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UNIFORMLY ERGODIC PROBABILITY MEASURES
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Abstract: Let G be a locally compact group and µ be a probability measure on G. We consider the
convolution operator λ1(µ) : L1(G)→ L1(G) given by λ1(µ)f = µ∗f and its restriction λ01(µ) to the

augmentation ideal L0
1(G). Say that µ is uniformly ergodic if the Cesàro means of the operator λ01(µ)

converge uniformly to 0, that is, if λ01(µ) is a uniformly mean ergodic operator with limit 0, and that

µ is uniformly completely mixing if the powers of the operator λ01(µ) converge uniformly to 0.

We completely characterize the uniform mean ergodicity of the operator λ1(µ) and the uniform
convergence of its powers, and see that there is no difference between λ1(µ) and λ01(µ) in these

regards. We prove in particular that µ is uniformly ergodic if and only if G is compact, µ is adapted

(its support is not contained in a proper closed subgroup of G), and 1 is an isolated point of the
spectrum of µ. The last of these three conditions can actually be replaced by µ being spread out

(some convolution power of µ is not singular). The measure µ is uniformly completely mixing if and

only if G is compact, µ is spread out, and the only unimodular value in the spectrum of µ is 1.
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1. Introduction

A probability measure µ on a locally compact group G defines the transition prob-
abilities of a random walk on G. It is common knowledge in ergodic theory that the
ergodicity of a random walk can be characterized in terms of the fixed points of its
Markov operator. In the present case, the Markov operator is identified with the con-
volution operator λ1(µ) : L1(G) → L1(G), λ1(µ)f = µ ∗ f . This is reflected in the
following theorem stated in [34], which can be regarded as the starting point of this
work.

Theorem 1.1 ([34, Proposition 1.2]). Let G be a locally compact group and let µ
be a probability measure on G. Consider the operator λ0

1(µ) that results from restrict-
ing λ1(µ) to the augmentation ideal

L0
1(G) =

{
f ∈ L1(G) :

∫
f(x) dmG(x) = 0

}
.

The following are equivalent:

(i) The random walk defined by µ is ergodic.

(ii) The Cesàro means of the operator λ0
1(µ) converge to 0 in the strong operator

topology.

(iii) If f ∈ L∞(G) and µ∗ ∗f = f , where µ∗(A) = µ(A−1), then f is constant almost
everywhere.

c©2024 by the author(s) under Creative Commons Attribution 4.0 License (CC BY 4.0).
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A probability measure µ can be ergodic (and even spread out) while µ∗ is not; see
Remark on page 9 of [17], which leans on results of Azencott [5]. This shows that we
cannot use µ instead of µ∗ in condition (iii) of Theorem 1.1.

If the group G is abelian or compact, the Choquet–Deny and Kawada–Itô theo-
rems ([8, 25]) show, respectively, that the random walk induced by µ is ergodic (and
we then say that µ itself is ergodic) if and only if its support is not contained in
a proper closed subgroup of G, i.e., if µ is adapted. If the support of µ is not even
contained in a translate of a proper closed normal subgroup (we say then that µ is
strictly aperiodic), µ has a stronger property: the strong operator limit of λ0

1(µn) is 0.
We say then that µ is completely mixing. All these facts are well known and presented
in Theorem 2.9 below.

In this paper we address the problem of characterizing ergodicity when the strong
operator topology is replaced by the operator norm. Our approach will be operator-
theoretic and focuses on the uniform mean ergodicity (operator norm convergence of
the Cesàro means) of the operators λ1(µ) and λ0

1(µ) and on the uniform ergodicity

of µ, where µ is said to be uniformly ergodic if lim
n

∥∥ 1
n

n∑
k=1

λ0
1(µ)k

∥∥ = 0.

After two preliminary sections, we devote Section 3 to the operator λ0
1(µ) and its

relation with uniform ergodicity and Section 4 to presenting a first characterization
of uniform ergodicity which shows its several angles and reflects what was previously
known on the subject.

In Section 5 spectral conditions are introduced. It is shown in [16] that, for an
adapted measure µ and an abelian group G, λ1(µ) is uniformly mean ergodic if and
only if the support of µ is contained in a compact subgroup of G and 1 is isolated in
the spectrum of µ. One of our main results here, Theorem 5.10, is that this theorem
still holds true when G is not abelian, and that the condition of having 1 as an isolated
point of the spectrum of µ is in fact equivalent, when G is compact and µ is adapted,
to µ being spread out.

The subject of uniform mean ergodicity of convolution operators has been discussed
in the book by Revuz, [33, Section 6.3], where uniformly ergodic convolution operators
on L∞(G) that converge to a rank-one operator are characterized, as well as in a brief
incursion by Mustafayev and Topal [32, Theorem 1.2]. To the best of our knowledge,
no spectral characterizations of uniform ergodicity of convolution operators on L1(G),
G any locally compact group, have been obtained before.

Finally, we complete our study of the operator λ0
1(µ) and characterize quasi-com-

pactness and convergence of the powers of the operators λ1(µ) and λ0
1(µ). Conver-

gence in norm of the sequence of iterates (λ0
1(µn)) is shown to be equivalent to that

of (λ1(µn)), providing a spectral extension of results of Anoussis and Gatzouras in [3].

2. Preliminaries

We use this section to set some notations and recall a few definitions and basic
known facts.

2.1. Mean ergodic operators. For a bounded linear operator T : X → X on a
Banach space X, we use the following notations for the iterates and averages:

Tn = T ◦ n· · · ◦ T, T[n] =
T + · · ·+ Tn

n
.
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Definitions 2.1. Let X be a Banach space and let T : X → X be a bounded linear
operator. The operator is

(i) mean ergodic if the sequence (T[n]x)n is convergent for every x ∈ X;

(ii) uniformly mean ergodic if the sequence (T[n])n is convergent in the operator
norm.

If T is mean ergodic, the limit of (T[n]x)n is always a linear projection P : X → X,

satisfying kerP = (I − T )X. Moreover, X = kerP ⊕ ker(I − T ).
Uniform mean ergodicity for power-bounded operators is completely characterized

by Lin.

Theorem 2.2 ([28, Theorem]). Let T be a power-bounded (i.e., so that (‖Tn‖)n is a
bounded sequence) linear operator on a Banach space X. The operator T is uniformly
mean ergodic if, and only if, (I − T )X is closed. The Banach space X can then be
decomposed as X = (I − T )X ⊕ ker(I − T ).

Lin’s theorem completed the following theorem, due to Dunford [14], which reveals
that the uniform mean ergodicity of an operator can be characterized through its
spectral properties. See also [26, Theorem 2.2.7] and [28].

Theorem 2.3. Let T be a power-bounded linear operator on a complex Banach
space X. Then T is uniformly mean ergodic if, and only if, either 1 6∈ σ(T ) or it
is a pole of order 1 of the resolvent.

For the next result, due to Yosida and Kakutani, we recall that an operator T
is quasi-compact if there exists a compact operator K such that ‖Tn − K‖ < 1
for some n ≥ 1. By σp(T ) we will denote the point spectrum of T , the set of its
eigenvalues, and T will denote the set of complex numbers of modulus 1.

Theorem 2.4 ([37, Theorem 4 and its Corollary, p. 205]). Let T be a power-bounded
and quasi-compact linear operator on a complex Banach space X. The following as-
sertions hold:

(i) (T[n])n converges uniformly to a finite-rank projection P .

(ii) (Tn)n converges in norm to a finite-rank projection P if, and only if, σp(T )∩T ⊆
{1}.

(iii) (Tn)n converges in norm to 0 if, and only if, σp(T ) ∩ T = ∅.

2.2. Convolution operators. We will be working with convolutions on σ-compact
locally compact groups. If G is a locally compact, σ-compact group, e will stand
for its identity element and mG for its Haar measure, the (essentially unique) Borel
measure that is left-invariant on a locally compact group G. The Banach space of
continuous functions on G vanishing at infinity is denoted by C0(G) and that of
compactly supported functions, by C00(G). The Banach space of bounded regular
measures is M(G) = C0(G)∗. We denote by L1(G,µ) the Banach space of equivalence
classes of integrable functions with respect to a measure µ on G. If µ = mG is the
Haar measure, we simply write L1(G). We denote by L0

1(G) the augmentation ideal,
the space of functions with integral 0. We regard L1(G) as an ideal of M(G) through
the embedding f 7→ f · dmG.

