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Abstract: We develop new local T1 theorems to characterize Calderón–Zygmund operators that
extend boundedly or compactly on Lp(Rn, µ), with µ a measure of power growth.

The results, whose proofs do not require random grids, have weaker hypotheses than previously
known local T1 theorems since they only require a countable collection of testing functions. Moreover,

a further extension of this work allows the use of testing functions supported on cubes of different

dimensions.
As a corollary, we describe the measures µ of the complex plane for which the Cauchy integral

defines a compact operator on Lp(C, µ).
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1. Introduction

The T1 theorem characterizes the boundedness of Calderón–Zygmund operators T
in terms of the functions T1 and T ∗1. On the other hand, the local T1 theorem
attains a similar characterization using the action of T and T ∗ over a system of
indicator functions (χQ)Q∈Q of all cubes with edges parallel to the coordinate axes.

The idea of a local T1 theorem was first introduced in 1990 by M. Christ [3] in
connection with the geometric description of removable compact sets for bounded
analytic functions (known as Pailenvé’s problem). His motivation was that, in prin-
ciple, finding a system of local testing functions should be easier than identifying
a single function over which the operator behaves well globally. This approach was
shown to be right at the turn of the century when F. Nazarov, S. Treil, and A. Vol-
berg proved the first local T1 and Tb theorems for non-doubling measures in [18]
and [21] (see also [20] and [22]). Since then, research work on this subject has been
continuously growing with special focus on more general criteria of boundedness ([1],
[13], [12]), variants that apply to new settings ([11], [10], [14]) and applications
to PDEs ([9]).The articles [7], [8], [2], [16] and the books [4], [5], [15], [24] provide
detailed accounts of the evolution of this theory.

A few years ago, papers [25], [26] presented global T1 and Tb theorems charac-
terizing the compactness of Calderón–Zygmund operators. These results can be used
to prove the compactness of many double layer potential operators [26]. In turn, this
allows us via Fredholm theory ([6]) to deduce invertibility of the Laplacian on a large
class of domains. Following this line of research, the current paper introduces a local
T1 theorem for non-doubling measures, that is, a criterion of boundedness and com-
pactness that relies on the action of the operator over a family of indicator functions
of dyadic cubes (Theorems 4.1 and 4.2).

Most proofs of T1 theorems on non-doubling spaces employ randomization methods
([18], [20], [21], [22], [12], [13], [14]). The reason for this is the fact that, when using
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the kernel decay, estimates of the dual pair ⟨TχI , χJ⟩ grow logarithmically with both
the distance between the cubes I, J and the ratio between their side lengths. To
overcome this issue, the probabilistic approach considers grids of general cubes rather
than only the grid of dyadic cubes. In the space of all these grids, cubes with close
boundaries and very different sizes are rare, and thus they can be assigned a small
probability. Then, by averaging among all grids, the contribution of such cubes can
be made arbitrarily small. The costs of this method include a delicate technique of
decomposition called surgery, and the requirement by hypothesis of a non-countable
family of testing functions (one for each cube in Rn). The recent work [17] develops
a local Tb theorem for non-doubling measures without the use of random grids. But
the result still requires the use of a non-numerable family of testing measures.

We introduce a new proof approach that does not use random grids and instead
explicitly addresses the contribution of close cubes with very different sizes. To work
with such cubes, the method proceeds, broadly speaking, as follows: in the dual
pair ⟨Tf, g⟩, we decompose each argument function as the sum of two functions with
supports in the interior of dyadic cubes and in their boundaries respectively. Then
we estimate the dual pair with functions supported inside nearby cubes by summing
telescoping sums and using that the measure of the part of each open cube close to
the boundary can be made arbitrarily small. Finally, for the dual pair over functions
supported on the boundary we take translated cubes so that the functions are sup-
ported on the interior of these translated cubes and we apply a recursion process. This
work is mostly carried out at the end of the proof of Theorem 4.2 in Subsections 10.6
to 10.8.

The new theorem allows the use of a countable family of testing functions and
opens up the possibility of extending the results to new settings such as manifolds
and fractal sets.

Regarding compactness, we provide an application to the Cauchy integral operator
with a non-doubling Radon measure µ, which is defined by

Cµf(z) =

∫
C

f(w)

w − z
dµ(w).

It is known that if the measure is defined by the indicator function of a unit line
segment S, that is, dµS = χS dH1, with H1 the one-dimensional Hausdorff measure
in C, then CµS

is bounded but not compact on L2(µS). On the other hand, if the
measure is defined by the indicator function of a unit square Q, that is, dµQ = χQ dm,
with m the Lebesgue measure in C, then CµQ

is compact on L2(µQ). Theorem 4.4
describes for which measures µ of the complex plane the Cauchy integral operator Cµ

can be compactly extended on L2(µ).
The outline of the paper is as follows. In Sections 2, 3, and 4 we introduce some

notation, define the class of operators under study, and state the main results respec-
tively. In Section 5, we study a smooth truncation of the kernel, while in Section 6 we
describe the Haar wavelet system. Section 7 contains two technical results on some
auxiliary functions. Section 8 focuses on obtaining estimates for the action of the op-
erator over Haar wavelets. In Section 9 we deal with the paraproducts, and Section 10
is devoted to the proof of the main result, Theorem 4.2.
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their unreserved support. I also thank the reviewers for their valuable work, which
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2. Notation

2.1. Cubes and dyadic cubes. Let C be the family of cubes in Rn defined by tensor
products of intervals of the same length, namely, I =

∏n
i=1[ri, ri + l), with ri, l ∈ R.

For each cube I ∈ C, we denote its center by c(I), its side length by ℓ(I), and its
boundary in the Euclidean topology of Rn by ∂I.

Let D1 be the family of dyadic cubes I =
∏n

i=1 2
−k[ji, ji + 1), with ji, k ∈ Z. Let

D̃1 be the family of open dyadic cubes I =
∏n

i=1 2
−k(ji, ji + 1), with ji, k ∈ Z.

Now, let λ1 = 0 and λ2, . . . , λn ∈ R+ such that λi ∈ R+ \
(⋃i−1

j=1(λj+Q)
)
. Without

loss of generality, we can assume λ1 < λ2 < · · · < λn < 1. Let ai = λi(1, . . . , 1) ∈ Rn.
For i ∈ {1, . . . , n}, we define the families of cubes

(1) TiD = ai +D1 = {ai + I : I ∈ D1},

with ai + I ∈ C such that c(ai + I) = ai + c(I) and ℓ(ai + I) = ℓ(I).

For each grid TiD, we define its first quadrant as Rn,+
i = ai +Rn,+, where Rn,+ =

{x = (x1, . . . , xn) ∈ Rn : xi ≥ 0}.
We write any particular instance of the families of cubes TiD (and Dr

∂ , defined
later in this section) simply as D. We often call these cubes dyadic, using the term

loosely. We also denote any particular instance of the families of cubes TiD̃, which is
defined in a similar way as TiD, simply by D̃.

Given a measurable set Ω ⊂ Rn, let D(Ω) be the family of dyadic cubes I ∈ D
such that I ⊊ Ω.

For λ > 0, we write λI for the cube such that c(λI) = c(I) and ℓ(λI) = λℓ(I). We
write B = [−1/2, 1/2)n and Bλ = λB. We also denote by λD the family of cubes λI
with I ∈ D.

For I ∈ D, we define the children of I, denoted by ch(I), as the collection of dyadic
cubes I ′ ⊂ I such that ℓ(I ′) = ℓ(I)/2, and the parent of I as Ip ∈ D, that is, the only
cube in D such that I ∈ ch(Ip). If Ω ∈ D and I ∈ D(Ω), then Ip ⊆ Ω.

We define the friends of I, denoted by I fr, as the collection of cubes J ∈ D such that
ℓ(J) = ℓ(I) and dist(I, J) = 0, where dist(I, J) denotes the Euclidean set distance
between I and J .

2.2. Pairs of cubes: eccentricity and relative distances. Given I, J ∈ C, if
ℓ(J) ≤ ℓ(I), we write I ∧ J = J , I ∨ J = I, while if ℓ(I) < ℓ(J), we write I ∧ J = I,
I ∨ J = J .

We define ⟨I, J⟩ as the only cube containing I ∪ J with the smallest possible side
length and such that

∑n
i=1 c(⟨I, J⟩)i is minimum. We note that ℓ(⟨I, J⟩) ≈ dist(I, J)+

ℓ(I ∨ J).
Let [I, J ] be the unique cube satisfying ℓ([I, J ]) = dist(I, J), λ[I, J ] ∩ I ̸= ∅, and

λ[I, J ] ∩ J ̸= ∅ for any λ > 1, and such that
∑

i c([I, J ])i is minimum.
We define the eccentricity and the relative distance of I and J as

ec(I, J) =
ℓ(I ∧ J)
ℓ(I ∨ J)

, rdist(I, J) = 1 +
dist(I, J)

ℓ(I ∨ J)
.

We define the inner boundary of I as DI =
⋃

I′∈ch(I) ∂I
′, and the inner relative

distance of J and I by

inrdist(I, J) = 1 +
dist(I ∧ J,DI∨J)

ℓ(I ∧ J)
.
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2.3. Lagom cubes. For M ∈ N, we define CM as the family of cubes in C such that
2−M ≤ ℓ(I) ≤ 2M and rdist(I,B2M ) ≤M . We call the cubes in CM lagom cubes.

We write DM = CM ∩ D, Dc
M = D \ DM , DM (Ω) = DM ∩ D(Ω), and Dc

M (Ω) =
Dc

M ∩ D(Ω).

2.4. Grids of dyadic cubes of lower dimensions. We write Dn
∂ = D1. Let ∂Dn

be the set defined by the union of ∂I for all I ∈ D1. This set is the union of countably
many affine Euclidean spaces of dimension n − 1. Then let Dn−1 be the family of
dyadic cubes in ∂Dn, namely, the cubes of dimension n− 1 of the form

I =

l−1∏
i=1

2−k[ji, ji + 1)× αl ×
n∏

i=l+1

2−k[ji, ji + 1),

where l ∈ {1, . . . , n}, ji, k ∈ Z, and αl ∈ {2−kjl, 2
−k(jl + 1)}. We use the convention

that
∏−1

i=1 2
−k[ji, ji + 1) = α1 and

∏n
i=n+1 2

−k[ji, ji + 1) = αn.

We continue recursively. For 0 < r < n, we define ∂Dr+1 as the union of ∂I for
all I ∈ Dr+1, where ∂I denotes the border of I in the Euclidean topology of Rr+1. In
this way ∂Dr+1 is the union of countably many affine Euclidean spaces of dimension r.
Finally, we define Dr as the family of r-dimensional dyadic cubes in ∂Dr+1.

3. Measure, kernel, and operator

3.1. Non-homogeneous measure. We describe the class of measures for which
the theory applies.

Definition 3.1. Let µ be a Radon measure on Rn, which without loss of generality
we assume to be positive.

We say that µ has power growth if there is 0 < α ≤ n such that

(2) µ(I) ≲ ℓ(I)α

for all I ∈ C.
We now define three densities of the measure: for I ∈ C, let

ρ(I) =
µ(I)

ℓ(I)α
,

ρin(I) = sup
t∈I

0<λ<ℓ(I)

µ(I ∩B(t, λ))

λα
= sup

t∈I
λ>0

µ(I ∩B(t, λ))

λα
,

where B(t, λ) = {x ∈ Rn : |t− x| < λ}, and given 0 < δ ≤ 1,

ρout(I) =
∑
m≥1

µ(mI)

ℓ(mI)α
1

m
δ
2+1

.

We denote

(3) ρµ(I) = ρin(I) + ρout(I).

Remark 3.2. In the definition of ρin one can substitute the balls B(t, λ) by dyadic
cubes just by taking the smallest Q ∈ D(I) with B(t, λ) ⊂ Q.

The sum in the definition of ρout is comparable to∫ ∞

1

µ(tI)

ℓ(tI)α
dt

t
δ
2+1

≈
∑
k≥0

2−k δ
2
µ(2kI)

ℓ(2kI)α
.
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If µ satisfies the power growth for n-dimensional cubes of D, then it satisfies
the same power growth for r-dimensional cubes of Dr

∂ . To show this, we note that
each r-dimensional dyadic cube I ∈ Dr

∂ is on the border of an n-dimensional dyadic
cube Q ∈ D with the same side length and then µ(I) ≤ µ(Q) ≲ ℓ(Q)α = ℓ(I)α.

3.2. Compact Calderón–Zygmund kernel and its associated operator. We
now describe the class of kernels and operators for which the theory applies.

Throughout the paper, |·| denotes the norm on lp(Rn) for any 1 ≤ p ≤ ∞. However,
to simplify notation, in some inequalities we reason as if we were using l∞(Rn). For
other norms, the results hold just by replacing ≤ with ≲.

Definition 3.3. Let µ be a positive Radon measure on Rn with power growth 0 <
α ≤ n.

A function K : (Rn×Rn) \ {(t, x) ∈ Rn×Rn : t = x} → C is a Calderón–Zygmund
kernel if it is bounded on compact sets of its domain and there exist 0 < δ ≤ 1 and
bounded functions L, S,D : [0,∞) → [0,∞) satisfying

(4) |K(t, x)−K(t′, x′)| ≲
(
(|t− t′|+ |x− x′|)

|t− x|

)δ
F (t, x)

|t− x|α
,

with F (t, x) = L(|t− x|)S(|t− x|)D(|t+ x|), whenever 2(|t− t′|+ |x− x′|) < |t− x|.
We say that K dµ× dµ is a compact Calderón–Zygmund kernel if (4) holds and

(5) lim
ℓ(I)→∞

L(ℓ(I))ρµ(I)= lim
ℓ(I)→0

S(ℓ(I))ρµ(I)= lim
rdist(I,B)→∞

D(rdist(I,B))ρµ(I) = 0.

The purpose of the function F in (4) is to estimate the tails of sums indexed by
dyadic cubes, especially in the theorems on compactness. When summing over an
infinite collection of cubes, the tails are defined by those cubes that are very large, or
very small, or those with intermediate size but at a large distance from the origin. The
functions L, S, D are used to control the contributions of large, small, and distant
cubes respectively.

Remark 3.4. Since a dilation of a function satisfying any of the limits in (5) satisfies
the same limit, that is, Dλ(Lρµ)(a) = L(λ−1a)ρµ(λ

−1a) also satisfies the first limit,
we omit universal constants in the arguments of the functions.

We note that, without loss of generality, L and D can be assumed to be non-in-
creasing, while S can be assumed to be non-decreasing. Otherwise, we define

L(r) = sup{L(s) : s ≥ r},
D(r) = sup{D(s) : s ≥ r},
S(r) = sup{S(s) : 0 ≤ s ≤ r}.

The functions L, D are non-increasing, S is non-decreasing, and, since they are greater
than the original functions L, D, and S respectively, they satisfy (4). Then one can
use the newly defined functions instead.

Notation 3.5. Given three cubes I1, I2, I3 ∈ C, we denote

F (I1, I2, I3) = L(ℓ(I1))S(ℓ(I2))D(rdist(I3,B))

and F (I) = F (I, I, I). Then the limits in (5) can be compactly written as

(6) lim
M→∞

sup
I∈Dc

M

F (I)ρµ(I) = 0.
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The two expressions are equivalent because Dc
M contains the cubes that are large,

small, or distant. Therefore, when ℓ(I) tends to infinity, since the functions S and D
are bounded, we have

lim
ℓ(I)→∞

F (I)ρµ(I) = lim
ℓ(I)→∞

L(ℓ(I))S(ℓ(I))D(rdist(I,B))ρµ(I)

≤ ∥S∥∞∥D∥∞ lim
ℓ(I)→∞

L(ℓ(I))ρµ(I) = 0.

Similar reasoning applies when either ℓ(I) tends to zero or rdist(I,B) tends to infinity.
Given 0 < δ ≤ 1, we define

(7) D̃(I) =
∑
k≥0

2−k δ
2D(rdist(2kI,B)).

If D satisfies (5), then by Lebesgue’s dominated convergence theorem so does D̃.

In [25] it was proved, when α = n = 1, that the smoothness condition (4) and
the mild assumption lim|t−x|→∞K(t, x) = 0 imply the following pointwise decay
condition:

(8) |K(t, x)| ≲ F (t, x)

|t− x|α
,

with F (t, x) = L(|t− x|)S(|t− x|)D(|t+ x|). This is also the case when F ≡ 1.

Definition 3.6. A linear operator T is associated with a Calderón–Zygmund kernelK
if the representation

(9) Tf(x) =

∫
Rn

f(t)K(t, x) dµ(t)

holds for all functions f bounded and compactly supported, and x /∈ supp f .

By (8) and the properties of f and x, the previous integral is absolutely convergent
with ∫

Rn

|f(t)K(t, x)| dµ(t) ≲ ∥f∥L∞(µ)
µ(supp f)

dist(x, supp f)α
.

4. Statements of main results

We denote Kronecker’s delta by δ: δ(x) = 1 if x = 0 and δ(x) = 0 otherwise. We
denote by ⌊x⌋ the floor function, that is, the greatest integer less than or equal to x.

Theorem 4.1. Let µ be a positive Radon measure on Rn with power growth 0 <
α ≤ n. Let T be a linear operator with a Calderón–Zygmund kernel and measure µ as
in (9). Let 1 < p <∞, and k = n− ⌊α⌋+ δ(α− ⌊α⌋).

Then the following statements are equivalent:

(i) T extends to a bounded operator on Lp(µ).
(ii) There exist k grids of n-dimensional cubes, TiD as in (1) with i ∈ {1, 2, . . . , k},

such that the testing condition

(10) ∥χITχI∥L2(µ) + ∥χIT
∗χI∥L2(µ) ≲ µ(I)

1
2

holds for all I ∈ TiD ∪ 4TiD.
(iii) For the k grids Dr

∂ of r-dimensional cubes as defined in Subsection 2.4 with
r ∈ {n, n− 1, . . . , n− k + 1}, T satisfies (10) for all I ∈ Dr

∂ ∪ 4Dr
∂ .

Theorem 4.1 follows from the proof of the result below.
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Theorem 4.2. Let µ be a positive Radon measure on Rn with power growth 0 <
α ≤ n. Let T be a linear operator with a Calderón–Zygmund kernel and measure µ as
in (9). Let 1 < p <∞, and k = n− ⌊α⌋+ δ(α− ⌊α⌋).

Then the following statements are equivalent:

(i) T extends to a compact operator on Lp(µ).
(ii) K dµ × dµ is a compact Calderón–Zygmund kernel and there exist k grids of

n-dimensional cubes, TiD as in (1) with i ∈ {1, 2, . . . , k}, such that

(11) ∥χITχI∥L2(µ) + ∥χIT
∗χI∥L2(µ) ≲ µ(I)

1
2FT (I)

for all I ∈ TiD ∪ 4TiD, with FT bounded and satisfying

(12) lim
M→∞

sup
I∈(TiD)cM∪4(TiD)cM

FT (I) = 0.

(iii) K dµ × dµ is a compact Calderón–Zygmund kernel and for the k grids of r-di-
mensional cubes Dr

∂ as in Subsection 2.4 with r ∈ {n, n − 1, . . . , n − k + 1} we
have that T satisfies (11) for all I ∈ Dr

∂ ∪ 4Dr
∂ , with FT bounded and satisfying

lim
M→∞

sup
I∈(Dr

∂)
c
M∪4(Dr

∂)
c
M

FT (I) = 0.

To be used in forthcoming results and the proof of Theorem 4.2, we provide the
following notation:

Notation 4.3. Let L, S, D̃ be the functions of Notation 3.5. We denote

(13) FK(I, J) = L(ℓ(I ∧ J)S(ℓ(I ∧ J))(D(rdist(⟨I, J⟩,B)) + D̃(inrdist(I, J)I ∧ J))
and FK(I) = FK(I, I).

Let ρµ, FK , FT be as defined in (3), (13), and (11) respectively. We write Kro-
necker’s delta by δ. We define

(14) Fµ(I, J) = sup
R⊂I
S⊂J

FK(R,S)ρµ(R ∨ S) + FT (I)δ(I, J)

and Fµ(I) = Fµ(I, I).

We apply the previous result to the Cauchy integral operator

Cµ(f)(z) =

∫
f(w)

w − z
dµ(w).

The cases when 0 < α ≤ 2 with α ̸= 1 are already known. For α = 1, we obtain the
following result.

Theorem 4.4. Let µ be a positive Radon measure on the complex plane C such that
µ(I) ≲ ℓ(I) for each I ∈ D. Let 1 < p < ∞. Then the following statements are
equivalent:

(i) Cµ is bounded on Lp(µ).
(ii) There exist two grids of two-dimensional cubes, TiD with i ∈ {1, 2} as defined

in (1), such that the testing condition

(15) ∥χICµχI∥L2(µ) ≲ µ(I)
1
2

holds for all I ∈ TiD ∪ 4TiD.
(iii) For the grids of dyadic squares D2

∂ and dyadic line segments D1
∂ as defined in

Subsection 2.4, we have that (15) holds for all I ∈ Dr
∂ ∪ 4Dr

∂ with r ∈ {2, 1}.
Furthermore, the following statements are also equivalent:

(i’) Cµ is compact on Lp(µ).
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(ii’) There exist two grids of two-dimensional cubes, TiD with i ∈ {1, 2} as defined
in (1), such that (15) holds and

lim
M→∞

sup
I∈(TiD)cM

ρµ(I) = lim
M→∞

sup
I∈(TiD)cM∪4(TiD)cM

∥χICµχI∥L2(µ)

µ(I)
1
2

= 0.

(iii’) For the grids of dyadic squares D2
∂ and dyadic line segments D1

∂ as defined in
Subsection 2.4, we have that (15) holds and

lim
M→∞

sup
I∈(Dr

∂)
c
M

ρµ(I) = lim
M→∞

sup
I∈(Dr

∂)
c
M∪4(Dr

∂)
c
M

∥χICµχI∥L2(µ)

µ(I)
1
2

= 0.

We end this section with a technical remark. By duality and density, to prove the
boundedness of T it is enough to show

(16) |⟨Tf, g⟩µ| ≲ ∥f∥L2(µ)∥g∥L2(µ)

for all functions f , g that are bounded and compactly supported on a cube Q, with
implicit bound in (16) independent of f , g, and Q. The next lemma proves that we
can make one more assumption on f and g.

Lemma 4.5. To prove the boundedness of T it is enough to show |⟨Tf, g⟩µ| ≲
∥f∥L2(µ)∥g∥L2(µ) for all functions f , g that, in addition to the previous properties,
are supported on the interior of the first quadrant of each grid TiD.

Proof: Let fa(x) = f(x−a), Ka(t, x) = K(t−a, x−a), µa(A) = µ(−a+A), Ta be the
operator with associated kernel Ka and associated measure µa as in (9), Fa,µ(I) =
Fµ(−a+ I), and Fa,T (I) = FT (−a+ I).

We note three facts that can be directly proved from the given definitions:

• Ka is a Calderón–Zygmund kernel satisfying the smoothness condition (4) with
the same constant as K;

• µa is a Radon measure of power growth satisfying (2) with the same exponent α
and constant as µ;

• Fa,µ, Fa,T are bounded with the same bounds as Fµ and FT respectively, and
satisfy the limits stated in (6) and (12) respectively.

Furthermore, we have ∥fa∥2L2(µa)
=

∫
Rn |f(t− a)|2 dµ(t− a) = ∥f∥2L2(µ), |⟨f, g⟩µ| =

|⟨fa, ga⟩µa
|, and for x ̸∈ a+ sup f ,

(Tf)a(x) = Tf(x− a) =

∫
Rn

f(t)K(t, x− a) dµ(t)

=

∫
Rn

f(t− a)K(t− a, x− a) dµ(t− a) = Ta(fa)(x).

Then

∥χITaχI∥L2(µa) = ∥(χI)−a(TaχI)−a∥L2(µ) = ∥χ−a+ITχ−a+I∥L2(µ)

≲ FT (−a+ I)µ(−a+ I)
1
2 = Fa,T (I)µa(I)

1
2 .

Similarly for (T ∗)a. This implies that Ta satisfies the testing conditions (11) with the
same constant as T .
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Therefore, if we prove that

(17) |⟨T̃ (fa), ga⟩µ̃| ≲ ∥fa∥L2(µ̃)∥ga∥L2(µ̃)

for all operators T̃ with the same constants as T and all measures µ̃ with the same
exponent and constant as µ, we will have

|⟨Tf, g⟩µ| = |⟨(Tf)a, ga⟩µa
| = |⟨Ta(fa), ga⟩µa

|

≲ ∥fa∥L2(µa)∥ga∥L2(µa) = ∥f∥L2(µ)∥g∥L2(µ).

We now note that if supp f ⊂ Q, then supp fa ⊂ a + Q. We then define a =
λ(1, . . . , 1) with λ large enough such that λ > 10max |λi| for all λi as in (1). In this
way a + Q, and thus the supports of fa and ga which are the argument functions
in (17), are all contained in the interior of the first quadrant of each grid TiD.

5. Truncated operators

In this section we define and study the properties of a particular type of smooth
truncations of Calderón–Zygmund operators. We start with a technical result.

Lemma 5.1. Let I ∈ C, and x ∈ I. Then∫
I

1

|t− x|α−1
dµ(t) ≲ ℓ(I)ρin(I).

Proof: For k ≥ 0, let Sk = {t ∈ I/|t − x| ≤ 2−kℓ(I)} and Ck = Sk \ Sk+1 = {t ∈ I :
2−(k+1)ℓ(I) < |t− x| ≤ 2−kℓ(I)}. Then∫

I

1

|t− x|α−1
dµ(t) ≤

∑
k≥0

2(α−1)(k+1)

ℓ(I)α−1
µ(Sk \ Sk+1)

≲ ℓ(I)1−α
∑
k≥0

2(α−1)k(µ(Sk)− µ(Sk+1)).

