KfHEDP < 1flLe

IeDm(Q)
and so ||PMHL2(}L)*>L2(,UI) <1 and ||P]J\;[‘|L2(#)*>L2(H) <1.
Corollary 6.15. Let f € L?(uu) supported on Q € C. Then
: 1
(29) A}E)noo IPaif — EqfllL2(u = 0.

Proof: By Lemma 6.9 we have };cp ) [(/; Pr)|? < Hf||%2(“) < 00. Then, by Lem-
ma 6.13,

Jim 1P f = Eoflfagy = Jim > I{fvn)* =0. 0
I1eDs,(Q)

The following result, which is implicitly obtained in Lemma 6.13, will be used later
during the work with paraproducts.

Lemma 6.16. Let f € L*(u) be supported on Q € C. Then for I € D5;(Q)
<Pﬁf7¢1> = <f7’(/}1>7
while for I € Dp(Q)
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Proof: By definition of Py;

<PMfa¢I> <f71/)1> <PJVIf7wI>a
while by definition of Py; and the orthogonality Lemma 6.8,

(Pufotry =Y ()@ dry =Y (fs) s, ¢r).

JeDM(Q) JeDM(Q)
Jp=1I,
If I € Dp(Q)°, there is no J € Dy (Q) such that J, = I, and so the last expression

is zero. Then (Pi; f, 1) = (f,¥r).
On the other hand, if I € Dy;(Q), we have by Lemma 6.8

1 p(D ()}
(Pufobn) = (fivnp)| —= — —F~ | — Z (fig)————"—
(N(I ) u(fp)> 1@ aen)
JAL
:<fa¢1>_ Z <f7wJ>'U/(I)2(5/()J)2
JEJ,DilI(,Q) Fip

Then, by the definition of Pj; first and v later, we have

<PJ\JvawI>: Z <f7¢]>’u(‘[z[z;/()b7)2
JEDM(Q) p
Jp=1I,
_ I)% XJ(x)iXI,,(x) "
iy /e JEDM(Q)"‘”(Mn iy ) o

= M(I)% T T) — T T (7
= 1) <J%DZ%@> @) dut) / F(x) dp >J%@) u(fp)>

- ?) (/ f(2) dula / f(m)du(x)>=0- O

5. Representation of operators. We now show how to decompose bounded
operators in terms of wavelet systems.

Lemma 6.17. Let T be a bounded operator on L*(p). Let (11)rep be the Haar wavelet
system. Then

(30) (Tf,9) = > (for)g. 0s)(Thr,vs) + (T(Eqf). g) + (T(f — Eqf), Eqg)

1,7eD(Q)

for all f, g bounded and compactly supported on Q € D.
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Remark 6.18. A symmetric way to write the previous equality is

(Tf—EBqf.g—Eqg) = > ([r){g:¢s)(Thr, ).

1,JeD(Q)

Proof: Let Pys be the lagom projection related to the Haar wavelet frame. Since T is
bounded, we have

KTf,9) = (TPuf,Pug) — (T(Eqf),9) — (Tf, Eqg) + (TEq/f, Eqg)|
=[T(f = Puf—Eqf),9) +{TPuf.g—Pug— Eqg)
—(T(f = Puf — Eqf), Eqg)l
< T Pazf = Eqfllz2gollglzcuy + 1T Prs fllL2 o | Parg — Eqall

TPz f — Eqfllr2(u 1 Bqgllza ()

Now, since by (29) we have that ||P; f — Eq f|l12¢4) and [|[Pi;g — Eqgll12(u) tend to
zero, so does the left-hand side of the previous chain of inequalities. O

As explained in [25], to prove the compactness of an operator on L?(p) it suffices
to show that (T'Pj; f, Pi;g) tends to zero when M tends to infinity uniformly for all
functions f, g in the unit ball of L?(u). For that, we need a representation of this
dual pair.

Corollary 6.19. With the same hypotheses of Lemma 6.17, let Py be the lagom
projection related to the Haar wavelet frame. Then

(PuTPiifog) = > (L)) (T, )
1,JEDS,(Q)
+(T(Eqf), Paig) + (T(Pirf — Eqf), Eqg)
for all f, g bounded and compactly supported on Q € D.
Proof: We can write
(PifTPitf,g) = (TPitf, Pizg) = (Tf,9) — (T f, Prg) — (TPu f,9) + (TParf, Prrg).-
By (30) and the facts that Eg(Pyf) =0 and Eg(Eqf) = Eqf, we have

(PETPL.g) ( Y oY - Y+ Y )<f,¢1><g,wJ><Tw1,¢J>

1,JeD(Q) I1eD(Q) IeDm(Q) I,JeDM(Q)
JEDM(Q) JED(Q)

+ (T(EQf), 9)+({T(f—Eqf), Eqg) —(T(EqQ[), Pmg) —(TPum f, Eqg)

(T - X et

IeD(Q) IeDM(Q)
JeD(Q) JeDH(Q)

+(T(Eqf), 9 — Prg) —(T(f = Eqf = Puf), Eqg)

= D> {Leng v (Tr, )

IeDy,(Q)
JED(Q)

+{(T(Eqf), Parg) + (T(Pirf — Eqf), Eqg). O
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7. Technical results on the functions F' and F,

We prove two technical results on the properties of F', defined in (4) of Defini-
tion 3.3, and F),, defined in (14), when acting over cubes of D5,.

7.1. An extra property of F. Recall the auxiliary functions L, S, D, and F
provided in Definition 3.3 and Notation 3.5.

In [25], it was proved that the smoothness condition (4) implies the modified
smoothness condition (31), which we will often use:

(It — '] + |z — &/|)° F(t,z,t', )
|t — |t — x|

(31) [K(t,z) - K(t',2)] S

whenever 2(|t — t/| + |z —2'|) < |t —z2| < |t/ — 2'|, with 0 < § < 1 and
/ / !/ / / |t+x/|
F(t,l‘,t , X ) = L1(|t — X |)Sl<|t—t ‘ + |$ - |)D1 (1 + m )
where Ly, S1, D; satisfy the limits in (5).

7.2. A technical lemma on F'. Now we state and prove the mentioned technical
results.

Lemma 7.1. Let I,,J, € D such that {(J,) < £(I,) and dist(I,, J,) > €(Jp). Let
tel,, xecJy, cj, =c(Jp), and

Pit,a) = Lllt = e, )80 — es, D1+ (-2,
Then
F(1,2) < 01D ])SEC)Dist (L, 1), B).

Proof: Since L is non-increasing, S is non-decreasing, |t — cj,| > dist(I,,J,) =
U([Ip, Jp]) and |z —cy,| < £(J,)/2, we get

F(t,z) < L(¢([L,, Jp]))S(f(Jp))D(l + 1+t|:iJcJ|>

Fromt € I, cj, € Jp, and I,N.J, =0, we get |t —c;, | < dist(1p, J,) +£(1p) +£(Jp)
2(({I,, Jp)). Then, since |t +c;,| > 2|cs, | — |t — ¢y, |, we have

|t+CJ| |t+CJ|
201+ —2 | >2 4+ —— 2
< 1+‘t_CJP‘ - 1+|t_CJp|

IN

>2+ 2‘0]p| - |t_CJp|
- 1+|t_CJP| 1+|t—0]p|

> 1+ _enl .

T 1 (s Jp)
Now we bound below the numerator in the last expression as follows: since |¢(1p)| —
|e(Jp)| < le(Ip) = e(Jp)| < ((Ip, Jp)), we have

({Ips Jp))  Jelp)] = le(Jp)]
2

1+£(<Ipv‘]p>)+|CJp‘ > 1+ 9

+ + le(Jp)]

> 5 (14 ) + 3lelt) + ).
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Then 1 1
ea,l = Fle(l) + e(Tp)] = 5 (1+ €Ty, 7))
and so,
el L) el 1

1+ 0((1,, J,)) 2 1+0((1,,J,)) 2

(el + (T2
‘2(” 1+e<<fp,J>>>

13 | |c(Ip) +c(Jp)]/2
23(2+ ENITAA)) )

Now, since (c¢(Ip) + ¢(Jp))/2 € (I, Jp), we have [(c(Ip) + c(Jp))/2 = c((Ip, Jp))| <
0({Ip, Jp))/2 and so we can bound below the previous expression by

1/3 |C(<Ipv*]p>)| 1 1 |c(<IP7‘]P>)|
( - ) =3 (l * 2max<e<<1p,Jp>>,1>)

3
_ 1 lc({Ip, Jp))
G (2 * max<e<<fp7Jp>>71>)

> 1 o LWy, o)) [ + max(E({lp, Jp)), 1)
~ max(£((Ip; Jp)), 1)

2 1+ L({Ip, Ip))

dist((Ip, Jp>, B)
= (€L Jp)) 1)

= rdISt(<II)a ‘]P>7 B)a

with B = [~1/2,1/2]".
Finally, by using that D is non-increasing, we get
F(t,x) < L[y, Jp)))S(U(Jp)) D(xdist (I, Jp), B)). O
7.3. A technical lemma about F},. Recall the definition given in (14):
Fu(L,J) = sup Fic(R, $)pu(RV S) + Fr(1)5(1,.J),
S
and F,,(I) = F,(I,I), where p, is defined in (3), Fx is defined in (13), Fr is given
n (11), and ¢ is Kronecker’s delta.
Lemma 7.2. By (5), given € > 0, we can take M > 0 so that
(i) if (1) > 2M, then L(2™)p,(I) < e,
(ii) if ¢(I) < 27M, then S(2=M)p,(I) < e,
(iii) if rdist(1,Byn) > M7, then D(M#)p,(I) < ¢, and
(iv) if I € DS, then Fr(I) <e
Then for all I € DS, and J € Dy, we have that either F,,(I,J) Se, or|log(ec(,J))| 2
log M, orrdist(I,J) = Ms.

Proof: We start with Frp(I)d(1, J) since the proof is trivial in this case: from I = J €
DSy C D5, we have Fr(I) < e by the choice of M.
We continue with Fi. Since I € DS,,, we consider three cases:

(a) When £(I) < 272M we have (I A J) < 272M_ Since J € DS,, we distinguish two
cases:
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(a.1) If £(J) < 2=M then we have (I V J) < 2=M and so we get F,(I,J) < S(¢(I A
I))pu(IV J) < S(Q_M)PM(I\/ J) <e.
(a.2) If £(J) > 2=M then
Wag _un 2,

S R

and thus, logec(,J) < —M.

(b) When £(I) > 22M since J € DS, we distinguish two cases:
(b.1) When £(J) > 2M we get £(IV.J) > £(INJT) > 2M. Therefore F,,(I, J)p,(IVJ) <
LI NT))pu(IVT)<LE2M)p,(IVJ)<e.
(b.2) When £(J) < 2M | we have that
(Ing) gy  2M _ oM

el )) =30V ~ D) 2

and thus, logec(1,J) < —M.

(c) When 272M < ¢(I) < 22M with rdist(I, Bgan) > 2M, we have |c(I)| > (2M —
1)22M | We fix a = %, B=7v= %. We distinguish two more cases:

(c.1) When £(J) > (2M)*22M | since o > 0 we have

(1) 22M 1
= < 8
ec(I,J) 15 < (@M SM™s,

which implies logec(I,J) < —log M.
(c.2) When £(J) < (2M)222M | we have (I V J) < (2M)*22M | Now:
(c.2.1) When rdist((I,J),B) > (2M)?, we also have rdist(I\ J,B) > (2M)?. Then

Fr(I,J)p(IVJ) < D(xdist((I,J),B))p(IV J) < D(MP)p,(IV J) <e.

(c.2.2) When rdist((Z,J),B) < (2M)?, we get |c((I,J))| < (2M)P(1 + £({I,J))).
Then, we examine the last two cases:
e When ¢((I,J)) > (2M)72*M | we get

(7)) @MY
(IvJ) = (2M)222M ~ T

e When (((I,J)) < (2M)72?M | we have instead
(1) = e(J)] > [e(I)| = |e((L, ) — e(J)| = |e({L, )]
> e(I)] =271 ((1, J)) — (2M)P (1 + £((1, J)))
> (2M —1)22M — (2M)72*M — (2M)P(1 + (2M)72%M)
> (M=M= MPT)22M > (Af—2)[3)22M > 21 122M
for M > 2. Then

o) el L M2 e
M~ =M Mz,
(IVT)  ~ (2M)e22M ~ C o H

rdist(1, .J) = f; ; >

rdist(7, J) >

Definition 7.3. As shown in the proof, F,,(I,J) < € holds when either £(IAJ) > 2M
or ((I'v.J) < 2=M or rdist((I,J),B) > M'/®. For this reason, we denote by Fa
the family of ordered pairs (I,J) with I,J € DS, satisfying some of these three
inequalities.
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8. The operator acting on bump functions

In this section we estimate the dual pair (Tr, ) in terms of the space and
frequency location of the argument functions. The computations are carried out in
two different propositions.

