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ON AN ALMOST SHARP LIOUVILLE-TYPE THEOREM FOR

FRACTIONAL NAVIER–STOKES EQUATIONS

Diego Chamorro and Bruno Poggi

Abstract: We investigate existence, Liouville-type theorems, and regularity results for the 3D sta-

tionary and incompressible fractional Navier–Stokes equations: in this setting the usual Laplacian

is replaced by its fractional power (−∆)
α
2 with 0 < α < 2. By applying a fixed-point argument,

weak solutions can be obtained in the Sobolev space Ḣ
α
2 (R3) and if we add an extra integrability

condition, stated in terms of Lebesgue spaces, then we can prove for some values of α that the

zero function is the unique smooth solution. The additional integrability condition is almost sharp
for 3/5 < α < 5/3. Moreover, in the case 1 < α < 2 a gain of regularity is established under some

conditions, although the study of regularity in the regime 0 < α ≤ 1 seems for the moment to be an

open problem.
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1. Introduction and presentation of the results

In this article we study existence, regularity, and uniqueness properties of the
3D fractional Navier–Stokes equations which are given by the following system:

(1.1)

{
(−∆)

α
2 u⃗(x) + (u⃗ · ∇⃗)u⃗(x) + ∇⃗p(x)− f⃗(x) = 0, with 0 < α < 2,

div(u⃗)(x) = 0, x ∈ R3.

Here, the fractional operator (−∆)
α
2 is defined at the Fourier level by the symbol |ξ|α.

Using the traditional notation, the vector field u⃗ : R3 → R3 represents the velocity of

the fluid, p : R3 → R is the internal pressure of the fluid, and f⃗ : R3 → R3 is a given
external force.

Before presenting our results related to system (1.1), it is worthwhile recalling some
facts about the usual stationary Navier–Stokes equations. Indeed, note that when
α = 2, (1.1) is exactly the problem given by the classical incompressible Navier–
Stokes equations

(1.2)

{
−∆u⃗(x) + (u⃗ · ∇⃗)u⃗(x) + ∇⃗p(x)− f⃗(x) = 0,

div(u⃗)(x) = 0, x ∈ R3.

The problem (1.2) can be studied from different points of view; we first observe that

the pressure p can be easily deduced from the velocity field u⃗ and the external force f⃗
since, due to the divergence-free property of u⃗, we have that

p =
1

(−∆)
div((u⃗ · ∇⃗)u⃗− f⃗),
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and this fact allows us to focus our study on the velocity field u⃗ (note that the same
identity can be easily deduced from system (1.1) since in both cases we have div(u⃗) =
0). Now, concerning existence problems for the Navier–Stokes equations (1.2), if we

assume that f⃗ ∈ Ḣ−1(R3) and that div(f⃗) = 0, then it is an easy exercise to construct

solutions u⃗ ∈ Ḣ1(R3) (see, for instance, [9, Theorem 16.2]) and moreover it is not hard
to prove that these solutions are regular. However, a priori it is not known whether
these solutions are unique, and an interesting open problem (initially mentioned in [4]
and also stated in [12]) is the following: show that any solution u⃗ of the problem

(1.3) −∆u⃗+ (u⃗ · ∇⃗)u⃗+ ∇⃗p = 0,

which satisfies the conditions

(1.4) u⃗ ∈ Ḣ1(R3) and u⃗(x) → 0 as |x| → +∞,

is identically equal to zero.
Note that, by the classical Sobolev embeddings, we have Ḣ1(R3) ⊂ L6(R3), but

this does not seem enough to conclude that a solution u⃗ ∈ Ḣ1(R3) of equation (1.3) is
null. Nevertheless, if we assume some additional hypotheses, for example u⃗ ∈ E(R3),
where E is a nice functional space, then statements of the following form have been
shown:

if u⃗ ∈ Ḣ1(R3) ∩ E(R3) is a solution of equation (1.3) in R3, then we have u⃗ ≡ 0,

and this sort of result is known in the literature as a Liouville theorem for the Navier–
Stokes equations. In [4] the case E = L

9
2 (R3) was studied. The space E = BMO−1(R3)

was considered in [7] and other functional spaces can also be taken into account; for
example, Morrey spaces were considered in [6], Lorentz spaces in [8], and Besov spaces
in [11].

We observe that if we want to consider only one “simple” additional hypothesis,
then a general Liouville-type theorem was proved in [3] with E = Lq(R3) for some

(1.5) 3 ≤ q ≤ 9

2
.

It is very interesting to note here that there is a gap between this set of values and
the integrability condition given in (1.4)—which is u⃗ ∈ L6(R3) due to the Sobolev
embedding—as at present we do not know how to fill the distance between 9

2 and 6.

Thus the following problem: “show that any solution u⃗ of (1.3), with u⃗ ∈ Ḣ1(R3) and
u⃗ ∈ Lq(R3) for some 9

2 < q < 6, is identically equal to zero” remains, to the best of
our knowledge, an open problem.