To prove the result, we write IR = ℓ(I)1−α
∑R

k=0 2
(α−1)k(ak − ak+1), where ak =

µ(Sk). Then we bound IR uniformly on R. By Abel’s formula, we have

IR = ℓ(I)1−α

(
a0 − aR+12

(α−1)R +

R∑
k=1

ak(2
(α−1)k − 2(α−1)(k−1))

)
.

Since a0 ≤ µ(I) = ρ(I)ℓ(I)α ≤ ρin(I)ℓ(I)
α, for the first term we have ℓ(I)1−αa0 ≤

ℓ(I)ρin(I).
Similarly, since

aR+1 = µ(SR+1) ≤ µ(I ∩B(x, 2−(R+1)ℓ(I))) ≤ ρin(I)2
−(R+1)αℓ(I)α,

the absolute value of the second term can be bounded by

ℓ(I)1−αaR+12
(α−1)R ≲ ℓ(I)ρin(I)2

−R ≤ ℓ(I)ρin(I).

Meanwhile, since ak = µ(Sk) ≤ ρin(I)2
−kαℓ(I)α, the absolute value of the last

term is bounded by

ℓ(I)1−α
R∑

k=1

ak2
(α−1)k(1− 2−(α−1)) ≲ ℓ(I)ρin(I)

R∑
k=1

2−k ≲ ℓ(I)ρin(I).

We now define the following smooth truncation of an operator associated with a
Calderón–Zygmund kernel.
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Definition 5.2. Let ϕ be a smooth function such that 0 ≤ ϕ(x) ≤ 1, supϕ ⊂ [−2, 2],
ϕ(x) = 1 for all |x| < 1 and 0 ≤ |ϕ′(x)| ≤ 2.

Let Q = [−2r, 2r]n such that ℓ(Q) > 4 and γ =
√
n2−s such that 0 < γ ≤ 1. We

define the kernel

Kγ,Q(t, x) = K(t, x)

(
1− ϕ

(
|t− x|
γ

))
ϕ

(
4|t|
ℓ(Q)

)
ϕ

(
4|x|
ℓ(Q)

)
.

Let Tγ,Q be the operator with kernel Kγ,Q.

In the next result we prove that Tγ,Q is bounded with a bound that depends on γ
and Q, while it has a Calderón–Zygmund kernel whose estimates are uniform on γ
and Q. Later we show that Tγ,Q satisfies a variation of the testing condition, which
is close to being uniform on γ and Q. That is enough for our purposes in the proof
of the main result.

Lemma 5.3. The operator Tγ,Q is bounded with bounds depending on γ and Q.
Moreover, Kγ,Q is a Calderón–Zygmund kernel with parameter 0 < δ ≤ 1 and constant
independent of γ and Q.

Proof: We first show that Kγ,Q is a bounded function: by (8),

|Kγ,Q(t, x)| ≲
1

|t− x|α

(
1− ϕ

(
|t− x|
γ

))
≤ 1

γα
.

The last inequality holds because when |t − x| ≤ γ we have ϕ
( |t−x|

γ

)
= 1 and so,

the second factor is zero. Then, since Kγ,Q is bounded and supported on Q×Q, for
f, g ∈ L2(µ) we have by the Cauchy–Schwarz inequality

|⟨Tγ,Qf, g⟩| =
∣∣∣∣∫∫ Kγ,Q(t, x)f(t)g(x) dµ(t) dµ(x)

∣∣∣∣
≤

(∫
Q

∫
Q

|Kγ,Q(t, x)|2 dµ(t) dµ(x)
) 1

2

∥f∥L2(µ)∥g∥L2(µ)

≲
µ(Q)

γα
∥f∥L2(µ)∥g∥L2(µ).

This proves that the operator Tγ,Q is bounded.
We now show that Kγ,Q is a Calderón–Zygmund kernel. We prove the appropriate

estimate for A = |Kγ,Q(t, x) − Kγ,Q(t
′, x)|, the work for |Kγ,Q(t, x) − Kγ,Q(t, x

′)|
being similar. Let t, t′, x be such that 2|t− t′| < |t− x|. We note that this inequality
implies |t− x| ≤ |t′ − x|+ |t− t′| ≤ |t′ − x|+ |t− x|/2 and so, |t− x| ≤ 2|t′ − x|. Then

A ≤ |K(t, x)−K(t′, x)|ϕ
(

4|t|
ℓ(Q)

)
ϕ

(
4|x|
ℓ(Q)

)(
1− ϕ

(
|t− x|
γ

))

+ |K(t′, x)|
∣∣∣∣ϕ( 4|t|

ℓ(Q)

)
− ϕ

(
4|t′|
ℓ(Q)

)∣∣∣∣ϕ( 4|x|
ℓ(Q)

)(
1− ϕ

(
|t− x|
γ

))

+ |K(t′, x)|ϕ
(
4|t′|
ℓ(Q)

)
ϕ

(
4|x|
ℓ(Q)

)∣∣∣∣ϕ( |t− x|
γ

)
− ϕ

(
|t′ − x|
γ

)∣∣∣∣.
Since 2|t − t′| < |t − x| we can use the kernel smoothness condition (4) and the fact
that ϕ is bounded, to estimate the first term by a constant times(

|t− t′|
|t− x|

)δ
F (t, x)

|t− x|α
=

|t− t′|δ

|t− x|α+δ
F (t, x).
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If the second term is non-zero, then x ∈ Q, and either t ∈ Q or t′ ∈ Q. If t ∈ Q, we
have |t − x| < |t| + |x| ≤ ℓ(Q). Meanwhile, if t′ ∈ Q, we get |t − x| ≤ 2|t′ − x| ≤
2(|t′| + |x|) ≤ 2ℓ(Q). Then, by the kernel decay condition (8), the fact that ϕ is
bounded, and the mean value theorem on ϕ with bounded derivative, the second
term can be estimated by a constant times

F (t, x)

|t− x|α
||t| − |t′||
ℓ(Q)

≲
F (t, x)

|t− x|α
|t− t′|
|t− x|

≤ |t− t′|δ

|t− x|α+δ
F (t, x).

If the third term is non-zero, then t′, x ∈ Q, and either |t−x| < 2γ or |t′−x| < 2γ. In
the latter case we have |t−x| ≤ 2|t′−x| < 4γ. Then, by using again the kernel decay,
that ϕ is bounded and the mean value theorem on ϕ, we can estimate this third term
by a constant times

F (t, x)

|t− x|α
||t− x| − |t′ − x||

γ
≲

F (t, x)

|t− x|α
|t− t′|
|t− x|

≤ |t− t′|δ

|t− x|α+δ
F (t, x).

For the next result, we denote

Fγ,Q(I) = (S(γ) + L(ℓ(Q)
1
2 ) +D(ℓ(Q)

1
2 ))χ[γ,10ℓ(Q)](ℓ(I))χ[0,10ℓ(Q)](|c(I)|).

Lemma 5.4. The operator Tγ,Q satisfies the following testing condition: for I ∈
D(10Q),

∥χITγ,QχI∥L2(µ) ≲ G(I)µ(I)
1
2 ,

where G(I) = Fµ(I)+Fγ,Q(I)ρin(I) and the implicit bound is independent of γ and Q.

Remark 5.5. When F ≡ 1, since Fγ,Q(I) ≲ 1, the result implies that Tγ,Q satisfies
the testing condition uniformly on γ and Q.

When limM→∞ supI∈Dc
M∪4Dc

M
Fµ(I) = 0, due to the factors χ[γ,10ℓ(Q)](ℓ(I)) and

χ[0,10ℓ(Q)](|c(I)|), we also have limM→∞ supI∈Dc
M∪4Dc

M
G(I) = 0.

Moreover, since limγ→0 limℓ(Q)→∞ Fγ,Q(I)ρin(I) = 0, one can make the func-
tion G(I) arbitrarily close to Fµ(I).

Proof: By symmetry of the kernel Kγ,Q with respect to the variables t, x, it is clear
that the computations to prove the testing condition on Tγ,Q also work for T ∗

γ,Q.
Therefore, we write the calculations only for Tγ,Q. We are going to show that for
all I ∈ D∪4D we have ∥χITγ,QχI∥2L2(µ) ≲ G(I)2µ(I), with G bounded and such that

limM→∞ supI∈Dc
M∪4Dc

M
G(I) = 0.

We also note that if ℓ(I) < γ, then χITγ,QχI ≡ 0. Therefore, we assume γ ≤ ℓ(I).
With this and the fact that I ⊂ 10Q, we have χ[γ,10ℓ(Q)](ℓ(I)) = χ[0,10ℓ(Q)](|c(I)|) = 1.
Then we do not need to work with such factors.

Since Kγ,Q is bounded, we can write ∥χITγ,QχI∥2L2(µ) as∫
I

∣∣∣∣ ∫
I

K(t, x)

(
1− ϕ

(
|t− x|
γ

))
ϕ

(
4|t|
ℓ(Q)

)
dµ(t)

∣∣∣∣2ϕ( 4|x|
ℓ(Q)

)2

dµ(x) = Int.

By the mean value theorem, there exists ξ ∈
( 4|t|
ℓ(Q) ,

4|x|
ℓ(Q)

)
such that

(18) ϕ

(
4|t|
ℓ(Q)

)
= ϕ

(
4|x|
ℓ(Q)

)
+ ϕ′(ξ)

4(|t| − |x|)
ℓ(Q)

.
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Accordingly, we bound Int by the sum of two terms:

Int1 =

∫
I

∣∣∣∣ ∫
I

K(t, x)

(
1− ϕ

(
|t− x|
γ

))
dµ(t)

∣∣∣∣2ϕ( 4|x|
ℓ(Q)

)4

dµ(x)

and

(19) Int2=

∫
I

∣∣∣∣ ∫
I

K(t, x)

(
1−ϕ

(
|t− x|
γ

))
ϕ′(ξ)

4(|t| − |x|)
ℓ(Q)

dµ(t)

∣∣∣∣2ϕ( 4|x|
ℓ(Q)

)2

dµ(x),

which we bound in different ways.
Since 0 ≤ ϕ(x) ≤ 1, supϕ ⊂ [−2, 2], and ϕ(x) = 1 for all |x| < 1, we estimate Int1

by a constant times

∫
I

(∫
t∈I

γ≤|t−x|≤2γ

|K(t, x)| dµ(t)
)2

dµ(x) +

∫
I

∣∣∣∣ ∫ t∈I
2γ≤|t−x|

K(t, x) dµ(t)

∣∣∣∣2 dµ(x).
By the kernel decay and the fact that |t−x| ≤ 2γ implies F (t, x) ≲ S(|t−x|) ≲ S(γ),

the first term can be bounded by a constant times

∫
I

(∫
t∈I

γ<|t−x|≤2γ

F (t, x)

|t− x|α
dµ(t)

)2

dµ(x) ≤ S(γ)2
∫
I

µ(I ∩B(x, 2γ))2

γ2α
dµ(x)

≤ S(γ)2ρin(I)
2µ(I) ≲ G(I)2µ(I).

(20)

To deal with the second term, we denoteDx={t ∈ I : |t−x| ≤ 2γ} andDc
x = I\Dx.

Since χDc
x
= χI − χDx

, the second term can be written as∫
I

|T (χDc
x
)(x)|2 dµ(x) ≲

∫
I

|T (χI)(x)|2 dµ(x) +
∫
I

|T (χDx
)(x)|2 dµ(x).

The new first term equals

∥χITχI∥2L2(µ) ≲ FT (I)
2µ(I) ≤ G(I)2µ(I),

where we have used the testing condition (11) and FT ≤ Fµ ≤ G.
For the second term, we denote D = {(t, x) ∈ I × I : |t − x| ≤ 2γ}, and g(x) =

T (χDx
)(x) for x ∈ I. Then we are going to prove that ∥χI g∥L2(µ) ≲ G(I)µ(I)

1
2 or,

equivalently, that for all ΦI ∈ L2(µ) with support on I and ∥ΦI∥L2(µ) ≤ µ(I)
1
2 we

have |⟨ΦI , g⟩| ≲ G(I)µ(I).
Let Ii ∈ D1(I) such that Ii × Ii ⊂ D is maximal inside D with respect to the

inclusion. Therefore, ℓ(Ii) is the same for all cubes and it is comparable to γ. In fact,
ℓ(Ii) = 2γ/

√
n. Let Ii,p be the parent of Ii and let 4Ii,p ∈ C such that c(4Ii,p) = c(Ii,p),

and ℓ(4Ii,p) = 4ℓ(Ii,p). Then we can choose two subcollections of bi-cubes Ii,p × Ii,p
and 4Ii+4,p × 4Ii+4,p, satisfying the following: they completely cover the union of D
and a set D′ ⊂ {(t, x)∈I×I) : γ < |t−x| ≤ 8γ}, the cubes 4Ii,p are pairwise disjoint,
and the intersection Ii,p ∩ 4Ij,p is either empty or it is a cube that belongs to ch(Ii,p).
In some cases that intersection is exactly Ii.
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t

x

Ii−4

Ii−4,p

Ii,p

Ii+4

Ii+4,p

4Ii−4,p

4Ii+4,p D′

D

We denote the indexes in Zn corresponding to the bi-cubes in each collection as O
and E respectively. Therefore, we can write

χD(t, x) =
∑
i∈O

χIi,p(t)χIi,p(x)+
∑
i∈E

χ4Ii,p(t)χ4Ii,p(x)−
∑

i/Ii⊂Ij,p
j∈O

χIi(t)χIi(x)−χD′(t, x).

With this, we have

|⟨ΦI , g⟩| ≤
∑
i∈O

|⟨ΦIχIi,p , TχIi,p⟩|+
∑
i∈E

|⟨ΦIχ4Ii,p , Tχ4Ii,p⟩|

+
∑

i/Qi⊂Qj,p

j∈O

|⟨ΦIχIi , TχIi⟩|+ ∥ΦI∥L2(µ)∥TχD′∥L2(µ).

Now, as we did in (20), we can estimate the last term by a constant times

µ(I)
1
2

(∫
I

(∫
t∈I

γ<|t−x|≤8γ

|K(t, x)| dµ(t)
)2

dµ(x)

) 1
2

≲ G(I)µ(I).

On the other hand, by the testing condition for T on the cubes Ii,p and Cauchy’s
inequality, the first term is bounded by∑
i∈O

∥ΦIχIi,p∥L2(µ)∥χIi,pTχIi,p∥L2(µ) ≲
∑
i∈O

∥ΦIχIi,p∥L2(µ)FT (Ii,p)µ(Ii,p)
1
2

≤
(∑

i∈O
∥ΦIχIi,p∥2L2(µ)

) 1
2
(∑

i∈O
µ(Ii,p)

) 1
2

S(γ).

We have used that in Ii,p we have |t−x| ≤ γ, and so we get FT (Ii,p) ≲ ST (γ) ≤ G(I),
where from (12), ST satisfies limγ→0 ST (γ) = 0.

Now, since the cubes Ii,p ⊂ I have the same side length, they are pairwise disjoint.
Then

∑
i∈O µ(Ii,p) ≤ µ(I) and∑

i∈O
∥ΦIχIi,p∥2L2(µ) =

∑
i∈O

∫
Ii,p

|ΦI(x)|2 dµ(x) ≤ ∥ΦI∥2L2(µ) ≤ µ(I).

With this, we get ∑
i∈O

∥ΦIχIi,p∥L2(µ)∥χIi,pTχIi,p∥L2(µ) ≤ G(I)µ(I).
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Similar computations using the testing condition for T on the cubes 4Ii,p (which
are also pairwise disjoint) and Ii respectively prove the corresponding inequalities for
the second and third terms. This finishes the work to estimate Int1.

To deal with the second term Int2, we note the following fact. If t, x ∈ 2−1Q, then

ϕ
( 4|t|
ℓ(Q)

)
= ϕ

( 4|x|
ℓ(Q)

)
= 1 and so for |t| ≠ |x| we have, from equality (18), that the corre-

sponding ξ satisfies ϕ′(ξ) = 0. This implies that the integrand in (19) is zero. Moreover,
when |t| = |x| we have ϕ′(ξ) = 0 by definition, and so the integrand is again zero. In
other words, if the integrand in (19) is non-zero, then (t, x) ∈ (Q×Q)\(2−1Q×2−1Q)
and |t| ≠ |x|. In that region we have |x− t|+ |x+ t| > max (|x− t|, |x+ t|) > c ℓ(Q),
with c =

√
n/4. With this,

• If |x− t| > c ℓ(Q)
1
2 , then F (t, x) ≲ L(|t− x|) ≲ L(ℓ(Q)

1
2 ) ≤ Fγ,Q(I).

• If |x− t| ≤ c ℓ(Q)
1
2 , then

|x+ t| > c ℓ(Q)− |t− x| > c ℓ(Q)
1
2 (ℓ(Q)

1
2 − 1) ≳ c ℓ(Q)/2,

since ℓ(Q) > 4 implies ℓ(Q)
1
2 − 1 > ℓ(Q)

1
2 /2. With this and (8),

F (t, x) ≲ D

(
1 +

|t+ x|
1 + |t− x|

)
≲ D(ℓ(Q)

1
2 ) ≤ Fγ,Q(I).

Now we reason as follows. Since 0 ≤ ϕ(x) ≤ 1, 0 ≤ |ϕ′(x)| ≤ 2, and ϕ(x) = 1
for |x| ≤ 1, the second term is bounded by

Int2 ≲
∫
I

(∫
I

|K(t, x)|
∣∣∣∣1− ϕ

(
|t− x|
γ

)∣∣∣∣ ||t| − |x||
ℓ(Q)

χQ(t) dµ(t)

)2

ϕ

(
4|x|
ℓ(Q)

)2

dµ(x)

≲
∫
I

(
1

ℓ(Q)

∫
t∈I

|t−x|>γ

|K(t, x)||t− x|χQ(t) dµ(t)

)2

dµ(x)

≲
∫
I

(
1

ℓ(Q)

∫
t∈I

|t−x|>γ

F (t, x)

|t− x|α
|t− x|χQ(t) dµ(t)

)2

dµ(x)

≲ Fγ,Q(I)
2

∫
I

(
1

ℓ(Q)

∫
t∈I

|t−x|>γ

1

|t− x|α−1
dµ(t)

)2

dµ(x).

By Lemma 5.1, the last expression is bounded by a constant times

Fγ,Q(I)
2

∫
I

(
1

ℓ(Q)
ρin(I)ℓ(I)

)2

dµ(x) ≲ Fγ,Q(I)
2ρin(I)

2µ(I) ≲ G(I)2µ(I),

where we have used that since I ⊂ 10Q, we have ℓ(I) ≲ ℓ(Q).

6. Haar wavelet systems and the characterization of compactness

6.1. The Haar wavelet system.

Definition 6.1. Let µ be a measure on Rn. For R ∈ D∪ D̃ with µ(R) ̸= 0 we denote
the average ⟨f⟩R = µ(R)−1

∫
Q
f(x) dµ(x). For R ∈ D with µ(R) = 0, we set ⟨f⟩R = 0.

We define the averaging operator by ERf = ⟨f⟩RχR and the difference operator
by

(21) ∆Rf =

( ∑
I∈ch(R)

EIf

)
− ERf =

∑
I∈ch(R)

(⟨f⟩I − ⟨f⟩R)χI .
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For k ∈ Z, we define

Ekf =
∑
R∈D

ℓ(R)=2−k

ERf and ∆kf = Ekf − Ek−1f =
∑
R∈D

ℓ(R)=2−k

∆Rf.

Definition 6.2 (Haar wavelets). Let I ∈ D ∪ D̃. For µ(I) ̸= 0 we define the Haar
wavelet function associated with I by

ψI = µ(I)
1
2

(
1

µ(I)
χI −

1

µ(Ip)
χIp

)
,

where Ip ∈ D is such that I ∈ ch(Ip). For µ(I) = 0 we set ψI = 0.

Lemma 6.3. For R ∈ D ∪ D̃ and f locally integrable we have

∆Rf =
∑

I∈ch(R)

⟨f, ψI⟩ψI

almost everywhere with respect to µ.

Proof: If µ(R) = 0, then µ(I) = 0 for every I ∈ ch(R). With this, both ∆R = 0
and ψI = 0, and so the equality is trivial.

For µ(R) ̸= 0, from (21) and µ(R)⟨f⟩R =
∑

I∈ch(R)

µ(I)⟨f⟩I we have

∆Rf=
∑

I∈ch(R)

⟨f⟩IχI − ⟨f⟩RχR=
∑

I∈ch(R)

⟨f⟩I
(
χI −

µ(I)

µ(R)
χR

)
=

∑
I∈ch(R)

µ(I)
1
2 ⟨f⟩IψI ,

where the last equality holds even for those terms for which µ(I) = 0 since in that
case ⟨f⟩I = 0.

Also from (21) we have for each I ∈ ch(R)

(22) ⟨∆Rf⟩I = ⟨f⟩I − ⟨f⟩R
and so

∆Rf =
∑

I∈ch(R)

µ(I)
1
2 ⟨∆Rf⟩IψI + ⟨f⟩R

∑
I∈ch(R)

µ(I)
1
2ψI .

For the first term, we compute the coefficients: for µ(I) = 0, we have ψI = 0 and so

µ(I)
1
2 ⟨∆Rf⟩IψI = 0 = ⟨f, ψI⟩ψI . Meanwhile, for µ(I) ̸= 0, we can use (22) to write

µ(I)
1
2 ⟨∆Rf⟩I = µ(I)

1
2

∫
f(x)

(
χI(x)

µ(I)
− χR(x)

µ(R)

)
dµ(x) = ⟨f, ψI⟩.

We now denote by R′ the union of cubes I ∈ ch(R) such that µ(I) ̸= 0. Then for
the second term we have∑

I∈ch(R)

µ(I)
1
2ψI =

∑
I∈ch(R)
µ(I )̸=0

µ(I)
1
2ψI =

∑
I∈ch(R)
µ(I )̸=0

(
χI −

µ(I)

µ(R)
χR

)

= χR′ − µ(R′)

µ(R)
χR = −χR\R′ = 0

(23)

almost everywhere since µ(R \R′) = 0.

Lemma 6.4. Let f be bounded and compactly supported on Q ∈ D. Then

(24)

∫
f(x)g(x) dµ(x) = lim

M→∞

∫ ( ∑
I∈D(Q)

2−M≤ℓ(I)

⟨f, ψI⟩ψI(x) + EQf(x)

)
g(x) dµ(x)

for g bounded and compactly supported on Q.
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Proof: We first note that on the right-hand side of (24) we can write∑
I∈D(Q)

2−M≤ℓ(I)<log ℓ(Q)

⟨f, ψI⟩ψI =
∑
R∈D

2−(M−1)≤ℓ(R)≤log ℓ(Q)

∑
I∈ch(R)

⟨f, ψI⟩ψI .

Since f is bounded and compactly supported, we have by Lemma 6.3∑
I∈ch(R)

⟨f, ψI⟩ψI = ∆Rf

µ-almost everywhere. Then we can write the right-hand side of (24) as

lim
M→∞

∫ ∑
R∈D(Q)

2−(M−1)≤ℓ(R)≤log ℓ(Q)

∑
I∈ch(R)

⟨f, ψI⟩ψI(x)g(x) dµ(x)

= lim
M→∞

∫
Q

∑
−M≤k≤log ℓ(Q)

∆kf(x)g(x) dµ(x).

Now we choose M ∈ N such that 2−M ≤ ℓ(Q). For x ∈ Q, we select J ∈ D such that
x ∈ J ⊂ Q, and ℓ(J) = 2−M . Then, by summing a telescopic series, we get

χQ(x)
∑

−M≤k≤log ℓ(Q)

∆kf(x) = ⟨f⟩JχJ(x)− ⟨f⟩QχQ(x) = χQ(x)(EMf(x)−EQf(x)).

That is,

χQ(x)

( ∑
−M≤k≤log ℓ(Q)

∆kf(x) + EQf(x)

)
= χQ(x)EMf(x).

With this,

lim
M→∞

∫ ( ∑
−M≤k≤log ℓ(Q)

∆kf(x) + EQf(x)

)
g(x) dµ = lim

M→∞

∫
Q

EMf(x)g(x) dµ(x).

Since f is locally integrable, by Lebesgue’s differentiation theorem we have that EMf
converges to f pointwise almost everywhere with respect to µ when M tends to
infinity. Moreover, since

|EMf(x)g(x)| ≲ ∥f∥L∞(µ)∥g∥L∞(µ)χQ(x)

we can use Lebesgue’s dominated convergence theorem to conclude the result.

Similar work shows the validity of the following result:

Lemma 6.5. Recall that D̃ denotes the family of open dyadic cubes and ∂D denotes
the union of the borders of all dyadic cubes. For I ∈ D, we denote Ĩ = I \ ∂I ∈ D̃.

Let f be integrable and compactly supported on Q ∈ D. We denote f1 = f − fχ∂D
and let ẼQf be the average operator as in Definition 6.1 but with cubes in D̃. Then
the equality∫

g(x)f1(x) dµ(x) =

∫
g(x)

( ∑
I∈D̃(Q)

⟨f, ψI⟩ψĨ(x) + ẼQf(x)

)
dµ(x)

holds for g bounded and compactly supported on Q.
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6.2. A variation of the Haar wavelet system. We now define a new Haar wavelet
system and show that the analog of Lemma 6.3 holds. These wavelets will be used
when dealing with the paraproducts.

Definition 6.6. LetQ ∈ C, Jp ∈ D. We denote cJp = c(Jp). For I ∈ D with µ(I) ̸= 0,
we define

ψfull
I,Jp

(t) = µ(I)
1
2

(
χI(cJp

)

µ(I)
−
χIp(cJp

)

µ(Ip)

)
χQ(t).