8.1. The operator acting on bump functions with disjoint supports.

Proposition 8.1. Let T be a linear operator with compact Calderon—Zygmund ker-
nel K and parameters 0 <0 <1, 0<a <n. Let 8 € (0,1) and I,J € D be such that
dist(1,, Jp) > 0 and ec(1, J)? (inrdist(1,, J,) — 1) > 1. Then

(T, 1by)| < inrdist(1,, Jp)(“+5)/WF1(I, J),
with Fy(I,J) = L(L([L,, J,))S(L(I, A J,p))D(xdist((L,, J,), B)).

Proof: By symmetry we can assume £(.J) < /(I). Let e € N such that ec(,J)"! =
£(I)/6(J) =2¢ > 1. Then

dist (I, J,)  dist(J,, D7,)
((Jp) ((Jp)

that is, dist(I,,J,) > 2¢94(J,) > (J,). We can then use the kernel representation
of T and the zero mean of ¥ to write

(Tor,0s) = / / () (@) (K (£, ) — K (1, ¢,)) dpt) dp(z),

= inrdist(1,, J,) — 1 > ec(I, J) ™% = 2,

with ¢y, = ¢(J,). Since 9y = u(1)z (u(I) " x1 — p(Ip)""x1,) and similarly for ¢, we

have
(T, Spd)ip): S Y u ($)~

Re{I,I,} Se{J,Jp}
« / / K (t,2) - K(t,cs,)| dult) du(z).
SJR

We fix R € {I,I,} and S € {J,J,}. In the domain of integration of the double
integral we have t € R C I,, v € S C J,, and so

2z —cy, | < U(Jp) < dist(Iy, Jp) < |t —cy,|

(32)

Then, by the smoothness condition of a compact Calderén—Zygmund kernel (31), the
double integral in (32) is bounded by

Tr — C s
[ [ e p ) auto) duta),

with F(t, ) = L(|t — c; |)S(|lz — ¢y )D(1 + %) Now, by Lemma 7.1, the

previous expression can be bounded by a constant times
L) RY(S) LTy D) ST DOist (T 7). )
dist (S, R)ote K Pr P ol B

Since R C I, and S C J,, we have dist(S,R) > dist({p, J,). Furthermore, since

dist(I,, Jp) > £(J,), we have

dist(1,,J,) > 27 (dist (1, Jp) + £(Jp)).
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With this and ¢(J,) = 2¢(J), we can continue the bound in (32) as

1 1 E('];D)(;
(Tor gl SuDRuDF 30 30 e

Re{I,I,} Se{J,Jp}

((Ty) (D) ()
: (K(Jp) +dist([p,Jp)) — e, J). =

(33)

Remark 8.2. When ((I, V J,) < dist(I,, Jp) we will use the weaker inequality

Dzu(J)3z
(B4 WTr, )] S ec(l, )’ wdist(Ly, Jﬁ“*‘”WM ),

which we now justify.
From dist(Ip, Jp) < dist(Lp, Jp) + £(Jp), £(Jp) = 2¢(J), and (33) we get

o(J,) 0 1
Jp) + dist(I,, Jp) ) dist(1,, J,)®

By assuming ¢(J) < ¢(I), we have ¢(I,) = ¢(I, V J,) < dist(Ip, J,). Then

(Ton el S w0t (5 Fi(L)

dist(1,, J,) > 27 (dist(I,, J,) + £(I,)).

With this and £(I,) = 2¢(I), we continue the previous estimate as follows:

0(J,) ’ 0(1L,) “u(1)Epu(J)?
o3 (i) (T aat) © e h0

— inrdist (1, J,) 0 rdist (I, Jp)_“/WFl(I, 7).
Finally,

i 105 (20 5 (40) ()Y

= ec(I, J)’ rdist(I,, J,) .

Remark 8.3. We also note that, from dist(l,, J,) < dist(Z, J) < dist(I,, Jp) + £(I,),
we have

1 dist(Z, J) dist(I,, J,) dist(Z, J)
3(1 an )S Ty ST

that is, rdist(Ip, Jp) ~ rdist(I, J).

8.2. The operator acting on bump functions with non-disjoint supports.
For the next result, recall the following notation introduced in Definition 6.6. For
I,,J, € D, Q € 3D with I,,, J, C 371Q, we write

M) = (D)3 (er(es,) — e, (c1,))x0 (1),

with ¢ = ﬁx;, cy, = c(Jp).
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Proposition 8.4. Let T be a linear operator with compact Calderon—Zygmund ker-
nel K and parameter 0 < § < 1. Let I,J € D be such that dist(I,,J,) = 0 and
ec(I,J)?(inrdist(1,, J,) — 1) > 1. Then

p(RNJ)

T (o — 0, )] < inedist(Ty, 1)~ 3 (

Re{I,I,}

ety M) Ep()E

+inrdiSt(Ip7Jp) LINT)e

xr\1(er,) (1, J),

where

k
Fy (I, J) = LI AJ))SEIAT)) ;} 9~kd llf((ZZk g)) D(rdist(2 K, B))

and

Fy(I,J) = LI AJ)SUIAT)) Y 27" D(xdist (28 K, B)),
k>0

with K = inrdist(l,, J,)(I A J).

Proof: We assume £(J) < £(I). Let e € N such that 2¢ = ¢(I)/¢(J) > 1. Since
ec(I, J)?(inrdist(1,, J,) — 1) > 1, we have

diSt(J;m :‘31}7)
((Jp)

Then dist(Jp, dI,) > 2°9¢0(J,) >
ply 3J, C I, and ¢(J) < ¢(I)/8. The
Now we note that

(35) i) — o) = u(D) 2 er(t) = wr(es,)xa(t) — ¢, (1) + ¢, (cs,)xQ(®)]

Then for ¢t € 3J, C I, we have or(t)x3s,(t) = ¢r(cy,)x3s,(t) for R € {I,I,} and
so (t) — ¢l (t) = 0. With this and (35),

r — PP = (0 — YD1 = xau,) = 9

We denote the last expression by ¥¢"*, which is supported on (I, U Q) \ 3.J,. Since
dist((L, UQ)\3Jp, Jp) > €(Jp), we can apply the reasoning we used in Proposition 8.4
with some variations. We describe the argument again because we aim for slightly
different estimates.

Since .J, C I’ for some I' € ch(l,), we have for ¢t € I’ that ¢gr(t) = pr(cs,)
with R € {I I}, and so ¢9**(t) = 0. That is, ¥9"*(¢) # 0 implies t € ((I, UQ)\ I') N
(3Jp)°. Then

= inrdist(I,, J,) — 1 > ec(I,J)~% = 2.

£(Jp), which together with dist(l,,J,) = 0 im-
herefore 3J, C I' for some I’ € ch(,).

‘
‘2]1”) +dist(I, \ I, J,) =

Now we prove the following inequalities: for J, C I,

(a) if J, C I, then || < u(I )lu(lmxcz\fv
(b) if J, NI =0, then [ < u(L ) (M(I)XI + H(Ip)XQ\I)

= ()] > {p)

1
+dist(Jy, Dr,) > 5 inrdist (L, J,) ().
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(a) If I' = I, since J, C I C I, we showed ¢9"(¢t) = 0 for all ¢ € I. Moreover,
for t € I, \ I we have o;(t) = 0 and ¢y, () = ¢1,(cs,). Then from (35),
1 101
PP (t) = u(I)2 [~pr(es,)xet)] = —p(I)? mXQ\I(t)

since t ¢ I. Finally, for t € Q \ I, we have ¢;(t) = ¢y, (t) = 0 and from (35),

ou = 2

5 ()] = w(1) 2| = prles,)xe(t) + ¢r1,(cs,)xe®)] < p(I) me\I(t)
since p(I) < p(lp).
(b) On the other hand, if I’ # I, we have I' NI = () and so, since J, C I' C I,
for t € I we get pr(cy,) =0 and @1, (t) = ¢1,(cs,). With this,
1 1 ].

Prt(t) = p(1)2er(t) = p( )ZM(I)XI()

Meanwhile, for ¢ € I, \ I we have ¢r(t) = ¢r(cs,) = 0 and ¢y, (t) = ¢1,(cs,) and so
we get from (35)

[NIE

U = pd)* =1, () + 1, (e, )x0 (1)) = 0.
Finally, for t € Q \ I, we have o;(t) = o1, (t) = ¢r(cs,) = 0 and so

S

W) = u(1) o (er)x0(t) < u(D) ﬂ(llp)xQ\fp (1),

This finishes the proof of the two inequalities. We can write these inequalities in a
unified way as follows:

) £ 0D (rauOutes) + o Ones,)

(36) + M(llp)XQ\I(t)XIP\I(CJp)>

[N

1 1 1
< u(l) (MXI(CJP) + mXIp(CJp) + M(I)Xl(t)XIp\I(CJp))-

Moreover, for t € (I, UQ) \ 3J, we have [t — c(Jp)| > 30(Jp)/2 > £(J,). We then
decompose the support of 9" as follows. Let A, = {t € (I, UQ)\ 3J, : 2°714(J,) <
|t —c(Jp)] < le(*]p)} - (2k+1‘]p) \ (Zka)- Then

LU\ @h) C | A

k=myg
with mg = loginrdist(1,, J,) and m; = log % + 1. In this way we can write
mi
?ut = Z (I)kv
k:mo

where &), = ?Ut(szJrlJp — XQka). We note that, since J, C 3J, we have supp ®;, C
Ay C 281, C 283 and so p(Ag) < u(28F3.J). Moreover, Ay, is included in the
difference of two concentric cubes with side lengths 2%¢(.J,) and 2%*1¢(.J,). Then,
although Ay is not a cube, we denote £(Ay) = 28714(J,) and c¢(Ay) = ¢(J,).

The plan is now to estimate |(T'®,1s)|. Since Ay N J, = 0, we use the kernel
representation and the zero mean of ¥; to write

(T, )] < / /A g ()l (@) K (1 ) — K (£ e5,)] dis(t) dp(z).
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With (36) and 1 :,u(J)%( X~ ( T X ), we have

; XR
22 u() (S)

Re{I,I,} Se{J,Jp}

% / / K (1) — K(t e,)] du(t) du()
S JAg

. xpiles,) 1
+u(I)? u(J) Seg}p} p(I) — pu(S)

« /S /I V(6 2) Kt e )| it d ()

We now estimate the two double integrals on the right-hand side of (37), starting
with the first one, which we denote by Int. We fix R € {I,I,} and S € {J,Jp}.
For t € Ay we have [t — c(J,)| > 2¥71(J,) > £(J,). For # € S C J, we have
|z — c(Jp)| < £(J,)/2. With both things

@ — e(Jp)] < U(Jp) /2 < 2°7 () /2 < [t = e(Jp)| /2.

Then we can use the smoothness property (31) to write

m\»—t

‘<T(bkan>| S :LL

x — c(J,
(38) Int < / /A |_ |a+5 F(t,z)du(t) du(z),
k
with F(¢t,z) = L(|t—c(Jp)])S(Jx—c(Jp )|)D(1+%) Since L is non-increasing,

S is non-decreasing, 280(J) > [t—c(J,)| > 2F714(J,) > £(J,) = 2¢(J) and |x—c(J,)| <
0(Jp)/2 = £(J), we have

F(t,z) < L(E(J))S(Z(J))D(1 n HC(JP”)

1+t — c(Jp)]
On the other hand, |t + ¢(Jp)| > 2|e(Jp)] — |t — ¢(Jp)|, which implies
|t + c(Jp)] ) 2|e(Jp)| [t = c(Jp)l le(Jp)]
211+ ——F——— | > 2+ - >1+ .
( L+t —c(Jp)|) ~ L+t —c(Jp)| 1+ t—c(Jp)] — 1+ 2k0(J,)
Moreover, since Ay C 28037, 0(Ay) = 2724(J), and c¢(Ay) = ¢(J,), we have
1+ ()] 1+ [e(2n)] > rdist(Ag, B) > rdist(2873J, B),

L+280(J,) ™7 1+ L(Ay)
the meaning of rdist(Ay, B) being clear even though Ay is not a cube. Then, since D
is non-increasing, we get
F(t,z) < L(£(J))S(¢(J))D(rdist(2% J,B)) = F(J, J,2".J).
With this and A, C 2873.J, we continue the bound in (38) as
0wy s p(20)
Int < e u (2" ) u(S)F(J, J,287) S 27M0 = L
n ~ (ZkE(J))‘HO‘ lu( )/’1’( ) ( < )N (2k+3£(J))(x
For the second double integral on the right-hand side of (37), which we denote
by Int’, we can apply the same reasoning with the only difference of integrating
over I N Ay, C Ay instead of the whole Aj,. With this we obtain
1
(280(T))"

w(S)F(J, J,2%.7).