Definitions 2.5. Let µ, µ1, µ2 ∈M(G). We consider

(i) the convolution of measures:

〈µ1 ∗ µ2, h〉 =

∫∫
h(xy) dµ1(x) dµ2(y), for h ∈ C00(G);
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(ii) the left-convolution operators: λp(µ) : Lp(G)→ Lp(G), 1 ≤ p ≤ ∞, given by

λp(µ)f(s) = (µ ∗ f)(s) =

∫
f(x−1s) dµ(x), for f ∈ Lp(G), s ∈ G;

(iii) the operator λ0
1(µ) : L0

1(G)→ L0
1(G) that arises when λ1(µ) is restricted to the

augmentation ideal L0
1(G);

(iv) the convolution iterates µn and the convolution averages µ[n], respectively: µn =

µ ∗ · · · ∗ µ and µ[n] = µ+···+µn
n .

2.3. Ergodic measures. A measure µ ∈ M(G) on a locally compact group G is
said to be ergodic when the random walk it generates is ergodic and it is said to
be completely mixing when the random walk is mixing. For an operator-theoretic
approach, however, the following, equivalent, definitions are more suitable. They are,
in fact, the ones chosen by most authors; see, e.g., [4, 11, 23, 30, 34] (note that
Rosenblatt ([34]) uses the terms ergodic by convolutions and mixing by convolutions).

Definitions 2.6. A probability measure µ ∈M(G) is:

(i) ergodic if limn ‖µ[n] ∗ f‖1 = 0, for all f ∈ L0
1(G). In other words, if λ0

1(µ) is
mean ergodic and the strong operator limit of the means is the null operator;

(ii) completely mixing if the sequence of iterates (λ0
1(µn))n∈N converges to 0 in the

strong operator topology.

Azencott ([5, p. 43, Corollaire]) proved that the existence of an ergodic probability
implies amenability (see also [34, Proposition 1.9]). J. Rosenblatt ([34, Theorem 1.10])
proved that in any amenable group there is an ergodic probability.

If in Definitions 2.6 the strong operator topology is replaced by the operator norm,
two new concepts arise.

Definitions 2.7. We say that probability measure µ ∈M(G) is:

(i) uniformly ergodic if λ0
1(µ) is uniformly mean ergodic and the operator norm

limit of the means is the null operator;

(ii) uniformly completely mixing if the sequence of iterates (λ0
1(µn))n∈N converges

to 0 in the operator norm.

Note that uniform ergodicity of µ ∈M(G) comprises convergence to 0 of the means
of the operator λ0

1(µ). The example µ = δe shows that this property is stronger than
uniform mean ergodicity of λ0

1(µ).
The analysis of the (uniform) ergodicity or the (uniform) complete mixing of a

measure µ is closely related to the algebraic properties of its support subgroup Hµ.
We denote by Hµ the smallest closed subgroup of G that contains Sµ, the support
of µ. To give a hint on this relation we need to set some definitions that have already
been informally introduced.

Definitions 2.8. A probability measure µ ∈M(G) is:

(i) adapted if Hµ = G;

(ii) strictly aperiodic if it is adapted and the only normal closed subgroup N satis-
fying Sµ ⊆ xN for some x ∈ G is actually N = G;

(iii) spread out if µn is not singular for some n ∈ N, i.e., if there is n ∈ N such that
µn(A) = 1 implies mG(A) > 0.

We now present some well-known facts that will be needed later on. The first
two statements are proved by Lin and Wittmann in Corollary 2.7 of [30]. The third
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statement is the Kawada–Itô theorem [25]. For the last sentence one has to apply
Proposition 3.1 of [16] to the previous one. See also Corollary 3.2 of [13].

Theorem 2.9. Let G be a locally compact group and let µ ∈ M(G) be a probability
measure. The following assertions hold:

(i) If µ is ergodic, then G =
⋃
j

⋃
k S
−j
µ Skµ. Hence µ ergodic implies that µ is

adapted.

(ii) If µ is completely mixing, then G =
⋃
j S
−j
µ Sjµ. Hence, µ completely mixing

implies that µ is strictly aperiodic.
(iii) If G is compact, (µ[n])n∈N converges, in the weak* topology of M(G), to the

Haar measure of Hµ. If µ is strictly aperiodic, (µn)n∈N converges, in the weak*
topology of M(G), to the Haar measure of G. The measure µ is then completely
mixing.

Remark 2.10. Complete mixing and ergodicity are known to be equivalent for strictly
aperiodic measures under some restrictions on the measure and/or the group. This
is the case, for instance, when the group is in [SIN] (i.e., has a neighborhood basis
consisting of sets U such that Ux = xU for every x ∈ G); see [23, Theorem 5.2].
Looking from the measure side, Glasner ([17]), leaning on Foguel ([15]), showed that
complete mixing and ergodicity are equivalent for any spread out strictly aperiodic
measure. Some other cases have been sorted out in [4] and [11] but the problem of
the equivalence, the complete mixing problem, remains open.

2.4. Fourier–Stieltjes transforms. To study the spectrum of µ when G is com-
pact, we will rely on the Fourier–Stieltjes transform, which associates every continuous
irreducible unitary representation π of G on a Hilbert space Hπ with a homomorphism
between M(G) and L(Hπ) the bounded operators on Hπ. By a unitary representa-
tion of G, we understand a continuous homomorphism of G into the group of unitary
operators on a finite-dimensional Hilbert space Hπ, where the latter is assumed to
carry the weak operator topology. A representation π of G on a Hilbert space H is
irreducible if there is no nontrivial closed subspace V of H such that π(G)V ⊆ V .

Definition 2.11 (Fourier–Stieltjes transform). If µ ∈ M(G) is a bounded measure
on a compact group G and π : G → U(Hπ) is a unitary representation of G on a
finite-dimensional Hilbert space Hπ, the Fourier–Stieltjes transform of µ at π is the
operator µ̂(π) ∈ L(Hπ) defined by

〈µ̂(π)ξ, η〉 =

∫
G

〈π(t)ξ, η〉 dµ(t), for every ξ, η ∈ Hπ.

The basic properties of Fourier–Stieltjes transforms are given below. Statements (i),
(ii), (iii), and (iv) are proved in Section 28 of [20]. Statement (v) is Theorem 27.17
of [20].

Theorem 2.12 (Some properties of the Fourier–Stieltjes transform). Let G be a
compact group.

(i) If µi ∈ M(G), i = 1, 2, are bounded measures and π : G → U(Hπ) is a unitary
representation of G on a finite-dimensional Hilbert space Hπ, then µ̂1 ∗ µ2(π) =
µ̂1(π)µ̂2(π).

(ii) If µ 6= 0, there is an irreducible unitary representation of G on a finite-dimen-
sional Hilbert space, π : G→ U(Hπ) such that

µ̂(π) 6= 0.
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(iii) If µ ∈ M(G) and π is an irreducible unitary representation of G on a finite-
dimensional Hilbert space, then

σ(µ̂(π)) ⊆ σ(µ).

(iv) Let 1 denote the trivial one-dimensional representation. If 1 6= π is an irre-
ducible representation of G, then m̂G(π) = 0.

(v) Let π : G → Hπ be an irreducible unitary representation. If {ξ1, . . . , ξn} is an
orthonormal basis of Hπ, then∫

|〈π(t)ξi, ξj〉|2 dmG(t) =


1

n
, if i = j,

0, if i 6= j.

We next add two simple known facts that will be needed later on. We provide
proofs for the sake of completeness.

Corollary 2.13. Let G be a compact group and µ ∈M(G) a bounded measure.

(i) For every irreducible representation π and every ξ ∈ Hπ, ‖ξ‖ = 1, there is

fπ,ξ ∈ L1(G) such that f̂π,ξ(π)ξ = ξ.
(ii) If µ is adapted and π is an irreducible unitary representation of G with 1 ∈

σ(µ̂(π)), then π = 1, the one-dimensional trivial representation.