If µ(I) = 0, we define ψfull
I,Jp

≡ 0.

We omit the dependence of ψfull
I,Jp

on the cube Q. We note that ψfull
I,Jp

= 0 if Jp∩Ip =

∅, and that ψfull
I,Jp

χI = ψIχI when Jp ⊆ I.

We define the localized averaging operators by ÊR(f) = ⟨f⟩RχR(cJp)χQ and the
corresponding localized differences

∆̂Rf =

( ∑
I∈ch(R)

ÊIf

)
− ÊRf =

( ∑
I∈ch(R)

⟨f⟩IχI(cJp
)

)
χQ − ⟨f⟩RχR(cJp

)χQ.

The following result is the analog of Lemma 6.3 for the localized difference operator.

Lemma 6.7. Let R, Jp ∈ D, with ℓ(Jp) < ℓ(R) and µ(Jp) ̸= 0. Then

∆̂R(f) =
∑

I∈ch(R)

⟨f, ψI⟩ψfull
I,Jp

for f bounded and compactly supported.

Proof: If µ(R) = 0, then both sides of the equality are zero. If µ(R) ̸= 0, we reason
as follows. Since

µ(R)⟨f⟩R =

∫
R

f dµ =
∑

I∈ch(R)
µ(I) ̸=0

∫
I

f dµ =
∑

I∈ch(R)
µ(I )̸=0

µ(I)⟨f⟩I ,

we have

∆̂R(f) =
∑

I∈ch(R)
µ(I) ̸=0

⟨f⟩I
(
χI(cJp

)− µ(I)

µ(R)
χR(cJp

)

)
χQ =

∑
I∈ch(R)
µ(I) ̸=0

µ(I)
1
2 ⟨f⟩Iψfull

I,Jp
.

Now, by (22), we have ⟨f⟩I = ⟨∆Rf⟩I + ⟨f⟩R and so

∆̂R(f) =
∑

I∈ch(R)

µ(I)
1
2 ⟨∆Rf⟩Iψfull

I,Jp
+ ⟨f⟩R

∑
I∈ch(R)
µ(I )̸=0

µ(I)
1
2ψfull

I,Jp
.

We have as before that µ(I)
1
2 ⟨∆Rf⟩I = ⟨f, ψI⟩.

On the other hand, now let R′ be the union of cubes I ∈ ch(R) such that µ(I) ̸= 0.
Since µ(R) =

∑
I∈ch(R)
µ(I) ̸=0

µ(I), we have

∑
I∈ch(R)
µ(I )̸=0

µ(I)
1
2ψfull

I,Jp
=

∑
I∈ch(R)
µ(I )̸=0

(
χI(cJp

)− µ(I)

µ(R)
χR(cJp

)

)
χQ

= (χR′(cJp)− χR(cJp))χQ = −χR\R′(cJp)χQ.

With this,

∆̂R(f) =
∑

I∈ch(Ip)

⟨f, ψI⟩ψfull
I,Jp

− ⟨f⟩RχR\R′(cJp
)χQ.
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If χR\R′(cJp
) ̸= 0, then c(Jp) ∈ R\R′, which implies R∩Jp ̸= ∅. Since ℓ(Jp) < ℓ(R),

we have Jp ⊊ R and so Jp ⊂ I for some I ∈ ch (R). Since µ(Jp) ̸= 0, we deduce
µ(I) ̸= 0, which implies Jp ⊂ I ⊂ R′. But this is contradictory with c(Jp) ∈ R \ R′

and so χR\R′(cJp
) = 0.

6.3. Orthogonality and Bessel inequality of the Haar wavelet systems. The
following lemma summarizes the orthogonality properties of the Haar wavelets.

Lemma 6.8. Let I, J ∈ D or I, J ∈ D̃. Then
∫
ψI(x) dµ(x) = 0. If µ(I) = 0, then

⟨ψI , ψJ⟩ = 0, while if µ(I) ̸= 0, then

(25) ⟨ψI , ψJ⟩ = δ(Ip, Jp)µ(I)
1
2µ(J)

1
2

(
δ(I, J)

µ(I)
− 1

µ(Ip)

)
,

where we denote δ(I, J) = 1 if I = J and zero otherwise. In addition, if µ(I) ̸= 0, we

have ∥ψI∥Lq(µ) ≲ µ(I)−
1
2+

1
q .

Proof: The first equality is trivial. Equality (25) is also trivial when Ip ∩ Jp = ∅.
When Ip ⊊ Jp, ψJ is constant on the support of ψI and so the dual pair is zero due
to the mean zero of ψI . Symmetrically, we have the same result when Jp ⊊ Ip.

On the other hand, for Jp = Ip, we have

⟨ψI , ψJ⟩ = µ(I)
1
2µ(J)

1
2

∫ (
χI(x)

µ(I)
−
χIp(x)

µ(Ip)

)(
χJ(x)

µ(J)
−
χJp

(x)

µ(Jp)

)
dµ(x)

= µ(I)
1
2µ(J)

1
2

1

µ(I)

(
µ(I ∩ J)
µ(J)

− µ(I)

µ(Ip)

)
.

For I ̸= J , since I ∩ J = ∅, we have

⟨ψI , ψJ⟩ = −µ(I)
1
2µ(J)

1
2

µ(Ip)
,

while for I = J , we get

⟨ψI , ψJ⟩µ(I)
(

1

µ(I)
− 1

µ(Ip)

)
.

On the other hand, for µ(I) ̸= 0,

∥ψI∥Lq(µ) ≤ µ(I)
1
2

(
1

µ(I)
∥χI∥Lq(µ) +

1

µ(Ip)
∥χIp∥Lq(µ)

)

= µ(I)
1
2

(
1

µ(I)
1
q′

+
1

µ(Ip)
1
q′

)
≤ 2µ(I)−

1
2+

1
q

since µ(I) ≤ µ(Ip).

Although these Haar wavelets do not constitute an orthogonal system of functions,
they still satisfy Parseval’s identity, as we see in the next lemma.

Lemma 6.9. For f ∈ L2(µ) supported on Q ∈ D, we have

∥f∥2L2(µ) =
∑

I∈D(Q)

|⟨f, ψI⟩|2 + ∥EQf∥2L2(µ).
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Proof: We have from Lemma 6.4

∥f∥2L2(µ) =

∫
Rn

f(x)f(x) dµ(x)

= lim
M→∞

∫
Q

f(x)

( ∑
I∈D(Q)

2−M≤ℓ(I)

⟨f, ψI⟩ψI(x) + EQf(x)

)
dµ(x)

= lim
M→∞

∑
I∈D(Q)

2−M≤ℓ(I)

⟨f, ψI⟩⟨f, ψI⟩+ ⟨f, ⟨f⟩QχQ⟩

=
∑

I∈D(Q)

|⟨f, ψI⟩|2 + ⟨f⟩2Qµ(Q).

Corollary 6.10. For f ∈ L2(µ) supported on Q ∈ D, we have

∥f − EQf∥2L2(µ) =
∑

I∈D(Q)

|⟨f, ψI⟩|2.

With this, ∥f∥2L2(µ) = ∥EQf∥2L2(µ) + ∥f − EQf∥2L2(µ).

Proof: By Lemma 6.9,

∥f − EQf∥2L2(µ) =
∑

I∈D(Q)

|⟨f − EQf, ψI⟩|2 + ⟨f − EQf⟩2Qµ(Q) =
∑

I∈D(Q)

|⟨f, ψI⟩|2,

since I ⊂ Q implies ⟨EQf, ψI⟩ = 0, and f − EQf has zero mean.

6.4. Characterization of compactness. In this subsection, we explain how to
use the Haar wavelets to characterize compactness on L2(µ) of Calderón–Zygmund
operators.

Definition 6.11. Let (ψI)I∈D be a Haar wavelet system of L2(µ). For every M ∈ N
and Q ∈ C we define the lagom projection operator by

PMf =
∑

I∈DM (Q)

⟨f, ψI⟩ψI ,

where ⟨f, ψI⟩ =
∫
Rn f(x)ψI(x) dµ(x). We omit from the notation the dependence

of the operator with respect to Q. We also define P⊥
Mf = f − PMf . We note that

P ∗
Mf = PMf .

Remark 6.12. When we deal with boundedness, we can considerM=0 and so PMf =
0 and P⊥

Mf = f .

Lemma 6.13. For f ∈ L2(µ) supported on Q ∈ C,

∥P⊥
Mf − EQf∥2L2(µ) =

∑
I∈Dc

M (Q)

|⟨f, ψI⟩|2.

Proof: By Parseval’s identity as in Corollary 6.10 we have

(26) ∥P⊥
Mf − EQf∥2L2(µ) = ∥f − PMf − EQf∥2L2(µ) =

∑
I∈D(Q)
µ(I )̸=0

|⟨f − PMf, ψI⟩|2.
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Now, for I ∈ D with µ(I) ̸= 0,

(27) ⟨PMf, ψI⟩ =
∑

J∈DM (Q)

⟨f, ψJ⟩⟨ψJ , ψI⟩ =
∑

J∈ch(I)

⟨f, ψJ⟩⟨ψJ , ψI⟩,

since from (25), ⟨ψJ , ψI⟩ = 0 if Ip ̸= Jp.
With this, we reason by considering two cases.

(a) If I ∈ Dc
M (Q), we have Ip ̸= Jp for all J ∈ DM (Q). Then, from (27), ⟨PMf, ψI⟩ =

0 and thus ⟨f − PMf, ψI⟩ = ⟨f, ψI⟩.
(b) If I ∈ DM (Q), by using again (25), we have

⟨PMf, ψI⟩ =
∑

J∈ch(Ip)

⟨f, ψJ⟩µ(I)
1
2µ(J)

1
2

(
δ(I, J)

µ(I)
− 1

µ(Ip)

)

= ⟨f, ψI⟩ −
µ(I)

1
2

µ(Ip)

∑
J∈ch(Ip)

⟨f, ψJ⟩µ(J)
1
2 .

(28)

By (23), we know
∑

J∈ch(Ip)
µ(J)

1
2ψJ = 0 a.e. with respect to µ. Then∑

J∈ch(Ip)

⟨f, ψJ⟩µ(J)
1
2 =

∫
f(x)

∑
J∈ch(Ip)

µ(J)
1
2ψJ(x) dµ(x) = 0.

Then from (28) we get ⟨PMf, ψI⟩ = ⟨f, ψI⟩ and thus ⟨f − PMf, ψI⟩ = 0.

With both results, we end the equality in (26) as follows:

∥P⊥
Mf − EQf∥2L2(µ) =

∑
I∈Dc

M (Q)

|⟨f, ψI⟩|2.

Remark 6.14. Previous work also shows that

∥PMf∥2L2(µ) =
∑

I∈DM (Q)

|⟨f, ψI⟩|2 ≤ ∥f∥L2(µ)

and so ∥PM∥L2(µ)→L2(µ) ≤ 1 and ∥P⊥
M∥L2(µ)→L2(µ) ≤ 1.

Corollary 6.15. Let f ∈ L2(µ) supported on Q ∈ C. Then

(29) lim
M→∞

∥P⊥
Mf − EQf∥L2(µ) = 0.

Proof: By Lemma 6.9 we have
∑

I∈D(Q) |⟨f, ψI⟩|2 ≤ ∥f∥2L2(µ) < ∞. Then, by Lem-
ma 6.13,

lim
M→∞

∥P⊥
Mf − EQf∥2L2(µ) = lim

M→∞

∑
I∈Dc

M (Q)

|⟨f, ψI⟩|2 = 0.

The following result, which is implicitly obtained in Lemma 6.13, will be used later
during the work with paraproducts.

Lemma 6.16. Let f ∈ L2(µ) be supported on Q ∈ C. Then for I ∈ Dc
M (Q)

⟨P⊥
Mf, ψI⟩ = ⟨f, ψI⟩,

while for I ∈ DM (Q)

⟨P⊥
Mf, ψI⟩ = 0.
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Proof: By definition of P⊥
M

⟨P⊥
Mf, ψI⟩ = ⟨f, ψI⟩ − ⟨PMf, ψI⟩,

while by definition of PM and the orthogonality Lemma 6.8,

⟨PMf, ψI⟩ =
∑

J∈DM (Q)

⟨f, ψJ⟩⟨ψJ , ψI⟩ =
∑

J∈DM (Q)
Jp=Ip

⟨f, ψJ⟩⟨ψJ , ψI⟩.

If I ∈ DM (Q)c, there is no J ∈ DM (Q) such that Jp = Ip and so the last expression
is zero. Then ⟨P⊥

Mf, ψI⟩ = ⟨f, ψI⟩.
On the other hand, if I ∈ DM (Q), we have by Lemma 6.8

⟨PMf, ψI⟩ = ⟨f, ψI⟩µ(I)
(

1

µ(I)
− 1

µ(Ip)

)
−

∑
J∈DM (Q)

Jp=Ip
J ̸=I

⟨f, ψJ⟩
µ(I)

1
2µ(J)

1
2

µ(Ip)

= ⟨f, ψI⟩ −
∑

J∈DM (Q)
Jp=Ip

⟨f, ψJ⟩
µ(I)

1
2µ(J)

1
2

µ(Ip)
.

Then, by the definition of P⊥
M first and ψJ later, we have

⟨P⊥
Mf, ψI⟩ =

∑
J∈DM (Q)

Jp=Ip

⟨f, ψJ⟩
µ(I)

1
2µ(J)

1
2

µ(Ip)

=
µ(I)

1
2

µ(Ip)

∫
f(x)

∑
J∈DM (Q)

Jp=Ip

µ(J)

(
χJ(x)

µ(J)
−
χIp(x)

µ(Ip)

)
dµ(x)

=
µ(I)

1
2

µ(Ip)

( ∑
J∈DM (Q)

Jp=Ip

∫
J

f(x) dµ(x)−
∫
Ip

f(x) dµ(x)
∑

J∈DM (Q)
Jp=Ip

µ(J)

µ(Ip)

)

=
µ(I)

1
2

µ(Ip)

(∫
Ip

f(x) dµ(x)−
∫
Ip

f(x) dµ(x)

)
= 0.

6.5. Representation of operators. We now show how to decompose bounded
operators in terms of wavelet systems.

Lemma 6.17. Let T be a bounded operator on L2(µ). Let (ψI)I∈D be the Haar wavelet
system. Then

(30) ⟨Tf, g⟩ =
∑

I,J∈D(Q)

⟨f, ψI⟩⟨g, ψJ⟩⟨TψI , ψJ⟩+ ⟨T (EQf), g⟩+ ⟨T (f − EQf), EQg⟩

for all f , g bounded and compactly supported on Q ∈ D.
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Remark 6.18. A symmetric way to write the previous equality is

⟨Tf − EQf, g − EQg⟩ =
∑

I,J∈D(Q)

⟨f, ψI⟩⟨g, ψJ⟩⟨TψI , ψJ⟩.

Proof: Let PM be the lagom projection related to the Haar wavelet frame. Since T is
bounded, we have

|⟨Tf, g⟩ − ⟨TPMf, PMg⟩ − ⟨T (EQf), g⟩ − ⟨Tf,EQg⟩+ ⟨TEQf,EQg⟩|

= |⟨T (f − PMf − EQf), g⟩+ ⟨TPMf, g − PMg − EQg⟩

− ⟨T (f − PMf − EQf), EQg⟩|

≤ ∥T∥∥P⊥
Mf − EQf∥L2(µ)∥g∥L2(µ) + ∥T∥∥PMf∥L2(µ)∥P⊥

Mg − EQg∥L2(µ)

+ ∥T∥∥P⊥
Mf − EQf∥L2(µ)∥EQg∥L2(µ).

Now, since by (29) we have that ∥P⊥
Mf −EQf∥L2(µ) and ∥P⊥

Mg −EQg∥L2(µ) tend to
zero, so does the left-hand side of the previous chain of inequalities.

As explained in [25], to prove the compactness of an operator on L2(µ) it suffices
to show that ⟨TP⊥

Mf, P
⊥
Mg⟩ tends to zero when M tends to infinity uniformly for all

functions f , g in the unit ball of L2(µ). For that, we need a representation of this
dual pair.

Corollary 6.19. With the same hypotheses of Lemma 6.17, let PM be the lagom
projection related to the Haar wavelet frame. Then

⟨P⊥
MTP

⊥
Mf, g⟩ =

∑
I,J∈Dc

M (Q)

⟨f, ψI⟩⟨g, ψJ⟩⟨TψI , ψJ⟩

+ ⟨T (EQf), P
⊥
Mg⟩+ ⟨T (P⊥

Mf − EQf), EQg⟩
for all f , g bounded and compactly supported on Q ∈ D.

Proof: We can write

⟨P⊥
MTP

⊥
Mf, g⟩ = ⟨TP⊥

Mf, P
⊥
Mg⟩ = ⟨Tf, g⟩ − ⟨Tf, PMg⟩ − ⟨TPMf, g⟩+ ⟨TPMf, PMg⟩.

By (30) and the facts that EQ(PMf) = 0 and EQ(EQf) = EQf , we have

⟨P⊥
MTP

⊥
Mf, g⟩ =

( ∑
I,J∈D(Q)

−
∑

I∈D(Q)
J∈DM (Q)

−
∑

I∈DM (Q)
J∈D(Q)

+
∑

I,J∈DM (Q)

)
⟨f, ψI⟩⟨g, ψJ⟩⟨TψI , ψJ⟩

+ ⟨T (EQf), g⟩+⟨T (f−EQf), EQg⟩−⟨T (EQf), PMg⟩−⟨TPMf,EQg⟩

=

( ∑
I∈D(Q)

J∈Dc
M (Q)

−
∑

I∈DM (Q)
J∈Dc

M (Q)

)
⟨f, ψI⟩⟨g, ψJ⟩⟨TψI , ψJ⟩

+ ⟨T (EQf), g − PMg⟩ − ⟨T (f − EQf − PMf), EQg⟩

=
∑

I∈Dc
M (Q)

J∈Dc
M (Q)

⟨f, ψI⟩⟨g, ψJ⟩⟨TψI , ψJ⟩

+ ⟨T (EQf), P
⊥
Mg⟩+ ⟨T (P⊥

Mf − EQf), EQg⟩.
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7. Technical results on the functions F and Fµ

We prove two technical results on the properties of F , defined in (4) of Defini-
tion 3.3, and Fµ, defined in (14), when acting over cubes of Dc

M .

7.1. An extra property of F . Recall the auxiliary functions L, S, D, and F
provided in Definition 3.3 and Notation 3.5.

In [25], it was proved that the smoothness condition (4) implies the modified
smoothness condition (31), which we will often use:

(31) |K(t, x)−K(t′, x′)| ≲ (|t− t′|+ |x− x′|)δ

|t− x|δ
F (t, x, t′, x′)

|t− x|α
,

whenever 2(|t− t′|+ |x− x′|) < |t− x| < |t′ − x′|, with 0 < δ < 1 and

F (t, x, t′, x′) = L1(|t− x′|)S1(|t− t′|+ |x− x′|)D1

(
1 +

|t+ x′|
1 + |t− x′|

)
,

where L1, S1, D1 satisfy the limits in (5).

7.2. A technical lemma on F . Now we state and prove the mentioned technical
results.

Lemma 7.1. Let Ip, Jp ∈ D such that ℓ(Jp) ≤ ℓ(Ip) and dist(Ip, Jp) ≥ ℓ(Jp). Let
t ∈ Ip, x ∈ Jp, cJp

= c(Jp), and

F (t, x) = L(|t− cJp |)S(|x− cJp |)D
(
1 +

|t+ cJp
|

1 + |t− cJp
|

)
.

Then

F (t, x) ≤ L(ℓ([Ip, Jp]))S(ℓ(Jp))D(rdist(⟨Ip, Jp⟩,B)).

Proof: Since L is non-increasing, S is non-decreasing, |t − cJp
| > dist(Ip, Jp) =

ℓ([Ip, Jp]) and |x− cJp
| ≤ ℓ(Jp)/2, we get

F (t, x) ≤ L(ℓ([Ip, Jp]))S(ℓ(Jp))D

(
1 +

|t+ cJp
|

1 + |t− cJp
|

)
.

From t ∈ Ip, cJp
∈ Jp, and Ip∩Jp = ∅, we get |t− cJp

| ≤ dist(Ip, Jp)+ ℓ(Ip)+ ℓ(Jp) ≤
2ℓ(⟨Ip, Jp⟩). Then, since |t+ cJp

| ≥ 2|cJp
| − |t− cJp

|, we have

2

(
1 +

|t+ cJp |
1 + |t− cJp

|

)
≥ 2 +

|t+ cJp |
1 + |t− cJp

|

≥ 2 +
2|cJp |

1 + |t− cJp
|
−

|t− cJp |
1 + |t− cJp

|

≥ 1 +
|cJp

|
1 + ℓ(⟨Ip, Jp⟩)

.

Now we bound below the numerator in the last expression as follows: since |c(Ip)| −
|c(Jp)| ≤ |c(Ip)− c(Jp)| ≤ ℓ(⟨Ip, Jp⟩), we have

1 + ℓ(⟨Ip, Jp⟩) + |cJp | ≥ 1 +
ℓ(⟨Ip, Jp⟩)

2
+

|c(Ip)| − |c(Jp)|
2

+ |c(Jp)|

≥ 1

2

(
1 + ℓ(⟨Ip, Jp⟩) +

1

2
|c(Ip) + c(Jp)|

)
.
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Then

|cJp | ≥
1

4
|c(Ip) + c(Jp)| −

1

2
(1 + ℓ(⟨Ip, Jp⟩))

and so,

1 +
|cJp

|
1 + ℓ(⟨Ip, Jp⟩)

≥ 1 +
1

2

|c(Ip) + c(Jp)|/2
1 + ℓ(⟨Ip, Jp⟩)

− 1

2

=
1

2

(
1 +

|c(Ip) + c(Jp)|/2
1 + ℓ(⟨Ip, Jp⟩)

)

≥ 1

3

(
3

2
+

|c(Ip) + c(Jp)|/2
1 + ℓ(⟨Ip, Jp⟩)

)
.

Now, since (c(Ip) + c(Jp))/2 ∈ ⟨Ip, Jp⟩, we have |(c(Ip) + c(Jp))/2 − c(⟨Ip, Jp⟩)| ≤
ℓ(⟨Ip, Jp⟩)/2 and so we can bound below the previous expression by

1

3

(
3

2
+

|c(⟨Ip, Jp⟩)|
1 + ℓ(⟨Ip, Jp⟩)

− 1

2

)
≥ 1

3

(
1 +

|c(⟨Ip, Jp⟩)|
2max(ℓ(⟨Ip, Jp⟩), 1)

)

=
1

6

(
2 +

|c(⟨Ip, Jp⟩)|
max(ℓ(⟨Ip, Jp⟩), 1)

)

≳ 1 +
|c(⟨Ip, Jp⟩)|+max(ℓ(⟨Ip, Jp⟩), 1)

max(ℓ(⟨Ip, Jp⟩), 1)

≥ 1 +
dist(⟨Ip, Jp⟩,B)

max(ℓ(⟨Ip, Jp⟩), 1)
= rdist(⟨Ip, Jp⟩,B),

with B = [−1/2, 1/2]n.
Finally, by using that D is non-increasing, we get

F (t, x) ≤ L(ℓ([Ip, Jp]))S(ℓ(Jp))D(rdist(⟨Ip, Jp⟩,B)).

7.3. A technical lemma about Fµ. Recall the definition given in (14):

Fµ(I, J) = sup
R⊂I
S⊂J

FK(R,S)ρµ(R ∨ S) + FT (I)δ(I, J),

and Fµ(I) = Fµ(I, I), where ρµ is defined in (3), FK is defined in (13), FT is given
in (11), and δ is Kronecker’s delta.

Lemma 7.2. By (5), given ϵ > 0, we can take M > 0 so that

(i) if ℓ(I) > 2M , then L(2M )ρµ(I) < ϵ,

(ii) if ℓ(I) < 2−M , then S(2−M )ρµ(I) < ϵ,

(iii) if rdist(I,B2M ) > M
1
4 , then D̃(M

1
4 )ρµ(I) < ϵ, and

(iv) if I ∈ Dc
M , then FT (I) < ϵ.

Then for all I∈Dc
2M and J ∈Dc

M we have that either Fµ(I,J)≲ϵ, or |log(ec(I,J))|≳
logM , or rdist(I, J) ≳M

1
8 .

Proof: We start with FT (I)δ(I, J) since the proof is trivial in this case: from I = J ∈
Dc

2M ⊂ Dc
M we have FT (I) < ϵ by the choice of M .

We continue with FK . Since I ∈ Dc
2M , we consider three cases:

(a) When ℓ(I) < 2−2M , we have ℓ(I ∧ J) < 2−2M . Since J ∈ Dc
M , we distinguish two

cases:
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(a.1) If ℓ(J) < 2−M , then we have ℓ(I ∨ J) < 2−M and so we get Fµ(I, J) ≲ S(ℓ(I ∧
J))ρµ(I ∨ J) ≤ S(2−M )ρµ(I ∨ J) < ϵ.

(a.2) If ℓ(J) ≥ 2−M , then

ec(I, J) =
ℓ(I ∧ J)
ℓ(I ∨ J)

=
ℓ(I)

ℓ(J)
≤ 2−2M

2−M
= 2−M

and thus, log ec(I, J) ≤ −M .

(b) When ℓ(I) > 22M , since J ∈ Dc
M we distinguish two cases:

(b.1) When ℓ(J) > 2M , we get ℓ(I∨J) ≥ ℓ(I∧J) > 2M . Therefore Fµ(I, J)ρµ(I∨J) ≲
L(ℓ(I ∧ J))ρµ(I ∨ J) ≤ L(2M )ρµ(I ∨ J) < ϵ.