)
' < — (8P, g2 0) < 27

(2k€(J))5+QM () p(S)F(J, J, 2kJ)‘
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Then we continue the estimate in (37) as follows: since u(I) < p(R),
(T @k, 95} £ 270F (0,250 (1) ()
y ( 3 xr(cy,) (2k+3J Z xr\1(¢, )
plr WB) @I T 2 )
Se{JJy}

52_k5F(J,J,2kJ)( 3 (“(J)XR@JP)); p(2M+8)

RET L) n(R) (2K H34(T))~
p(1)2 ()2
+Xj?\I(CJp)(2kZQ])yX>
w(J N R) u(253.7)
< ¥ (N > 2RI 2 e

Re{I,I,}

o~ HatD B, g, 28 ).

The last inequality holds because xr(cs,) # 0 if and only if J, N R # (). Moreover,
since ¢(J) < ¢(I) < 4(R), we have J C J, C Randso J =JNR.

Now, using that F(J, J,25J) = L(¢(J))L(¢(J))D(rdist(2* J, B)) and summing in k,
we have that |[(T99",1)| can be bounded by

1 k+3
Z (W) L)se) Y 2’“5MD(rdib‘t(2’%B))

+ XIp\I(CJp)M(g(J)aL(E(J))S(E(J)) > 27 ke+) D(rdist (287, B)).

k>mo

We denote A = inrdist(l,, J,). Since mg = loginrdist(,, J,), the last factor in each
term is respectively bounded by

e ) J
9-md $ 7o k5WD(rdlst(2k(2 °J),B))
k>0
. . B s . s ﬂ(2k+3)“])
< inrdist(I,, Jp) 622 kzD(rdISt(QkAij))ZQ kzm
k>0 k>0

< inrdist (1, J,) 0 D(rdist(A\J, B)) pouts (\J),

and

g-molet) § " 9=k(@t9) D(rdist (2% (270 .7), B))
k>0

S inrdist(1,, Jp) ™~ —(atd) 9-k(atd) D(xdist(2*\J, B
P
k>0

< inrdist (1, J,) " @9 D(rdist(\J, B)),
p

with D defined in (7). This ends the proof. O
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9. Paraproducts

The proof of Theorem 4.2 is divided into two parts: we first deal with the part

associated to 1/1?{1}, which corresponds to the paraproduct case in the classical proof.

Then we use the estimates of the bump lemma for the remaining part.
In this section we cover the paraproduct part, which requires the use of the classical
Carleson embedding theorem.

Lemma 9.1 (Carleson embedding theorem). Let (aj)rep be a collection of non-
negative numbers. Then

2 < qup [ —— )
éal\(ﬁﬂ S ?lelg(u(f) J;%I) aJ> 171122,
for all f € L*(u).

The following proposition deals with the paraproduct part of the operator. The
proof provided follows the ideas developed in [18].

Proposition 9.2 (Paraproducts). Let @ € D and 0 € (0,1) be fized. We define the
following bilinear formS' for f, g bounded functions with supp f Usuppg C @Q,

= > ST (L) g b Ty ),

1€D(Q) JeD(lp)
inrdist(Jp,Ip)>Xe

T'(f,9)= Y, S LU g ) (T, ),

JeD(Q) IeD(Jp)
inrdist(Ip,Jp)>Ng

with g = 1 +ec(I,J)™°
Then given € > 0 there exist My € N independent of Q and functions f, g such
that for all M > My

(P f, Pizg)| + ' (Piz f. Pizg)l S ell fllz2 9l 22 -

Proof: By symmetry, we only need to work with II. By Notation 4.3 and the prop-
erties (6), (12), given € > 0, we can choose My € N such that for all M > M, and
all I € Dy (Q)° we have

(39) F(I) <e.
By Lemma 6.16 and Fubini’s theorem, we can rewrite IT(Pj; f, Pi;g) as

IeD(Q) JeD(Ip)
inrdist(Jp,Ip)>Xe

Z Z <f7wl><gan><Tw?il}an>
1eD§,(Q)  Je€D3,(Ip)
inrdist(Jp,Ip)>Ng

= 2 <g,¢J><T( > (f,r) f““) ¢J>

JED,(Q) 1€Dy(Q)
JpCI,,inrdist(Jp,Ip)>Xg

We can assume that the first sum in the previous expression only contains terms for
which u(J,) # 0 since otherwise 1; = 0. Moreover, for fixed J € D, and each cube I
satisfying the condition J, C I,,, all cubes I’ € ch (I, ) also satisfy the same condition.
In other words, for each cube I in the sum, all its siblings are also in the sum.



NEW LOCAL T'1 THEOREMS 477

Then, since in the second sum we have ¢(.J,) < ¢(I,), by Lemma 6.7,

> o =a,(= (X Bir) Byt

Iech(Iy) Iech(Ip)

where Erf = (f)rxr(cs,)xq-

The inner sum takes place under the condition inrdist(J,, I,) > Ag > 2. For J, €
D5, (Q), let X be the smallest integer such that inrdist(J,, I,,) > A. Alsolet I; € D(Q)
be the smallest cube such that J, C I; and inrdist(J,,I;) > A. If such a cube does
not exist, we then define I; = ().

We now add and subtract the following term:

Ady = Yoo (fenuly
1€D5,(Q)
ToClp Mg Ty) <0

to obtain

Yoo (et = Y (fenel - Ada
1eDy(Q) 1eDy (Q)
JpCIy MI,T)>Ne JpClIp

The second term — Ady, together with a symmetric expression Ads containing cubes
such that I, C J,, will be estimated in Subsection 10.6. We now focus on the first
term.

Now, for fixed J € D5,(Q), since all siblings of each cube in the sum are also
contained in the sum, we obtain a telescoping sum and so

Z <f> Z/}I> full = Z Z f7 QZ)I’ full

1eDy, (Q) I, €D}, (Q) I'€ch(Ip)
JpCly JpClI,

= > AL

I,eDy(Q)
TCl,

= Y Erf-Eof

Rech(Jp)

= Y arlfrxe

Rech(J,)U{Q}

with |O{R| =1.

We denote Jy = Q. The cardinality of ch(J,) is 2" and so we can enumerate the
family in a uniform way in accordance with their position inside Jp: ch(J,) = {J; }
We then write a; = ay,. With this,

> <9>1/1J><T< > ERf—EQf>7¢J>

JeD,(Q) Rech(Iy)

II(Py; f, Pizg)

=S 0 Y (N le ) (Txa ).

i=0  JEDS(Q)
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With this, the boundedness of II(Ps; f, Pi;g) follows once we obtain a uniform
estimate for each fixed j:

(Parf, Przg) = D (o0l () (Txq: ).
JeDg,(Q)
For j = 0, we have I; = @ and so
o(Piz f, Pizg) = (No(Txq, 9),

which can be estimated by using the testing condition (11): since f, g are compactly
supported on Q,

o (Paz f, Pizg)l < (FallxaTxallzzgollgll z2 )

_ 1 1
S @)l ez (@) 2 Pr(Q)u(@)2 19l 22 )
< Fr(@)fllz2gllgllzz g < el fllzzgollglize -
For any other term, by Cauchy’s inequality and Lemma 6.9,

1 1

mris el < (5 0PTee?) (X k)

JeD5,(Q) JeDS,(Q)
1
2
5( 3 <f>Jj|2|<TxQ,wJ>|2) lgllzeco-
J€'DX/I(Q)

Then by Fubini’s theorem and Carleson’s Lemma 9.1,
3
T (P f, Pazg)| S sup (u(R)‘l > UTxe 1/u>2> 11l 22wy 191l 22 ) -
REPL(Q) JEDS, (R)
We now prove that for all R € D$,(Q),
> UTxq ¢n)” < en(R).
JEDS, (R)

For R € D5,(Q) with {(R) < 2=M or rdist(R,Byam) > M, we construct W(R) a
Whitney decomposition of R defined by the maximal (with respect to the inclusion)
cubes S € D(Q) such that 55 C R. The cubes S in W(R) form a partition of R and
for any cube J € D5, (R) there exists S € W(R) such that J, C S. Then we can write

> UTxeenlP< Y > UTxe. vl

JeD5, (R) SEW(R) JEDS,(S)
(40)
S S (X WrusedPt ¥ Taushenl).
SEW(R) JEDS,(S) JeDs,(S)

We will later deal with each term in different ways.
On the other hand, for R € D$,(Q) with ¢(R) > 2™ we start by defining the same
Whitney decomposition W(R) of R as before. But then we decompose each S € W(R)

as follows:
S = U s

SeD(S)
€(§)=27(M+2)
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This ensures that S € D§,(Q). Then, similarly to before, we write

S UTxe < D) > Z, (Txq, ¥5)°

JeDy, (R) SGW(R) SeD(S)  JeDS,(
[(S) 2— (M+2)

S X irusenr

SEW(R) SeD(s JEDS,(S)
0(8)=2" (M+2)

DR 'S <T<xQ\4s>,wJ>|2).

SeD(S)  JeD§,(S)
£(8)=2~ M+

A

As before, we also deal with each term differently. We will show in detail the case
when ((R) < 2™ or rdist(R,Bym) > M, and only the small differences of the case
when ((R) > 2M.

In the first case, we start by estimating the inner double sum in the first term of (40)
for each S € W(R). For this, we use Lemma 6.9 and the testing condition (11):

> UTxas, ) < 1(xasTxas, ¥)* S IxasTxasll72(, S 1(4S)F,(45)%.
JED,(S)

Since 45 C R € D5,(Q) with £(R) < 2=™ or rdist(R, Bon) > M, we have £(4S) <
2=M or rdist (45, Boa ) > M. Moreover, since S € D(Q), we have that 45 is the union
of 3" 4 14n cubes in S' € D(Q) with £(S") € {4(S),4(S)/2}. Therefore, by (39),
F,(4S) Ssup{F,(K) : K € D§;} < e. Then, by summing in S € W(R), we have

S Y s, vn)PSeE > w4S) S u(R).

SEW(R) JEDS,(S) SEW(R)

In the last inequality we have used that, since 5S C R and the cubes S are disjoint
by maximality, the cubes 4S5 can only overlap a uniform number of times. We prove
this claim.

Since 55 C R and 65 ¢ R, we have £(5)/2 < dist(4S5,0R) < £(S). Then, for all S
such that z € 45, we have dist(x,0R) > dist(4S,0R) > £(S)/2 and dist(x,0R) <
40(S) + dist(4S5,0R) < 5£(5).

Now we reason as follows. For each x € R, by disjointness there is at most one
cube Sy € W(R) such that x € Sy C 4S5y. Then, for any other S € W(R) such that
x € 45, we have that

o If £(S) < £(Sp)/32, from dist(z,0R) > £(Sp)/2 we get £(S) < dist(x,0R)/8.
That is, dist(z,0R) > 8¢(S), which implies = ¢ 4S5 since otherwise we proved
that dist(z, OR) < 5£(S).

o If £(S) > 32¢(Sy), from dist(x, OR) < 5(Sp) we deduce ¢(S) > 32 dist(z, IR)/5.
That is, dist(x, OR) < £(S)/4, which implies = ¢ 45 since otherwise we proved
that dist(z, OR) > £(S)/2.

Therefore, there are up to 12 different side lengths of S for which z € 4S5. In
addition, since the cubes S are disjoint, for each x € R there are up to 3" cubes S of
a fixed side length such that z € 45. With this, we get that there are in total up to
12 - 3™ different cubes S such that x € 4S. This finishes the work to estimate the first
term of (40).
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For the second term of (40), we reason as follows. Let S € W(R), J € DS,(S) be
fixed. Since J, C S and 7; has mean zero, we can write

(T'(xq\as), Y| = (T (xquas) — T'(xquas) (e, ), ¥l

S /Jp /Q\4S |K(t,$) - K(tchp)HwJ(ﬂfﬂ du(t) d,u(x)

Since z € Jp, we have |z —cy,| < £(J,)/2. And since t € Q\ 45, x € J, C S, we have
[t — x| > £(S). Then 2|z —c;,| < £(Jp) < L(S) < |t — x|. Therefore, we can use the
smoothness kernel condition (31) to write

C] |6
(Toxgushwall < [ [ S Pl 0] ) o),
o Q\48 |t [t —a[o+o
where F(t,z) = L(|t — z|)S(|z — ¢y, |)D (1 + %) Moreover, [t —x| > [t —cy,| —
3
|z —cy,| > |t —cy,| = [t —x[/2, that is, [t — 2| > 2|t — ¢y, [/3. With this, we have

(T (xoras)s )] < / o ()| (e

0(J)° t+
X / ()6D<1 + |CJP|> d,u(t)
Q\4S ‘t—CJp‘OH_ 1+|t—CJp‘

lt+es|

|t _ CJp|a+6

5E(J)‘Su(Jp)5L(€(S))S(€(S))/Q\w dp(t).