Proof: We first prove (i). Define fπ,ξ by

fπ,ξ(t) = n〈π(t)ξ, ξ〉,
where n = dimHπ. Since π is continuous for the weak operator topology, fπ,ξ ∈
L1(G). If {ξ, ξ2, . . . , ξn} is an orthonormal basis of Hπ containing ξ, statement (v) of

Theorem 2.12 shows that 〈f̂π,ξ(π)ξ, ξ〉 = 1 and that 〈f̂π,ξ(π)ξ, ξj〉 = 0, for every j =

2, . . . , n. It follows that f̂π,ξ(π)ξ = ξ.
The proof of (ii) is standard. Assume that µ is an adapted measure and that π is an

irreducible representation of G with 1 ∈ σ(µ̂(π)). There is therefore ξ ∈ Hπ, ‖ξ‖ = 1,
with

1 =

∫
〈π(t)ξ, ξ〉 dµ(t).

Since |〈π(t)ξ, ξ〉| ≤ 1, for every t ∈ G, it follows that 〈π(t)ξ, ξ〉 = 1 for every t ∈ Sµ,
and so that π(t)ξ = ξ for every t ∈ Sµ. We then have that

Sµ ⊆ Nξ := {t ∈ G : π(t)ξ = ξ}.
Since Nξ is a closed subgroup of G, adaptedness of µ implies that Nξ = G. As
Hπ cannot contain proper subspaces invariant under π, we conclude that π = 1.

3. The norm of λ0
1(µ)

The ergodicity properties of the measure µ derive from those of the operator λ0
1(µ).

While the norm of λ1(µ) is always ‖µ‖, see [18, p. 47], that is not necessarily the case
for λ0

1(µ). It suffices to observe that, when G is a compact group, λ0
1(mG) = 0. We

see in this section that invariance of µ (and, a fortiori, compactness of G) is the only
obstacle to the equality ‖λ0

1(µ)‖ = ‖µ‖.

Lemma 3.1. Let G be a locally compact group and let µ ∈ M(G) satisfy ‖µ‖ ≤ 1.
Then

‖λ0
1(µ)‖ ≥ 1

2
sup
x∈G
‖µ− µ ∗ δx‖.



Uniformly ergodic probability measures 599

Proof: Consider a two-sided approximate identity {eα : α ∈ Λ} in L1(G), with ‖eα‖ =
1 for every α ∈ Λ; see [12, Proposition 9.1.8]. It is then easy to prove that {eα : α ∈
Λ} converges to δe in the σ(M(G), C0(G))-topology. Since convolution is separately
σ(M(G), C0(G))-continuous, we have that (µ− µ ∗ δx) ∗ eα converges to µ− µ ∗ δx in
the σ(M(G), C0(G))-topology.

The proposition cited above is actually based on the simple equality

(1) µ ∗ (eα − δx ∗ eα) = (µ− µ ∗ δx) ∗ eα (x ∈ G and α ∈ Λ).

One can first use functions fn ∈ C0(G) so that ‖µ−µ∗δx‖ ≤ |〈µ−µ∗δx, fn〉|+1/(2n)
to show that, for each n ∈ N, there is αn ∈ Λ with

‖µ− µ ∗ δx‖ ≤ ‖(µ− µ ∗ δx) ∗ eαn‖+
1

n
.

From this, using (1) and taking into account that eα − δx ∗ eα ∈ L0
1(G), we have

‖µ− µ ∗ δx‖ ≤ ‖λ0
1(µ)‖‖eαn − δx ∗ eαn‖+

1

n
, for each n ∈ N

and hence

‖µ− µ ∗ δx‖ ≤ 2‖λ0
1(µ)‖,

yielding the result.

Proposition 3.2. Let G be a locally compact group that is not compact and let
µ ∈M(G) with ‖µ‖ = 1. Then ‖λ0

1(µ)‖ = 1.

Proof: We first assume that Sµ is compact. Then there is x ∈ G such that Sµ∩Sµx =
∅, which implies that ‖µ − δx ∗ µ‖ = 2. We can then apply Lemma 3.1 and obtain
that ‖λ0

1(µ)‖ = 1.
In general, we can always find a sequence µn of measures with compact support

such that µn converges in norm to µ. Since ‖λ0
1(µn)‖ = 1 for every n, ‖λ0

1(µ)‖ must
be 1 as well.

Corollary 3.3. Let G be a locally compact group and let µ be a probability measure.
If µ is uniformly ergodic, then G is compact.

Proof: The measure µ[n] is again a probability measure. If G is not compact, Propo-

sition 3.2 shows that ‖λ0
1(µ[n])‖ = 1 and, hence, µ cannot be uniformly ergodic.

The previous corollary could have also been deduced from the following proposition,
which should be compared to Theorem 2.9(i).

Proposition 3.4. Let µ ∈ M(G) be a probability measure with support Sµ. If µ is
uniformly ergodic, then there exists n ∈ N such that

G =
⋃

1≤j,k≤n

S−jµ Skµ.

Proof: We proceed by contradiction. Assume G 6=
⋃

1≤j,k≤n S
−j
µ Skµ, for any n ∈ N.

Since Sµ[n]
=
⋃n
j=1 S

j
µ, the assumption implies that G 6= S−1

µ[n]
Sµ[n]

and therefore

that, for each n ∈ N, there exists xn ∈ G such that Sµ[n]
· xn ∩ Sµ[n]

= ∅. From this,

we have that ‖µ[n]−µ[n] ∗ δxn‖ = 2, for every n ∈ N, and we conclude, upon applying
Lemma 3.1, that µ is not uniformly ergodic.
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4. Uniform mean ergodicity of convolution operators

In this section we approach a characterization (Theorem 4.7) of uniform mean
ergodicity of the operators λ1(µ) and λ0

1(µ) in terms of how close µ is to mHµ .
Our attention is attracted right away to measures with Hµ compact. This is because

of the following result, proved in [16, Theorem 5.4].

Theorem 4.1. Let G be a locally compact group and let µ ∈ M(G) be a probability.
Then λ1(µ) is mean ergodic if and only if Hµ is compact.

We first see that we can restrict our work to adapted measures (and compact
groups).

4.1. Reduction to the adapted case. Let G be a locally compact group and let
µ ∈M(G) be a bounded measure. We will use the symbol µ to denote the measure µ
when seen as a measure in M(Hµ). We see here that λ1(µ) is uniformly mean ergodic
if and only if λ1(µ) is.

We first note the relation between uniform convergence of powers and Cesàro means
of the convolution operator λ1(µ) with the weak*-convergence of convolution powers
and Cesàro means of the measure itself.

Proposition 4.2. Let G be a locally compact group and let µ ∈M(G) be a probability
measure.

(i) The operator λ1(µ) is uniformly mean ergodic if and only if Hµ is compact and

lim
n
‖λ1(µ[n] −mHµ)‖ = 0.

(ii) The sequence (λ1(µn)) is norm convergent if and only if Hµ is compact and

lim
n
‖λ1(µn −mHµ)‖ = 0.

Proof: By Theorem 4.1, Hµ must be compact whenever λ1(µ) is uniformly mean
ergodic.

Theorem 2.9(iii) shows that µ[n] converges to mHµ in the σ(M(Hµ), C0(Hµ))-topol-
ogy. This implies right away convergence in the σ(M(G), C0(G))-topology. The weak*-
SOT sequential continuity of λ1, see [16, Proposition 3.1], then shows that once we
assume that either λ1(µ[n]) or λ1(µn) is convergent, the limit must be to λ1(mHµ).

The desired equivalence is now an immediate consequence of the last proposition,
after recalling that ‖λ1(ν)‖ = ‖ν‖, for every ν ∈M(G); see [18, p. 47].

Corollary 4.3. Let G be a locally compact group and let µ∈M(G). The operator λ1(µ)
is uniformly mean ergodic if and only if λ1(µ) is. Furthermore, (λ1(µn)) is norm
convergent in L(L1(G)) if and only if (λ1(µn)) is norm convergent in L(L1(Hµ)).

4.2. Uniform mean ergodicity of λ1(µ) vs. uniform mean ergodicity of λ0
1(µ).

Theorem 4.1 shows that the operators λ0
1(µ) and λ1(µ) are very different from the

point of view of mean ergodicity. If G is abelian and µ ∈ M(G) is adapted, the
operator λ0

1(µ) is always mean ergodic (this is the Choquet–Deny theorem, [8]) but
λ1(µ) will only be mean ergodic when G is compact; the case µ = δ1 ∈ M(Z) is a
particularly simple case. The situation is completely different in the uniform case.