(b.2) When ℓ(J) ≤ 2M , we have that

ec(I, J) =
ℓ(I ∧ J)
ℓ(I ∨ J)

=
ℓ(J)

ℓ(I)
<

2M

22M
= 2−M

and thus, log ec(I, J) ≤ −M .

(c) When 2−2M ≤ ℓ(I) ≤ 22M with rdist(I,B22M ) > 2M , we have |c(I)| > (2M −
1)22M . We fix α = 1

8 , β = γ = 1
4 . We distinguish two more cases:

(c.1) When ℓ(J) > (2M)α22M , since α > 0 we have

ec(I, J) =
ℓ(I)

ℓ(J)
<

22M

(2M)α22M
≲M− 1

8 ,

which implies log ec(I, J) ≲ − logM .
(c.2) When ℓ(J) ≤ (2M)α22M , we have ℓ(I ∨ J) < (2M)α22M . Now:

(c.2.1) When rdist(⟨I, J⟩,B) > (2M)β , we also have rdist(I∨J,B) > (2M)β . Then

FK(I, J)ρµ(I ∨ J) ≲ D̃(rdist(⟨I, J⟩,B))ρµ(I ∨ J) ≤ D̃(Mβ)ρµ(I ∨ J) < ϵ.

(c.2.2) When rdist(⟨I, J⟩,B) ≤ (2M)β , we get |c(⟨I, J⟩)| ≤ (2M)β(1 + ℓ(⟨I, J⟩)).
Then, we examine the last two cases:
• When ℓ(⟨I, J⟩) > (2M)γ22M , we get

rdist(I, J) =
ℓ(⟨I, J⟩)
ℓ(I ∨ J)

>
(2M)γ22M

(2M)α22M
≳Mγ−α =M

1
8 .

• When ℓ(⟨I, J⟩) ≤ (2M)γ22M , we have instead

|c(I)− c(J)| > |c(I)| − |c(⟨I, J⟩)− c(J)| − |c(⟨I, J⟩)|

≥ |c(I)| − 2−1ℓ(⟨I, J⟩)− (2M)β(1 + ℓ(⟨I, J⟩))

≥ (2M − 1)22M − (2M)γ22M − (2M)β(1 + (2M)γ22M )

≳ (M−Mγ−Mβ+γ)22M ≳ (M−2M
1
2 )22M ≥ 2−1M22M

for M > 2. Then

rdist(I, J) ≥ |c(I)− c(J)|
ℓ(I ∨ J)

≳
M22M

(2M)α22M
≳M1−α =M

7
8 > M

1
8 .

Definition 7.3. As shown in the proof, Fµ(I, J) ≲ ϵ holds when either ℓ(I∧J) > 2M ,

or ℓ(I ∨ J) < 2−M , or rdist(⟨I, J⟩,B) > M1/8. For this reason, we denote by FM

the family of ordered pairs (I, J) with I, J ∈ Dc
M satisfying some of these three

inequalities.
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8. The operator acting on bump functions

In this section we estimate the dual pair ⟨TψI , ψJ⟩ in terms of the space and
frequency location of the argument functions. The computations are carried out in
two different propositions.

8.1. The operator acting on bump functions with disjoint supports.

Proposition 8.1. Let T be a linear operator with compact Calderón–Zygmund ker-
nel K and parameters 0 < δ < 1, 0 < α ≤ n. Let θ ∈ (0, 1) and I, J ∈ D be such that
dist(Ip, Jp) > 0 and ec(I, J)θ(inrdist(Ip, Jp)− 1) > 1. Then

|⟨TψI , ψJ⟩| ≲ inrdist(Ip, Jp)
−(α+δ)µ(I)

1
2µ(J)

1
2

ℓ(I ∧ J)α
F1(I, J),

with F1(I, J) = L(ℓ([Ip, Jp]))S(ℓ(Ip ∧ Jp))D(rdist(⟨Ip, Jp⟩,B)).

Proof: By symmetry we can assume ℓ(J) ≤ ℓ(I). Let e ∈ N such that ec(I, J)−1 =
ℓ(I)/ℓ(J) = 2e ≥ 1. Then

dist(Ip, Jp)

ℓ(Jp)
=

dist(Jp,DIp)

ℓ(Jp)
= inrdist(Ip, Jp)− 1 > ec(I, J)−θ = 2eθ,

that is, dist(Ip, Jp) > 2eθℓ(Jp) ≥ ℓ(Jp). We can then use the kernel representation
of T and the zero mean of ψJ to write

⟨TψI , ψJ⟩ =
∫∫

ψI(t)ψJ(x)(K(t, x)−K(t, cJp)) dµ(t) dµ(x),

with cJp = c(Jp). Since ψI = µ(I)
1
2 (µ(I)−1χI − µ(Ip)

−1χIp) and similarly for ψJ , we
have

|⟨TψI , ψJ⟩| ≲ µ(I)
1
2µ(J)

1
2

∑
R∈{I,Ip}

∑
S∈{J,Jp}

µ(R)−1µ(S)−1

×
∫
S

∫
R

|K(t, x)−K(t, cJp)| dµ(t) dµ(x).
(32)

We fix R ∈ {I, Ip} and S ∈ {J, Jp}. In the domain of integration of the double
integral we have t ∈ R ⊂ Ip, x ∈ S ⊂ Jp, and so

2|x− cJp
| ≤ ℓ(Jp) < dist(Ip, Jp) ≤ |t− cJp

|.

Then, by the smoothness condition of a compact Calderón–Zygmund kernel (31), the
double integral in (32) is bounded by∫

S

∫
R

|x− cJp
|δ

|t− x|α+δ
F (t, x) dµ(t) dµ(x),

with F (t, x) = L(|t − cJp
|)S(|x − cJp

|)D
(
1 +

|t+cJp |
1+|t−cJp |

)
. Now, by Lemma 7.1, the

previous expression can be bounded by a constant times

ℓ(Jp)
δ

dist(S,R)α+δ
µ(R)µ(S)L(ℓ([Ip, Jp]))S(ℓ(J))D(rdist(⟨Ip, Jp⟩,B)).

Since R ⊂ Ip and S ⊂ Jp, we have dist(S,R) ≥ dist(Ip, Jp). Furthermore, since
dist(Ip, Jp) ≥ ℓ(Jp), we have

dist(Ip, Jp) ≥ 2−1(dist(Ip, Jp) + ℓ(Jp)).



New local T1 theorems 471

With this and ℓ(Jp) = 2ℓ(J), we can continue the bound in (32) as

|⟨TψI , ψJ⟩| ≲ µ(I)
1
2µ(J)

1
2

∑
R∈{I,Ip}

∑
S∈{J,Jp}

ℓ(Jp)
δ

dist(Ip, Jp)α+δ
F1(I, J)

≲

(
ℓ(Jp)

ℓ(Jp) + dist(Ip, Jp)

)α+δ
µ(I)

1
2µ(J)

1
2

ℓ(J)α
F1(I, J).

(33)

Remark 8.2. When ℓ(Ip ∨ Jp) ≤ dist(Ip, Jp) we will use the weaker inequality

(34) |⟨TψI , ψJ⟩| ≲ ec(I, J)δ rdist(Ip, Jp)
−(α+δ)µ(I)

1
2µ(J)

1
2

ℓ(I ∨ J)α
F1(I, J),

which we now justify.
From dist(Ip, Jp) ≤ dist(Ip, Jp) + ℓ(Jp), ℓ(Jp) = 2ℓ(J), and (33) we get

|⟨TψI , ψJ⟩| ≲ µ(I)
1
2µ(J)

1
2

(
ℓ(Jp)

ℓ(Jp) + dist(Ip, Jp)

)δ
1

dist(Ip, Jp)α
F1(I, J).

By assuming ℓ(J) ≤ ℓ(I), we have ℓ(Ip) = ℓ(Ip ∨ Jp) ≤ dist(Ip, Jp). Then

dist(Ip, Jp) ≥ 2−1(dist(Ip, Jp) + ℓ(Ip)).

With this and ℓ(Ip) = 2ℓ(I), we continue the previous estimate as follows:

|⟨TψI , ψJ⟩| ≲
(

ℓ(Jp)

ℓ(Jp) + dist(Ip, Jp)

)δ(
ℓ(Ip)

ℓ(Ip) + dist(Ip, Jp)

)α
µ(I)

1
2µ(J)

1
2

ℓ(I)α
F1(I, J)

= inrdist(Ip, Jp)
−δ rdist(Ip, Jp)

−αµ(I)
1
2µ(J)

1
2

ℓ(I)α
F1(I, J).

Finally,

inrdist(Ip, Jp)
−δ ≲

(
ℓ(J)

dist(Ip, Jp)

)δ

≲

(
ℓ(J)

ℓ(I)

)δ(
ℓ(Ip)

ℓ(Ip) + dist(Ip, Jp)

)δ

= ec(I, J)δ rdist(Ip, Jp)
−δ.

Remark 8.3. We also note that, from dist(Ip, Jp) ≤ dist(I, J) ≤ dist(Ip, Jp) + ℓ(Ip),
we have

1

3

(
1 +

dist(I, J)

ℓ(I)

)
≤ 1 +

dist(Ip, Jp)

ℓ(Ip)
≤ 1 +

dist(I, J)

ℓ(I)
,

that is, rdist(Ip, Jp) ≈ rdist(I, J).

8.2. The operator acting on bump functions with non-disjoint supports.
For the next result, recall the following notation introduced in Definition 6.6. For
Ip, Jp ∈ D, Q ∈ 3D with Ip, Jp ⊂ 3−1Q, we write

ψfull
I,J (t) = µ(I)

1
2 (φI(cJp)− φIp(cJp))χQ(t),

with φI = 1
µ(I)χI , cJp = c(Jp).
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Proposition 8.4. Let T be a linear operator with compact Calderón–Zygmund ker-
nel K and parameter 0 < δ < 1. Let I, J ∈ D be such that dist(Ip, Jp) = 0 and
ec(I, J)θ(inrdist(Ip, Jp)− 1) > 1. Then

|⟨T (ψI − ψfull
I,J ), ψJ⟩| ≲ inrdist(Ip, Jp)

−δ
∑

R∈{I,Ip}

(
µ(R ∩ J)
µ(R)

) 1
2

F2,µ(I, J)

+ inrdist(Ip, Jp)
−(α+δ)µ(I)

1
2µ(J)

1
2

ℓ(I ∧ J)α
χIp\I(cJp)F3(I, J),

where

F2,µ(I, J) = L(ℓ(I ∧ J))S(ℓ(I ∧ J))
∑
k≥0

2−kδ µ(2
kK)

ℓ(2kK)
D(rdist(2kK,B))

and

F3(I, J) = L(ℓ(I ∧ J))S(ℓ(I ∧ J))
∑
k≥0

2−kδD(rdist(2kK,B)),

with K = inrdist(Ip, Jp)(I ∧ J).

Proof: We assume ℓ(J) ≤ ℓ(I). Let e ∈ N such that 2e = ℓ(I)/ℓ(J) ≥ 1. Since
ec(I, J)θ(inrdist(Ip, Jp)− 1) > 1, we have

dist(Jp,DIp)

ℓ(Jp)
= inrdist(Ip, Jp)− 1 > ec(I, J)−θ = 2eθ.

Then dist(Jp, ∂Ip) > 2eθℓ(Jp) ≥ ℓ(Jp), which together with dist(Ip, Jp) = 0 im-
ply 3Jp ⊊ Ip and ℓ(J) ≤ ℓ(I)/8. Therefore 3Jp ⊆ I ′ for some I ′ ∈ ch(Ip).

Now we note that

(35) ψI(t)− ψfull
I,J (t) = µ(I)

1
2 [φI(t)− φI(cJp)χQ(t)− φIp(t) + φIp(cJp)χQ(t)].

Then for t ∈ 3Jp ⊊ Ip we have φR(t)χ3Jp
(t) = φR(cJp

)χ3Jp
(t) for R ∈ {I, Ip} and

so ψI(t)− ψfull
I,J (t) = 0. With this and (35),

ψI − ψfull
I,J = (ψI − ψfull

I,J )(1− χ3Jp
) = ψout

I .

We denote the last expression by ψout
I , which is supported on (Ip ∪ Q) \ 3Jp. Since

dist((Ip∪Q)\3Jp, Jp) ≥ ℓ(Jp), we can apply the reasoning we used in Proposition 8.4
with some variations. We describe the argument again because we aim for slightly
different estimates.

Since Jp ⊆ I ′ for some I ′ ∈ ch(Ip), we have for t ∈ I ′ that φR(t) = φR(cJp)
with R ∈ {I, Ip}, and so ψout

I (t) ≡ 0. That is, ψout
I (t) ̸= 0 implies t ∈ ((Ip ∪Q) \ I ′)∩

(3Jp)
c. Then

|t− c(Jp)| ≥
ℓ(Jp)

2
+ dist(Ip \ I ′, Jp) =

ℓ(Jp)

2
+ dist(Jp,DIp) ≥

1

2
inrdist(Ip, Jp)ℓ(Jp).

Now we prove the following inequalities: for Jp ⊂ Ip,

(a) if Jp ⊂ I, then |ψout
I | ≲ µ(I)

1
2

1
µ(I)χQ\I ,

(b) if Jp ∩ I = ∅, then |ψout
I | ≲ µ(I)

1
2

(
1

µ(I)χI +
1

µ(Ip)
χQ\I

)
.
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(a) If I ′ = I, since Jp ⊂ I ⊂ Ip, we showed ψout
I (t) = 0 for all t ∈ I. Moreover,

for t ∈ Ip \ I we have φI(t) = 0 and φIp(t) = φIp(cJp). Then from (35),

ψout
I (t) = µ(I)

1
2 [−φI(cJp

)χQ(t)] = −µ(I) 1
2

1

µ(I)
χQ\I(t)

since t /∈ I. Finally, for t ∈ Q \ Ip we have φI(t) = φIp(t) = 0 and from (35),

|ψout
I (t)| = µ(I)

1
2 | − φI(cJp)χQ(t) + φIp(cJp)χQ(t)| ≤ µ(I)

1
2

2

µ(I)
χQ\I(t)

since µ(I) ≤ µ(Ip).

(b) On the other hand, if I ′ ̸= I, we have I ′ ∩ I = ∅ and so, since Jp ⊂ I ′ ⊂ Ip,
for t ∈ I we get φI(cJp

) = 0 and φIp(t) = φIp(cJp
). With this,

ψout
I (t) = µ(I)

1
2φI(t) = µ(I)

1
2

1

µ(I)
χI(t).

Meanwhile, for t ∈ Ip \ I we have φI(t) = φI(cJp
) = 0 and φIp(t) = φIp(cJp

) and so
we get from (35)

ψout
I (t) = µ(I)

1
2 [−φIp(t) + φIp(cJp)χQ(t)] = 0.

Finally, for t ∈ Q \ Ip we have φI(t) = φIp(t) = φI(cJp) = 0 and so

ψout
I (t) = µ(I)

1
2φIp(cJp

)χQ(t) ≤ µ(I)
1
2

1

µ(Ip)
χQ\Ip(t).

This finishes the proof of the two inequalities. We can write these inequalities in a
unified way as follows:

|ψout
I (t)| ≲ µ(I)

1
2

(
1

µ(I)
χQ\I(t)χI(cJp

) +
1

µ(I)
χI(t)χIp\I(cJp

)

+
1

µ(Ip)
χQ\I(t)χIp\I(cJp

)

)
≲ µ(I)

1
2

(
1

µ(I)
χI(cJp) +

1

µ(Ip)
χIp(cJp) +

1

µ(I)
χI(t)χIp\I(cJp)

)
.

(36)

Moreover, for t ∈ (Ip ∪ Q) \ 3Jp we have |t − c(Jp)| ≥ 3ℓ(Jp)/2 > ℓ(Jp). We then
decompose the support of ψout

I as follows. Let ∆k = {t ∈ (Ip ∪Q) \ 3Jp : 2k−1ℓ(Jp) <
|t− c(Jp)| ≤ 2kℓ(Jp)} ⊂ (2k+1Jp) \ (2kJp). Then

(Ip ∪Q) \ (3Jp) ⊂
m1⋃

k=m0

∆k,

with m0 = log inrdist(Ip, Jp) and m1 = log
ℓ(Ip)+ℓ(Q)

ℓ(Jp)
+ 1. In this way we can write

ψout
I =

m1∑
k=m0

Φk,

where Φk = ψout
I (χ2k+1Jp

− χ2kJp
). We note that, since Jp ⊂ 3J , we have suppΦk ⊆

∆k ⊆ 2k+1Jp ⊂ 2k+3J and so µ(∆k) ≤ µ(2k+3J). Moreover, ∆k is included in the
difference of two concentric cubes with side lengths 2kℓ(Jp) and 2k+1ℓ(Jp). Then,
although ∆k is not a cube, we denote ℓ(∆k) = 2k+1ℓ(Jp) and c(∆k) = c(Jp).

The plan is now to estimate |⟨TΦk, ψJ⟩|. Since ∆k ∩ Jp = ∅, we use the kernel
representation and the zero mean of ψJ to write

|⟨TΦk, ψJ⟩| ≤
∫
Jp

∫
∆k

|ψout
I (t)||ψJ(x)||K(t, x)−K(t, cJp)| dµ(t) dµ(x).
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With (36) and ψJ = µ(J)
1
2

(
1

µ(J)χJ − 1
µ(Jp)

χJp

)
, we have

|⟨TΦk, ψJ⟩| ≲ µ(I)
1
2µ(J)

1
2

∑
R∈{I,Ip}

∑
S∈{J,Jp}

χR(cJp
)

µ(R)

1

µ(S)

×
∫
S

∫
∆k

|K(t, x)−K(t, cJp
)| dµ(t) dµ(x)

+ µ(I)
1
2µ(J)

1
2

∑
S∈{J,Jp}

χIp\I(cJp)

µ(I)

1

µ(S)

×
∫
S

∫
I∩∆k

|K(t, x)−K(t, cJp
)| dµ(t) dµ(x).

(37)

We now estimate the two double integrals on the right-hand side of (37), starting
with the first one, which we denote by Int. We fix R ∈ {I, Ip} and S ∈ {J, Jp}.
For t ∈ ∆k we have |t − c(Jp)| > 2k−1ℓ(Jp) ≥ ℓ(Jp). For x ∈ S ⊂ Jp we have
|x− c(Jp)| ≤ ℓ(Jp)/2. With both things

|x− c(Jp)| ≤ ℓ(Jp)/2 ≤ 2k−1ℓ(Jp)/2 < |t− c(Jp)|/2.
Then we can use the smoothness property (31), to write

(38) Int ≤
∫
S

∫
∆k

|x− c(Jp)|δ

|t− c(Jp)|α+δ
F (t, x) dµ(t) dµ(x),

with F (t, x) = L(|t−c(Jp)|)S(|x−c(Jp)|)D
(
1+

|t+c(Jp)|
1+|t−c(Jp)|

)
. Since L is non-increasing,

S is non-decreasing, 2kℓ(J) ≥ |t−c(Jp)| > 2k−1ℓ(Jp) ≥ ℓ(Jp) = 2ℓ(J) and |x−c(Jp)| ≤
ℓ(Jp)/2 = ℓ(J), we have

F (t, x) ≤ L(ℓ(J))S(ℓ(J))D

(
1 +

|t+ c(Jp)|
1 + |t− c(Jp)|

)
.

On the other hand, |t+ c(Jp)| ≥ 2|c(Jp)| − |t− c(Jp)|, which implies

2

(
1 +

|t+ c(Jp)|
1 + |t− c(Jp)|

)
≥ 2 +

2|c(Jp)|
1 + |t− c(Jp)|

− |t− c(Jp)|
1 + |t− c(Jp)|

≥ 1 +
|c(Jp)|

1 + 2kℓ(Jp)
.

Moreover, since ∆k ⊂ 2k+3J , ℓ(∆k) = 2k+2ℓ(J), and c(∆k) = c(Jp), we have

1 +
|c(Jp)|

1 + 2kℓ(Jp)
≳ 1 +

|c(∆k)|
1 + ℓ(∆k)

≳ rdist(∆k,B) ≥ rdist(2k+3J,B),

the meaning of rdist(∆k,B) being clear even though ∆k is not a cube. Then, since D
is non-increasing, we get

F (t, x) ≤ L(ℓ(J))S(ℓ(J))D(rdist(2kJ,B)) = F (J, J, 2kJ).

With this and ∆k ⊂ 2k+3J , we continue the bound in (38) as

Int ≲
ℓ(J)δ

(2kℓ(J))δ+α
µ(2k+3J)µ(S)F (J, J, 2kJ) ≲ 2−kδ µ(2k+3J)

(2k+3ℓ(J))α
µ(S)F (J, J, 2kJ).

For the second double integral on the right-hand side of (37), which we denote
by Int′, we can apply the same reasoning with the only difference of integrating
over I ∩∆k ⊂ ∆k instead of the whole ∆k. With this we obtain

Int′ ≲
ℓ(J)δ

(2kℓ(J))δ+α
µ(I)µ(S)F (J, J, 2kJ) ≲ 2−kδ 1

(2kℓ(J))α
µ(I)µ(S)F (J, J, 2kJ).
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Then we continue the estimate in (37) as follows: since µ(I) ≤ µ(R),

|⟨TΦk, ψJ⟩| ≲ 2−kδF (J, J, 2kJ)µ(I)
1
2µ(J)

1
2

×
( ∑

R∈{I,Ip}
S∈{J,Jp}

χR(cJp
)

µ(R)

µ(2k+3J)

(2k+3ℓ(J))α
+

∑
S∈{J,Jp}

χIp\I(cJp
)

(2kℓ(J))α

)

≲ 2−kδF (J, J, 2kJ)

( ∑
R∈{I,Ip}

(
µ(J)χR(cJp)

µ(R)

) 1
2 µ(2k+3J)

(2k+3ℓ(J))α

+ χIp\I(cJp
)
µ(I)

1
2µ(J)

1
2

(2kℓ(J))α

)

≲
∑

R∈{I,Ip}

(
µ(J ∩R)
µ(R)

) 1
2

2−kδF (J, J, 2kJ)
µ(2k+3J)

(2k+3ℓ(J))α

+ χIp\I(cJp)
µ(I)

1
2µ(J)

1
2

ℓ(J)α
2−k(α+δ)F (J, J, 2kJ).

The last inequality holds because χR(cJp) ̸= 0 if and only if Jp ∩ R ̸= ∅. Moreover,
since ℓ(J) ≤ ℓ(I) ≤ ℓ(R), we have J ⊂ Jp ⊂ R and so J = J ∩R.

Now, using that F (J, J, 2kJ) = L(ℓ(J))L(ℓ(J))D(rdist(2kJ,B)) and summing in k,
we have that |⟨Tψout

I , ψJ⟩| can be bounded by

∑
R∈{I,Ip}

(
µ(J ∩R)
µ(R)

) 1
2

L(ℓ(J))S(ℓ(J))
∑

k≥m0

2−kδ µ(2k+3J)

(2k+3ℓ(J))α
D(rdist(2kJ,B))

+ χIp\I(cJp
)
µ(I)

1
2µ(J)

1
2

ℓ(J)α
L(ℓ(J))S(ℓ(J))

∑
k≥m0

2−k(α+δ)D(rdist(2kJ,B)).

We denote λ = inrdist(Ip, Jp). Since m0 = log inrdist(Ip, Jp), the last factor in each
term is respectively bounded by

2−m0δ
∑
k≥0

2−kδ µ(2
k+32m0J)

ℓ(2k+32m0J)α
D(rdist(2k(2m0J),B))

≲ inrdist(Ip, Jp)
−δ

∑
k≥0

2−k δ
2D(rdist(2kλJ,B))

∑
k≥0

2−k δ
2
µ(2k+3λJ)

(2k+3ℓ(λJ))α

≲ inrdist(Ip, Jp)
−δD̃(rdist(λJ,B))ρout(λJ),

and

2−m0(α+δ)
∑
k≥0

2−k(α+δ)D(rdist(2k(2m0J),B))

≲ inrdist(Ip, Jp)
−(α+δ)

∑
k≥0

2−k(α+δ)D(rdist(2kλJ,B))

≲ inrdist(Ip, Jp)
−(α+δ)D̃(rdist(λJ,B)),

with D̃ defined in (7). This ends the proof.
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9. Paraproducts

The proof of Theorem 4.2 is divided into two parts: we first deal with the part
associated to ψfull

I,J , which corresponds to the paraproduct case in the classical proof.
Then we use the estimates of the bump lemma for the remaining part.

In this section we cover the paraproduct part, which requires the use of the classical
Carleson embedding theorem.

Lemma 9.1 (Carleson embedding theorem). Let (aI)I∈D be a collection of non-
negative numbers. Then∑

I∈D
aI |⟨f⟩I |2 ≲ sup

I∈D

(
1

µ(I)

∑
J∈D(I)

aJ

)
∥f∥2L2(µ)

for all f ∈ L2(µ).

The following proposition deals with the paraproduct part of the operator. The
proof provided follows the ideas developed in [18].

Proposition 9.2 (Paraproducts). Let Q ∈ D and θ ∈ (0, 1) be fixed. We define the
following bilinear forms: for f , g bounded functions with supp f ∪ supp g ⊂ Q,

Π(f, g) =
∑

I∈D(Q)

∑
J∈D(Ip)

inrdist(Jp,Ip)>λθ

⟨f, ψI⟩⟨g, ψJ⟩⟨Tψfull
I,J , ψJ⟩,

Π′(f, g) =
∑

J∈D(Q)

∑
I∈D(Jp)

inrdist(Ip,Jp)>λθ

⟨f, ψI⟩⟨g, ψJ⟩⟨TψI , ψ
full
J,I ⟩,

with λθ = 1 + ec(I, J)−θ.
Then given ϵ > 0 there exist M0 ∈ N independent of Q and functions f , g such

that for all M > M0

|Π(P⊥
Mf, P

⊥
Mg)|+ |Π′(P⊥

Mf, P
⊥
Mg)| ≲ ϵ∥f∥L2(µ)∥g∥L2(µ).