Since J C S, for t € @ \ 45 we have dist(¢, J) > £(S). Then we decompose

Q\4s= J s
i=1
where S; = {t € Q\ 45 : 271(S) < |t — ¢y | < 24(S)} C 2't1S. Note that S; C
B(¢;,2¢(S)), with ¢; € S;, and ¢(S;) = ¢;,. Moreover, since [t—c;, |+|t+cs,| > 2|cy, |,

we have
It +cy,| 2ley, | |c(2°S)]
201+ —2— )| > 1+ P > 14+ y .
( 1+|t7CJp| - 1+‘t*6‘]p‘_ 1+2l€(S)

Then D(1+ ry-2h) S D(1+ {557%) S D(rdist(2°S, B)). With this,

[t+cg, | )
/ D(Hﬁw,ﬂd (t)SZD(rdist(TS,IB))M(Si)
\4S

|t —cj |ot? g (200(8))o+9
p(2its)
6 216 21+1£ )

Z/\

D(rdist(2°S,B))

1
S)?

A
~

D(S)pu(9):
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Then

)
(T xguas) s}l < (ﬁgg) u(y)

NI

L(€(S))S(£(8)) D(S)pu(S)

< (XD uay ) < o XD it
(e<s> 2(s)

The last inequality is due to the fact that, as we saw before, S € D5,(Q), and then
by (39) F,(S) < sup{F.(K) : K € D§;(Q)} < e. Now, we parametrize the cubes J
according to their relative size with respect to S: £(J) = 27%¢(S). To sum in J, we
use J, C S together with the fact that the cubes with fixed side length are disjoint.
In this way,

Nl

20
S Thgus) el S S (jgg;) u(y)
)

JEDS,(5) JED(S
SEY e Y
E>1 JeD(S)

2(J)=2""0(S)
<2782 (9) S ()2,
k>1
Summing now over the cubes S in W(R), we finally get
Yoo D Thous)vnlP S Y ulS) S EnlR).
SEW(R) JE€DS,(S) SeW(R)

When /(R) > 2™ the reasoning is similar with very few modifications. In this case
we have for the first term

Z Z (Txaz,¥s)* < Z [(Xa5Txa8,¢1) |

SeD(S)  JeD§,(S) SeD(S)
g(s) 9—(M+2) g(g):27(M+2)
2
S E HX4§TX4S‘HL2(#)
SeD(S)
((8)=2-M+2)

> > u(4S)FL(45)°,

SeW(R)  SeD(S)
£(S)=2"M+2)

Since £(45) = 27 we have F},(4S) < e. Then

Z Z Z (Txaz, ) Z Z wu(4S)

SeEW(R) SeD(S) JeD§,(S) SEW(R)  SeD(S)
£(8)=2-(M+2) 0(5)=2~(M+2)
S Y uds) SER),
SeW(R)

and we continue as before. We estimate the second term in a similar way.

To finish the proof, we still need to prove that II(Pj; f, Pi;g) belongs to the class of
operators for which the theory applies. In particular, we must show that the integral
representation of Definition 3.6 holds with a kernel satisfying the Definition 3.3 of a
compact Calderén—Zygmund kernel. This work is independent of the measure p and
it can be done in exactly the same way as it was performed in [25]. O
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10. LP compactness

In this section we develop the proof of the main result, Theorem 4.2. But first we
prove a technical lemma showing that the regions sufficiently close to the border of
an open dyadic cube have arbitrarily small measure.

Notation 10.1. For N € N, we define the following two collections of dyadic cubes:
D(Q)>n={1€D(Q) : {(I) = 27NUQ)} and D(Q)n={I € D(Q) : L(I) =2 (Q)}.
Lemma 10.2. Let i be a positive Radon measure in R™ with power growth 0 < a < n.
Let Q € D, No,M €N, and 0 € (0,1) be fized.

Let I € D(Q)>n, with £(I) =27%10(Q), 0 < kr < Ny. For k > kr let Cy.(I) be the
union of the interior of all cubes R € D(3I) such that ((R) = 27%4(Q) < 4(I) and
inrdist(R,I) < 1 +ec(I,R)~%. Finally, let C = UIGD(Q)>NO Cr(I).

Then for each € > 0 there exist kg € N such that u(Cy) < € for all k > k.

Proof: We start by noting that the family of cubes D(Q)>n, has cardinality less
than 2(NotDn Let T € D(Q)sn, be fixed.
Recall that ©; = UI,ECh(I) OI'. Then, for each cube R in the definition of Cy(I),

the condition inrdist(R, I) — 1 < ec(I, R)~% implies
dist(R, D7)
((R)

-
= inrdist(R, 1) — 1 < (iﬁ?) ,
that is, -
dist(R, D) < (%) L(I).
Since £(I) = 27%14(Q) and ¢(R) = 27%¢(Q) then
dist(R, D) < 2~ k=kD0=0p(),
Now, for j > k we define the set
D;(I) = {z €3I : 27U~k D=0 (1) < dist(z, D;) < 27 UFD0=0p(1)1,

Then the sets (D;(I));>k, are pairwise disjoint. Moreover, for each k > k;, we have

Ujsi Di(I) € Cr(I) C Ujsp—1 Dj(I), where Cy(I) is the union of the topological
closures of the cubes R € Cy(I). Then

> u(D;(I)) < p(Ci(D) < p(Cr) < p(@) S UQ)™ < oo

Jizk

Therefore, for any € > 0 there exists ko ; > k; dependent on I such that
3 (D (1) < 2k
jzk

for all k> ko ;.

Now let ko = max{ko s :I € D(Q)>n,}- Since Cy11 C Cy for each k € N, we have
for all & > kg

p(Cr) SplCr) < Y wCro(D))

I€D(Q)>n,
< Y W U o) ¥ X unm
IeD(Q)> N, j>2ko—1>ko,r1—1 IeD(Q) >N, J=ko,r

< Z 2~ (Nothne ¢ O
I1eD(Q) >N,
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Finally, we proceed with the proof of the main result of the paper, Theorem 4.2.
Since the proof is long, we divide it into several subsections.

10.1. Proof of Theorem 4.2. Preliminaries. The necessity of the hypotheses can
be shown in a similar way as it was done in [25]. Then we focus on their sufficiency.

Once boundedness is proved on L?(u), a classical argument that applies to Calde-
rén-Zygmund operators allows us to extend the result to weak estimates from L*(u)
to LY>°(u) (see [19], for example). Then by a standard interpolation argument one
can prove boundedness on LP(u) for all 1 < p < oco. Moreover, as shown in [25],
we can deduce compactness on LP(u) for all 1 < p < oo by interpolation between
compactness on L?(u) and boundedness on LP (). For all this, we only focus on the
case p = 2.

Let Q@ = [-2",2"]" € C with ¢(Q) = 0, £(Q) > 4, with side length large enough so
that

F,(Q)+ Fr(Q)+ Fr«(Q) < e.

Since @ ¢ D, this requires extending the definition of F),, Fr, Fr« to Q. This is
possible by using, for example, that @ is the union of 2™ cubes in D. Moreover, the
smallness described by the previous inequality is deduced by the large side length
of Q. Let v = {/n27% such that 0 < v < 1 < £(Q), No = log %, and T, ¢ be
the truncated operator of Definition 5.2.

We start by considering the dyadic grid D = D' as denoted in Subsection 2.1. Let
(v1)1ep be the Haar wavelets frame of Definition 6.2 and Pj; be the lagom pro-
jection operators related to that system as given in Definition 6.11. We also fix the
parameter 6 = ﬁm € (0,1).

We aim to prove that T’ ¢ is uniformly compact on L? () with bounds independent
of @ € C and 0 < v < £(Q). By the comments at the end of Subsection 6.4, we need
to show that for any € > 0 there exists My € N (independent of @ and 7) such that
| P4 T,.oPg 2 S € for all M > My, with implicit constant independent of @ and
(it may depend on ¢ and the constants appearing in the kernel smooth condition and
the testing conditions). By duality and the fact that the kernel K, ¢ is supported
on @, this is equivalent to showing that

(TP f, Pig)| S e

for all M > My, all f, g functions in the unit ball of L?(;1), bounded, and compactly
supported on Q. Moreover, by Lemma 4.5, we can assume that f, g are supported on
the interior of the first quadrant of each grid, which we denote by R?’J“. In that case,
there is Q; € T;D such that supp f Usuppg C @; such that QN R?’+ C Q; C 10Q.
Therefore, when using the representation result Corollary 6.19 and Parseval’s identity
of Lemma 6.9, we should write @); each time. However, since @; and @ play a similar
role, we will just write @) each time. This is equivalent to assuming that the original
cube is contained in the first quadrant of each grid and @ € 7;D for all grids.
Then let f, g be fixed functions as described and satisfying

1P3 Ty, Psaallz < 21(Py Ty, Psaa £ 9)]-
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Let 0 < e < (([[fllzoe () + ||g||Lm(#))u(2Q)%)_4 be fixed. Let My be such that for

all M > My we have M—% + M *GF2~Y L M~ 5572 < ¢ and
(41) sup  F,(I,J)+ F,(J,I)+ Fr(J)+ Fr-(J) <,
JED5,(Q)
(I,J)eFm

where F)s is given in Definition 7.3.
Then, for fixed € > 0 and chosen My € N, we are going to prove that

(42) (Ty.oPsi f, Pizg)| S €/
for all M > My, which is also enough for our purposes. To simplify notation, from

now on we denote the operator T, ¢ simply by T'.

10.2. Discretization of the operator. By Corollary 6.19, we have that

(TPsyicf, Pazgd = Y. Y (L) ¢)(Thr, )
(43) 1€Ds5,,(Q) JEDS,(Q)

+(T(Eqf), Pirg) + (T(Psif — Eqf). Eqg).

Similarly to Lemma 10.2, we set up the following notation: for N € N, let
D5, (Q)>n={I € D§,(Q) : £(I) > 2=N¢(Q)}; for I € D(Q)>n, and k > No, Ci(I) de-
notes the union of the interior of all cubes R € D(Q) such that /(R) = 27%4(Q) < ¢(I)
and inrdist(R, I) — 1 < ec(I, R)™?; finally, C}, = Uren@)sn, Cr)-

Now, by Lemma 10.2 and the implicit limit in the equality at (43), we can choose
N7 > Ny + M so that for all N > Ny,

1 n
(44) WON)Z [ F o=y gz ) 2V ) < e,

and

(TP f, Pirg) <2) ) > LU g ) (Tr, )

IGDSM(Q)ZN JGD&(Q)EN

+(T(Eqf), Pazg) + (T(Psir f — Eqf), Eqg)

+2(T(Eqf), Paig)| + 2T (Pss f = Eqf). Eqg)l,

with My = N — log/(Q). We note that Pj;Pys, is not the zero operator since
My > N > Ng+ M > M. Again, to simplify notation, we often stop writing the
conditions I € D§,,(Q)>n, J € D§;(Q)>n in the sums. We will recover this notation
whenever needed.

We briefly deal with the last two terms in the previous expression. We only work
with (T'(Eqf), Pi;g) since the work for the last term is similar. By definition, the
function Pjy;g is compactly supported on Q. Then, by the testing condition (11),
Cauchy’s inequality, and (41), we have

(T(Eqf), Pug)l < [(FollxeTxall 2w 1Parallz2

< Q)M 2 (@) F Fr(Q) (@) llgll 2wy S e
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Now we further decompose the term (T Ps5;Pary f, PijPayg). For this, we fix
such N > Nj. We denote by 0D(Q) the union of I for all I € D(Q)>n. Then we
decompose the argument functions as PQLMPMNf = fi+ fi0, PA%[PMNg =g1+ 91,0,
where f1.9 = (P33, Pay f)Xon(Q) and g1,6 = (Pi;Puy 9)Xop(q)- With this,

(45) (T P35, Pury f, Pii Py 9) = (T P35, Py [y 1) + (T f1,91,0) + (T f1,0,91.0)-
We note that

g1 = Z <9,¢J>1/1j,

JeDY(Q)2N

where J is the interior of J and so it is an open cube. Likewise for f;. Therefore, when
we deal with

<TP2LMPMNfagl>: Z Z <fa¢1><97¢J><T¢I7¢j>a

IGDSM(Q)ZN JGDICW(Q)ZN

we have that the cubes J € D are all open. Similarly, when we later deal with

(Tf.gr0)= Y S (L {g v (T va),

I1€D5),(Q)>~N JEDG,(Q)>N

we will have that I € D are all open cubes.