Proposition 4.4. Let T ∈ L(X) be a bounded operator on a Banach space X and let
X0 be a hyperplane of X which is invariant under T , i.e., with T (X0) ⊆ X0. Then T
is uniformly mean ergodic if and only if T |X0 is.
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Proof: It is clear that T uniformly mean ergodic implies that T |X0
is uniformly mean

ergodic.
Assume now that T |X0 is uniformly mean ergodic. The ergodic decomposition of

Theorem 2.2 then yields

X0 = (I − T )(X0)⊕ ker(I − T |X0
).

Since X0 is a hyperplane, there is y ∈ X such that X = X0 ⊕ 〈y〉. This shows that
X = (I − T )(X0)⊕ ker(I − T |X0

)⊕ 〈y〉.
Now let a, b ∈ X0 and α ∈ C be such that b = Tb and

(I − T )y = (I − T )a+ b+ αy,

and define ỹ = b + αy. Then ỹ ∈ (I − T )(X). We now check that (I − T )(X) =
(I − T )(X0)⊕ 〈ỹ〉. Pick to that end an arbitrary x = x0 + βy ∈ X, x0 ∈ X0, β ∈ C.
Then

(I − T )x = (I − T )x0 + β(I − T )y

= (I − T )x0 + β(I − T )a+ β(b+ αy) ∈ (I − T )X0 + 〈ỹ〉.
Having proved that (I −T )(X) = (I −T )(X0)⊕〈ỹ〉, we see that (I −T )(X) is closed
and, hence, that T is uniformly mean ergodic by Theorem 2.2.

After noting that L0
1(G), being the kernel of the integral functional, is a hyperplane

of L1(G) that is invariant under λ1(µ), the following corollary is immediately obtained.

Corollary 4.5. Let G be a locally compact group and µ ∈M(G) be a probability mea-
sure. The operator λ1(µ) is uniformly mean ergodic if and only if λ0

1(µ) is uniformly
mean ergodic.

Remark 4.6. (a) The proof of Proposition 4.4 shows that the equivalence between
the uniform mean ergodicity of λ1(µ) and that of λ0

1(µ) holds for any mea-
sure µ ∈M(G), with ‖µn‖ ≤M , n ∈ N.

(b) For the particular case of probability measures, a more direct way to prove
Corollary 4.5 was pointed out to us by one of the referees. It consists in observ-
ing that, as a consequence of Lin’s theorem (Theorem 2.2), a power-bounded
operator T ∈ L(X) on a Banach space X is uniformly mean ergodic if and only if
its restriction to a closed subspace X0 (not necessarily a hyperplane) containing

the T -invariant subspace (I − T )(X) is uniformly mean ergodic. Indeed, if one

assumes that T is uniformly mean ergodic on L := (I − T )(X), the ergodic de-
composition of T |L yields that (I−T )(X) ⊆ L = (I−T )(L) ⊆ (I−T )(X) so that
(I−T )(X) is closed in X. Theorem 2.2 then applies to show that T is uniformly
mean ergodic. If µ is a probability measure, then (I − λ0

1(µ))(L1(G)) ⊆ L0
1(G)

and this argument applies to λ1(µ).

4.3. A first characterization. The arguments in the previous sections lead us to
the classic characterization of uniform mean ergodicity, summarized in Theorem 4.7.
Part of that theorem, the equivalence of (ii) and (iv) for instance, hold for general
Markov operators, see [21], while those involving spread out measures are specific to
convolution operators. A proof of Theorem 4.7 can be found in [33, Section 6.3]; see
also [6]. When the group is connected, more can be said; we refer to Theorem 5.19
and the subsequent discussion. Since, given the tools already introduced, the proof of
the theorem is rather straightforward, we have decided to put it together using the
notations of the present paper, which will be handy later on. Note that some of the
references mentioned in this paragraph deal with convolution operators on L∞(G)
instead of L1(G). Since convolution operators on L∞(G) are adjoint to convolution
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operators on L1(G), both approaches yield the same classification (cf. Corollary 5.12
below). This characterization will be completed in Section 5 by adding a spectral
condition.

Theorem 4.7. Let G be a compact group and µ ∈ M(G) be an adapted probability
measure. The following are equivalent:

(i) µ is uniformly ergodic.
(ii) λ1(µ) is uniformly mean ergodic.

(iii) µ is spread out.
(iv) λ1(µ) is quasi-compact.
(v) λ0

1(µ) is quasi-compact.

Proof: Proposition 4.2 and Corollary 4.5 prove that (i) and (ii) are equivalent.
If µ is not spread out, then µ[n] is a singular measure for every n ∈ N. It follows

that
‖λ1(µ[n] −mG)‖ = ‖µ[n] −mG‖ ≥ 1, for every n ∈ N.

We deduce from Proposition 4.2 that (ii) implies (iii).
Assume that condition (iii) holds. Then there exist n ∈ N and f ∈ L1(G) such

that µn = f dmG + µs, with µs singular with respect to mG and ‖µs‖ < 1. This
yields ‖λ1(µn)− λ1(fmG)‖ = ‖µn − fmG‖ = ‖µs‖ < 1. Since λ1(fmG) is a compact
operator by Theorem 4 of [1], we get that λ1(µ) is quasi-compact.

If λ1(µ) is quasi-compact, so will be its restriction λ0
1(µ) to L0

1(G). So (iv) im-
plies (v).

Finally, (v) implies (ii) by Theorem 2.4 and Corollary 4.5.

The implication (iii)⇒ (ii) is specific to convolutions. The example in [34, pp. 213–
214] shows that a stationary Markov operator P may satisfy (iii) without being uni-
formly ergodic on L1.

Remark 4.8. By Corollaries 4.3 and 3.3, Theorem 4.7 actually characterizes uniform
mean ergodicity of λ1(µ) for any probability measure and every locally compact group.

5. Spectral characterization of uniformly ergodic probability
measures

The deep connection between uniform ergodicity and spectral properties of opera-
tors is set forth in Theorem 2.3. It is immediately clear that a uniformly mean ergodic
operator cannot have 1 as an accumulation point of its spectrum. If dealing with a
normal operator defined on a Hilbert space, then the converse is true under mild con-
ditions. This is the departure point of the following result, proved as Theorem 4.10
in our previous paper [16].

Theorem 5.1. Let G be a locally compact group and let µ ∈ M(G) be a probability
measure with µ∗ ∗ µ = µ ∗ µ∗. Then λ1(µ) is uniformly mean ergodic if and only if
Hµ is compact and 1 is an isolated point of σ(λ1(µ)) = σ(µ).

We have used here that σ(µ) = σ(λ1(µ)). This is an easy consequence of Wendel’s
theorem [36] to the effect that a bounded operator T on L1(G) that commutes with
right translations is necessarily of the form T = λ1(ν) for some ν ∈ M(G). In par-
ticular, when s /∈ σ(λ1(µ)), the operator T = (λ1(µ) − sI)−1 will correspond to the
convolution operator associated to the measure (µ− sδe)−1.

The main objective of this section is to remove the normality condition µ∗ ∗ µ =
µ ∗ µ∗ in Theorem 5.1, and, therefore, to obtain a full spectral characterization of
uniformly ergodic measures.
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5.1. When 1 is an accumulation of σ(µ), µ is adapted. Our analysis will rely
on the well-known Riesz idempotent operators that spectral sets induce. We describe
them below for the convenience of the reader.

Theorem 5.2 (Riesz idempotent operator, [27, Theorem 4.20]). Let X be a Banach
space and T ∈ L(X). Assume that ∆ is a closed and open subset of σ(T ). Consider
a function ψ : Λ → C that is analytic on an open set Λ ⊆ C that contains σ(T ) and
satisfies

ψ(∆) = {1} and ψ(σ(T ) \∆) = {0}.
The function ψ then defines, through Riesz functional calculus (see Theorem 4.7
from [10]), an operator E∆ ∈ L(X), with the following properties:

(i) E∆ is a projection.