Proof: By symmetry, we only need to work with Π. By Notation 4.3 and the prop-
erties (6), (12), given ϵ > 0, we can choose M0 ∈ N such that for all M > M0 and
all I ∈ DM (Q)c we have

(39) Fµ(I) < ϵ.

By Lemma 6.16 and Fubini’s theorem, we can rewrite Π(P⊥
Mf, P

⊥
Mg) as

Π(P⊥
Mf, P

⊥
Mg) =

∑
I∈D(Q)

∑
J∈D(Ip)

inrdist(Jp,Ip)>λθ

⟨P⊥
Mf, ψI⟩⟨P⊥

Mg, ψJ⟩⟨Tψfull
I,J , ψJ⟩

=
∑

I∈Dc
M (Q)

∑
J∈Dc

M (Ip)
inrdist(Jp,Ip)>λθ

⟨f, ψI⟩⟨g, ψJ⟩⟨Tψfull
I,J , ψJ⟩

=
∑

J∈Dc
M (Q)

⟨g, ψJ⟩
〈
T

( ∑
I∈Dc

M (Q)
Jp⊂Ip,inrdist(Jp,Ip)>λθ

⟨f, ψI⟩ψfull
I,J

)
, ψJ

〉
.

We can assume that the first sum in the previous expression only contains terms for
which µ(Jp) ̸= 0 since otherwise ψJ ≡ 0. Moreover, for fixed J ∈ D, and each cube I
satisfying the condition Jp ⊂ Ip, all cubes I

′ ∈ ch (Ip ) also satisfy the same condition.
In other words, for each cube I in the sum, all its siblings are also in the sum.



New local T1 theorems 477

Then, since in the second sum we have ℓ(Jp) < ℓ(Ip), by Lemma 6.7,∑
I∈ch(Ip)

⟨f, ψI⟩ψfull
I,J = ∆̂Ip(f) =

( ∑
I∈ch(Ip)

ÊIf

)
− ÊIpf,

where ÊIf = ⟨f⟩IχI(cJp
)χQ.

The inner sum takes place under the condition inrdist(Jp, Ip) > λθ ≥ 2. For Jp ∈
Dc

M (Q), let λ be the smallest integer such that inrdist(Jp, Ip) > λ. Also let IJ ∈ D(Q)
be the smallest cube such that Jp ⊂ IJ and inrdist(Jp, IJ) > λ. If such a cube does
not exist, we then define IJ = ∅.

We now add and subtract the following term:

Ad1 =
∑

I∈Dc
M (Q)

Jp⊂Ip,λ(Ip,Jp)≤λθ

⟨f, ψI⟩ψfull
I,J

to obtain ∑
I∈Dc

M (Q)

Jp⊂Ip,λ(Î,Ĵ )>λθ

⟨f, ψI⟩ψfull
I,J =

∑
I∈Dc

M (Q)
Jp⊆Ip

⟨f, ψI⟩ψfull
I,J −Ad1.

The second term −Ad1, together with a symmetric expression Ad2 containing cubes
such that Ip ⊂ Jp, will be estimated in Subsection 10.6. We now focus on the first
term.

Now, for fixed J ∈ Dc
M (Q), since all siblings of each cube in the sum are also

contained in the sum, we obtain a telescoping sum and so∑
I∈Dc

M (Q)
Jp⊂Ip

⟨f, ψI⟩ψfull
I,Jp

=
∑

Ip∈Dc
M (Q)

Jp⊂Ip

∑
I′∈ch(Ip)

⟨f, ψI′⟩ψfull
I′,Jp

=
∑

Ip∈Dc
M (Q)

Jp⊂Ip

∆̂Ip(f)

=
∑

R∈ch(Jp)

ÊRf − ÊQf

=
∑

R∈ch(Jp)∪{Q}

αR⟨f⟩RχQ,

with |αR| = 1.
We denote J0 = Q. The cardinality of ch(Jp) is 2n and so we can enumerate the

family in a uniform way in accordance with their position inside Jp: ch(Jp) = {Jj}2
n

j=1.
We then write αj = αJj . With this,

Π(P⊥
Mf, P

⊥
Mg) =

∑
J∈Dc

M (Q)

⟨g, ψJ⟩
〈
T

( ∑
R∈ch(IJ )

ÊRf − ÊQf

)
, ψJ

〉

=

2n∑
j=0

αj

∑
J∈Dc

M (Q)

⟨f⟩Jj ⟨g, ψJ⟩⟨TχQ, ψJ⟩.
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With this, the boundedness of Π(P⊥
Mf, P

⊥
Mg) follows once we obtain a uniform

estimate for each fixed j:

Πj(P
⊥
Mf, P

⊥
Mg) =

∑
J∈Dc

M (Q)

⟨g, ψJ⟩⟨f⟩Jj
⟨TχQ, ψJ⟩.

For j = 0, we have Ij = Q and so

Π0(P
⊥
Mf, P

⊥
Mg) = ⟨f⟩Q⟨TχQ, g⟩,

which can be estimated by using the testing condition (11): since f , g are compactly
supported on Q,

|Π0(P
⊥
Mf, P

⊥
Mg)| ≤ |⟨f⟩Q|∥χQTχQ∥L2(µ)∥g∥L2(µ)

≲ µ(Q)−1∥f∥L2(µ)µ(Q)
1
2FT (Q)µ(Q)

1
2 ∥g∥L2(µ)

≤ FT (Q)∥f∥L2(µ)∥g∥L2(µ) < ϵ∥f∥L2(µ)∥g∥L2(µ).

For any other term, by Cauchy’s inequality and Lemma 6.9,

|Πj(P
⊥
Mf, P

⊥
Mg)| ≤

( ∑
J∈Dc

M (Q)

|⟨f⟩Jj
|2|⟨TχQ, ψJ⟩|2

) 1
2
( ∑

J∈Dc
M (Q)

|⟨g, ψJ⟩|2
) 1

2

≲

( ∑
J∈Dc

M (Q)

|⟨f⟩Jj |2|⟨TχQ, ψJ⟩|2
) 1

2

∥g∥L2(µ).

Then by Fubini’s theorem and Carleson’s Lemma 9.1,

|Πj(P
⊥
Mf, P

⊥
Mg)| ≲ sup

R∈Dc
M (Q)

(
µ(R)−1

∑
J∈Dc

M (R)

|⟨TχQ, ψJ⟩|2
) 1

2

∥f∥L2(µ)∥g∥L2(µ).

We now prove that for all R ∈ Dc
M (Q),∑

J∈Dc
M (R)

|⟨TχQ, ψJ⟩|2 ≲ ϵµ(R).

For R ∈ Dc
M (Q) with ℓ(R) < 2−M or rdist(R,B2M ) > M , we construct W(R) a

Whitney decomposition of R defined by the maximal (with respect to the inclusion)
cubes S ∈ D(Q) such that 5S ⊂ R. The cubes S in W(R) form a partition of R and
for any cube J ∈ Dc

M (R) there exists S ∈ W(R) such that Jp ⊂ S. Then we can write∑
J∈Dc

M (R)

|⟨TχQ, ψJ⟩|2≤
∑

S∈W(R)

∑
J∈Dc

M (S)

|⟨TχQ, ψJ⟩|2

≲
∑

S∈W(R)

( ∑
J∈Dc

M (S)

|⟨Tχ4S , ψJ⟩|2+
∑

J∈Dc
M (S)

|⟨T (χQ\4S), ψJ⟩|2
)
.

(40)

We will later deal with each term in different ways.
On the other hand, for R ∈ Dc

M (Q) with ℓ(R) > 2M , we start by defining the same
Whitney decomposition W(R) of R as before. But then we decompose each S ∈ W(R)
as follows:

S =
⋃

S̄∈D(S)

ℓ(S̄)=2−(M+2)

S̄.
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This ensures that S̄ ∈ Dc
M (Q). Then, similarly to before, we write∑

J∈Dc
M (R)

|⟨TχQ, ψJ⟩|2 ≤
∑

S∈W(R)

∑
S̄∈D(S)

ℓ(S̄)=2−(M+2)

∑
J∈Dc

M (S̄)

|⟨TχQ, ψJ⟩|2

≲
∑

S∈W(R)

( ∑
S̄∈D(S)

ℓ(S̄)=2−(M+2)

∑
J∈Dc

M (S̄)

|⟨Tχ4S̄ , ψJ⟩|2

+
∑

S̄∈D(S)

ℓ(S̄)=2−(M+2)

∑
J∈Dc

M (S̃)

|⟨T (χQ\4S̄), ψJ⟩|2
)
.

As before, we also deal with each term differently. We will show in detail the case
when ℓ(R) < 2−M or rdist(R,B2M ) > M , and only the small differences of the case
when ℓ(R) > 2M .

In the first case, we start by estimating the inner double sum in the first term of (40)
for each S ∈ W(R). For this, we use Lemma 6.9 and the testing condition (11):∑

J∈Dc
M (S)

|⟨Tχ4S , ψJ⟩|2 ≤ |⟨χ4STχ4S , ψJ⟩|2 ≲ ∥χ4STχ4S∥2L2(µ) ≲ µ(4S)Fµ(4S)
2.

Since 4S ⊂ R ∈ Dc
M (Q) with ℓ(R) < 2−M or rdist(R,B2M ) > M , we have ℓ(4S) ≤

2−M or rdist(4S,B2M ) > M . Moreover, since S ∈ D(Q), we have that 4S is the union
of 3n + 14n cubes in S′ ∈ D(Q) with ℓ(S′) ∈ {ℓ(S), ℓ(S)/2}. Therefore, by (39),
Fµ(4S) ≲ sup{Fµ(K) : K ∈ Dc

M} < ϵ. Then, by summing in S ∈ W(R), we have∑
S∈W(R)

∑
J∈Dc

M (S)

|⟨Tχ4S , ψJ⟩|2 ≲ ϵ2
∑

S∈W(R)

µ(4S) ≲ ϵ2µ(R).

In the last inequality we have used that, since 5S ⊂ R and the cubes S are disjoint
by maximality, the cubes 4S can only overlap a uniform number of times. We prove
this claim.

Since 5S ⊂ R and 6S ̸⊂ R, we have ℓ(S)/2 ≤ dist(4S, ∂R) ≤ ℓ(S). Then, for all S
such that x ∈ 4S, we have dist(x, ∂R) ≥ dist(4S, ∂R) ≥ ℓ(S)/2 and dist(x, ∂R) ≤
4ℓ(S) + dist(4S, ∂R) ≤ 5ℓ(S).

Now we reason as follows. For each x ∈ R, by disjointness there is at most one
cube S0 ∈ W (R) such that x ∈ S0 ⊂ 4S0. Then, for any other S ∈ W (R) such that
x ∈ 4S, we have that

• If ℓ(S) ≤ ℓ(S0)/32, from dist(x, ∂R) ≥ ℓ(S0)/2 we get ℓ(S) ≤ dist(x, ∂R)/8.
That is, dist(x, ∂R) ≥ 8ℓ(S), which implies x /∈ 4S since otherwise we proved
that dist(x, ∂R) ≤ 5ℓ(S).

• If ℓ(S) ≥ 32ℓ(S0), from dist(x, ∂R) ≤ 5ℓ(S0) we deduce ℓ(S) ≥ 32 dist(x, ∂R)/5.
That is, dist(x, ∂R) ≤ ℓ(S)/4, which implies x /∈ 4S since otherwise we proved
that dist(x, ∂R) ≥ ℓ(S)/2.

Therefore, there are up to 12 different side lengths of S for which x ∈ 4S. In
addition, since the cubes S are disjoint, for each x ∈ R there are up to 3n cubes S of
a fixed side length such that x ∈ 4S. With this, we get that there are in total up to
12 · 3n different cubes S such that x ∈ 4S. This finishes the work to estimate the first
term of (40).
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For the second term of (40), we reason as follows. Let S ∈ W(R), J ∈ Dc
M (S) be

fixed. Since Jp ⊂ S and ψJ has mean zero, we can write

|⟨T (χQ\4S), ψJ⟩| = |⟨T (χQ\4S)− T (χQ\4S)(cJp
), ψJ⟩|

≤
∫
Jp

∫
Q\4S

|K(t, x)−K(t, cJp
)||ψJ(x)| dµ(t) dµ(x).

Since x ∈ Jp, we have |x− cJp | ≤ ℓ(Jp)/2. And since t ∈ Q \ 4S, x ∈ Jp ⊂ S, we have
|t − x| > ℓ(S). Then 2|x − cJp | ≤ ℓ(Jp) ≤ ℓ(S) < |t − x|. Therefore, we can use the
smoothness kernel condition (31) to write

|⟨T (χQ\4S), ψJ⟩| ≤
∫
Jp

∫
Q\4S

|x− cJp
|δ

|t− x|α+δ
F (t, x)|ψJ(x)| dµ(t) dµ(x),

where F (t, x) = L(|t−x|)S(|x− cJp
|)D

(
1+

|t+cJp |
1+|t−cJp |

)
. Moreover, |t−x| ≥ |t− cJp

| −
|x− cJp

| ≥ |t− cJp
| − |t− x|/2, that is, |t− x| ≥ 2|t− cJp

|/3. With this, we have

|⟨T (χQ\4S), ψJ⟩| ≲ L(ℓ(S))S(ℓ(S))

∫
Jp

|ψJ(x)| dµ(x)

×
∫
Q\4S

ℓ(J)δ

|t− cJp
|α+δ

D

(
1 +

|t+ cJp
|

1 + |t− cJp
|

)
dµ(t)

≲ ℓ(J)δµ(Jp)
1
2L(ℓ(S))S(ℓ(S))

∫
Q\4S

D
(
1 +

|t+cJp |
1+|t−cJp |

)
|t− cJp

|α+δ
dµ(t).

Since J ⊂ S, for t ∈ Q \ 4S we have dist(t, J) ≥ ℓ(S). Then we decompose

Q \ 4S =

log
ℓ(Q)
ℓ(S)⋃

i=1

Si,

where Si = {t ∈ Q \ 4S : 2i−1ℓ(S) < |t − cJp | ≤ 2iℓ(S)} ⊂ 2i+1S. Note that Si ⊂
B(ci, 2

iℓ(S)), with ci ∈ Si, and c(Si) = cJp
. Moreover, since |t−cJp

|+|t+cJp
| ≥ 2|cJp

|,
we have

2

(
1 +

|t+ cJp
|

1 + |t− cJp |

)
≥ 1 +

2|cJp
|

1 + |t− cJp |
≥ 1 +

|c(2iS)|
1 + 2iℓ(S)

.

Then D
(
1 +

|t+cJp |
1+|t−cJp |

)
≲ D

(
1 + |c(2iS)|

1+2iℓ(S)

)
≲ D(rdist(2iS,B)). With this,

∫
Q\4S

D
(
1 +

|t+cJp |
1+|t−cJp |

)
|t− cJp

|α+δ
dµ(t) ≲

∑
i≥1

D(rdist(2iS,B))
(2iℓ(S))α+δ

µ(Si)

≲
1

ℓ(S)δ

∑
i≥1

1

2iδ
µ(2i+1S)

(2i+1ℓ(S))α
D(rdist(2iS,B))

≲
1

ℓ(S)δ
D̃(S)ρµ(S).
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Then

|⟨T (χQ\4S), ψJ⟩| ≲
(
ℓ(J)

ℓ(S)

)δ

µ(Jp)
1
2L(ℓ(S))S(ℓ(S))D̃(S)ρµ(S)

≤
(
ℓ(J)

ℓ(S)

)δ

µ(Jp)
1
2Fµ(S) ≤ ϵ

(
ℓ(J)

ℓ(S)

)δ

µ(Jp)
1
2 .

The last inequality is due to the fact that, as we saw before, S ∈ Dc
M (Q), and then

by (39) Fµ(S) ≲ sup{Fµ(K) : K ∈ Dc
M (Q)} < ϵ. Now, we parametrize the cubes J

according to their relative size with respect to S: ℓ(J) = 2−kℓ(S). To sum in J , we
use Jp ⊂ S together with the fact that the cubes with fixed side length are disjoint.
In this way, ∑

J∈Dc
M (S)

|⟨T (χQ\4S), ψJ⟩|2 ≲ ϵ2
∑

J∈D(S)

(
ℓ(J)

ℓ(S)

)2δ

µ(Jp)

≲ ϵ2
∑
k≥1

2−k2δ
∑

J∈D(S)

ℓ(J)=2−kℓ(S)

µ(Jp)

≤ ϵ2
∑
k≥1

2−k2δµ(S) ≲ µ(S)ϵ2.

Summing now over the cubes S in W(R), we finally get∑
S∈W(R)

∑
J∈Dc

M (S)

|⟨T (χQ\4S), ψJ⟩|2 ≲ ϵ2
∑

S∈W(R)

µ(S) ≲ ϵ2µ(R).

When ℓ(R) > 2M , the reasoning is similar with very few modifications. In this case
we have for the first term∑

S̄∈D(S)

ℓ(S̄)=2−(M+2)

∑
J∈Dc

M (S̄)

|⟨Tχ4S̄ , ψJ⟩|2 ≤
∑

S̃∈D(S)

ℓ(S̄)=2−(M+2)

|⟨χ4S̄Tχ4S , ψJ⟩|2

≲
∑

S̄∈D(S)

ℓ(S̄)=2−(M+2)

∥χ4S̄Tχ4S̄∥2L2(µ)

≲
∑

S∈W(R)

∑
S̄∈D(S)

ℓ(S̄)=2−(M+2)

µ(4S̄)Fµ(4S̄)
2.

Since ℓ(4S̄) = 2−M we have Fµ(4S̄) < ϵ. Then∑
S∈W(R)

∑
S̄∈D(S)

ℓ(S̄)=2−(M+2)

∑
J∈Dc

M (S̄)

|⟨Tχ4S̄ , ψJ⟩|2 ≲ ϵ2
∑

S∈W(R)

∑
S̄∈D(S)

ℓ(S̄)=2−(M+2)

µ(4S̄)

≲ ϵ2
∑

S∈W(R)

µ(4S) ≲ ϵ2µ(R),

and we continue as before. We estimate the second term in a similar way.
To finish the proof, we still need to prove that Π(P⊥

Mf, P
⊥
Mg) belongs to the class of

operators for which the theory applies. In particular, we must show that the integral
representation of Definition 3.6 holds with a kernel satisfying the Definition 3.3 of a
compact Calderón–Zygmund kernel. This work is independent of the measure µ and
it can be done in exactly the same way as it was performed in [25].
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10. Lp compactness

In this section we develop the proof of the main result, Theorem 4.2. But first we
prove a technical lemma showing that the regions sufficiently close to the border of
an open dyadic cube have arbitrarily small measure.

Notation 10.1. For N ∈ N, we define the following two collections of dyadic cubes:
D(Q)≥N ={I∈D(Q) : ℓ(I) ≥ 2−Nℓ(Q)} and D(Q)N ={I ∈ D(Q) : ℓ(I) = 2−Nℓ(Q)}.
Lemma 10.2. Let µ be a positive Radon measure in Rn with power growth 0 < α ≤ n.
Let Q ∈ D, N0,M ∈ N, and θ ∈ (0, 1) be fixed.

Let I ∈ D(Q)≥N0 with ℓ(I) = 2−kI ℓ(Q), 0 ≤ kI ≤ N0. For k ≥ kI let Ck(I) be the
union of the interior of all cubes R ∈ D(3I) such that ℓ(R) = 2−kℓ(Q) ≤ ℓ(I) and
inrdist(R, I) < 1 + ec(I,R)−θ. Finally, let Ck =

⋃
I∈D(Q)≥N0

Ck(I).

Then for each ϵ > 0 there exist k0 ∈ N such that µ(Ck) < ϵ for all k > k0.

Proof: We start by noting that the family of cubes D(Q)≥N0 has cardinality less

than 2(N0+1)n. Let I ∈ D(Q)≥N0 be fixed.
Recall that DI =

⋃
I′∈ch(I) ∂I

′. Then, for each cube R in the definition of Ck(I),

the condition inrdist(R, I)− 1 ≤ ec(I,R)−θ implies

dist(R,DI)

ℓ(R)
= inrdist(R, I)− 1 ≤

(
ℓ(R)

ℓ(I)

)−θ

,

that is,

dist(R,DI) ≤
(
ℓ(R)

ℓ(I)

)1−θ

ℓ(I).

Since ℓ(I) = 2−kI ℓ(Q) and ℓ(R) = 2−kℓ(Q) then

dist(R,DI) ≤ 2−(k−kI)(1−θ)ℓ(I).

Now, for j ≥ k we define the set

Dj(I) = {x ∈ 3I : 2−(j−kI+1)(1−θ)ℓ(I) < dist(x,DI) ≤ 2−(j−kI)(1−θ)ℓ(I)}.
Then the sets (Dj(I))j≥kI

are pairwise disjoint. Moreover, for each k > kI , we have⋃
j≥kDj(I) ⊂ Ck(I) ⊂

⋃
j≥k−1Dj(I), where Ck(I) is the union of the topological

closures of the cubes R ∈ Ck(I). Then∑
j≥k

µ(Dj(I)) ≤ µ(Ck(I)) ≤ µ(Ck) ≤ µ(Q) ≲ ℓ(Q)α <∞.

Therefore, for any ϵ > 0 there exists k0,I ≥ kI dependent on I such that∑
j≥k

µ(Dj(I)) < 2−(N0+1)nϵ

for all k ≥ k0,I .
Now let k0 = max{k0,I : I ∈ D(Q)≥N0

}. Since Ck+1 ⊂ Ck for each k ∈ N, we have
for all k > k0

µ(Ck) ≤ µ(Ck0
) ≤

∑
I∈D(Q)≥N0

µ(Ck0
(I))

≤
∑

I∈D(Q)≥N0

µ

( ⋃
j≥k0−1≥k0,I−1

Dj(I)

)
≤

∑
I∈D(Q)≥N0

∑
j≥k0,I

µ(Dj(I))

<
∑

I∈D(Q)≥N0

2−(N0+1)nϵ < ϵ.
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Finally, we proceed with the proof of the main result of the paper, Theorem 4.2.
Since the proof is long, we divide it into several subsections.

10.1. Proof of Theorem 4.2. Preliminaries. The necessity of the hypotheses can
be shown in a similar way as it was done in [25]. Then we focus on their sufficiency.

Once boundedness is proved on L2(µ), a classical argument that applies to Calde-
rón–Zygmund operators allows us to extend the result to weak estimates from L1(µ)
to L1,∞(µ) (see [19], for example). Then by a standard interpolation argument one
can prove boundedness on Lp(µ) for all 1 < p < ∞. Moreover, as shown in [25],
we can deduce compactness on Lp(µ) for all 1 < p < ∞ by interpolation between
compactness on L2(µ) and boundedness on Lp(µ). For all this, we only focus on the
case p = 2.

Let Q = [−2r, 2r]n ∈ C with c(Q) = 0, ℓ(Q) > 4, with side length large enough so
that

Fµ(Q) + FT (Q) + FT∗(Q) < ϵ.

Since Q ̸∈ D, this requires extending the definition of Fµ, FT , FT∗ to Q. This is
possible by using, for example, that Q is the union of 2n cubes in D. Moreover, the
smallness described by the previous inequality is deduced by the large side length

of Q. Let γ =
√
n2−s such that 0 < γ ≤ 1 < ℓ(Q), N0 = log 6ℓ(Q)α+2

γα+1 , and Tγ,Q be

the truncated operator of Definition 5.2.
We start by considering the dyadic grid D = D1 as denoted in Subsection 2.1. Let

(ψI)I∈D be the Haar wavelets frame of Definition 6.2 and PM be the lagom pro-
jection operators related to that system as given in Definition 6.11. We also fix the
parameter θ = α

α+δ/2 ∈ (0, 1).

We aim to prove that Tγ,Q is uniformly compact on L2(µ) with bounds independent
of Q ∈ C and 0 < γ < ℓ(Q). By the comments at the end of Subsection 6.4, we need
to show that for any ϵ > 0 there exists M0 ∈ N (independent of Q and γ) such that
∥P⊥

MTγ,QP
⊥
M∥2 ≲ ϵ for all M > M0, with implicit constant independent of Q and γ

(it may depend on δ and the constants appearing in the kernel smooth condition and
the testing conditions). By duality and the fact that the kernel Kγ,Q is supported
on Q, this is equivalent to showing that

|⟨Tγ,QP⊥
Mf, P

⊥
Mg⟩| ≲ ϵ

for all M > M0, all f , g functions in the unit ball of L2(µ), bounded, and compactly
supported on Q. Moreover, by Lemma 4.5, we can assume that f , g are supported on
the interior of the first quadrant of each grid, which we denote by Rn,+

i . In that case,

there is Qi ∈ TiD such that supp f ∪ supp g ⊂ Qi such that Q ∩ Rn,+
i ⊂ Qi ⊂ 10Q.

Therefore, when using the representation result Corollary 6.19 and Parseval’s identity
of Lemma 6.9, we should write Qi each time. However, since Qi and Q play a similar
role, we will just write Q each time. This is equivalent to assuming that the original
cube is contained in the first quadrant of each grid and Q ∈ TiD for all grids.

Then let f , g be fixed functions as described and satisfying

∥P⊥
MTγ,QP

⊥
2M∥2 ≤ 2|⟨P⊥

MTγ,QP
⊥
2Mf, g⟩|.