However, we will start our work without reflecting this distinction in the notation
since it is only useful at the end of the argument. That is, although the work to
prove (42) starts with the first term (T'Ps5,Pary f, g1), since the same argument will
also work for the second term (T'f1, g1 5), we write each term simply as (Pi;T P55, f, 9)
and we will make distinctions only at the end of the proof. We hope this license will
not cause any confusion.

In view of the rates of decay stated in Propositions 8.1 and 8.4, we parametrize
the sums according to eccentricity, relative distance, and inner relative distance of the
cubes as follows. For fixed e € Z, m € N, and every given dyadic cube J, we define
the family

Jeom = {1 € D53, (Q) : €(I) = 2%4(J), m < rdist(Ip, Jp,) < m+ 1}.
Form=1and 1 < k < 2~ min(e,0)~2 _ 1, we also define

Je1 = Je1 N{I € D53, (Q) : k <inrdist(l,, J,) < k+ 1}.

min(e,0)n

The cardinality of J. ,, is comparable to 2~ nm™~ !, while the cardinality

of Je 1,1 is comparable to n (2~ min(e,0) —k)(”_l)w. By symmetry, we have I € J, p,
if and only if J € I_.,, and, similarly, I € J. ;1 if and only if J € I_ 1 1.

In accordance with the previous parametrization, we divide the double sum in (43)
into three parts D;, N;, and Bg (distant or disjoint cubes, nested cubes, and borderline
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cubes). Then we add and subtract the paraproducts P; into the second part. Specifi-
cally, we write

> S (i) g ) (Tor, )

1€D5,(Q)>n JEDF(Q) >N

=SS5 ST (e g e (Tr, )

ecZm>2 J IEJe,'m

olel

Y S S (f e g T )

e€Z k=20lel4+1 J IcJe 1k
dist(Ip,Jp)>0

glel—2

3N ST S (e g ) (T — ), w)

e>0 g=20lel+1 T JpClIp
JEI—e,l,k

olel—2

YD Y D (A g e T,y — 5T )

e<0 g=20lel4+1 J I,CJp
IeJe 1,k

20lel

+ZZ<Z PRI )fﬂﬁl SN Tbr, )

e€Z k=1 I Jeleqk J IeJ ik
=D1+ Ds+ Ny + N3+ Py + Ps + Bg.

The terms P, and Ps are the paraproduct bilinear forms, which are bounded by
Proposition 9.2. The terms D;, Dy correspond to the distant cubes and the barely
disjoint cubes respectively, which we estimate by using the inequalities of Remark 8.2
and Proposition 8.1 respectively. The terms No, N3 correspond to the nested cubes,
for which we use the estimate of Proposition 8.4. By symmetry we only need to work
with Ns. Finally, the term Bg corresponds to borderline cubes.

10.3. Distant cubes. The term D; contains the cubes for which m > 2 and so,
by (34) in Remark 8.2, we have

2710 p() 2 ()

(Tor vl S 05 =0y e

Fi(I,J),

where Fy (I, J) is given in Proposition 8.1. Then

~Jeld It
(ORI pEms S XA

e€Z J I€Jem
m>2

To estimate this last quantity, we divide the study into two cases: (I,J) € Fps and
(I, J) ¢ Fu.
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(a) In the first case, to simplify the argument, we assume ¢(J) < ¢(I), that is, e > 0.
The other case follows by symmetry. Then IV J = I and, by Cauchy’s inequality, we
can bound the terms in (46) corresponding to this case by

S (Y s AEALE Y e 3 #0)
m>2 ,

1
2

T JED5,(Q)

e>0 o JE€I _cm
(47) 1
1 1 2
X sup  Fy(I,J)|{g,1)]? o ey ,u(I)) .
@:fe%m@ mz>2m o 2eel(J) IE;
(I,J)eEFm - ’

We note that the cubes J € I_. ,,, are pairwise disjoint, and that also the cubes I €
Je,m are pairwise disjoint. Let J. € D such that J C J. and £(J.) = 2°¢(J) = £(I).
Then we have

Y ) S plml\ (m—1)I),

JEl o m

Y ) S plmde\ (m = 1)J).
I€Je,m
We start with the first factor of (47), whose inner sum can be written as

£(})a émiw > ul) <ngnoog Z p(ml) — 5 m—1)I))

JEI_em

Now, we write a,, = p(ml) and use Abel’s formula to get

1 i O — Q-1 aR _ al
o1)e matd T~ Ratog(I)e  2004(I)
m=2

R—1 1
a am (ma+6 (m+1)a+6>'

m=2
For the first term we have
apr (RI) 1 1
(e~ R~ = Pould)

for R sufficiently large, where we recall that pout() = 3,5, % ~(5+1) | The

second term is bounded in a similar way:

ay 1 p(l 1
2a+34(I)e - 2522(1)21 - 27:0(]) < pout({).

The last term is bounded by

m-|— 1)otd — mpoto < Rt p(mI) (m+1)2+o-1
m +1 a+5ma+6 ~ moeg(])a (m + 1)a+6m6
m=2
R—1
ml
< pml) < pout (1)
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We finish the work with the first factor by noting that F (I, J)pout(I) < Fu(I,J) < €
since (I, J) € Fpr. For the second factor we can use similar calculations to obtain

Z %W Z M(I) Spout(Je)~

m>2 I€Jem

However, now J, does not belong to D,(Q) in general and so the only inequality we
can use is Fy (I, J)pout(Je) S 1.

With both things and Lemma 6.9, we conclude that the terms in D; corresponding
to both cases (e > 0 and e < 0) can be bounded by a constant times

¢J>|2>

1 e
Se2 > 27 fllzgollgllLaqe S €2

e>0

SIS

22—65< > sup  F, (I, )|(f,¢r)] )

>0 1€D5,,(Q) JeD (Q)

(I,1)EFas JGDLM(Q)

N

(b) We now study the case when (I,.J) ¢ Far, that is, when I € D§,,(Q), J € D5,(Q)
are such that F,(I,J) > e. By Lemma 7.2, we have that [log(ec(,J))| 2 log M, or

rdist(1, J) 2 M. Then, instead of the smallness of F),, in this case we use that the
size and location of the cubes I and J are such that either their eccentricity or their
relative distance are extreme.

We fix eps € {0,log M}, my € {Mé,l} such that ep; = 0 implies my; = M.
Then, by the calculations made in the subcase (a.1) and F},(I,J) < 1, we can bound
the relevant part of (46) by a constant times

~els 7
Y Y wmr Y v ) (1.

le|>en m>may

(18) $ X (Sl ¥ )

le|>en m>mg

I p(mde\ (m—1)Je) :
x <;|<g,¢J>|2 > Ry 0(Jp)e > '

m2my

Nl

Now, by Abel’s inequality as in case (a) and p(I) = élzl)a < 1, we have

pw(mI\ (m—1)I) . 1 1 1 5
Z me+og(I)e N Aim R + Z mo+1 S My

m>my m=mjps+1

and similarly for the second factor. With this, Lemma 6.9, and the choice of M,
expression (48) is bounded by

—le —e _3
ST 2 A e lglieg S 27V 0my S MR <

|€\Z€M
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10.4. Disjoint cubes. The term D, contains cubes for which m =1, k > 1 + 2/¢l¢,
and I, N J, = 0. Then, by Proposition 8.1, we have

1 p(I)p(J])?
(Tor vl S 555 i e

with Fy(I,J) as before. Therefore,

Fl(I7 J)a

alel 1
W) DISE Y Y Y R g ),

e€Z k=2lel6 J I€Je 1k

Again, to estimate this last quantity, we divide the study into the same two cases
as before: (I,J) € Far and (1,J) ¢ Far.

(a) For the first case, we assume again ¢(J) < ¢(I). In this case, INJ = J and {(I) =
2¢/(J). Moreover, since e > 0 we have that for each I and each k € {2%,..., 2¢}
the cardinality of I_. 1 x is at most n(2°¢7! — 2¢9)7=1_On the other hand, for each J
there is only a quantity comparable to n cubes I such that m = 1 and there is only
one k > 2¢ such that Je, 1,k is not empty. Then we can consider that this parameter k,
which we now denote as k;, is completely determined by J.

With this and Cauchy’s inequality, we can bound the terms in (49) corresponding
to this case by

N 5 1 1 3
;(k_%;e Z:Jegl k By (L, DS, 1) WWM(J))

50 Sl SR ——

k=2¢0 I Jel_ 1k

gZ(Z sup  Fy(I,0)|{f, 1) |2 Z ka+6£2;(; Z M(J))

JeD5,(Q)
e>0 N T M e Jel_ ;
(1) Far k=2 e, 1,k

(X s F1<I,J>|<g,w>2k3}+5@ > un)

I1€D%,(Q)
J M IeJe,k
(I J)G}-M kg

Now, for each cube I € D§,,(Q) and k € {2%,...,2¢}, since for all J € I_. 1} we
have that £(J) = 27¢¢(1) is fixed, we denote by I}, € C the cube such that c¢(Ix) = ¢(I)
and ((I) = (1 + k2=¢tH)4(I) < 3¢(I). With this,

U JC{te3l: k27%(I) < dist(t,I) < (k+1)27°%(I)} C I \ Ix+1 C 31.
Jel_c 1,k
Now, since the cubes J € I_. ;1 are pairwise disjoint
S ) S pI\ Iigr).
Jel_c 1,k

On the other hand, since the cardinality of J. 1, is comparable to n and the cubes I €
Je 1,1 are disjoint and included in 3.J., we have

> ull) < p3e).

IeJe 1k
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Then the expression in (50) is bounded by a constant times

2¢ 1

1 gee :

Z( > sup RIS en)? D WWM(Ik\Ik-&-l))

e>0 “1eDs,,(Q) (I{E)ZI\IJJLS[Q()Q) k=20e

6 1
3J, 2
(X AUz Y,

JeD5, (@) £ D) 2Tl e)

(I,JYETS,

We start by working on the first factor of (51). As before, we write a = u(Iy) and
evaluate the inner sum by using Abel’s formula:

ge e
A — Ak+1 - agoe age 1 1 1

Z kats  — 9(atd)fe  9(atd)e T Z ak(ka+6 (k- 1)a+6>‘

k=20e k=20e41

For the first term we have

agoe ,U/(Izee)
2(at+d)fe — 9(a+d)de

< p(Igoe J0( 0. )*27 (@ F00 < po (BI)0(1)*2 (o F0)e,

Similarly, the absolute value of the second term can be bounded by

A9e—2 < ,LL(IQE—Z)

ag—(a+d)e
2(a+d)e — 9(atd)e < p(3[)£([) 2 :

The absolute value of the last term is bounded by

26 26
ka+6 _ (k‘ _ 1)a+6 ka+571
Z Tk — 1)atogate S Z “(I’“)(k_ 1)a+okats
k=20e+1 k=20e4+1
2¢ 1
S Z P(Ik)g(lk)am
k=20e4+1
2¢ 1
CHLOES ey
k=20e

S Din (3[)6(1’)0{27(06*‘1’5)96.

From the three inequalities, £(I) = 2¢/(.J), and the fact that the cardinality of I'"
is 3", we get

ex 26
20 5 i) o (3 pg-etsere),
k=20e

On the other hand, for the second factor in (51), we have

_ 3Je) _ _
9 ef(a+d) u( e <9 e(0(a+6)—a) i (3.0.).
2=caf(37,)% pin(3Je)
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With this, the inequalities Fi(I,J)pin(31) < Fu(I,J) S €, Fi(1,J)pin(3Je) S
F,(I,J) < €, and Lemma 6.9, the terms in Ny corresponding to this case can be

bounded by a constant times

22—6(9(a+6)—a)< Z sup FM(I’ J)|<f7 ’(/JI>|2>2

>0 I€Ds5,,(Q) <IJ5>Z“I4A(;(?22)

N|=

(X sw  BDNewP)

c JeD5(Q)
TEPMQ) (1 1yets, (@)

S ey 27Ot £l gl S €

e>0
by the choice of 0 < 755 <0 = £ < 1.
2

(b) We now study the case when (I,J) ¢ Fj; and so, as before, instead of the
smallness of F),, we use that either the eccentricity or the relative distance between I
and J is extreme.

As in case (b) of the previous subsection, we fix ey; € {0,log M}, mar € {M5,1}
such that ep; = 0 implies my; = Ms. But, since m = 1, we have that my; < m =
1< M§7 which implies my; = 1 and so ej; = log M.