(ii) If S ∈ L(X) and ST = TS, then E∆S = SE∆.

(iii) σ(TE∆) = ∆ ∪ {0}.
(iv) σ(T |E∆(X)) = ∆.

We now need a few lemmas. The first one can be stated in terms of multipliers of
Banach algebras. Recall that a right multiplier M of a Banach algebra A is a bounded
linear operator M : A→ A such that M(ab) = aM(b).

Lemma 5.3. Let A be a Banach algebra and let M1,M2 : A→ A be two commuting
right multipliers of A. Assume that M2 is a projection and set J := M2(A). If M1|J
is invertible, then there is a right multiplier M ′ : A→ A such that M ′|J = (M1|J)−1.

Proof: Let C := (M1|J)−1 and define C̃ : A→ A by

C̃ = C ◦M2.

Since C̃|J = C, it will be enough to check that C̃ is a right multiplier.
Let a, b ∈ A. Then

aCM2(b) = CM1(aCM2(b)) = C(aM1CM2(b)) = C(aM2(b)).

It follows that
aC̃(b) = C(aM2(b)) = C(M2(ab)) = C̃(ab).

The second lemma is a well-known linear algebra fact.

Lemma 5.4. Let T1 and T2 be commuting bounded operators on a complex Banach
space X. If z ∈ C is an eigenvalue of T1 and its eigenspace Vz = {v ∈ X : T1v = zv}
is finite-dimensional, then there exists 0 6= u ∈ Vz, which is an eigenvector for T2.

Proof: Since T1 and T2 commute, T2|Vz : Vz → Vz is a linear operator on the finite-
dimensional space Vz and therefore has at least one eigenvalue. All eigenvectors of
T2|Vz are then eigenvectors of T2.

Theorem 5.5. Let G be a compact group and µ ∈ M(G) be an adapted probability
measure. The following assertions are equivalent:

(i) 1 is an isolated point of σ(µ).
(ii) µ is spread out.
(iii) λ1(µ) is uniformly mean ergodic.

Proof: After Theorem 4.7, which shows that (ii) implies (iii), and Theorem 2.3, giving
that (iii) implies (i), it only remains to prove that (i) implies (ii).

Since {1} is open and closed in σ(λ1(µ)), there is 0 < r < 1 small enough such that
B(1, r) ∩ σ(µ) = {1}, where B(z, r) denotes the ball of radius r centered in z ∈ C.
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Now we consider K := B
(
0, 1 + r

2

)
\ B(1, r) ∪ B

(
1, r2
)
. Clearly, σ(µ) ⊆ K. Define ψ

on K as

ψ(z) =

{
0, when z ∈ B

(
0, 1 + r

2

)
\B(1, r),

1, when z ∈ B
(
1, r2
)
.

Since the function ψ can be analytically extended to an open set Λ containing K,
the Riesz functional calculus defines an operator E1 = ψ(λ1(µ)) ∈ L(L1(G)) with the
properties stated in Theorem 5.2. Properties (i) and (ii) of that theorem show that
E1 is a projection that commutes with right translations. Wendel’s classical theorem
(see [36]) shows then that E1 = λ1(ν) for some idempotent ν ∈M(G).

Let π : G → U(Hπ) be an irreducible representation of G, different from 1, the
trivial one-dimensional representation. Assume that ν̂(π) 6= 0.

If the only eigenvalue of ν̂(π) was 0, the characteristic polynomial of ν̂(π) would
be P (z) = zn and the Cayley–Hamilton theorem would imply that (ν̂(π))n = 0. But

ν is idempotent and (ν̂(π))n = ν̂n(π) = ν̂(π). With this and Lemma 5.4, we conclude
that there are z0, z ∈ C, z0 6= 0, and ξ ∈ Hπ, ξ 6= 0, such that

ν̂(π)ξ = z0ξ and

µ̂(π)ξ = z ξ.

The measure ν being idempotent, we have that, actually, z0 = 1. Hence, (̂µ ∗ ν)(π)ξ =
zξ. As we know that σ(µ ∗ ν) = {0, 1} (statement (iii) of Theorem 5.2) and that 1
cannot be an eigenvalue of µ̂(π) (we are using here Corollary 2.13(ii)), it follows from
(iii) of Theorem 2.12 that

ν̂(π)ξ = ξ and

µ̂(π)ξ = 0.

On the other hand, statement (iv) of Theorem 5.2 shows that 0 /∈ σ(λ1(µ)|ν∗L1(G)).
There is therefore an operator C : ν ∗L1(G)→ ν ∗L1(G) inverse to λ1(µ)|ν∗L1(G). We
now apply Lemma 5.3 to M1 = λ1(µ) and M2 = λ1(ν). The conclusion of the lemma
together with Wendel’s theorem provides us with a measure σ ∈M(G) such that

(2) σ ∗ µ ∗ ν ∗ f = ν ∗ f, for every f ∈ L1(G).

Let fπ,ξ ∈ L1(G) be as defined in Corollary 2.13(i). If we take Fourier–Stieltjes trans-
forms in equation (2) with f = fπ,ξ and apply them to the representation π and then
to the vector ξ (equation (2) is actually used in the third equality), we get:

ξ = ν̂(π)ξ = ν̂(π)f̂π,ξ(π)ξ

= σ̂(π)µ̂(π)ν̂(π)f̂π,ξ(π)ξ

= σ̂(π)µ̂(π)ξ = 0.

This is in contradiction with our choice of ξ. It follows that ν̂(π) = 0 for every π
different from the trivial one-dimensional representation 1.

Since ν̂(1) = 1 (it has to be a nonzero idempotent complex number), we conclude
that ν̂(π) = m̂G(π) for every irreducible representation π of G and, hence (Theo-
rem 2.12(ii)), that ν = mG.

We have thus that E1 = ψ(λ1(µ)) = λ1(mG). Finally, we observe that, since C\K is
connected and ψ can be holomorphically extended to an open set containing K, there
is, by Runge’s theorem (see [10, Corollary III.8.5]), a sequence (ψn)n∈N of polynomials
such that limψn = ψ uniformly on K. Having identified E1 = ψ(λ1(µ)) with λ1(mG),
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we see that λ1(mG) = limψn(λ1(µ)). The fact that λ1 : M(G)→ L(L1(G)) is a linear
isometry yields that for each ε > 0 there is n ∈ N with

‖mG − ψn(µ)‖ < ε.

Now, ψn being a polynomial, functional calculus shows that, for each n ∈ N, there

are kn ∈ N, and (αj,n)knj=0 ⊂ C such that ψn(µ) =
∑kn
j=0 αj,nµ

j , which implies that not

all µk can be singular, since singular measures constitute a closed subspace of M(G).

Remark 5.6. The existence of Rajchman measures in T (measures whose Fourier–
Stieltjes transforms vanish at infinity in Z) that are not spread out shows that one
cannot replace “1 isolated in σ(µ)” with “1 isolated in σ(λ2(µ))” (which, in the

case of abelian groups, coincides with the natural spectrum µ(Ĝ)). Examples of such
measures can be deduced from the proof of Theorem 3.9 of [38]; see also Remark 6.4
in [16].

5.2. Connecting the spectrum of λ1(µ) with that of λ0
1(µ) and λ1(µ). We

see in this subsection that once 1 is an accumulation point in the spectrum of one of
the convolution operators λ1(µ), λ0

1(µ), or λ1(µ), it is an accumulation point in the
other two spectra. This leads to clean characterizations of uniform ergodicity where
any of them can be used.

The following notations concerning a bounded operator T : X → X on a Banach
space X will prove useful in this section. The symbol σap(T ) will denote the approxi-
mate spectrum of T . We recall that z ∈ σap(T ) whenever there exists a sequence (xn)
in the unit sphere of X such that lim ‖T (xn) − zxn‖ = 0. If A ⊂ C, ∂A will denote
the boundary of A and Acc(A) will stand for the set of cluster points of a set A.

Proposition 5.7. Let T : X → X be a continuous and linear operator on a Banach
space X with ‖T‖ = 1. Then, 1 ∈ Acc(σ(T )) if, and only if, 1 ∈ Acc(σap(T )).