484 P. Villarroya

Let 0 < ϵ < ((∥f∥L∞(µ) + ∥g∥L∞(µ))µ(2Q)
1
2 )−4 be fixed. Let M0 be such that for

all M > M0 we have M− δ
8 +M−α( α+δ

α+δ/2
−1) +M− αδ

α+δ/2 < ϵ and

(41) sup
J∈Dc

M (Q)
(I,J)∈FM

Fµ(I, J) + Fµ(J, I) + FT (J) + FT∗(J) < ϵ,

where FM is given in Definition 7.3.
Then, for fixed ϵ > 0 and chosen M0 ∈ N, we are going to prove that

(42) |⟨Tγ,QP⊥
2Mf, P

⊥
Mg⟩| ≲ ϵ1/4

for all M > M0, which is also enough for our purposes. To simplify notation, from
now on we denote the operator Tγ,Q simply by T .

10.2. Discretization of the operator. By Corollary 6.19, we have that

⟨TP⊥
2Mf, P

⊥
Mg⟩ =

∑
I∈Dc

2M (Q)

∑
J∈Dc

M (Q)

⟨f, ψI⟩⟨g, ψJ⟩⟨TψI , ψJ⟩

+ ⟨T (EQf), P
⊥
Mg⟩+ ⟨T (P⊥

2Mf − EQf), EQg⟩.

(43)

Similarly to Lemma 10.2, we set up the following notation: for N ∈ N, let
Dc

M (Q)≥N ={I ∈ Dc
M (Q) : ℓ(I) ≥ 2−N ℓ(Q)}; for I ∈ D(Q)≥N0

and k > N0, Ck(I) de-
notes the union of the interior of all cubes R ∈ D(Q) such that ℓ(R) = 2−kℓ(Q) ≤ ℓ(I)
and inrdist(R, I)− 1 ≤ ec(I,R)−θ; finally, Ck =

⋃
I∈D(Q)≥N0

Ck(I).

Now, by Lemma 10.2 and the implicit limit in the equality at (43), we can choose
N1 > N0 +M so that for all N > N1,

(44) µ(CN )
1
2 ∥f∥L∞(µ)∥g∥L∞(µ)2

N0(n+3) < ϵ,

and

|⟨TP⊥
2Mf, P

⊥
Mg⟩| ≤ 2

∣∣∣∣ ∑
I∈Dc

2M (Q)≥N

∑
J∈Dc

M (Q)≥N

⟨f, ψI⟩⟨g, ψJ⟩⟨TψI , ψJ⟩

+ ⟨T (EQf), P
⊥
Mg⟩+ ⟨T (P⊥

2Mf − EQf), EQg⟩
∣∣∣∣

≤ 2|⟨TP⊥
2MPMN

f, P⊥
MPMN

g⟩|

+ 2|⟨T (EQf), P
⊥
Mg⟩|+ 2|⟨T (P⊥

2Mf − EQf), EQg⟩|,

with MN = N − log ℓ(Q). We note that P⊥
MPMN

is not the zero operator since
MN > N > N0 +M > M . Again, to simplify notation, we often stop writing the
conditions I ∈ Dc

2M (Q)≥N , J ∈ Dc
M (Q)≥N in the sums. We will recover this notation

whenever needed.
We briefly deal with the last two terms in the previous expression. We only work

with ⟨T (EQf), P
⊥
Mg⟩ since the work for the last term is similar. By definition, the

function P⊥
Mg is compactly supported on Q. Then, by the testing condition (11),

Cauchy’s inequality, and (41), we have

|⟨T (EQf), P
⊥
Mg⟩| ≤ |⟨f⟩Q|∥χQTχQ∥L2(µ)∥P⊥

Mg∥L2(µ)

≲ µ(Q)−1∥f∥L2(µ)µ(Q)
1
2FT (Q)µ(Q)

1
2 ∥g∥L2(µ) ≲ ϵ.
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Now we further decompose the term ⟨TP⊥
2MPMN

f, P⊥
MPMN

g⟩. For this, we fix
such N > N1. We denote by ∂D(Q) the union of ∂I for all I ∈ D(Q)≥N . Then we
decompose the argument functions as P⊥

2MPMN
f = f1 + f1,∂ , P

⊥
MPMN

g = g1 + g1,∂ ,
where f1,∂ = (P⊥

2MPMN
f)χ∂D(Q) and g1,∂ = (P⊥

MPMN
g)χ∂D(Q). With this,

(45) ⟨TP⊥
2MPMN

f, P⊥
MPMN

g⟩ = ⟨TP⊥
2MPMN

f, g1⟩+ ⟨Tf1, g1,∂⟩+ ⟨Tf1,∂ , g1,∂⟩.

We note that

g1 =
∑

J∈Dc
M (Q)≥N

⟨g, ψJ⟩ψJ̃ ,

where J̃ is the interior of J and so it is an open cube. Likewise for f1. Therefore, when
we deal with

⟨TP⊥
2MPMN

f, g1⟩ =
∑

I∈Dc
2M (Q)≥N

∑
J∈Dc

M (Q)≥N

⟨f, ψI⟩⟨g, ψJ⟩⟨TψI , ψJ̃⟩,

we have that the cubes J̃ ∈ D̃ are all open. Similarly, when we later deal with

⟨Tf1, g1,∂⟩ =
∑

I∈Dc
2M (Q)≥N

∑
J∈Dc

M (Q)≥N

⟨f, ψI⟩⟨g, ψJ⟩⟨TψĨ , ψJ⟩,

we will have that Ĩ ∈ D̃ are all open cubes.
However, we will start our work without reflecting this distinction in the notation

since it is only useful at the end of the argument. That is, although the work to
prove (42) starts with the first term ⟨TP⊥

2MPMN
f, g1⟩, since the same argument will

also work for the second term ⟨Tf1, g1,∂⟩, we write each term simply as ⟨P⊥
MTP

⊥
2Mf, g⟩

and we will make distinctions only at the end of the proof. We hope this license will
not cause any confusion.

In view of the rates of decay stated in Propositions 8.1 and 8.4, we parametrize
the sums according to eccentricity, relative distance, and inner relative distance of the
cubes as follows. For fixed e ∈ Z, m ∈ N, and every given dyadic cube J , we define
the family

Je,m = {I ∈ Dc
2M (Q) : ℓ(I) = 2eℓ(J),m ≤ rdist(Ip, Jp) < m+ 1}.

For m = 1 and 1 ≤ k ≤ 2−min(e,0)−2 − 1, we also define

Je,1,k = Je,1 ∩ {I ∈ Dc
2M (Q) : k ≤ inrdist(Ip, Jp) < k + 1}.

The cardinality of Je,m is comparable to 2−min(e,0)nnmn−1, while the cardinality

of Je,1,k is comparable to n(2−min(e,0)−k)(n−1)
min(e,0)

e . By symmetry, we have I ∈ Je,m
if and only if J ∈ I−e,m and, similarly, I ∈ Je,1,k if and only if J ∈ I−e,1,k.

In accordance with the previous parametrization, we divide the double sum in (43)
into three partsDi, Ni, and B6 (distant or disjoint cubes, nested cubes, and borderline
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cubes). Then we add and subtract the paraproducts Pi into the second part. Specifi-
cally, we write∑

I∈Dc
2M (Q)≥N

∑
J∈Dc

M (Q)≥N

⟨f, ψI⟩⟨g, ψJ⟩⟨TψI , ψJ⟩

=
∑
e∈Z

∑
m≥2

∑
J

∑
I∈Je,m

⟨f, ψI⟩⟨g, ψJ⟩⟨TψI , ψJ⟩

+
∑
e∈Z

2|e|∑
k=2θ|e|+1

∑
J

∑
I∈Je,1,k

dist(Ip,Jp)>0

⟨f, ψI⟩⟨g, ψJ⟩⟨TψI , ψJ⟩

+
∑
e≥0

2|e|−2∑
k=2θ|e|+1

∑
I

∑
Jp⊂Ip

J∈I−e,1,k

⟨f, ψI⟩⟨g, ψJ⟩⟨T (ψI − ψfull
I,Jp

), ψJ⟩

+
∑
e<0

2|e|−2∑
k=2θ|e|+1

∑
J

∑
Ip⊂Jp

I∈Je,1,k

⟨f, ψI⟩⟨g, ψJ⟩⟨TψI , ψJ − ψfull
J,Ip⟩

+Π(P⊥
2Mf, P

⊥
Mg) + Π′(P⊥

2Mf, P
⊥
Mg)

+
∑
e∈Z

2θ|e|∑
k=1

(∑
I

∑
J∈Ie,1,k

+
∑
J

∑
I∈J−e,1,k

)
⟨f, ψI⟩⟨g, ψJ⟩⟨TψI , ψJ⟩

= D1 +D2 +N2 +N3 + P4 + P5 +B6.

The terms P4 and P5 are the paraproduct bilinear forms, which are bounded by
Proposition 9.2. The terms D1, D2 correspond to the distant cubes and the barely
disjoint cubes respectively, which we estimate by using the inequalities of Remark 8.2
and Proposition 8.1 respectively. The terms N2, N3 correspond to the nested cubes,
for which we use the estimate of Proposition 8.4. By symmetry we only need to work
with N2. Finally, the term B6 corresponds to borderline cubes.

10.3. Distant cubes. The term D1 contains the cubes for which m ≥ 2 and so,
by (34) in Remark 8.2, we have

|⟨TψI , ψJ⟩| ≲
2−|e|δ

mα+δ

µ(I)
1
2µ(J)

1
2

ℓ(I ∨ J)α
F1(I, J),

where F1(I, J) is given in Proposition 8.1. Then

(46) |D1| ≲
∑
e∈Z
m≥2

2−|e|δ

mα+δ

∑
J

∑
I∈Je,m

µ(I)
1
2µ(J)

1
2

ℓ(I ∨ J)α
|⟨f, ψI⟩||⟨g, ψJ⟩|F1(I, J).

To estimate this last quantity, we divide the study into two cases: (I, J) ∈ FM and
(I, J) /∈ FM .
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(a) In the first case, to simplify the argument, we assume ℓ(J) ≤ ℓ(I), that is, e ≥ 0.
The other case follows by symmetry. Then I ∨ J = I and, by Cauchy’s inequality, we
can bound the terms in (46) corresponding to this case by

∑
e≥0

2−eδ

(∑
I

sup
J∈Dc

M (Q)
(I,J)∈FM

F1(I, J)|⟨f, ψI⟩|2
∑
m≥2

1

mα+δ

1

ℓ(I)α

∑
J∈I−e,m

µ(J)

) 1
2

×
(∑

J

sup
I∈Dc

2M (Q)
(I,J)∈FM

F1(I, J)|⟨g, ψJ⟩|2
∑
m≥2

1

mα+δ

1

2eαℓ(J)α

∑
I∈Je,m

µ(I)

) 1
2

.

(47)

We note that the cubes J ∈ I−e,m are pairwise disjoint, and that also the cubes I ∈
Je,m are pairwise disjoint. Let Je ∈ D such that J ⊂ Je and ℓ(Je) = 2eℓ(J) = ℓ(I).
Then we have ∑

J∈I−e,m

µ(J) ≲ µ(mI \ (m− 1)I),

∑
I∈Je,m

µ(I) ≲ µ(mJe \ (m− 1)Je).

We start with the first factor of (47), whose inner sum can be written as

1

ℓ(I)α

∑
m≥2

1

mα+δ

∑
J∈I−e,m

µ(J) ≲ lim
R→∞

1

ℓ(I)α

R∑
m=2

µ(mI)− µ((m− 1)I))

mα+δ
.

Now, we write am = µ(mI) and use Abel’s formula to get

1

ℓ(I)α

R∑
m=2

am − am−1

mα+δ
=

aR
Rα+δℓ(I)α

− a1
2α+δℓ(I)α

+
1

ℓ(I)α

R−1∑
m=2

am

(
1

mα+δ
− 1

(m+ 1)α+δ

)
.

For the first term we have

aR
ℓ(I)αRα+δ

=
µ(RI)

ℓ(RI)α
1

Rδ
≲

1

Rδ
≤ ρout(I)

for R sufficiently large, where we recall that ρout(I) =
∑

m≥1
µ(mI)
ℓ(mI)αm

−( δ
2+1). The

second term is bounded in a similar way:

a1
2α+δℓ(I)α

=
1

2δ
µ(I)

ℓ(I)α
=

1

2δ
ρ(I) ≤ ρout(I).

The last term is bounded by

1

ℓ(I)α

R−1∑
m=2

am
(m+ 1)α+δ −mα+δ

(m+ 1)α+δmα+δ
≲

R−1∑
m=2

µ(mI)

mαℓ(I)α
(m+ 1)α+δ−1

(m+ 1)α+δmδ

≲
R−1∑
m=2

µ(mI)

ℓ(mI)α
1

mδ+1
≤ ρout(I).
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We finish the work with the first factor by noting that F1(I, J)ρout(I) ≤ Fµ(I, J) < ϵ,
since (I, J) ∈ FM . For the second factor we can use similar calculations to obtain∑

m≥2

1

mα+δ

1

2eαℓ(J)α

∑
I∈Je,m

µ(I) ≲ ρout(Je).

However, now Je does not belong to Dc
M (Q) in general and so the only inequality we

can use is F1(I, J)ρout(Je) ≲ 1.
With both things and Lemma 6.9, we conclude that the terms in D1 corresponding

to both cases (e ≥ 0 and e ≤ 0) can be bounded by a constant times

∑
e≥0

2−eδ

( ∑
I∈Dc

2M (Q)

sup
J∈Dc

M (Q)
(I,J)∈FM

Fµ(I, J)|⟨f, ψI⟩|2
) 1

2
( ∑

J∈Dc
M (Q)

|⟨g, ψJ⟩|2
) 1

2

≲ ϵ
1
2

∑
e≥0

2−eδ∥f∥L2(µ)∥g∥L2(µ) ≲ ϵ
1
2 .

(b) We now study the case when (I, J) /∈ FM , that is, when I ∈ Dc
2M (Q), J ∈ Dc

M (Q)
are such that Fµ(I, J) ≥ ϵ. By Lemma 7.2, we have that |log(ec(I, J))| ≳ logM , or

rdist(I, J) ≳ M
1
8 . Then, instead of the smallness of Fµ, in this case we use that the

size and location of the cubes I and J are such that either their eccentricity or their
relative distance are extreme.

We fix eM ∈ {0, logM}, mM ∈ {M 1
8 , 1} such that eM = 0 implies mM = M

1
8 .

Then, by the calculations made in the subcase (a.1) and Fµ(I, J) ≲ 1, we can bound
the relevant part of (46) by a constant times

∑
|e|≥eM

∑
m≥mM

2−|e|δ

mα+δ

∑
J

∑
I∈Je,m

µ(I)
1
2µ(J)

1
2

ℓ(I ∨ J)α
|⟨f, ψI⟩||⟨g, ψJ⟩|F1(I, J)

≲
∑

|e|≥eM

2−|e|δ
(∑

I

|⟨f, ψI⟩|2
∑

m≥mM

1

mα+δ

µ(mI \ (m− 1)I)

ℓ(I)α

) 1
2

×
(∑

J

|⟨g, ψJ⟩|2
∑

m≥mM

1

mα+δ

µ(mJe \ (m− 1)Je)

ℓ(Je)α

) 1
2

.

(48)

Now, by Abel’s inequality as in case (a) and ρ(I) = µ(I)
ℓ(I)α ≲ 1, we have

∑
m≥mM

µ(mI \ (m− 1)I)

mα+δℓ(I)α
≲ lim

R→∞

(
1

Rδ
+

1

mδ
M

+

R∑
m=mM+1

1

mδ+1

)
≲ m−δ

M ,

and similarly for the second factor. With this, Lemma 6.9, and the choice of M ,
expression (48) is bounded by∑

|e|≥eM

2−|e|δm−δ
M ∥f∥L2(µ)∥g∥L2(µ) ≲ 2−eMδm−δ

M ≲M− δ
8 < ϵ.
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10.4. Disjoint cubes. The term D2 contains cubes for which m = 1, k ≥ 1 + 2|e|θ,
and Ip ∩ Jp = ∅. Then, by Proposition 8.1, we have

|⟨TψI , ψJ⟩| ≲
1

kα+δ

µ(I)
1
2µ(J)

1
2

ℓ(I ∧ J)α
F1(I, J),

with F1(I, J) as before. Therefore,

(49) |D2| ≲
∑
e∈Z

2|e|∑
k=2|e|θ

∑
J

∑
I∈Je,1,k

1

kα+δ

µ(I)
1
2µ(J)

1
2

ℓ(I ∧ J)α
|⟨f, ψI⟩||⟨g, ψJ⟩|F1(I, J).

Again, to estimate this last quantity, we divide the study into the same two cases
as before: (I, J) ∈ FM and (I, J) /∈ FM .

(a) For the first case, we assume again ℓ(J) ≤ ℓ(I). In this case, I ∧J = J and ℓ(I) =
2eℓ(J). Moreover, since e ≥ 0 we have that for each I and each k ∈ {2θe, . . . , 2e}
the cardinality of I−e,1,k is at most n(2e−1 − 2eθ)n−1. On the other hand, for each J
there is only a quantity comparable to n cubes I such that m = 1 and there is only
one k ≥ 2eθ such that Je,1,k is not empty. Then we can consider that this parameter k,
which we now denote as kJ , is completely determined by J .

With this and Cauchy’s inequality, we can bound the terms in (49) corresponding
to this case by∑

e≥0

( 2e∑
k=2eθ

∑
I

∑
J∈I−e,1,k

F1(I, J)|⟨f, ψI⟩|2
1

kα+δ

1

ℓ(J)α
µ(J)

) 1
2

×
( 2e∑

k=2eθ

∑
I

∑
J∈I−e,1,k

F1(I, J)|⟨g, ψJ⟩|2
1

kα+δ

1

ℓ(J)α
µ(I)

) 1
2

≤
∑
e≥0

(∑
I

sup
J∈Dc

M (Q)
(I,J)∈FM

F1(I, J)|⟨f, ψI⟩|2
2e∑

k=2eθ

1

kα+δ

2eα

ℓ(I)α

∑
J∈I−e,1,k

µ(J)

) 1
2

×
(∑

J

sup
I∈Dc

M (Q)
(I,J)∈FM

F1(I, J)|⟨g, ψJ⟩|2
1

kα+δ
J

1

ℓ(J)α

∑
I∈Je,1,kJ

µ(I)

) 1
2

.

(50)

Now, for each cube I ∈ Dc
2M (Q) and k ∈ {2θe, . . . , 2e}, since for all J ∈ I−e,1,k we

have that ℓ(J) = 2−eℓ(I) is fixed, we denote by Ik ∈ C the cube such that c(Ik) = c(I)
and ℓ(Ik) = (1 + k2−e+1)ℓ(I) ≤ 3ℓ(I). With this,⋃

J∈I−e,1,k

J ⊂ {t ∈ 3I : k2−eℓ(I) < dist(t, I) ≤ (k + 1)2−eℓ(I)} ⊂ Ik \ Ik+1 ⊂ 3I.

Now, since the cubes J ∈ I−e,1,k are pairwise disjoint∑
J∈I−e,1,k

µ(J) ≲ µ(Ik \ Ik+1).

On the other hand, since the cardinality of Je,1,k is comparable to n and the cubes I ∈
Je,1,k are disjoint and included in 3Je, we have∑

I∈Je,1,k

µ(I) ≤ µ(3Je).
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Then the expression in (50) is bounded by a constant times

∑
e≥0

( ∑
I∈Dc

2M (Q)

sup
J∈Dc

M (Q)
⟨I,J⟩∈Ic

M (Q)

F1(I, J)|⟨f, ψI⟩|2
2e∑

k=2θe

1

kα+δ

2eα

ℓ(I)α
µ(Ik \ Ik+1)

)1
2

×
( ∑

J∈Dc
M (Q)

sup
I∈Dc

M (Q)
⟨I,J⟩∈Ic

M

F1(I, J)|⟨g, ψJ⟩|22−eθ(α+δ) µ(3Je)

2−eαℓ(3Je)α

)1
2

.

(51)

We start by working on the first factor of (51). As before, we write ak = µ(Ik) and
evaluate the inner sum by using Abel’s formula:

2e∑
k=2θe

ak − ak+1

kα+δ
=

a2θe

2(α+δ)θe
− a2e+1

2(α+δ)e
+

2e∑
k=2θe+1

ak

(
1

kα+δ
− 1

(k − 1)α+δ

)
.

For the first term we have

a2θe

2(α+δ)θe
≤ µ(I2θe)

2(α+δ)θe
≤ ρ(I2θe)ℓ(I2θe)

α2−(α+δ)θe ≤ ρin(3I)ℓ(I)
α2−(α+δ)θe.

Similarly, the absolute value of the second term can be bounded by

a2e−2

2(α+δ)e
≤ µ(I2e−2)

2(α+δ)e
≤ ρ(3I)ℓ(I)α2−(α+δ)e.

The absolute value of the last term is bounded by

2e∑
k=2θe+1

ak
kα+δ − (k − 1)α+δ

(k − 1)α+δkα+δ
≲

2e∑
k=2θe+1

µ(Ik)
kα+δ−1

(k − 1)α+δkα+δ

≲
2e∑

k=2θe+1

ρ(Ik)ℓ(Ik)
α 1

kα+δ+1

≲ ρin(3I)ℓ(I)
α

2e∑
k=2θe

1

kα+δ+1

≲ ρin(3I)ℓ(I)
α2−(α+δ)θe.

From the three inequalities, ℓ(I) = 2eℓ(J), and the fact that the cardinality of I fr

is 3n, we get

2eα

ℓ(I)α

2e∑
k=2θe

µ(Ik \ Ik+1)

kδ
≲ ρin(3I)2

−e(θ(α+δ)−α).

On the other hand, for the second factor in (51), we have

2−eθ(α+δ) µ(3Je)

2−eαℓ(3Je)α
≤ 2−e(θ(α+δ)−α)ρin(3Je).
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With this, the inequalities F1(I, J)ρin(3I) ≲ Fµ(I, J) ≲ ϵ, F1(I, J)ρin(3Je) ≲
Fµ(I, J) ≲ ϵ, and Lemma 6.9, the terms in N2 corresponding to this case can be
bounded by a constant times

∑
e≥0

2−e(θ(α+δ)−α)

( ∑
I∈Dc

2M (Q)

sup
J∈Dc

M (Q)
⟨I,J⟩∈Ic

M (Q)

Fµ(I, J)|⟨f, ψI⟩|2
) 1

2

×
( ∑

J∈Dc
M (Q)

sup
J∈Dc

M (Q)
⟨I,J⟩∈Ic

M (Q)

Fµ(I, J)|⟨g, ψJ⟩|2
) 1

2

≲ ϵ
∑
e≥0

2−e(θ(α+δ)−α)∥f∥L2(µ)∥g∥L2(µ) ≲ ϵ,

by the choice of 0 < α
α+δ < θ = α

α+ δ
2

< 1.

(b) We now study the case when (I, J) /∈ FM and so, as before, instead of the
smallness of Fµ, we use that either the eccentricity or the relative distance between I
and J is extreme.

As in case (b) of the previous subsection, we fix eM ∈ {0, logM}, mM ∈ {M 1
8 , 1}

such that eM = 0 implies mM = M
1
8 . But, since m = 1, we have that mM ≤ m =

1 < M
1
8 , which implies mM = 1 and so eM = logM .

Then, by Lemma 6.9, the calculations made in the previous case (a) and Fµ(I, J) ≲
1, we can bound the relevant part of (46) by a constant times

∑
|e|≥eM

2|e|∑
k=2|e|θ

∑
J

∑
I∈Je,1,k

1

kα+δ

µ(I)
1
2µ(J)

1
2

ℓ(I ∧ J)α
|⟨f, ψI⟩||⟨g, ψJ⟩|F1(I, J)

≲
∑

|e|≥eM

( ∑
I∈Dc

2M (Q)

sup
J∈Dc

M (Q)
⟨I,J⟩∈Ic

M (Q)

F1(I, J)|⟨f, ψI⟩|2
2e∑

k=2θe

1

kα+δ

2eα

ℓ(I)α
µ(Ik \ Ik+1)

) 1
2

×
( ∑

J∈Dc
M (Q)

sup
I∈Dc

M (Q)
⟨I,J⟩∈Ic

M (Q)

F1(I, J)|⟨g, ψJ⟩|22−eθ(α+δ) µ(3Je)

2−eαℓ(3Je)α

) 1
2

≲
∑

|e|≥eM

2−|e|(θ(α+δ)−α)

( ∑
I∈Dc

2M (Q)

sup
J∈Dc

M (Q)
⟨I,J⟩∈Ic

M (Q)

Fµ(I, J)|⟨f, ψI⟩|2
) 1

2

×
( ∑

J∈Dc
M (Q)

sup
I∈Dc

M (Q)
⟨I,J⟩∈Ic

M (Q)

Fµ(I, J)|⟨g, ψJ⟩|2
) 1

2

≲
∑

|e|≥logM

2−|e|α( α+δ
α+δ/2

−1)∥f∥L2(µ)∥g∥L2(µ) ≲M−α( α+δ
α+δ/2

−1) < ϵ,

by the choices of θ and M .
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10.5. Nested cubes. The term N2 contains the cubes for which we have 2θ|e| ≤ k ≤
2|e|−2 with θ = α

α+δ/2 and Ip∩Jp ̸= ∅. By Proposition 8.4, when m = 1 and k ≥ 2θ|e|,

we have

|⟨T (ψI − ψfull
I,J ), ψJ⟩| ≲ k−δ

∑
R∈{I,Ip}

(
µ(R ∩ J)
µ(R)

) 1
2

F2,µ(I, J)

+ k−(α+δ)µ(I)
1
2µ(J)

1
2

ℓ(I ∧ J)α
F3(I, J),

with F2,µ and F3 given in Proposition 8.4. The second term can be bounded using
the same approach as we used in the previous subsection when we worked with the
term D2 since the only difference between the estimates obtained in these two cases
is the last factor, which is given by F3 instead of F1. Then we focus on the first term.