Then, by Lemma 6.9, the calculations made in the previous case (a) and F, (I, J) <
1, we can bound the relevant part of (46) by a constant times

olel

DD I DI LI CEC PRI

le|>ens k=2lel6 J T€Jeqk

Nl=

26@
DY ( > s RGP }; kaw T (Ik\IkH))
c eD5 .
le|>ens “I€DS,,(Q) (I,J)€1¥X4(Q) k=26

1
—ef(a 3']6 ?
« sup  Fi(I,J)|(g,)[?27 ”’%
JeDe I€D5,(Q) 2mel(37)
€PulQ) (1 nyets, (@)

1
2
s Y ot (7 S F#(I,J)|<f,wz>l2>
c e %
le|>enm 1€D5,(Q) <I,J>€J%Xf(Q)

(X s RDe?)

c I1eDy(Q)
TE€PN (D (1 hyeTe (@)

— atd (ks
S X MR g gl S MOOEERTY <
le|>log M

by the choices of § and M.
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10.5. Nested cubes The term Ns contains the cubes for which we have 29l¢l < | <
2lel=2 with § = 5 and I,N.J, # 0. By Proposition 8.4, when m = 1 and k > 29“’|

we have

+5/

full -5 (RN J) :
TG — )00 S b R{Z}( ) )

oy D) ()
+k ATy Fs(1,J),

with Fy,, and F3 given in Proposition 8.4. The second term can be bounded using
the same approach as we used in the previous subsection when we worked with the
term Do since the only difference between the estimates obtained in these two cases
is the last factor, which is given by Fj instead of F;. Then we focus on the first term.

In Ny we have e > 0, which implies ¢(J) < ¢(I). Moreover, F>, < F), and so the
terms corresponding to this case can be bounded by a constant times

= (RNJ)\?
YT Y el X (“E5D) e man
e>0 k=20¢ I€Je ik Re{I,I,} 'u( )

PCP

As before, we distinguish two cases: (I,J) € Far and (I, J) ¢ Far.

(a) In the first case, we have that F},(I, J) < e. Moreover, since e > 0 the cardinality
of J 1k is comparable to n and there is only one k > 2¢Y such that J 1  is not empty,
that is, ky is completely determined by J. Then, by Cauchy’s inequality again, we
can bound the terms of Ny corresponding to this case by a constant times

Ei RmJ

u(
(X e ¥ w sy

e>0 MeDg,,(Q k=20e Re{I,I,} JEI ¢ 1k

(52)
2
> <g,wJ>|2kJ‘5)
JeD5,(Q)

For fixed I € D$,,(Q), k € {2%¢,...,2¢72}, and all J € I_. 1, since £(J) = 27¢¢(I)
is fixed, we define I € C to be the cube such that ¢(I;) = c(I,) and £(I;) = (1 —
k27°)¢(I,) < £(I,). With this, we have

U Jcltel k2e) <dist(t,D1,) < (k+ 1)274(1)} C Iy \ Tgg1 C I,
Jel,e,l,k
Moreover, since the cubes J € I_. ; ;, are pairwise disjoint, we have for R € {I,I,}
ST WRAJ) S p(RO (T Tsn)-
JeI—e,l,k

Then the expression (52) can be bounded by a constant times
26—2 1
_ M(Rﬂlk)—u(RﬂIk ) 2
YD IITATID M B s

e>0 MeDs,,(Q) Re{I,1,} k=2°¢
1
2
( 3 |<g,wJ>2k;5).
JEDS,(Q)
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As before, we write ar = p(R N I;) and evaluate the inner sum of the first factor
by using Abel’s formula:

2872 26—2
1 ap — Gpi1 Ag0e Age—241 1 < 1 1 )
— = - + ap| = ——— ).
T i Y R D Vol T

For the first term we have

agoe /J/(R n Izee) < 2—506
20eu(R) ~ 2R

Similarly, the absolute value of the second term can be bounded by
Age—241 < M(RHIQC_Q-i-l)

27%,
2R~ Pu(R)
The absolute value of the last term is bounded by
26—2
1 K — (k- uRmIk ko1
Z Ak 1)° 5 S Z — )40
N< )k=296+1 (k k k=20e+41 k 1) k

1 606
S Z (k—1)5+1 S22

k>20c41

For the second factor, we just use that k; > 2. With this, the fact that the
cardinality of ch(I,) is 2", and Lemma 6.9, we bound the terms in Ny corresponding
to this case by

62(2_966 >

e20 I€Ds,,(Q)

1
2

()] )1(2-9& > launP)

JeD§,(Q)
S 27 fllaqllglliog Se

e>0

since 0 < 6.

(b) When (I, J) ¢ Far, as in case (b) of the previous subsection, we fix ey, = log M.
Then, by the calculations made in the case (a) and F),(I,J) < 1, we bound the
relevant part of (46) by a constant times

olel—2 1
WRN D)\ E(,)
Y Y Y Y Welteen X (M)A

le|>en k=261le lJpC pIGJelk Re{I,I,}
2 RmJ
z( Y e Yok Yy M )
le|>enm M1€DS,,(Q) k=20lel Re{l.I,} JEI ¢ 1k
3
> <g,wJ>|2k;5)
JeD§,(Q)

— __ad
SO 27 fll e lgllLagy S MTEER <,
le|>log M

by the choice of # and M.



494 P. VILLARROYA

10.6. Borderline cubes. Now we need to estimate the term Bg and the terms Ady,
and Ads, which we added to the paraproduct. All these terms contain cubes I,.J €
D5, (Q) such that 1 < k < 201l 1, that is, inrdist(I, J) — 1 < ec(I,.J)~?. We show
the work in detail only for Bg since the same ideas can be used for the other two
terms.

Recall the following notation used in Lemma 10.2: for N € N, which we chose
in (44), we write D(Q)>n={I1 €D5,(Q):£(I)>2"N¢(Q)} and D(Q)n ={I € D5,(Q) :
((I)=2"N¢(Q)}. Moreover, for I € D(Q)>n, let Iy be the family of cubes J € D(Q)> n
such that 1 < k < 29lel,

Then we can rewrite Bg as

Bs= > Y (£ vr)g0a)(Tr, ).

1eD(Q)>n JETo

For each I € D(Q)>n, let Inax be the family of cubes J € Iy that are maximal with
respect to the inclusion. Then let Iover be the family of cubes R € D(Q)>n such
that J C R for some J € Inax. We note that for all I € D(Q)>n, either Q € Inax
(if T € Qp) or Q € Ipyer- So, we always have Q € Iy U Iy We also note that all
cubes in I, satisfy that k& > 20lel with respect to I.

Now we include the cubes in Iyyer, and for each pair (I, J) in the sum defining Bg
we add the siblings either I or J that are not already contained in Bg. Then to the
previous expression we add and subtract the term

A= Z Z (f,0r)(g, V) (TYr, %)

I€D(Q) 5N JELover

DD D SRR NI ORI AR

I1eD(Q)>n J€Io J'ech(Jp)
J' ¢

+ Y Y Bue)e e T ).

JeD(Q)>n I€Jo I'ech(I))
I'¢Je

With this we obtain

(53) [Bs| <

3 <f,wz><Twz, 3 <g,wj>w.]>‘+|Al.

IED(Q)ZN JEIgUlover

In the last expression, the collections Iy and I,ye are not exactly the same as defined
before. But we use the same notation for them because they consist of the same cubes
as before plus their corresponding siblings if they were not initially in the expression
defining Bg.

Since all pairs of cubes added satisfy that k > 2°l¢l, we can apply the reasoning
of any of the previous cases (adding and subtracting the corresponding part of a
paraproduct when needed) to prove that the second term in (53) satisfies |A| <
el fllz2(llgll 2 (). We note that in the case of Ad; this is due to the fact that the
expression (T (¢ — full) 1) for the described cubes satisfies the inequality given in
Proposition 8.4. Then we only need to study the first term.

With this, for each I € D(Q)>n, we have that IoU I, is a convex family of cubes
that contains all siblings of each cube in the sum, has minimal cubes in D(Q)y and
maximal cube Q. Then, by summing a telescoping series, we have for each I € D(Q)>n

Yo Agvs= > (9)axs — (9axe-

JeIgUIoyer JeD(I)nNIg
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We can easily estimate the part of the first term in (53) corresponding to the second
term on the right-hand side of the previous expression. For this, we reason as follows:

> @i ol =loel[{ 3 (T )|

IeD(Q)>N IeD(Q)>N
_ 1 *
< (@) Mgl L2 (ym(@Q)? Z (fbr)br IxeT*xellz2 (-
1€D(@Q) >N L2(w)
Let h = ZIeD(Q)zNQC’ Yryr. By Lemma 6.9,
2
10172 = Z Z (£ + 1EQhl L2
JED(Q)>n 1ED(Q)>N
2
= Z Z <fa1/}f><d)la¢J>
JED(Q)>nN I€ch(Jp)
5 Z Z |<faw1>|2§ Z |<f7¢1>|2
JED(Q) >N I€ch(Jp) IeED(Q)>n-1

We have used that Egh = 0, |(¢r,%)| S 1, and that the cardinality of ch(J,) is 2.
Then by the testing condition (11) we get

> Gt Gowl| <u@ (X k) Fr@u@)!

IeD(Q)>N IeD(Q)>~n-1

S Fre (Q)Hf”m(u) <e.

On the other hand, by Fubini’s theorem, the remaining part of the first term on
the right-hand side of (53) can be rewritten as

> ST (F e (e) s (T xa)

IeD(Q)>n JED(I)NNIp

S <g>J<T< 3 <f,w1>wf>,xJ>7

JeD(Q)N IeD(Q)>nNJo

(54)

where Jy is defined as Iy was defined before.

Now recall the following definition: for J € D(Q)x, J¥ denotes the family of
dyadic cubes J' € D(Q)n such that ¢(J') = £(J) and dist(J’,J) = 0. Then we note
that, since J has minimal side length, the condition I € Jy implies that J' C I for
some J' € J'T.

Moreover, the cardinality of J is 3" and so we can enumerate the cubes in J
as {Jj}?ll by their fixed position with respect to J. Then, for each j € {1,...,3"}
the cubes I € D(Q)>n N Jg such that J; C I form an increasing chain of cubes I; =
Iin C Ijn—1 C -+ C Iy, parametrized by their side length £(I;5) = 27%4(Q)
with k € {k;,...,N} C {0,..., N}. Some chains may be empty. All these cubes de-
pend on J, but we omit this dependence from the notation. Now, in each chain of
cubes we also include the siblings of any cube already included in the chain. That
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way each chain is convex, and such that for each cube in the collection all its siblings
are also in the collection. Then for each fixed J € D(Q)ny we have

gn 4n
Z (frbr)yr = Z<f>IjX1j - Z<f>(1j,kj)p><(1j,kj)p,
I€D(Q)> NN o =1 i=1

where (I, ), is the parent cube of I, . To simplify notation, we will simply write
I; x;. With this, (54) can be written as

Z Z 7(Tx1;sx7) = Z Z I{TX1 45 XT) = 51— S

JeD(Q)n j=1 JeD(Q)n j=1

We now note that, since ¢,z € @), the kernel operator can be written as

K%Q(t,x)K(t,x)<1 ¢<|t7 '))

By the definition of the kernel we have K, g(t,z) = 0 for |t — z| < 7. Then, if

LIV J)<~/3 and dist(I,J) < v/3, we have
[t — x| <L) +dist(I,J) +4(J) <
for all ¢ € I and all « € J, which implies (T'xs, xj) = 0.

Now, all cubes in the first sum S, satisfy ¢(I;) = £(J) and dist({;, J) = 0. Moreover,
since N > Ny > log @ and £(1;) = 27V¢(Q), we have ¢(I;) < ~/3. Therefore, each
term in the sum S; equals zero.

We now focus on Sz. Remember that the cubes I; 5, in that term satisfy I; C I,
with dist(Z;,J) = 0. Moreover, 1 < k < 2%l + 1, with k = inrdist(L;,,1;) =

dist(l;,;15) —lelo _ L) _ )
1+~ and 2 lel6 — Ty = e Then

dist (L, ;) < (k — 1)e(I;) < 21%(1;)

N
PN
~| =
B .
A N
N—
v
—
|
B
~
—
\)’\(
o~
3
N

= 2711001, 1.) < €I ,)-
Then, since £(1;) < ((I;,), we get
dist (£ ,,J) < dist(l;,J) 4+ €(1;) + dist (L, I;) < 20(1 ;).

With this, when £(;;,) < v/6, we have dist(l;x,,J) < /3 and so, as before,
<TX1MJ- , XJ) = 0. This implies that the scales for which the dual pair is non-zero sat-

isfy ((Ij,) = 27%0(Q) > 7/6, that is, k < log “49) < Nj. And since k € {0,..., N},
that means that the non-zero terms in Sz contain cubes I, of at most Ny+1 different
side lengths (in fact in the Ny + 1 largest scales, all of them in {0, 1,..., Np}).
Now, to apply Fubini’s theorem and change the order of summation, we need to
rewrite the sum in
3n

(55) So= > Y AN TX10, 0 X0)

JeD(Q)n j=1

in terms of the cubes I; x, instead of the cubes J.