Proof: One direction is obvious; we prove the other one. Assume that 1 ∈ Acc(σ(T )).
Then, for every n ∈ N, there is zn ∈ σ(T )∩

{
w ∈ C : d(w, 1) ≤ 1

n

}
\ {1} where d here

stands for the Euclidean distance in C.
Let tn = sup{t ≥ 0 : [zn − ti, zn + ti] ⊆ σ(T )}, where [zn − ti, zn + ti] denotes the

obvious vertical segment in C. Since σ(T ) is a compact set, one can choose correctly
the sign so that wn = zn ± tni ∈ ∂σ(T ).

Now define xn as the intersection of the line 1− 1
n+ti with T, the boundary of D, the

unit disk, so xn = 1− 1
n±

√
2n−1
n i. Since σ(T ) ⊆ D, we have that, by construction, 0 ≤

tn ≤
√

2n−1
n . This concludes the proof, for wn ∈ ∂σ(T ) ⊆ σap(T ) [10, Chapter VII,

Proposition 6.7], and we have just seen that limn wn = limn zn = 1.

Proposition 5.8. Let µ ∈M(G) be a probability measure on a noncompact group G.
Then σap(λ0

1(µ)) = σap(λ1(µ)).

Proof: We only have to show that σap(λ1(µ)) ⊆ σap(λ0
1(µ)). To that end, let z ∈

σap(λ1(µ)), then there is a sequence (fn)n ⊆ L1(G), with ‖fn‖1 = 1 and satisfying
limn ‖µ ∗ fn− zfn‖ = 0. Since, for each n ∈ N, ‖λ0

1(fn ·mG)‖ = 1, by Proposition 3.2
there exists gn ∈ L0

1(G), with ‖gn‖1 = 1 such that 1
2 < ‖fn ∗ gn‖1 ≤ 1.
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We conclude by observing that (fn ∗ gn)/‖fn ∗ gn‖1 ∈ L0
1(G) and that

lim
n→∞

∥∥∥∥µ ∗ fn ∗ gn
‖fn ∗ gn‖1

− z · fn ∗ gn
‖fn ∗ gn‖1

∥∥∥∥
1

≤ 2 lim
n→∞

‖µ ∗ fn ∗ gn − z · fn ∗ gn‖1

≤ 2 lim
n→∞

‖µ ∗ fn − z · fn‖1 = 0.

Corollary 5.9. Let G be a locally compact group and let µ ∈ M(G) be a probability
measure.

(i) 1 is isolated in σ(λ1(µ)) if and only if 1 is not an accumulation point of σ(λ0
1(µ)).

(ii) 1 is isolated in σ(λ1(µ)) if and only if 1 is isolated in σ(λ1(µ)).

Proof: We first prove (i). Our argument will be different depending on whether G is
compact or not.

If G is compact, the map f 7→ (f−
∫
f dmG)⊕

∫
f dmG establishes a linear isometry

between L1(G) and L0
1(G)⊕C. Moreover, since both the closed hyperplane L0

1(G) and
its complement are λ1(µ)-invariant, we can decompose λ1(µ) as λ1(µ) = λ0

1(µ) ⊕ Id.
It follows that σ(λ0

1)(µ) ∪ {1} = σ(λ1(µ)), which certainly implies the result.
If G is not compact, Propositions 5.7 and 5.8 together yield the result directly.
We now prove statement (ii). Since M(Hµ) ⊆ M(G) as unitary Banach algebras,

it follows that
σ(λ1(µ)) = σ(µ) ⊆ σ(µ) = σ(λ1(µ)).

Again, we just have to show that if 1 is an accumulation point of σ(λ1(µ)), then 1 also
accumulates in σ(λ1(µ)). We can deduce from Proposition 5.7 that it suffices to show
that σap(λ1(µ)) ⊆ σap(λ1(µ)). Let λ ∈ σap(λ1(µ)). There is fn ∈ L1(Hµ) such that
‖fn‖ = 1 and limn ‖µ ∗ fn − λfn‖ = 0. Now, we observe that, for every n, fn dmH ∈
M(G) and 1 = ‖fn‖ = ‖λ1(fn dmH)‖, therefore there will be gn ∈ L1(G), ‖gn‖ = 1,
such that ‖λ1(fn)(gn)‖ = ‖fn ∗gn‖ > 1

2 . Choosing hn := (1/‖fn ∗gn‖)fn ∗gn ∈ L1(G)
we get

lim
n
‖µ ∗ hn − λhn‖ = 0,

and λ ∈ σap(λ1(µ)).

5.3. The spectral characterizations. The results of the previous subsections can
now be put to work.

Theorem 5.10. Let G be a compact group and µ ∈ M(G) be an adapted probability
measure. The following are equivalent:

(i) µ is uniformly ergodic.

(ii) λ1(µ) is uniformly mean ergodic.

(iii) µ is spread out.

(iv) λ1(µ) is quasi-compact.

(v) λ0
1(µ) is quasi-compact.

(vi) 1 is an isolated point of σ(µ).

(vii) 1 is not an accumulation point of σ(λ0
1(µ)).

Proof: Statements (i)–(v) have already been shown to be equivalent, by Theorem 4.7.
Statement (ii) implies statement (vi) by Theorem 2.3 together with the equal-
ity σ(λ1(µ)) = σ(µ). Statement (vi) implies statement (iii), by Theorem 5.5. State-
ments (vi) and (vii) are equivalent by Corollary 5.9(i).

We can also characterize uniform mean ergodicity of λ1(µ) for any µ ∈ M(G),
in terms of µ itself. Recall that we denote by µ the measure µ seen as a measure
in M(Hµ).
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Theorem 5.11. Let G be a locally compact group and let µ ∈M(G) be a probability
measure. The following statements are equivalent:

(i) λ1(µ) is a uniformly mean ergodic operator.

(ii) λ0
1(µ) is a uniformly mean ergodic operator.

(iii) The measure µ is uniformly ergodic.

(iv) Hµ is compact and 1 is an isolated point of σ(µ).

Proof: The equivalence of the first three statements follows from Theorem 5.10 and
Corollary 4.5. If Corollary 3.3 is taken into account, Theorem 5.10 also shows that
these three statements are equivalent to Hµ being compact and 1 being isolated
in σ(λ1(µ)). We conclude with Corollary 5.9(ii).

As already remarked after Theorem 1.1, the measure µ∗ need not be ergodic when
µ is. Furthermore, M. Rosenblatt ([35]) produces an example of a stationary (irre-
versible) Markov chain P that defines an operator T which is uniformly mean ergodic
on L1 while T is not uniformly mean ergodic on L∞, so T ∗ is not uniformly mean
ergodic on L1. Corollary 5.12 shows that adjoints behave better in our setting.

Corollary 5.12. Let G be a locally compact group and µ ∈M(G) be a probability mea-
sure. The following statements are equivalent to statements (i)–(iv) of Theorem 5.11.

(v) λ∞(µ) is mean ergodic.

(vi) λ∞(µ∗) is mean ergodic.

(vii) λ1(µ∗) is uniformly mean ergodic.

Proof: We need to recall for this proof that the adjoint operator of λ1(µ) is the
operator λ∞(µ∗) : L∞(G)→ L∞(G) [19, Theorem 20.23]. Since inverse sets of Haar-
null sets are Haar-null, and (µ∗)n = (µn)∗, [19, Theorem 20.22], µ will be spread out
if and only if µ∗ is. Theorem 5.11 then shows that λ1(µ) is uniformly mean ergodic
if and only if λ1(µ∗) is. Since the adjoint of a uniformly mean ergodic operator is
uniformly mean ergodic as well and λ∞(µ) is the adjoint of λ1(µ∗), the equivalence of
statement (v) here and statement (i) of Theorem 5.11 follows. To conclude the proof
we only need Lotz’s theorem [31, Theorem 5], which ensures that a power-bounded
operator on L∞(G) is uniformly mean ergodic whenever it is mean ergodic.

We also note the following abelian consequence of Theorem 5.5.

Corollary 5.13. Let G be a locally compact abelian group. The following are equiv-
alent.

(i) λ1(µ) is uniformly mean ergodic.
(ii) 1 is isolated in σ(µ).

Proof: Theorem 5.11 shows that (i) implies (ii). By the same characterization, the
converse statement will be proved if we show that 1 isolated in σ(µ) implies that Hµ is
compact.