In N2 we have e ≥ 0, which implies ℓ(J) ≤ ℓ(I). Moreover, F2,µ ≤ Fµ and so the
terms corresponding to this case can be bounded by a constant times∑

e≥0

2e−2∑
k=2θe

∑
J

Jp⊂Ip

∑
I∈Je,1,k

|⟨f, ψI⟩||⟨g, ψJ⟩|
∑

R∈{I,Ip}

(
µ(R ∩ J)
µ(R)

) 1
2

k−δFµ(I, J).

As before, we distinguish two cases: (I, J) ∈ FM and (I, J) /∈ FM .

(a) In the first case, we have that Fµ(I, J) < ϵ. Moreover, since e ≥ 0 the cardinality
of Je,1,k is comparable to n and there is only one k ≥ 2eθ such that Je,1,k is not empty,
that is, kJ is completely determined by J . Then, by Cauchy’s inequality again, we
can bound the terms of N2 corresponding to this case by a constant times

ϵ
∑
e≥0

( ∑
I∈Dc

2M (Q)

|⟨f, ψI⟩|2
2e−2∑
k=2θe

k−δ
∑

R∈{I,Ip}

∑
J∈I−e,1,k

µ(R ∩ J)
µ(R)

) 1
2

×
( ∑

J∈Dc
M (Q)

|⟨g, ψJ⟩|2k−δ
J

) 1
2

.

(52)

For fixed I ∈ Dc
2M (Q), k ∈ {2θe, . . . , 2e−2}, and all J ∈ I−e,1,k, since ℓ(J) = 2−eℓ(I)

is fixed, we define Ik ∈ C to be the cube such that c(Ik) = c(Ip) and ℓ(Ik) = (1 −
k2−e)ℓ(Ip) ≤ ℓ(Ip). With this, we have⋃

J∈I−e,1,k

J ⊂ {t ∈ Ip : k2−eℓ(I) < dist(t,DIp) ≤ (k + 1)2−eℓ(I)} ⊂ Ik \ Ik+1 ⊂ Ip.

Moreover, since the cubes J ∈ I−e,1,k are pairwise disjoint, we have for R ∈ {I, Ip}∑
J∈I−e,1,k

µ(R ∩ J) ≲ µ(R ∩ (Ik \ Ik+1)).

Then the expression (52) can be bounded by a constant times

ϵ
∑
e≥0

( ∑
I∈Dc

2M (Q)

|⟨f, ψI⟩|2
∑

R∈{I,Ip}

2e−2∑
k=2θe

k−δ µ(R ∩ Ik)− µ(R ∩ Ik+1)

µ(R)

) 1
2

×
( ∑

J∈Dc
M (Q)

|⟨g, ψJ⟩|2k−δ
J

) 1
2

.
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As before, we write ak = µ(R ∩ Ik) and evaluate the inner sum of the first factor
by using Abel’s formula:

1

µ(R)

2e−2∑
k=2θe

ak − ak+1

kδ
=

a2θe

2θδeµ(R)
− a2e−2+1

2(e−2)δµ(R)
+

1

µ(R)

2e−2∑
k=2θe+1

ak

(
1

kδ
− 1

(k − 1)δ

)
.

For the first term we have

a2θe

2θδeµ(R)
≤ µ(R ∩ I2θe)

2δθeµ(R)
≲ 2−δθe.

Similarly, the absolute value of the second term can be bounded by

a2e−2+1

2(e−2)δµ(R)
≲
µ(R ∩ I2e−2+1)

2δeµ(R)
≤ 2−δe.

The absolute value of the last term is bounded by

1

µ(R)

2e−2∑
k=2θe+1

ak
kδ − (k − 1)δ

(k − 1)δkδ
≲

2e−2∑
k=2θe+1

µ(R ∩ Ik)
µ(R)

kδ−1

(k − 1)δkδ

≲
∑

k≥2θe+1

1

(k − 1)δ+1
≲ 2−δθe.

For the second factor, we just use that kJ ≥ 2θe. With this, the fact that the
cardinality of ch(Ip) is 2

n, and Lemma 6.9, we bound the terms in N2 corresponding
to this case by

ϵ
∑
e≥0

(
2−θδe

∑
I∈Dc

2M (Q)

|⟨f, ψI⟩|2
) 1

2
(
2−θδe

∑
J∈Dc

M (Q)

|⟨g, ψJ⟩|2
) 1

2

≲ ϵ
∑
e≥0

2−θδe∥f∥L2(µ)∥g∥L2(µ) ≲ ϵ,

since 0 < θ.

(b) When (I, J) /∈ FM , as in case (b) of the previous subsection, we fix eM = logM .
Then, by the calculations made in the case (a) and Fµ(I, J) ≲ 1, we bound the
relevant part of (46) by a constant times

∑
|e|≥eM

2|e|−2∑
k=2θ|e|

∑
J

Jp⊂Ip

∑
I∈Je,1,k

|⟨f, ψI⟩||⟨g, ψJ⟩|
∑

R∈{I,Ip}

(
µ(R ∩ J)
µ(R)

) 1
2 Fµ(I, J)

kδ

≲
∑

|e|≥eM

( ∑
I∈Dc

2M (Q)

|⟨f, ψI⟩|2
2|e|−2∑
k=2θ|e|

k−δ
∑

R∈{I,Ip}

∑
J∈I−e,1,k

µ(R ∩ J)
µ(R)

) 1
2

×
( ∑

J∈Dc
M (Q)

|⟨g, ψJ⟩|2k−δ
J

) 1
2

≲
∑

|e|≥logM

2−|e|θδ∥f∥L2(µ)∥g∥L2(µ) ≲M− αδ
α+δ/2 ≤ ϵ,

by the choice of θ and M .
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10.6. Borderline cubes. Now we need to estimate the term B6 and the terms Ad1,
and Ad2, which we added to the paraproduct. All these terms contain cubes I, J ∈
Dc

M (Q) such that 1 ≤ k ≤ 2θ|e| + 1, that is, inrdist(I, J) − 1 ≤ ec(I, J)−θ. We show
the work in detail only for B6 since the same ideas can be used for the other two
terms.

Recall the following notation used in Lemma 10.2: for N ∈ N, which we chose
in (44), we write D(Q)≥N ={I∈Dc

M (Q) :ℓ(I)≥2−N ℓ(Q)} and D(Q)N ={I ∈ Dc
M (Q) :

ℓ(I)=2−Nℓ(Q)}. Moreover, for I∈D(Q)≥N , let Iθ be the family of cubes J ∈ D(Q)≥N

such that 1 ≤ k ≤ 2θ|e|.
Then we can rewrite B6 as

B6 =
∑

I∈D(Q)≥N

∑
J∈Iθ

⟨f, ψI⟩⟨g, ψJ⟩⟨TψI , ψJ⟩.

For each I ∈ D(Q)≥N , let Imax be the family of cubes J ∈ Iθ that are maximal with
respect to the inclusion. Then let Iover be the family of cubes R ∈ D(Q)≥N such
that J ⊊ R for some J ∈ Imax. We note that for all I ∈ D(Q)≥N , either Q ∈ Imax

(if I ∈ Qθ) or Q ∈ Iover. So, we always have Q ∈ Iθ ∪ Iover. We also note that all
cubes in Iover satisfy that k > 2θ|e| with respect to I.

Now we include the cubes in Iover, and for each pair (I, J) in the sum defining B6

we add the siblings either I or J that are not already contained in B6. Then to the
previous expression we add and subtract the term

A =
∑

I∈D(Q)≥N

∑
J∈Iover

⟨f, ψI⟩⟨g, ψJ⟩⟨TψI , ψJ⟩

+
∑

I∈D(Q)≥N

∑
J∈Iθ

∑
J′∈ch(Jp)

J′ /∈Iθ

⟨f, ψI⟩⟨g, ψJ′⟩⟨TψI , ψJ′⟩

+
∑

J∈D(Q)≥N

∑
I∈Jθ

∑
I′∈ch(Ip)

I′ /∈Jθ

⟨f, ψI′⟩⟨g, ψJ⟩⟨TψI′ , ψJ⟩.

With this we obtain

(53) |B6| ≲
∣∣∣∣ ∑
I∈D(Q)≥N

⟨f, ψI⟩
〈
TψI ,

∑
J∈Iθ∪Iover

⟨g, ψJ⟩ψJ

〉∣∣∣∣+ |A|.

In the last expression, the collections Iθ and Iover are not exactly the same as defined
before. But we use the same notation for them because they consist of the same cubes
as before plus their corresponding siblings if they were not initially in the expression
defining B6.

Since all pairs of cubes added satisfy that k > 2θ|e|, we can apply the reasoning
of any of the previous cases (adding and subtracting the corresponding part of a
paraproduct when needed) to prove that the second term in (53) satisfies |A| ≲
ϵ∥f∥L2(µ)∥g∥L2(µ). We note that in the case of Adi this is due to the fact that the

expression ⟨T (ψI −ψfull
I,J ), ψJ⟩ for the described cubes satisfies the inequality given in

Proposition 8.4. Then we only need to study the first term.
With this, for each I ∈ D(Q)≥N , we have that Iθ∪Iover is a convex family of cubes

that contains all siblings of each cube in the sum, has minimal cubes in D(Q)N and
maximal cubeQ. Then, by summing a telescoping series, we have for each I ∈ D(Q)≥N∑

J∈Iθ∪Iover

⟨g, ψJ⟩ψJ =
∑

J∈D(I)N∩Iθ

⟨g⟩JχJ − ⟨g⟩QχQ.
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We can easily estimate the part of the first term in (53) corresponding to the second
term on the right-hand side of the previous expression. For this, we reason as follows:∣∣∣∣ ∑

I∈D(Q)≥N

⟨f, ψI⟩⟨TψI , ⟨g⟩QχQ⟩
∣∣∣∣ = |⟨g⟩Q|

∣∣∣∣〈 ∑
I∈D(Q)≥N

⟨f, ψI⟩ψI , T
∗χQ

〉∣∣∣∣
≤ µ(Q)−1∥g∥L2(µ)µ(Q)

1
2

∥∥∥∥ ∑
I∈D(Q)≥N

⟨f, ψI⟩ψI

∥∥∥∥
L2(µ)

∥χQT
∗χQ∥L2(µ).

Let h =
∑

I∈D(Q)≥N
⟨f, ψI⟩ψI . By Lemma 6.9,

∥h∥2L2(µ) =
∑

J∈D(Q)≥N

∣∣∣∣ ∑
I∈D(Q)≥N

⟨f, ψI⟩⟨ψI , ψJ⟩
∣∣∣∣2 + ∥EQh∥L2(µ)

=
∑

J∈D(Q)≥N

∣∣∣∣ ∑
I∈ch(Jp)

⟨f, ψI⟩⟨ψI , ψJ⟩
∣∣∣∣2

≲
∑

J∈D(Q)≥N

∑
I∈ch(Jp)

|⟨f, ψI⟩|2 ≲
∑

I∈D(Q)≥N−1

|⟨f, ψI⟩|2.

We have used that EQh = 0, |⟨ψI , ψJ⟩| ≲ 1, and that the cardinality of ch(Jp) is 2
n.

Then by the testing condition (11) we get∣∣∣∣ ∑
I∈D(Q)≥N

⟨f, ψI⟩⟨TψI , ⟨g⟩QχQ⟩
∣∣∣∣ ≤ µ(Q)−

1
2

( ∑
I∈D(Q)≥N−1

|⟨f, ψI⟩|2
) 1

2

FT∗(Q)µ(Q)
1
2

≲ FT∗(Q)∥f∥L2(µ) < ϵ.

On the other hand, by Fubini’s theorem, the remaining part of the first term on
the right-hand side of (53) can be rewritten as∑

I∈D(Q)≥N

∑
J∈D(I)N∩Iθ

⟨f, ψI⟩⟨g⟩J⟨TψI , χJ⟩

=
∑

J∈D(Q)N

⟨g⟩J
〈
T

( ∑
I∈D(Q)≥N∩Jθ

⟨f, ψI⟩ψI

)
, χJ

〉
,

(54)

where Jθ is defined as Iθ was defined before.
Now recall the following definition: for J ∈ D(Q)N , J fr denotes the family of

dyadic cubes J ′ ∈ D(Q)N such that ℓ(J ′) = ℓ(J) and dist(J ′, J) = 0. Then we note
that, since J has minimal side length, the condition I ∈ Jθ implies that J ′ ⊂ I for
some J ′ ∈ J fr.

Moreover, the cardinality of J fr is 3n and so we can enumerate the cubes in J fr

as {Jj}3
n

j=1 by their fixed position with respect to J . Then, for each j ∈ {1, . . . , 3n}
the cubes I ∈ D(Q)≥N ∩ Jθ such that Jj ⊂ I form an increasing chain of cubes Ij =
Ij,N ⊂ Ij,N−1 ⊂ · · · ⊂ Ij,kj

parametrized by their side length ℓ(Ij,k) = 2−kℓ(Q)
with k ∈ {kj , . . . , N} ⊂ {0, . . . , N}. Some chains may be empty. All these cubes de-
pend on J , but we omit this dependence from the notation. Now, in each chain of
cubes we also include the siblings of any cube already included in the chain. That
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way each chain is convex, and such that for each cube in the collection all its siblings
are also in the collection. Then for each fixed J ∈ D(Q)N we have∑

I∈D(Q)≥N∩Jθ

⟨f, ψI⟩ψI =

3n∑
j=1

⟨f⟩IjχIj −
3n∑
j=1

⟨f⟩(Ij,kj
)pχ(Ij,kj

)p ,

where (Ij,kj
)p is the parent cube of Ij,kj

. To simplify notation, we will simply write
Ij,kj

. With this, (54) can be written as∑
J∈D(Q)N

3n∑
j=1

⟨f⟩Ij ⟨g⟩J⟨TχIj , χJ⟩ −
∑

J∈D(Q)N

3n∑
j=1

⟨f⟩Ij,kj
⟨g⟩J⟨TχIj,kj

, χJ⟩ = S1 − S2.

We now note that, since t, x ∈ Q, the kernel operator can be written as

Kγ,Q(t, x) = K(t, x)

(
1− ϕ

(
|t− x|
γ

))
.

By the definition of the kernel we have Kγ,Q(t, x) = 0 for |t − x| < γ. Then, if
ℓ(I ∨ J) < γ/3 and dist(I, J) < γ/3, we have

|t− x| ≤ ℓ(I) + dist(I, J) + ℓ(J) < γ

for all t ∈ I and all x ∈ J , which implies ⟨TχI , χJ⟩ = 0.
Now, all cubes in the first sum S1 satisfy ℓ(Ij) = ℓ(J) and dist(Ij , J) = 0. Moreover,

since N > N0 ≥ log 6ℓ(Q)
γ and ℓ(Ij) = 2−Nℓ(Q), we have ℓ(Ij) < γ/3. Therefore, each

term in the sum S1 equals zero.
We now focus on S2. Remember that the cubes Ij,kj

in that term satisfy Ij ⊂ Ij,kj

with dist(Ij , J) = 0. Moreover, 1 ≤ k ≤ 2θ|e| + 1, with k = inrdist(Ij,kj
, Ij) =

1 +
dist(Ij,kj

,Ij)

ℓ(Ij)
, and 2−|e|θ = ℓ(J)

ℓ(Ij,kj
) =

ℓ(Ij)
ℓ(Ij,kj

) . Then

dist(Ij,kj , Ij) ≤ (k − 1)ℓ(Ij) ≤ 2|e|θℓ(Ij) =

(
ℓ(Ij)

ℓ(Ij,kj )

)1−θ

ℓ(Ij,kj )

= 2−|e|(1−θ)ℓ(Ij,kj
) ≤ ℓ(Ij,kj

).

Then, since ℓ(Ij) ≤ ℓ(Ij,kj ), we get

dist(Ij,kj , J) ≤ dist(Ij , J) + ℓ(Ij) + dist(Ij,kj , Ij) ≤ 2ℓ(Ij,kj ).

With this, when ℓ(Ij,kj
) < γ/6, we have dist(Ij,kj

, J) < γ/3 and so, as before,
⟨TχIj,kj

, χJ⟩ = 0. This implies that the scales for which the dual pair is non-zero sat-

isfy ℓ(Ij,kj
) = 2−kℓ(Q) ≥ γ/6, that is, k ≤ log 6ℓ(Q)

γ ≤ N0. And since k ∈ {0, . . . , N},
that means that the non-zero terms in S2 contain cubes Ij,kj of at most N0+1 different
side lengths (in fact in the N0 + 1 largest scales, all of them in {0, 1, . . . , N0}).

Now, to apply Fubini’s theorem and change the order of summation, we need to
rewrite the sum in

(55) S2 =
∑

J∈D(Q)N

3n∑
j=1

⟨f⟩Jj,kj
⟨g⟩J⟨TχIj,kj

, χJ⟩

in terms of the cubes Ij,kj
instead of the cubes J .

Recall that in (55), for each J ∈ D(Q)N , each Ij ∈ J fr with j ∈ {1, . . . , 3n}, and
each scale k ∈ {0, . . . , N0}, we have considered an associated cube Ij,k ∈ Jθ with side
length ℓ(Ij,k) = 2−kℓ(Q) and its siblings. Now we reparametrize the cubes we have
up to now denoted by Ij,k in the following way: for each scale k ∈ {0, . . . , N0} and
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each i ∈ {1, . . . , 2kn}, we denote by Ii,k the cubes such that ℓ(Ii,k) = 2−kℓ(Q). We
note that inside Q, for each k ∈ {0, . . . , N0} there are in total 2kn of such cubes.
Now, for each Ii,k we define J i,k as the family of cubes J ∈ D(Q)N such that
there exists J ′ ∈ (Ii,k)θ. This implies dist(Ii,k, J

′) < 2|e|θℓ(J ′). Finally, we denote
Ci,k =

⋃
J∈J i,k 3J . We note that µ(3J) ≤ µ(Ci,k). With this,

S2 =

N0−1∑
k=0

2kn∑
i=0

∑
J∈J i,k

⟨f⟩Ii,k⟨g⟩J⟨TχIi,k , χJ⟩.

Now, for fixed Ii,k, let J0,0, J0,1, J1,0, and J1,1 be the collection of cubes in J ∈
J i,k such that ⟨TχIi,k , χJ⟩ belongs to each quadrant of C. More specifically, J ∈ Ja,b

if and only if (−1)a Re(⟨TχIi,k , χJ⟩) ≥ 0 and (−1)b Im(⟨TχIi,k , χJ⟩) ≥ 0. Also let
Sl1,l2 be the union of the cubes in Jl1,l2 . Finally, we define

S̃ =

N0−1⋃
k=0

2kn⋃
i=0

⋃
J∈J i,k

J,

that is, the union of all cubes J ∈ D(Q)N such that J ∈ (Ii,k)θ for some i, k. We note
that

S̃ =

N0−1⋃
k=0

2kn⋃
i=0

⋃
l1,l2∈{0,1}

⋃
J∈Jl1,l2

J.

Before continuing, recall that in the decomposition obtained in (45) we first con-

sidered estimates for ⟨P⊥
MTP

⊥
2Mf, g1⟩. In this case, the cubes J ∈ D̃ and so they are

open cubes. Therefore, Ci,k and S̃ are open sets and they satisfy by the choice of N
in (44) that µ(S̃) is sufficiently small.

Then, since for J ∈ Ja,b we have

|⟨TχIi,k , χJ⟩| ≲ (−1)a Re⟨TχIi,k , χJ⟩+ (−1)b Im⟨TχIi,k , χJ⟩,
we can write

|S2| ≤
N0−1∑
k=0

2kn∑
i=0

∑
J∈J i,k

|⟨f⟩Ii,k ||⟨g⟩J ||⟨TχIi,k , χJ⟩|

≲ ∥f∥L∞(µ)∥g∥L∞(µ)

N0−1∑
k=0

2kn∑
i=0

1∑
a,b=0

( ∑
J∈Ja,b

(−1)a Re⟨TχIi,k , χJ⟩

+
∑

J∈Ja,b

(−1)b Im⟨TχIi,k , χJ⟩
)

= ∥f∥L∞(µ)∥g∥L∞(µ)

N0−1∑
k=0

2kn∑
i=0

1∑
a,b=0

((−1)a Re⟨TχIi,k , χSa,b
⟩

+ (−1)b Im⟨TχIi,k , χSa,b
⟩)

≲ ∥f∥L∞(µ)∥g∥L∞(µ)

N0−1∑
k=0

2kn∑
i=0

∑
a,b∈{0,1}

|⟨TχIi,k , χSa,b
⟩|.

Now we divide Sa,b into 2n+ 1 parts: Sa,b =
⋃2n

j=0 Sj;a,b, where Sj;a,b is the union

of cubes J ∈ D(Q)N such that J ∈ (Ii,k)θ for some i, k, and there is Ii,kj ∈ (Ii,k)fr

with J ⊂ Ii,kj . This implies that Sj;a,b ⊂ J i,k
j .
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We work with Sj;a,b for every j ∈ {0, 1, . . . , 2n}. By Lemma 5.3, the truncated

operator Tγ,Q is bounded on L2(µ) with bounds ∥Tγ,Q∥2,2 ≤ ℓ(Q)
γα ≤ 2N0 . Then, since

Sj;a,b ⊂ S̃, we have

|⟨TχIi,k , χSj;a,b
⟩| ≤ ∥T∥2,2µ(Ii,k)

1
2µ(Sj;a,b)

1
2 ≤ 2N0µ(Ii,k)

1
2µ(S̃)

1
2 .

With this,

|S2| ≲ µ(S̃)
1
2 ∥f∥L∞(µ)∥g∥L∞(µ)2

N0

N0−1∑
k=0

2kn∑
i=0

µ(Ii,k)
1
2

≲ µ(S̃)
1
2 ∥f∥L∞(µ)∥g∥L∞(µ)2

N0µ(Q)
1
2N02

N0n

≲ µ(S̃)
1
2 ∥f∥L∞(µ)∥g∥L∞(µ)2

N0(n+3) < ϵ.

In the second last inequality we have used µ(Ii,k) ≤ µ(Q) ≤ ρ(Q)ℓ(Q)α ≲ 2N0 and

so µ(Q)
1
2 ≤ 2N0 . The last inequality holds because S̃ ⊂ CN and from the choice of N

in (44).

10.7. Estimates for ⟨TP⊥
2MPMNf, g1⟩ and ⟨Tf1, g1,∂⟩. All previous work can

be used verbatim to finally prove the right estimate for ⟨TP⊥
2MPMN

f, g1⟩, the first
term in (45).

To deal with the second term in (45), ⟨Tf1, g1,∂⟩, we note first that the reasoning to
estimate D1, Ni, and Pi can be applied unchanged to this new case. For the term B6,
we implement a small change. Since B6 is completely symmetrical with respect to the
cubes I and J , we can switch the roles played by these cubes:

B6 =
∑

J∈D(Q)≥N

∑
I∈Iθ

⟨f, ψI⟩⟨g, ψJ⟩⟨TψI , ψJ⟩.

We now add and subtract the term

A′ =
∑

J∈D(Q)≥N

∑
I∈Jover

⟨f, ψI⟩⟨g, ψJ⟩⟨TψI , ψJ⟩

+
∑

J∈D(Q)≥N

∑
I∈Jθ

∑
I′∈ch(Ip)

I′ /∈Jθ

⟨f, ψI′⟩⟨g, ψJ⟩⟨TψI′ , ψJ⟩

+
∑

I∈D(Q)≥N

∑
J∈Iθ

∑
J′∈ch(Jp)

J′ /∈Iθ

⟨f, ψI⟩⟨g, ψJ′⟩⟨TψI , ψJ′⟩,

which, for the same reasons as before, satisfies |A′| ≲ ∥f∥L2(µ)∥g∥L2(µ). Then we
rewrite the previous reasoning to obtain

|B6 −A′| ≲
∑

I∈D(Q)N

⟨f⟩I
〈
TχI ,

∑
J∈D(Q)≥N∩Iθ

⟨g, ψJ⟩ψJ

〉

=
∑

I∈D(Q)N

3n∑
i=1

⟨f⟩I⟨g⟩Ii⟨TχI , χIi⟩ −
∑

I∈D(Q)N

3n∑
i=1

⟨f⟩I⟨g⟩Ii,ki
⟨TχI , χIi,ki

⟩

= S1 − S2.

Again, we have that S1 = 0, while we can reparametrize the sums in S2 as we did
before, to get

|S2| ≲ ∥f∥L∞(µ)∥g∥L∞(µ)

N0−1∑
k=0

2kn∑
j=0

1∑
a,b=0

|⟨TχSa,b
, χJj,k

⟩|.



New local T1 theorems 499

Now we note that the cubes I ∈ D̃ are open and so N can be chosen large enough so
that

|S2| ≲ µ(S̃)
1
2 ∥f∥L∞(µ)∥g∥L∞(µ)2

N0(n+3) < ϵ.

This ends the estimate for ⟨Tf1, g1,∂⟩.
10.8. Recursion process. For the last term in (45) ⟨Tf1,∂ , g1,∂⟩ we iterate the
previous argument. We first note that the supports of f1,∂ and g1,∂ are contained in
the union of ∂I for all I ∈ D1(Q) with ℓ(I) ≥ 2−Nℓ(Q). This set, which we denote
by ∂D1(Q), consists of the intersection with Q of finitely many Euclidean affine spaces
of dimension n− 1, which are either pairwise parallel or pairwise perpendicular.