Recall that in (55), for each J € D(Q)y, each I; € J¥ with j € {1,...,3"}, and
each scale k € {0, ..., Ny}, we have considered an associated cube I ; € Jp with side
length ¢(1; 1) = 27%¢(Q) and its siblings. Now we reparametrize the cubes we have
up to now denoted by I in the following way: for each scale k € {0,..., Ny} and
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each i € {1,...,2""} we denote by I* the cubes such that £(I*F) = 27%¢(Q). We
note that inside @, for each k € {0,..., Ny} there are in total 2¥" of such cubes.
Now, for each I"* we define J%* as the family of cubes J € D(Q)y such that
there exists J' € (I**). This implies dist(I; 1, J’) < 2/¢19¢(J’). Finally, we denote
C** = U egir 3J. We note that p(3.J) < u(C**). With this,

No—1 2k7

Z Z Z )i (g (Txrie, X))

k=0 i=0 jegik

Now, for fixed I; , let Jo,0, Jo,1, J1,0, and J1,1 be the collection of cubes in J €
J* such that (T'x;i.x,x.s) belongs to each quadrant of C. More specifically, J € Tab
if and only if (=1)Re({T'xix,xs)) > 0 and (=1)°Im((Tx ik, xs)) > 0. Also let
Si,,1, be the union of the cubes in Jj, ;,. Finally, we define

No—12k"

s=Uuy U

k=0 =0 JGJ“"

that is, the union of all cubes J € D(Q)x such that J € (I*)y for some i, k. We note
that

O 12kn

-Jyu U u

k=0 i=01,,l2€{0,1} JET, 15

Before continuing, recall that in the decomposition obtained in (45) we first con-
sidered estimates for (P TP, f, g1> In this case, the cubes J € D and so they are
open cubes. Therefore, C*F and S are open sets and they satisfy by the choice of N
in (44) that u(S) is sufficiently small.

Then, since for J € J, 5 we have

{Txriws x| S (=1 Re(Txpiw, xa) + (=1)" Im(Tx e, X1),
we can write
No—1 2F"

1920 < > >0 D WD nal g I(Txree, xa)|

k=0 =0 jegi.k

No—1 2k7
< 1=l ZZZ(Z 1 Re(Txgoes Xs)

=0 =0 a,b=0 “JETap
+ Z Y TIm(Tx fix, XJ>)
JETab

No—1 2k7

1
= || fllzee () llgll Lo (1) Z Z Z “Re(T'X1ik,XS0s)

k=0 i=0 a,b=0
+ (=1 Im(T'xgi, X5,.,))

No—1 2k7

S lz=gollglle=gy Do > Do HTxuaw xs,,)l-

k=0 i=0 a,be{0,1}
Now we divide S, into 2n + 1 parts: S, = U?io Sj:a,b, Where S, p is the union
of cubes J € D(Q)y such that J € (I"*)y for some i, k, and there is I;’k € (IVF)f
with J C I9*. This implies that Sjas C J;*.
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We work with S}, for every j € {0,1,...,2n}. By Lemma 5.3, the truncated

operator T, ¢ is bounded on L?(p) with bounds || T} g|l2,2 < f;—%) < 2No_ Then, since

Sj.ab C S, we have

(T X ks X850 )] < (T ll2,20t (1) 2 1( S0 )2 < 2N0u(10%) 2 u(S) 2.
With this,

No—1 2k7

1S2] S 1(S)2 | fllzoe gy llgllze 2™ D Y uI*)2

k=0 =0

1 n

< u(S)? Hf”LOO(u)”g”LOO(u)QNO (Q)2 No2™o
S u(S )§|\f||Lo<> gl poo 2N+ < e

In the second last inequality we have used u(I**) < u(Q) < p(Q)4(Q)* < 2No and
so u(Q)2 < 2MNo. The last inequality holds because S C Ciy and from the choice of N
n (44).

10.7. Estimates for (TP;-MPMN fy01) and (T f1,91,0). All previous work can
be used verbatim to finally prove the right estimate for (T'Pj5,Pary f,g1), the first
term in (45).

To deal with the second term in (45), (T f1, g1,9), we note first that the reasoning to
estimate D1, IV;, and P; can be applied unchanged to this new case. For the term Bg,
we implement a small change. Since Bg is completely symmetrical with respect to the
cubes I and J, we can switch the roles played by these cubes:

Bo= > > (£ 0r)g, o) (Tr, ).
JED(Q)>n T€s
We now add and subtract the term

A = Z Z (f, ) (g, 1) (TYr, %)

JED(Q)> N T€Jover

+ Z Z Z fvwf’ g,¢.]><T1/J]/,'l/1J>

JED(Q)=n [€70 I'ch(l,)
I'¢Je

+ Z Z Z (fs01)(g, Y3 ) (T1,9 ),

I1eD(Q)>n J€lo J'ech(Jp)
J'¢Ie

which, for the same reasons as before, satisfies [A'| < || fllz2¢u)ll9llz2(n)- Then we
rewrite the previous reasoning to obtain

Bo-Als Y <f>I<TxI, ) <g,uu>z/u>

IeD(Q)n JED(Q)>nNo

= Z Z ,(Txr1,x1,) Z Z Lo, ATXT X1,

1eD(Q)n i=1 1eD(Q)n =1
=5 — S,
Again, we have that S; = 0, while we can reparametrize the sums in So as we did
before, to get

No—1 2F7

1
12l S e llglzoiy D Do D HTXSwus X0l

k=0 j=0 a,b=0
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Now we note that the cubes I € D are open and so N can be chosen large enough so
that .

121 S 1(S)2 [ fll oo (ullgll e (20" < e.
This ends the estimate for (T'f1,g1.9)-

10.8. Recursion process. For the last term in (45) (T'f1 9,91,9) we iterate the
previous argument. We first note that the supports of f; 5 and g, 5 are contained in
the union of 9I for all I € D1(Q) with £(I) > 27N¢(Q). This set, which we denote
by 0D1(Q), consists of the intersection with @ of finitely many Euclidean affine spaces
of dimension n — 1, which are either pairwise parallel or pairwise perpendicular.

Now let D = T3D. We consider the families of cubes 7oD(Q) and 9D2(Q) as
the union of 1 for all I € ToD(Q) with £(I) > 27N¢(Q). We then decompose f1 5 =
fa+ fa,0, where fa 9 = f1 0Xop, (@) and similarly for g; 5. Now, using the Haar wavelet
system (¢1)re1,» we decompose as before:

(T'f1,0,91,0) = (T f1,8,92) + (T f2,92,0) + (T f2,8,92,8)-
Then we can apply all the previous work to estimate the first two terms.

For the third term, we note that the supports of fs 5 and g2 5 are now contained
in 0D1(Q) N 0D2(Q). We also note that 9D2(Q) consists of the intersection with @
of finitely many Euclidean affine spaces of dimension n — 1, which are either pairwise
parallel or pairwise perpendicular, and also either parallel or perpendicular to every
affine space of dimension n — 1 of D1(Q). Then 0D;(Q) NID2(Q) is a set consisting
of finitely many Euclidean affine spaces of dimension n — 2.

Then, by repeating the same argument k = n — |« + 6(a — |«]) times in total,
we obtain PPy f = Zle fi + fi.o and likewise for Pj; Py, g such that the ap-
propriate estimates hold for |(T'f;,-)| and |(-, T*g;}| for all with i € {1,...,k} and the
functions fx 9, gr,0, are supported on ﬂle 0D;(Q). By repeating the previous rea-
soning on parallel and perpendicular affine spaces, we conclude that this set consists
of finitely many Euclidean affine spaces of dimension n —k = |a] — d(o — |@]), which
are either pairwise parallel or pairwise perpendicular.

But now we can show that ﬂle 0D;(Q) has measure zero with respect to p. Let T
be an arbitrary n — k-dimensional dyadic cube with side length ¢(I). Let (J;)!, be a
family of pairwise disjoint n-dimensional cubes J; with fixed side length r such that
INJ; # 0 and I C |J;~, J;. This family has cardinality comparable to m = (Z(TI))"_IC.
Then

< ) @ ek o n—k_.a—n+k
(1) <3 uli) < P = g1y ek,
i=1

,
Since« —n+k=a— |a] +d(a— |a]) > 0, we have
p(I) < )™ * lim rem R =0

r—0
for all cubes I of dimension n — k. This shows that u(ﬂf:l 9D;(Q)) = 0 and so
(T fr,0, 9k,0) = 0. This finishes the proof of the first part of the theorem, except for
the last result in Proposition 10.3 below.

10.9. Similar estimates for cubes of different dimensions. The proof of the
second part of the main Theorem 4.2 follows similar steps. As before, we first work
with the classical n-dimensional dyadic grid D™(Q) = D1(Q), and ID™(Q) defined
as the union of 9I for all I € D*(Q) with ¢(I) > 27V¢(Q). Then we decompose
PPy f = f1+ fir0, where fi1 9 = (PAJ;[PMNf)XaDn(Q) and similarly for Py; Py 9.
With this,

(56)  (T'P3psPasy £, PirPoryg) = (TPaiy Paay fo91) + (T f1,910) + (TP f1.0,91.0)-
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Then we use the previous reasoning to estimate the first two terms, namely,
(TP35;Prsy f591) and (T f1, 91.0)-

To control (T'f1 9,91,0) we note that the supports of f1 9 and g1,9 are contained
in 0D™(Q). We define:

e D"1(Q) as the family of dyadic cubes in D"(Q), which is a dyadic n — 1-di-

mensional grid.

e D" 1(Q) as the union of I for all I € D"~ 1(Q) with £(I) > 27 N(Q).

We then decompose f19 = f2 + f2.0, with fa s = f1,0Xopn-1(@) and likewise for g.
Similarly to before, we use the Haar wavelets (¢1)7epn—1(g) to estimate the first two
terms <Tf17a,g2> and (ng,g27a>.

To control (T'f2,9, g2.9) we note that f2 5, g2 s are supported on D" 1(Q) and we
reiterate the process.

By repeating the same argument k& = n — |a] + §(a — |a]) times, we obtain
PjMPMN f= Zle fi + fio and similarly for PﬁPMN g such that the appropri-
ate estimates hold for |(T'f;,-)| and |(-,T*g;)| for all i € {1,...,k} and the func-
tions fx.9, gk are supported on D" *F1(Q), for which we consider the n — k-di-
mensional grid D" ~*(Q). We prove as before that D" ¥*+1(Q) has measure zero with
respect to p.

Let I € D" %(Q) be an arbitrary n — k-dimensional dyadic cube with side
length ¢(I). We cover I with a family of n-dimensional cubes (J;)™; with side length r

and cardinality m = (@)nik. Then again
m n—=k
(1) koa—
I < Ji< N\t a_ p(nn" oszrk.
MDD p) 5 (52) 0 =ty

As before, u(I) < (1) Flim,_,or® "% = 0 for every cube I € D"~*(Q) of dimen-
sion n — k. This shows that p(dD" *+1(Q)) = 0 and so we have (T'fx.0,gr.0) = 0,
which finishes the proof of the second part of the theorem.

10.10. Domination by truncated operators. All work done since the start of the
proof of Theorem 4.2 applies to the truncated operators T’ . To completely finish
the result, we need Proposition 10.3, which proves that, when T is compact, the entire
original operator T can be estimated above by the truncated operators. Its proof uses
an argument developed in the appendix of the first chapter of [23], where the measure
is doubling and the uncut operator T' is assumed to be bounded.

Proposition 10.3. Let T, g be the uniformly bounded smooth truncated operators of
Definition 5.2. Let k =n — |a] —d(a— |a]). Then for f,g € L?(u) simple functions
supported on a finite collection of cubes of D(Q), there exist functions (fi)F_,, (g:)5 1,

(fi.0)i=0s (95,0)i1 with || fill 2y | fi0llL2(uy < W fllz2es and |gillL2 s 19,01 L2 <
lgllz2(uy such that for e > 0 there is My € N satisfying

k
(T P35 Pary [ Pii Pary )| S sup D [(T.0 fim1.0, 90| + (Ty.a.fi 9i.0)|

(57) Q=]
+ €l fll L2 19l 22 )
for all M > M.
Furthermore, with the previous inequality and the fact that
(Ty.@fi-1.0,90] + (Th.ofi 9i.0) S €llfll L2 191 £2 )
for all M > My, we have

(T Psns Pary f PaiPran 9)] S ell Fll 2 llgll 22 -
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Proof: To prove (57), we fix Q@ € C and f,g € L?*(u) simple functions compactly
supported on 271Q and with support on a finite collection of cubes of D(Q). Then
f, g are constant on all cubes of D(Q) with side length smaller than or equal to a
fixed arbitrary parameter. We further assume without loss of generality that f, g are
supported on one quadrant of R™. Let € > 0 also be fixed.