If Hµ is not compact, then Ĥµ is not discrete and one can find a net {χα}α ⊆
Ĥµ\{1} that converges to the trivial character 1. The net {µ̂(χα)}α is then contained
in T \ {1}, by Corollary 2.13, and converges to 1. It follows that 1 is not isolated
in σ(λ1(µ)). Corollary 5.9(ii) then shows that 1 is not isolated in σ(µ).

Remark 5.14. As we have observed, uniform ergodicity of λ1(µ) is a strong property.
Indeed, uniformly ergodic stationary Markov operators on L1 are uniformly mean
ergodic on each Lp, 1 < p < ∞, [35, Theorem 1, p. 211]. The converse does not
hold; the adjoint T ∗ of the operator T constructed in [34, pp. 213–214] is uniformly
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mean ergodic in L2, since T is, but is not uniformly mean ergodic in L1. Careful con-
structions involving Rajchman measures provide examples of convolution operators
that are uniformly mean ergodic on L2 but are not uniformly ergodic in L1. Con-
structions of that sort can be found in Theorem 5.6 of [7] (where Rajchman measures
whose spectrum is the whole disk are constructed) and in Theorem 6.2 of [9] (where
Rajchman measures that are not spread out are constructed).

It may be worth remarking that, although the operator λ2(µ) can be uniformly
mean ergodic without λ1(µ) being so, the proof of the preceding corollary shows that,
still, for λ2(µ) to be uniformly mean ergodic it is necessary that Hµ is compact.

Remark 5.15. The authors of [32] observe that Host and Parreau’s characterization
of the measures µ ∈M(G) such that µ ∗ L1(G) is closed in M(G) ([22]) implies that
λ1(µ) is uniformly mean ergodic if and only if µ is of the form µ = δe + λ ∗ θ, with λ
an invertible measure and θ an idempotent measure. Hence, Theorems 5.10 and 5.11
together show that this description for probability measures is equivalent to Hµ being
compact and µ being spread out.

5.4. Uniform convergence of powers of convolution operators. Our results
on uniform ergodicity can also be translated to uniform complete mixing and, more
generally, to the convergence of the powers of λ1(µ) and λ0

1(µ).
We first characterize, see Theorem 5.16 below, uniformly completely mixing mea-

sures. The equivalence between statements (i) and (iii) of this characterization follows
from Theorem 4.1 of [3]. Since condition (ii) is trivially equivalent to (i) under the
considered hypothesis, only the equivalence between (iv) and (ii) needs to be proved.
For the sake of completeness, we also offer here a short alternative proof of the equiv-
alence between the first three statements based on Theorem 5.10 and classic ergodic
arguments.

Theorem 5.16. Let G be a compact group and let µ ∈M(G) be an adapted probability
measure. The following assertions are equivalent.

(i) The sequence (λ1(µn)) is norm convergent.

(ii) The measure µ is uniformly completely mixing.

(iii) µ is spread out and strictly aperiodic.

(iv) 1 is isolated in σ(µ) and σ(µ) ∩ T = {1}.
(v) λ1(µ) is uniformly mean ergodic and ‖λ1(µn+1)− λ1(µn)‖ → 0.

Proof: Since G is compact, λ1(µ) = λ0
1(µ)⊕ Id, hence Proposition 4.2 shows that (i)

and (ii) are equivalent. Condition (ii) implies that λ0
1(µ) is uniformly mean ergodic

and µ is completely mixing. Uniform ergodicity implies that µ is spread out (Theo-
rem 5.10). Completely mixing and Lin and Wittmann’s Theorem 2.9(ii) yield that µ
is strictly aperiodic. Hence (ii) implies (iii).

If we assume (iii), then λ0
1(µ) is quasi-compact by Theorem 5.10, and Kawada and

Ito’s Theorem 2.9(iii) yields that (λ0
1(µn)) is SOT convergent to 0, hence σp(λ

0
1(µ))∩

T = ∅. Yosida and Kakutani’s Theorem 2.4 implies then that (‖λ0
1(µn)‖) is conver-

gent to 0, hence we have (ii). Statements (i)–(iii) are thus shown to be equivalent.
Assume that the first three equivalent conditions hold. In a Banach algebra the

elements whose sequence of powers is convergent to 0 are those whose spectral radius
is smaller than 1, hence (ii) implies r(λ0

1(µ)) < 1. Since σ(µ) = σ(λ1(µ)) = σ(λ0
1(µ))∪

{1}, (iv) necessarily holds.
Suppose conversely that (iv) holds. Then µ is uniformly ergodic (Theorem 5.10)

and 1 /∈ σ(λ0
1(µ)), for otherwise also 1 ∈ σ(λ0

1(µ[n])) for each n ∈ N, against uniform

ergodicity. Using again that σ(µ) = σ(λ1(µ)) = σ(λ0
1(µ)) ∪ {1} we conclude that

r(λ0
1(µ)) < 1, which is equivalent to (ii).
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Condition (v) being equivalent to condition (iv) is the theorem of Katznelson and
Tzafriri [24].

Remark 5.17. The previous theorem, together with Proposition 3.2, provides a solu-
tion to the uniform version of the complete mixing: a uniformly ergodic and strictly
aperiodic measure is necessarily uniformly completely mixing.

If we do not assume µ to be adapted, Theorem 5.16 can be stated as follows.

Theorem 5.18. Let G be a locally compact group and let µ ∈M(G) be a probability
measure. The following statements are equivalent:

(i) (λ1(µn)) is convergent in (L(L1(G)), ‖ · ‖).

(ii) (λ0
1(µn)) is convergent in (L(L0

1(G)), ‖ · ‖).

(iii) λ0
1(µ) is uniformly mean ergodic and (λ0

1(µn)) is convergent in L(L0
1(G)) en-

dowed with the strong operator topology.

(iv) Hµ is compact, µ is strictly aperiodic, and 1 is isolated in σ(µ).

Proof: (i) implies (ii) and (ii) implies (iii) are trivial. Assertion (iii) implies that µ is

uniformly ergodic by Theorem 5.11. This implies that σp(λ
0
1(µ)) ∩ T ⊆ {1} and,

by Theorem 5.10, that λ0
1(µ) must be quasi-compact. Theorem 2.4 proves then that

µ is uniformly completely mixing. Statement (iv) then follows from Theorem 5.16,
via Corollary 3.3, and Corollary 5.9. This latter corollary shows that we can get
statement (i) from statement (iv) by applying Theorem 5.16 to µ and then Corol-
lary 4.3.

If G is connected, the condition of strict aperiodicity can be dropped from Theo-
rem 5.16.

Theorem 5.19. Let G be a locally compact connected group and µ ∈ M(G) be a
probability measure. Then the following statements are equivalent:

(i) µ is uniformly completely mixing.
(ii) µ is uniformly ergodic.
(iii) G is compact and µ is spread out.

Proof: It is trivial that (i) implies (ii). Conditions (ii) and (iii) are equivalent by
Corollary 3.3 and Theorem 4.7. We see that the conjunction of (iii) and (ii) implies (i).
Let µ be a uniformly ergodic measure on a compact group G. By Theorem 5.16 we
only need to show that µ is strictly aperiodic. We proceed by contradiction and
assume that there are a proper normal closed subgroup H and a point x ∈ G such
that Sµ ⊆ xH. Note that mG(H) = 0, for otherwise it would be open and, bearing
in mind that G is connected, we would have H = G. Now we have⋃

1≤j,k≤n

S−jµ Skµ ⊆
n⋃

j=−n
xjH,

for each n ∈ N. Since mG(H) = 0 we can apply Proposition 3.4, to conclude that µ is
not uniformly ergodic.

Remark 5.20. If we add G compact to the hypothesis of the previous theorem (a
condition that, as it turns out, is necessary), the resulting statement is completely
equivalent to Theorem 3 of [6], where Bhattacharya proves that the sequence (µn)
converges to mG for every nonsingular probability measure µ on a connected compact
group G. This statement is formally weaker than Theorem 5.19. If one only assumes
that µ is spread out as is done in Theorem 5.19, [6, Theorem 3] would just show that
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limn‖µkn −mG‖ = 0 for some k ∈ N. But, as a matter of fact, from here one readily
deduces that µ is uniformly completely mixing. It suffices to factorize, for any n ∈ N,
µn = µkmn ∗ µjn , for some 0 ≤ jn < n and mn ∈ N and recall that mG ∗ ν = mG for
any probability measure ν.