Now let D = T2D. We consider the families of cubes T2D(Q) and ∂D2(Q) as
the union of ∂I for all I ∈ T2D(Q) with ℓ(I) ≥ 2−Nℓ(Q). We then decompose f1,∂ =
f2+f2,∂ , where f2,∂ = f1,∂χ∂D2(Q) and similarly for g1,∂ . Now, using the Haar wavelet
system (ψI)I∈T2D we decompose as before:

⟨Tf1,∂ , g1,∂⟩ = ⟨Tf1,∂ , g2⟩+ ⟨Tf2, g2,∂⟩+ ⟨Tf2,∂ , g2,∂⟩.
Then we can apply all the previous work to estimate the first two terms.

For the third term, we note that the supports of f2,∂ and g2,∂ are now contained
in ∂D1(Q) ∩ ∂D2(Q). We also note that ∂D2(Q) consists of the intersection with Q
of finitely many Euclidean affine spaces of dimension n− 1, which are either pairwise
parallel or pairwise perpendicular, and also either parallel or perpendicular to every
affine space of dimension n− 1 of ∂D1(Q). Then ∂D1(Q)∩ ∂D2(Q) is a set consisting
of finitely many Euclidean affine spaces of dimension n− 2.

Then, by repeating the same argument k = n − ⌊α⌋ + δ(α − ⌊α⌋) times in total,

we obtain P⊥
2MPMN

f =
∑k

i=1 fi + fi,∂ and likewise for P⊥
MPMN

g such that the ap-
propriate estimates hold for |⟨Tfi, ·⟩| and |⟨·, T ∗gi⟩| for all with i ∈ {1, . . . , k} and the

functions fk,∂ , gk,∂ , are supported on
⋂k

i=1 ∂Di(Q). By repeating the previous rea-
soning on parallel and perpendicular affine spaces, we conclude that this set consists
of finitely many Euclidean affine spaces of dimension n−k = ⌊α⌋− δ(α−⌊α⌋), which
are either pairwise parallel or pairwise perpendicular.

But now we can show that
⋂k

i=1 ∂Di(Q) has measure zero with respect to µ. Let I
be an arbitrary n− k-dimensional dyadic cube with side length ℓ(I). Let (Ji)

m
i=1 be a

family of pairwise disjoint n-dimensional cubes Ji with fixed side length r such that

I∩Ji ̸= ∅ and I ⊂
⋃m

i=1 Ji. This family has cardinality comparable to m =
( ℓ(I)

r

)n−k
.

Then

µ(I) ≤
m∑
i=1

µ(Ji) ≲

(
ℓ(I)

r

)n−k

rα = ℓ(I)n−krα−n+k.

Since α− n+ k = α− ⌊α⌋+ δ(α− ⌊α⌋) > 0, we have

µ(I) ≲ ℓ(I)n−k lim
r→0

rα−n+k = 0

for all cubes I of dimension n − k. This shows that µ
(⋂k

i=1 ∂Di(Q)
)
= 0 and so

⟨Tfk,∂ , gk,∂⟩ = 0. This finishes the proof of the first part of the theorem, except for
the last result in Proposition 10.3 below.

10.9. Similar estimates for cubes of different dimensions. The proof of the
second part of the main Theorem 4.2 follows similar steps. As before, we first work
with the classical n-dimensional dyadic grid Dn(Q) = D1(Q), and ∂Dn(Q) defined
as the union of ∂I for all I ∈ Dn(Q) with ℓ(I) ≥ 2−N ℓ(Q). Then we decompose
P⊥
MPMN

f = f1 + f1,∂ , where f1,∂ = (P⊥
MPMN

f)χ∂Dn(Q) and similarly for P⊥
MPMN

g.
With this,

(56) ⟨TP⊥
2MPMN

f, P⊥
MPMN

g⟩ = ⟨TP⊥
2MPMN

f, g1⟩+ ⟨Tf1, g1,∂⟩+ ⟨TPf1,∂ , g1,∂⟩.
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Then we use the previous reasoning to estimate the first two terms, namely,
⟨TP⊥

2MPMN
f, g1⟩ and ⟨Tf1, g1,∂⟩.

To control ⟨Tf1,∂ , g1,∂⟩ we note that the supports of f1,∂ and g1,∂ are contained
in ∂Dn(Q). We define:

• Dn−1(Q) as the family of dyadic cubes in ∂Dn(Q), which is a dyadic n− 1-di-
mensional grid.

• ∂Dn−1(Q) as the union of ∂I for all I ∈ Dn−1(Q) with ℓ(I) ≥ 2−Nℓ(Q).

We then decompose f1,∂ = f2 + f2,∂ , with f2,∂ = f1,∂χ∂Dn−1(Q) and likewise for g.
Similarly to before, we use the Haar wavelets (ψI)I∈Dn−1(Q) to estimate the first two
terms ⟨Tf1,∂ , g2⟩ and ⟨Tf2, g2,∂⟩.

To control ⟨Tf2,∂ , g2,∂⟩ we note that f2,∂ , g2,∂ are supported on ∂Dn−1(Q) and we
reiterate the process.

By repeating the same argument k = n − ⌊α⌋ + δ(α − ⌊α⌋) times, we obtain

P⊥
2MPMN

f =
∑k

i=1 fi + fi,∂ and similarly for P⊥
MPMN

g such that the appropri-
ate estimates hold for |⟨Tfi, ·⟩| and |⟨·, T ∗gi⟩| for all i ∈ {1, . . . , k} and the func-
tions fk,∂ , gk,∂ are supported on ∂Dn−k+1(Q), for which we consider the n − k-di-
mensional grid Dn−k(Q). We prove as before that ∂Dn−k+1(Q) has measure zero with
respect to µ.

Let I ∈ Dn−k(Q) be an arbitrary n − k-dimensional dyadic cube with side
length ℓ(I). We cover I with a family of n-dimensional cubes (Ji)

m
i=1 with side length r

and cardinality m =
( ℓ(I)

r

)n−k
. Then again

µ(I) ≤
m∑
i=1

µ(Ji) ≲

(
ℓ(I)

r

)n−k

rα = ℓ(I)n−krα−n+k.

As before, µ(I) ≲ ℓ(I)n−k limr→0 r
α−n+k = 0 for every cube I ∈ Dn−k(Q) of dimen-

sion n − k. This shows that µ(∂Dn−k+1(Q)) = 0 and so we have ⟨Tfk,∂ , gk,∂⟩ = 0,
which finishes the proof of the second part of the theorem.

10.10. Domination by truncated operators. All work done since the start of the
proof of Theorem 4.2 applies to the truncated operators Tγ,Q. To completely finish
the result, we need Proposition 10.3, which proves that, when T is compact, the entire
original operator T can be estimated above by the truncated operators. Its proof uses
an argument developed in the appendix of the first chapter of [23], where the measure
is doubling and the uncut operator T is assumed to be bounded.

Proposition 10.3. Let Tγ,Q be the uniformly bounded smooth truncated operators of
Definition 5.2. Let k = n− ⌊α⌋ − δ(α− ⌊α⌋). Then for f, g ∈ L2(µ) simple functions
supported on a finite collection of cubes of D(Q), there exist functions (fi)

k
i=1, (gi)

k
i=1,

(fi,∂)
k
i=0, (gi,∂)

k
i=1 with ∥fi∥L2(µ), ∥fi,∂∥L2(µ) ≤ ∥f∥L2(µ), and ∥gi∥L2(µ), ∥gi,∂∥L2(µ) ≤

∥g∥L2(µ) such that for ϵ > 0 there is M0 ∈ N satisfying

|⟨TP⊥
2MPMN

f, P⊥
MPMN

g⟩| ≲ sup
γ,Q

k∑
i=1

|⟨Tγ,Qfi−1,∂ , gi⟩|+ |⟨Tγ,Qfi, gi,∂⟩|

+ ϵ∥f∥L2(µ)∥g∥L2(µ)

(57)

for all M > M0.
Furthermore, with the previous inequality and the fact that

|⟨Tγ,Qfi−1,∂ , gi⟩|+ |⟨Tγ,Qfi, gi,∂⟩| ≲ ϵ∥f∥L2(µ)∥g∥L2(µ),

for all M > M0, we have

|⟨TP⊥
2MPMN

f, P⊥
MPMN

g⟩| ≲ ϵ∥f∥L2(µ)∥g∥L2(µ).
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Proof: To prove (57), we fix Q ∈ C and f, g ∈ L2(µ) simple functions compactly
supported on 2−1Q and with support on a finite collection of cubes of D(Q). Then
f , g are constant on all cubes of D(Q) with side length smaller than or equal to a
fixed arbitrary parameter. We further assume without loss of generality that f , g are
supported on one quadrant of Rn. Let ϵ > 0 also be fixed.

Let M > M0 > 0, N > 0, and MN be the parameters fixed at the beginning of the
proof of Theorem 4.2. Then we know that f , g are constant on all cubes of D(Q) with
side length smaller than or equal to 2−Nℓ(Q). Recall that, by the way these parameters
were chosen, ∥P⊥

Mf∥L2(µ) < ϵ∥f∥L2(µ), similarly for g, and for ℓ(I) ≤ 2−N ℓ(Q) we
have Fµ(I) + FT (I) + FT∗(I) < ϵ.

Since Tγ,Q are uniformly bounded, by the uniform boundedness principle, there
exists a sequence (γl) converging to zero and an operator T0 bounded on L2(µ) such
that the operators Tγl,Q weakly converge to T0 in L2(µ), namely,

lim
l→∞

⟨(Tγl,Q − T0)f, g⟩ = 0,

and liml→∞ ∥(Tγl,Q − T0)f∥L2(µ) = 0.

Consider the functions P⊥
2MPMN

f and P⊥
MPMN

g, and recall the decompositions

P⊥
2MPMN

f =
∑k

i=1 fi + fi,∂ , P
⊥
MPMN

g =
∑k

i=1 gi + gi,∂ , given in (45) and (56) with
cubes of different dimensions:

• First, P⊥
2MPMN

f = f1+f1,∂ , where f1,∂ = (P⊥
MPMN

f)χ∂Dn(Q), and P
⊥
MPMN

g =

g1 + g1,∂ , where g1,∂ = (P⊥
MPMN

g)χ∂Dn(Q).

• For i ∈ {1, . . . , k}, fi,∂ = fi+1 + fi+1,∂ , where fi+1,∂ = fi,∂χ∂Dn−i+1(Q), and
gi,∂ = gi+1 + gi+1,∂ , where gi+1,∂ = gi,∂χ∂Dn−i+1(Q).

With this, if we denote f0,∂ = P⊥
2MPMN

f , by the recursive definitions just provided
we can write

(58) ⟨TP⊥
2MPMN

f, P⊥
MPMN

g⟩ =
k∑

i=1

⟨Tfi−1,∂ , gi⟩+ ⟨Tfi, gi,∂⟩+ ⟨Tfk,∂ , gk,∂⟩,

where fi, gi are zero on ∂Dn−i+1(Q) and ⟨Tfk,∂ , gk,∂⟩ = 0 as we saw before.
To control ⟨Tfi−1,∂ , gi⟩, we note that by definition fi−1,∂ is a simple function

supported on a finite collection of cubes of Dn−i+1(Q), while gi is zero on ∂Dn−i+1(Q).
On the other hand, the control of the term ⟨Tfi, gi,∂⟩ requires a different consid-

eration. We note that fi is supported on an affine space of dimension n − i + 1 and
zero on ∂Dn−i+1(Q). Then, although gi,∂ is supported on an affine space of dimen-
sion n−i, we need to consider gi,∂ as a simple function supported on a finite collection
of cubes of Dn−i+1(Q). This is possible since g is a simple function supported on a
finite collection of cubes of Dn(Q).

From the previous explanation, we can write f = fi−1,∂ =
∑m

j=1⟨f⟩IjχIj , with Ij ∈
(Dn−i+1)cM (Q) such that ℓ(Ij) = 2−Nℓ(Q), Ij ⊂ Q ⊂ 2−1I ′, and small enough so
that FT (Ij) < ϵ. Since Ij ∈ Dn−i(Q), the last inequality requires some considerations
about the relative distance from the cube Ij to the origin of Rn (or its unit ball). But
such considerations do not affect the property FT (Ij) < ϵ since it can be obtained
from the small side length ℓ(Ij) = 2−Nℓ(Q). We note that to apply similar ideas
to gi,∂ we also use cubes in (Dn−i+1)cM (Q).

For the next property, we denote each of the previous functions simply by f and g.
We claim that for i ∈ {1, . . . , k} and for f , g constant on all cubes of D(Q) with side
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length smaller than or equal to 2−Nℓ(Q) such that g is zero on ∂Dn−i+1(Q) there is
a bounded function ai such that

(59) ⟨Tf, g⟩ = ⟨T0f, g⟩+ ⟨aif, g⟩, and |⟨aif, g⟩| ≲ ϵ∥f∥L2(µ)∥g∥L2(µ).

Similarly, ⟨f, T ∗g⟩ = ⟨f, T ∗
0 g⟩+ ⟨f, big⟩ for functions f that are zero on ∂Dn−i+1(Q),

with |⟨f, big⟩| ≲ ϵ∥f∥L2(µ)∥g∥L2(µ).
By assuming the claim, we can prove the statement. For each i ∈ {1, . . . , k}, let li

be large enough so that

|⟨(T0 − Tγli
,Q)fi−1,∂ , gi⟩|+ |⟨(T0 − Tγli

,Q)fi,∂ , gi,∂⟩| < ϵ∥f∥L2(µ)∥g∥L2(µ).

Then

|⟨Tfi−1,∂ , gi⟩| ≤ |⟨Tγli
,Qfi−1,∂ , gi⟩|+ |⟨(T0 − Tγli

,Q)fi−1,∂ , gi⟩|+ |⟨aifi−1,∂ , gi⟩|

≤ ⟨Tγli
,Qfi−1,∂ , gi⟩|+ 2ϵ∥f∥L2(µ)∥g∥L2(µ),

(60)

and likewise for |⟨Tfi, gi,∂⟩|. Then with (58) and (60), we get

|⟨TP⊥
2MPMN

f, P⊥
MPMN

g⟩| ≲
k∑

i=1

sup
γ,Q

|⟨Tγ,Qfi−1,∂ , gi⟩|+ |⟨Tγ,Qfi, gi,∂⟩|

+ 4kϵ∥f∥L2(µ)∥g∥L2(µ),

which is comparable to the statement.
We now work to prove (59). If we denote D = T − T0, we need to show that

⟨Df, g⟩ = ⟨aif, g⟩. Let I ′ ∈ C such that 2Q ⊂ I ′.

(a) We first prove that, for I ∈ Dj(2−1Q) with j ∈ {n, . . . , n − k + 1}, and for
all g ∈ L2(µ) such that g is zero on ∂Dj(Q), we have

(61) ⟨D(χI), g⟩ = ⟨χID(χI′), g⟩.

(a.1) For this we first assume that g satisfies the additional condition dist(sup g, I) >
0, and we prove that

⟨D(χI), g⟩ = 0 = ⟨χID(χI′), g⟩,

where the second equality is obvious. For this, for fixed ϵ′ > 0, let lI ∈ N be
large enough so that |⟨(TγlI

,Q−T0)(χI), g⟩| < ϵ′ and dist(sup g, I) > 2γlI . Then

⟨D(χI), g⟩ = ⟨(T − TγlI
,Q)(χI), g⟩+ ⟨(TγlI

,Q − T0)(χI), g⟩.

Since sup g ∩ I = ∅, x ∈ sup g ⊂ 2−1Q, and t ∈ I ⊂ 2−1Q, we have

⟨(T − TγlI
,Q)(χI), g⟩ =

∫∫
I

K(t, x)ϕ

(
|t− x|
γlI

)
dµ(t)g(x) dµ(x) = 0,

due to the facts that suppϕ ⊂ [−2, 2] and |t− x| ≥ dist(I, sup g) > 2γlI . Then

|⟨D(χI), g⟩| = |⟨(TγlI
,Q − T0)(χI), g⟩| < ϵ′.

Since the inequality holds for all ϵ′ > 0, we conclude that ⟨D(χI), g⟩ = 0 for
all g ∈ L2(µ) that are zero on ∂Dj(Q) and dist(sup g, I) > 0.

(a.2) For the general case, we define Iλ = {x ∈ Rn/dist(x, I) < λℓ(I)} ⊂ (1 + 2λ)I,
and fix λ ∈ (0, 1/2) such that Iλ ⊂ Q ⊂ I ′. Then

⟨D(χI), g⟩ = ⟨(1− χIλ)D(χI), g⟩+ ⟨χIλD(χI), g⟩

= ⟨D(χI), (1− χIλ)g⟩+ ⟨χIλD(χI), g⟩.
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Since dist(sup((1−χIλ)g), I)≥dist(sup(1−χIλ), I) ≥ λℓ(I) > 0, by the previous
case we have ⟨D(χI), (1−χIλ)g⟩ = 0 for all g ∈ L2(µ) that are zero in ∂Dj(Q).
With this,

(62) ⟨D(χI), g⟩ = ⟨χIλD(χI), g⟩.

Then, if we denote Ic = I ′ \ I, we can write

⟨D(χI), g⟩ = ⟨D(χI), χIλg⟩ = ⟨D(χI′), gχIλ⟩ − ⟨D(χIc), gχIλ⟩.

By the previous case again, we have that ⟨D(χIc), h⟩ = 0 for all h ∈ L2(µ)
that are zero on ∂Dj(Q) and dist(suph, Ic) > 0. Then, as in (62) applied to Ic

and gχIλ , we have

⟨D(χIc), gχIλ⟩ = ⟨χ(Ic)λD(χIc), gχIλ⟩.

With this, for λ > 0 and g ∈ L2(µ) that is zero on ∂Dj(Q), we get

⟨D(χI), g⟩ = ⟨χIλD(χI′), g⟩ − ⟨χIλχ(Ic)λD(χI), g⟩.

And since λ > 0 is arbitrary, we have

(63) ⟨D(χI), g⟩ = lim
λ→0

⟨χIλD(χI′), g⟩ − lim
λ→0

⟨χIλχ(Ic)λD(χI), g⟩.

We now work with each term separately.

(a.2.1) For the first term, we reason as follows. By the testing condition on T and

the boundedness of T0, we have ∥χI′D(χI′)∥L2(µ) ≲ µ(I ′)
1
2 . Then D(χI′)g is

integrable on I ′. Moreover, Iλ ⊂ I ′, |χIλD(χI′)g| ≤ χI′ |D(χI′)g| ∈ L1(µ), and
limλ→0 χIλ = χĪ , where Ī ∈ C is the closed cube defined by the closure of I.
Then, by Lebesgue’s dominated convergence theorem,

(64) lim
λ→0

⟨χIλD(χI′), g⟩ = ⟨χĪD(χI′), g⟩,= ⟨χID(χI′), g⟩.

The last equality holds because g is zero on ∂Dj(Q) and so on ∂I.

(a.2.2) For the second term in (63), we work differently. Let Iλ = (1− 2λ)I. We note
that χIλχ(Ic)λ = χIλ\Ī + χĪ\Iλ . Then

(65) ⟨χIλχ(Ic)λD(χI), g⟩ = ⟨χIλ\ĪD(χI), g⟩+ ⟨χI\IλD(χI), g⟩,

where we can write I instead of Ī because g is zero on ∂Dj(Q).

• The second new term can be treated as before: ∥χID(χI)∥L2(µ) ≲ µ(I)
1
2 and so

D(χI)g is integrable on I. Moreover, I \ Iλ ⊂ I, |χI\IλD(χI)g| ≤ χI |D(χI)g| ∈
L1(µ), and limλ→0 χI\Iλ = χA, with A ⊆ ∂I. Then, by Lebesgue’s dominated
convergence theorem, we have

lim
λ→0

⟨χI\IλD(χI), g⟩ = ⟨χAD(χI), g⟩ = 0,

since g is zero on A ⊆ ∂Dj(Q).
• For the first term in (65), we proceed as follows. Let Sr = {x ∈ Iλ \ Ī :
2−(r+1)ℓ(Iλ \ Ī) < dist(x, I) ≤ 2−rℓ(Iλ \ Ī)}. Then since Iλ \ Ī =

⋃∞
r=0 Sr,

⟨χIλ\ĪD(χI), g⟩ =
〈

lim
R→∞

R∑
r=0

χSr
D(χI), g

〉
.
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By Fatou’s lemma,

|⟨χIλ\ĪD(χI), g⟩| ≤
〈

lim
R→∞

R∑
r=0

χSr
|D(χI)|, |g|

〉

≤ lim inf
R→∞

R∑
r=0

⟨χSr
|D(χI)|, |g|⟩.

(66)

Given ϵ′ > 0, we choose lr, which depends on r, λ, ϵ′, I, and g, such that
2γlr < 2−(r+1)ℓ(Iλ \ Ī) and ∥(Tγlr ,Q

− T0)(χI)∥L2(µ)∥g∥L2(µ) < ϵ′2−r. Then

⟨χSr
|D(χI)|, |g|⟩ ≤ ⟨χSr

|(T − Tγlr ,Q
)(χI)|, |g|⟩+ ⟨χSr

|(Tγlr ,Q
− T0)(χI), |g|⟩.

The second term can be bounded by

∥(Tγlr ,Q
− T0)(χI)∥L2(µ)∥g∥L2(µ) < ϵ′2−r.

For the first term, since Sr ∩ I = ∅,

⟨χSr
|(T − Tγlr ,Q

)(χI)|, |g|⟩ =
∫
Sr

∣∣∣∣∫
I

K(t, x)ϕ

(
|t− x|
γlr

)
dµ(t)

∣∣∣∣|g(x)| dµ(x) = 0.

In the last equality we have used that 2γlr < 2−(r+1)ℓ(Iλ \ Ī) < dist(x, I) ≤
|t− x|.

With both estimates we continue the estimate in (66) as

|⟨χIλ\ĪD(χI), g⟩| ≤ ϵ′
∞∑
r=0

2−r ≲ ϵ′

for all ϵ′ > 0. Then ⟨χIλ\ĪD(χI), g⟩ = 0.

• By combining the decomposition (63), the equality (64), and the subsequent
decomposition (65) with both terms zero, we get ⟨D(χI), g⟩ = ⟨χID(χI′), g⟩,
which is the equality claimed in (61).

(b) Now we use (61) to prove (59). By hypothesis, f , g are simple functions supported
on a finite collection of cubes of Dn(Q) of side length 2−N ℓ(Q).

Let f =
∑m

j=1⟨f⟩IjχIj with Ij ∈ (Dn−i+1)cM (Q) such that ℓ(Ij) = 2−Nℓ(Q), Ij ⊂
Q ⊂ 2−1I ′ and small enough so that FT (Ij) < ϵ. Then, by (61),

⟨D(f), g⟩ =
m∑
j=1

⟨f⟩Ij ⟨D(χIj ), g⟩ =
m∑
j=1

⟨f⟩Ij ⟨χIjD(χI′), g⟩ = ⟨fD(χI′), g⟩ = ⟨aif, g⟩,

with ai = D(χI′). This proves equality (59).

Now we show that |⟨aif, g⟩| ≲ ϵ∥f∥L2(µ)∥g∥L2(µ). Let I, J ∈ Dn−i+1(Q), J̃ ∈
D̃n−i+1(Q), with ℓ(I) = ℓ(J) = 2−Nℓ(Q) and such that J̃ is the interior of J . By the
definition of ai and (61) again, we have

(67) ⟨aiχI , χJ̃⟩ = ⟨χI∩JD(χI′), χJ̃⟩ = ⟨D(χI∩J), χJ̃⟩.

If I ∩ J = ∅, we get ⟨aiχI , χJ̃⟩ = 0. Otherwise, since ℓ(I) = ℓ(J), we have I = J .
Then, by (67), the testing condition on T and the compactness of T0,

|⟨aiχI , χJ̃⟩| = |⟨DχJ , χJ̃⟩| ≤ |⟨TχJ , χJ̃⟩|+ |⟨T0χJ , χJ̃⟩|

≲ (∥χJTχJ∥L2(µ) + ∥T0χJ∥L2(µ))µ(J̃)
1
2

≲ FT (J)µ(J)
1
2µ(J̃)

1
2 < ϵµ(J)

1
2µ(J̃)

1
2 .
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We now write f =
∑

I∈Dn−i+1(Q)N
⟨f⟩IχI and g =

∑
Ĩ∈D̃n−i+1(Q)N

⟨g⟩ĨχĨ , where

FT (I) < ϵ, and Ĩ is the interior of I so that g is zero on ∂I. We have just seen
that ⟨aiχI , χJ̃⟩ = 0 for I ̸= J . Then

|⟨aif, g⟩| =
∣∣∣∣ ∑
I∈Dn−i+1(Q)N

∑
J̃∈D̃n−i+1(Q)N

⟨f⟩I⟨g⟩J̃⟨aiχI , χJ̃⟩
∣∣∣∣

≤
∑

I∈Dn−i+1(Q)N

|⟨f⟩I ||⟨g⟩Ĩ ||⟨aiχI , χĨ⟩|

≲ ϵ
∑

I∈Dn−i+1(Q)N

|⟨f⟩I ||⟨g⟩Ĩ |µ(I)
1
2µ(Ĩ)

1
2

≲ ϵ

( ∑
I∈Dn−i+1(Q)N

|⟨f⟩I |2µ(I)
) 1

2
( ∑

Ĩ∈D̃n−i+1(Q)N

|⟨g⟩Ĩ |
2µ(Ĩ)

) 1
2

≲ ϵ∥f∥L2(µ)∥g∥L2(µ).
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