Let M > My > 0, N > 0, and My be the parameters fixed at the beginning of the
proof of Theorem 4.2. Then we know that f, g are constant on all cubes of D(Q) with
side length smaller than or equal to 27V /(Q). Recall that, by the way these parameters
were chosen, ||Pi;fllr2u) < €llfllr2(u), similarly for g, and for £(1) < 27N(Q) we
have F),(I) + Fr(I) + Fp-(I) < e.

Since T, g are uniformly bounded, by the uniform boundedness principle, there
exists a sequence (7y;) converging to zero and an operator Ty bounded on L?(u) such
that the operators T, o weakly converge to Ty in L?(u), namely,

Jim (T, = To)f,9) = 0,
—00

and Hmléoo ||(T’YhQ — To)fHLz(#) = 0.

Consider the functions PQJ-MPMN f and PJJV}PMN g, and recall the decompositions
PzLMPMNf = Zle fi+ fios PA%[PMNg = Ele 9i + i, given in (45) and (56) with
cubes of different dimensions:

e First, P, Puy f = fi+f1,0, where f1 9 = (P]J\/_[PMNf)XaD"(Q)’ and Pi; Py g =
g1+ 91,0, where g1 9 = (PzﬁPMNQ)XaDn(Qy

e For i € {1,...,k}, fio = fix1 + fit1,0, where fiy15 = Ji.oXopn—i+1(Q), and
9i,0 = gi+1 t gi+1,0, Where giy1.0 = gi aXopr-i+1(Q)-

With this, if we denote fo.9 = Ps5; Py f, by the recursive definitions just provided
we can write

k

(58) <TP2J_MPJV[Nfa PJ\JQPMN9> = Z(Tfifl,aag» + <Tfi,gi,6> + <Tfk,3agk,3>a
=1

where f;, gi are zero on D"~ T1(Q) and (T fx 9, gr.0) = 0 as we saw before.

To control (T'f;_1.s,9:), we note that by definition f;_1 is a simple function
supported on a finite collection of cubes of D" ~*+1(Q), while g, is zero on D"~ +1(Q).

On the other hand, the control of the term (T'f;, g;.5) requires a different consid-
eration. We note that f; is supported on an affine space of dimension n — i + 1 and
zero on OD"~T1(Q). Then, although g; o is supported on an affine space of dimen-
sion n —14, we need to consider g; 9 as a simple function supported on a finite collection
of cubes of D"~*1(Q). This is possible since g is a simple function supported on a
finite collection of cubes of D"(Q).

From the previous explanation, we can write f = f;_19 = Z;n:l<f>1j X1;, with I €
(Dr=H1)¢ (Q) such that £(I;) = 27N¢(Q), I; € Q@ C 2711, and small enough so
that Fr(I;) < e. Since I € D"4(Q), the last inequality requires some considerations
about the relative distance from the cube I; to the origin of R™ (or its unit ball). But
such considerations do not affect the property Fr(I;) < € since it can be obtained
from the small side length ¢(I;) = 27V¢(Q). We note that to apply similar ideas
to gi.0 we also use cubes in (D"~1)$ (Q).

For the next property, we denote each of the previous functions simply by f and g.
We claim that for ¢ € {1,...,k} and for f, g constant on all cubes of D(Q) with side
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length smaller than or equal to 2~V /(Q) such that g is zero on D" ~**1(Q) there is
a bounded function a; such that
(59) <vag> = <T0fag>+<alfug>7 and |<azfag>| ge”fHLz(u)HngP(u)

Similarly, (f, T*g) = (f,T¢g) + (f, b;g) for functions f that are zero on 9D"~T1(Q),
with [(f,big)| < €l 120 9]l L2 (0
By assuming the claim, we can prove the statement. For each i € {1,...,k}, let I;
be large enough so that
(To — Ty,,.Q) fim1,0, 9i) | + [{(To — Ty, @) fi.0, 95,00 | < el fllzzqumlgllz2 -
Then
(T fi—1,009i)] < (T, @ fi-1,0, 90| + [{(To — T, @) fi—1,00 9i)| + [{aifi—1,0, 9:)|

< (T, .@fi—1,009:)| + 2l fll2 9l 22 (1) »
and likewise for [(T'f;, gi.o)|- Then with (58) and (60), we get

k

|<TP2J_MPMNfa PJ\JZPMNQH /S Zsup |<T71in—1,3agi>‘ + |<T’)’7in7gi73>|
i=1

(60)

+4ke|l fll L2 19l 22 () »

which is comparable to the statement.
We now work to prove (59). If we denote D = T — T, we need to show that
(Df,g) ={a;f,g). Let I' € C such that 2Q C I'.

(a) We first prove that, for I € D/(271Q) with j € {n,...,n — k + 1}, and for
all g € L?(p1) such that g is zero on 9D7(Q), we have

(61) (D(x1),9) = (x1D(x1), 9)-

(a.1) For this we first assume that g satisfies the additional condition dist(sup g, ) >
0, and we prove that

<D(XI)79> =0= <XID(XI’)7g>a

where the second equality is obvious. For this, for fixed ¢ > 0, let I; € N be
large enough so that [((T%,, .o —T0)(x1), 9)| < € and dist(sup g, ) > 2v;,. Then

(D(xr),9) = (T =Ty, @) (x1),9) + (T, .0 — To)(x1), 9)-
Since supgNI =0,z €supg C 27'Q, and t € I C 271Q, we have

(-1, 0000 = [[ Keao(E) dutgto)ante) o

due to the facts that supp ¢ C [-2,2] and |t — x| > dist(I,supg) > 27;,. Then

(D) 9 = (T, @ = To) (xa), g)| < €

Since the inequality holds for all € > 0, we conclude that (D(xr),g) = 0 for
all g € L?(p) that are zero on 9D?(Q) and dist(sup g, ) > 0.

(a.2) For the general case, we define I* = {z € R"/dist(z,I) < M(I)} C (1 +2)\)I,
and fix A € (0,1/2) such that I* € Q C I’. Then

(D(x1),9) = ((1 = xp»)D(x1),9) + (x1» D(x1), 9)
= (D(x1), (1 = x12)g) + (xp» D(x1), 9)-
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(62)

(63)

Since dist(sup((1—x7»)g), I) >dist(sup(l—x;»), I) > M(I) > 0, by the previous
case we have (D(x7), (1 —x)g) =0 for all g € L?(p) that are zero in 9D (Q).
With this,

(D(x1),9) = (x»D(x1), 9)-
Then, if we denote I¢ = I'\ I, we can write
(D(x1),9) = (D(x1),x1»9) = (D(xr), 9xr») = (D(x1e), 9x12)-

By the previous case again, we have that (D(xzc),h) = 0 for all h € L?(u)
that are zero on 9D’ (Q) and dist(sup h, I¢) > 0. Then, as in (62) applied to I¢
and gxr», we have

(D(xre), gx1x) = {(X(1e)» D(x1¢), 9X12)-
With this, for A > 0 and g € L?(uz) that is zero on 9D7(Q), we get
(D(x1),9) = (xr»D(x1),9) — <XIAX(IC)AD(XI)19>‘
And since A > 0 is arbitrary, we have

(D(x1),9) = lim (xpx D(xr), g) = lim (e x e D(xa), 9)-
—0 A—0

We now work with each term separately.

(a.2.1)

(a.2.2)

(65)

For the first term, we reason as follows. By the testing condition on 7" and
the boundedness of Ty, we have || xpD(x1)||2() < w(I')z. Then D(xy/)g is
integrable on I'. Moreover, I* C I, |x;»D(xr)g| < xr/|D(xr)g| € L* (), and
limy_0 x> = X, where I € C is the closed cube defined by the closure of I.
Then, by Lebesgue’s dominated convergence theorem,

lim (xn D(xr). 9) = (XxiD(xr). 9. = (xaDxar), 9)-

The last equality holds because g is zero on dD?(Q) and so on OI.
For the second term in (63), we work differently. Let I = (1 — 2A)I. We note
that xp X (rey» = xpa7 + X7, - Then
(X1 x (o) D(x1), 9) = (Xr\ 1P (x1), 9) + (X1, D(x1), 9),
where we can write I instead of I because g is zero on 9D (Q).

The second new term can be treated as before: ||xrD(x1)|r2(u) S u(I)2 and so
D(xr)g is integrable on I. Moreover, I'\ Ix C I, [xn 7, D(x1)gl < x11D(x1)g| €
L'(p), and limy_ x\7, = xa, with A C 8I. Then, by Lebesgue’s dominated
convergence theorem, we have

;%<X1\1AD(X1)79> = (xaD(xr1),9) =0,

since g is zero on A C 9D (Q). )
For the first term in (65), we proceed as follows. Let S, = {z € I’ \ I :
2=V (IANT) < dist(z, I) < 277¢(I*\ I)}. Then since I*\ I =32, Sy,

R
(X 1D(x1),9) = <R}gnoo ZO xs, D(xr), g>~
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By Fatou’s lemma,
R

Do) < ( Jim > xs DGl ol
=0
(66) '
R
< limi .
< lgri}lo%f;<XST|D(Xl)|v lg1)
Given € > 0, we choose [, which depends on r, A, €, I, and g, such that
2y, < 270 DULN ) and [[(Ty,, @ — To)(x0) |2 91220 < €277 Then
(xs. DOl lgl) < (s, (T =T, @) (X 19D + (xs, (T, @ — To) (x1), |g])-

The second term can be bounded by

(Ty,.@ = To) (XDl 2o llgll 2y < €277

For the first term, since S, NI = 0,
a)o( =) duto) o] duta) =

In the last equality we have used that 27, < 2=C*+Dg(IA\ 1) < dist(z, I) <
[t — x|
With both estimates we continue the estimate in (66) as

X5 (T =T, ) ()l 19l) =

|<X1%\1D X1): |<€ZQ "Se

for all € > 0. Then (x;»rD(x1),9) = 0.

e By combining the decomposition (63), the equality (64), and the subsequent
decomposition (65) with both terms zero, we get (D(x1),9) = (x1D(x1),9),
which is the equality claimed in (61).

(b) Now we use (61) to prove (59). By hypothesis, f, g are simple functions supported
on a finite collection of cubes of D™(Q) of side length 2=V ¢(Q).

Let f=37" (f)r,xz; with I; € (D" "F1)5,(Q) such that £(I;) = 27N(Q), I; C
Q C 27'I" and small enough so that Fr(I;) < e. Then, by (61),

m m

(D(f),9) =D (N1, {D(xsy)s9) = D (), (xt; D(xrr), 9) = (fD(xrr), 9) = (aif, 9),

j=1 j=1

with a; = D(x/). This proves equality (59). )
Now we show that [(a;f,9)| < €llfllrzqmllgllrz(n- Let I,J € D"HHQ), J €

D H(Q), with £(T) = () =2~ NK(Q) and such that J is the interior of J. By the
definition of a; and (61) again, we have

(67) (aixr, x5) = (xrnaD(xr), x 7) = (D(x1n7), X j)-

If INnJ =10, we get (a;xr,xj) = 0. Otherwise, since £(I) = £(.J), we have I = J.
Then, by (67), the testing condition on T and the compactness of Ty,

[{aixt, x 7)1 = KDx7, x )| < KTx7, x5 + KToxr, xj)|
S UxaTxallz2 ey + 1Toxallz2 ) u(J)?
S Pr(D)p(J)? u(D)% < en()2 p(J)>.

m\»—A
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(S0
o
(S}

We now write f = > rcpn-ivig)y (f)1Xr and g = X fepn—iti(g), (9)FXF, Where
Fr(I) < e, and I is the interior of I so that g is zero on 9I. We have just seen
that (a;x7,xj) =0 for I # J. Then

(1]

2]
(3]

(4]

(5]
(6]
[7]
(8]

(9]

(10]
(11]
(12]
(13]
(14]

(15]

aif, 9)| = > > (F)ilg) slaixs, x7)

IeD"=+1(Q)y JeDn—i+1(Q)n

Yo Kl xp)l

IE'D"77:+1(Q)N

¢ Y KDille)fla(D i uh?

[eDn~+1(Q)n

(X umbun) (X lanPud)

IeDn—H+1(Q)Nn IeDr—i+1(Q)n

IA

A

D=
[N

A

A

ellfllzzwllgllz2 (- O
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