Other proofs of this can be found in the literature; see for instance [33, Chapter 6,
Exercise 3.19] or [3, Corollary 4.2, Remark (5)].

Example 5.21. Let A be an arc 0 in T of length less than 1/2, centered at 1. Then
µ = 1

mT(A)1AmT is uniformly completely mixing, even if ‖λ0
1(µ)‖ = 1, by Lemma 3.1.

Remark 5.22. The above example shows that for an adapted probability measure µ
on a compact group, contrary to what happens with λ1(µ), the inequality r(λ0

1(µ)) <
‖λ0

1(µ)‖ is possible. The inequality r(λ0
1(µ)) < 1 for a probability µ ∈ M(G) is ac-

tually equivalent, for any locally compact group G, to µ being uniformly completely
mixing by the very definition and basic theory of Banach algebras. Hence, the in-
equality r(λ0

1(µ)) = ‖λ0
1(µ)‖ = 1 is fulfilled by any probability µ ∈ M(G) which is

not uniformly completely mixing.

If G is abelian but not connected, measures failing to satisfy Theorem 5.19 can al-
ways be constructed. We thus have the following characterization of connected groups
in the category of compact abelian groups.

Theorem 5.23. Let G be a compact abelian group. The following assertions are
equivalent:

(i) G is connected.
(ii) Every uniformly ergodic probability measure on G is uniformly completely mix-

ing.

Proof: After Theorem 5.19 we only have to show that statement (ii) implies state-
ment (i). Suppose to that end that G is not connected. Then G has a maximal proper

normal subgroup H which is open (since Ĝ is not torsion-free [19, 24.25], there must

exist χ ∈ Ĝ such that 〈χ〉 has a prime number of elements, then H = 〈χ〉⊥).
Let then µ = 1xHmG, for some x /∈ H. It is easy to see that H ( 〈xH〉, while

the maximality of H shows that Hµ = 〈xH〉 = G. The measure µ is hence adapted
and spread out, but it is not strictly aperiodic by construction. Theorems 4.7 and 2.9
then suffice to show that µ is a uniformly ergodic probability measure but it is not
uniformly completely mixing.

Commutativity is essential in the above example. If G is a simple group or, more
generally, if G admits no nontrivial continuous characters (see [30, Lemma 3.4]), then
every adapted measure is strictly aperiodic. The theorem is no longer true either, if
the condition uniform is dropped. If x ∈ T is not a root of unity, then δx ∈ M(T) is
ergodic but not strictly aperiodic.

5.5. A characterization of quasi-compactness of convolution operators. The
next theorem should be compared to Theorem 2 from [29] and Theorem 3.4 of [33],
where the equivalence between (i) and (ii) below is proved for a more general class of
operators.

Theorem 5.24. Let G be a locally compact group and let µ be a probability measure.
Let T stand for λ1(µ), λ∞(µ), or λ0

1(µ). The following assertions are equivalent:

(i) The operator T is quasi-compact.

(ii) (T[n])n is norm convergent to a finite-dimensional projection.

(iii) G is compact, Hµ is open in G, and µ is spread out.
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Proof: That statement (i) implies statement (ii) is the Yosida–Kakutani theorem,
Theorem 2.4.

Let us see that (ii) implies (iii). If (ii) holds, then Hµ is compact, by Corol-
lary 5.12. We now proceed by contradiction and suppose that G is either noncompact
or that G is compact and Hµ is not open in G. In both cases, we can choose a se-
quence (xk) ⊆ G \ Hµ such that (Hµxk) is a disjoint sequence of compact subsets
of G. We fix n ∈ N. One can get a compact neighborhood of the identity U such that
HµxiU ∩HµxjU = ∅ whenever 1 ≤ i < j ≤ n. To find U , first we choose inductively
compact neighborhoods of the identity Ui, 1 ≤ i ≤ n, such that Hµxi ∩HµxlUl = ∅
when 1 ≤ l < i ≤ n and HµxiUi∩Hµxj = ∅ for 1 ≤ i < j ≤ n. The set U :=

⋂n
i=1 Ui

satisfies the required condition. We observe that if fi is the characteristic function
of xiU , then supp(mHµ ∗ fi) = HµxiU for each i 6= j ≤ n. Hence the dimension
of λ1(mHµ)(L1(G)) and the dimension of λ∞(mHµ)(L∞(G)) are at least n. By ob-
serving how the convolution operator acts on fij = fi − fj , i 6= j, we get also that
the dimension of λ0

1(mHµ)(L0
1(G)) is at least n. Since n is arbitrary, we get that, in

all the considered cases, the projection limit of T[n] is not compact.
Finally, we see that statement (iii) implies statement (i). If G is compact and µ is

spread out, then there exists n such that µn and mHµ are not singular. If we assume
in addition Hµ to be open in G, then µn and mG are not singular either. Hence,
λ1(µ) is quasi-compact.

Example 5.25. LetG = T⊕K, K compact. Let f ∈ L1(T), f ≥ 0, and
∫
T f dmT = 1,

and consider µ := fmT ⊕ δe. The operator λ0
1(µ) is then quasi-compact if K is finite,

but it is not if K is infinite. In both cases, λ0
1(µ) is uniformly mean ergodic; even

(λ0
1(µn)) is convergent in the norm topology.

Remark 5.26. (a) The equivalence between conditions (ii) and (vi) (or (v) and (vii))
in Theorem 5.10 and the equivalence between conditions (iv) and (v) in Theo-
rem 5.16 do not hold for general operators. The following example was kindly
provided by one of the referees. Let V be the Volterra operator on L2([0, 1])
and T = I − V . It is known that σ(V ) = {0}, and hence that σ(T ) = {1} (and
then ‖Tn+1 − Tn‖ → 0 by Katznelson and Tzafriri [24]), and that T is power-
bounded; see e.g. [2]. It follows that Tn → 0 in the strong operator topology.
But, given that 1 ∈ σ(T[n]) for each n ∈ N, ‖T[n]‖ does not converge to 0 (and
hence ‖Tn‖ does not converge to 0, either).

(b) In Theorem 5.18, we have seen that for T = λ0
1(µ) the sequence (Tn) is norm

convergent if and only if T is uniformly mean ergodic and the sequence (Tn)
is SOT convergent. Once again, one could wonder if this statement holds for
any operator. As in the previous remark, it does not. Let a = (an) be a se-
quence of numbers such that lim an = −1 and |an| < 1 for all n ∈ N. The
multiplication operator Ma : l1(N) → l1(N), (bn) 7→ (anbn) satisfies ‖Ma‖ = 1
and 1 /∈ σ(Ma) = {an : n ∈ N} ∪ {−1}, hence Ma is uniformly mean ergodic by
Theorem 2.2. Moreover, Ma is easily seen to be SOT-convergent to 0. However,
‖Mn

a ‖ = 1 for all n ∈ N.
When T is quasi-compact, norm convergence of Tn does follow from uniform

mean ergodicity and SOT convergence of Tn. This is because σp(T ) ∩ T ⊆ {1}
whenever (Tn) is a SOT convergent sequence and Theorem 2.4 applies. In Theo-
rem 5.24 and Example 5.25 we see that, in general, uniform mean ergodicity and
SOT convergence of the sequence (λ0

1(µn)) does not imply quasi-compactness
of λ0

1(µ).
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A. Rodŕıguez-Arenas acknowledges the support of Acció 3.2 POSDOC/2020/14
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de M(G), Ann. Inst. Fourier (Grenoble) 28(3), (1978), 143–164. DOI: 10.5802/aif.706.

[23] W. Jaworski, Ergodic and mixing probability measures on [SIN] groups, J. Theoret. Probab.

17(3) (2004), 741–759. DOI: 10.1023/B:JOTP.0000040297.84097.57.
[24] Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68(3) (1986),

313–328. DOI: 10.1016/0022-1236(86)90101-1.
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EPS Alcoy, Instituto Universitario de Matemática Pura y Aplicada IUMPA, Universitat Politècnica
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