Let us come back now to the fractional Navier–Stokes equations (1.1). In particular,
we are interested in understanding how the previous uniqueness results vary if we
replace the Laplacian ∆ with the operator (−∆)

α
2 , with 0 < α < 2. In [14], the

authors use the Caffarelli–Silvestre extension [2] to show that, for 0 < α < 2, a smooth

weak solution u ∈ Ḣ
α
2 (R3) to (1.1) is trivial if u ∈ L

9
2 (R3). On the other hand, since

Ḣ
α
2 (R3) embeds into L

6
3−α (R3), then for α < 5/3 it is reasonable to expect that the

assumption u⃗ ∈ L
9
2 (R3) may be replaced by a more natural Lebesgue space whose

exponent depends on the value of α. Thus the main purpose of our work is twofold:
to attempt to improve the understanding of the gap of integrability in Liouville-type
theorems for the Navier–Stokes equation by studying the hypodissipative case, and
to see whether the gap of integrability in the hypodissipative case differs qualitatively
from that of the classical Navier–Stokes system.
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We begin by proving that, under some mild assumptions over the external force f⃗ ,
there exists at least one solution u⃗ ∈ Ḣ

α
2 (R3). Indeed, we have:

Theorem 1 (Existence). Fix 0 < α < 2 and consider f⃗ ∈ Ḣ−1(R3) ∩ Ḣ−α
2 (R3) an

external force such that div(f⃗) = 0. There exists a divergence-free vector field u⃗ ∈
Ḣ

α
2 (R3) and a pressure p ∈ Ḣα− 3

2 (R3), such that (u⃗, p) is a solution of the stationary
fractional Navier–Stokes equations (1.1).

The existence of certain weak solutions to the fractional Navier–Stokes equa-
tions (1.1) has already been studied in [13] via the Caffarelli–Silvestre extension [2];
our approach is quite different. We use the Schaefer fixed-point theorem, which is a
useful tool when dealing with the existence of solutions for partial differential equa-
tions. In order to apply this general fixed-point theorem, we will regularize equa-
tion (1.1), and to recover the initial equation we will need to study a limit by consid-
ering subsequences. This will give us a solution but we will lose uniqueness.

The study of the potential uniqueness of such solutions is in general a completely
different open problem (besides the case α = 5/3, which was studied in [14]). However,
if we add some extra conditions, we can obtain interesting conclusions and in this
regard we have our next result:

Theorem 2 (Liouville-type). Consider the stationary fractional Navier–Stokes equa-
tions

(1.6) (−∆)
α
2 u⃗+ (u⃗ · ∇⃗)u⃗+ ∇⃗p = 0, div(u⃗) = 0, 0 < α < 2.

Assume that u⃗, p are smooth functions that satisfy (1.6) and consider a positive
parameter 0 < ϵ < 2α.

(i) Let α = 1. If u⃗ ∈ Ḣ
1
2 (R3) ∩ L 6−ϵ

2 (R3), then we have that u⃗ = 0.

(ii) Let 1 < α < 2 and fix the parameter 0 < ϵ < 2α such that

(1.7) 1 +
ϵ

3
≤ α ≤ 5

3
+

2

9
ϵ.

If u⃗ ∈ Ḣ
α
2 (R3) ∩ L

6−ϵ
3−α (R3), then we have u⃗ = 0.

(iii) Let 3
5 < α < 1 and consider a parameter 0 < ϵ < 2α such that

(1.8) 1− ϵ

3
≤ α ≤ 5

3
− 2

9
ϵ.

If u⃗ ∈ Ḣ
α
2 (R3) ∩ L

6−ϵ
3−α (R3) ∩ L

6+ϵ
3−α (R3), then we have u⃗ = 0.

Some remarks are in order. Indeed, we first note that the general condition u⃗ ∈
Ḣ

α
2 (R3), stated in all the items above, is rather natural since from Theorem 1 we

know how to construct solutions in this functional space. Second, by the classical

Sobolev embeddings we have Ḣ
α
2 (R3) ⊂ L

6
3−α (R3) but we have neither u⃗ ∈ L

6−ϵ
3−α (R3)

nor u⃗ ∈ L
6+ε
3−α (R3) for ϵ > 0, and we can thus see that the conditions stated in the

theorem are actual additional hypotheses which help us to obtain this Liouville-type
result. Next we note that if α → 2, then by the condition (1.7) we have 3

2 ≤ ϵ ≤ 3

and this leads us to the Lebesgue spaces Lq(R3) with 3 ≤ q ≤ 9
2 , which is exactly the

condition (1.5) stated above, and we recover the known results for the classical sta-
tionary Navier–Stokes equations regarding additional Lebesgue space hypotheses. We
observe also that in the range 1 ≤ α ≤ 5

3 , then, following the relationship (1.7)
(or (1.8)), we can consider very small values for the parameter ϵ > 0 and thus the

additional information L
6−ϵ
3−α (R3) (or L

6+ϵ
3−α (R3)) comes closer and closer to the critical
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space L
6

3−α (R3): in the case of the stationary fractional Navier–Stokes equation we

can almost fill the gap between the space L
6

3−α (R3) and the additional information
required to deduce Liouville-type theorems. However, we cannot simply take ϵ → 0,
as the information conveyed by the hypotheses (with ϵ > 0) is needed to obtain our
results. Note finally that the lower limit 3

5 stated in the third item is related to some
technical issues. To finish, let us mention that we do not claim any optimality on the
different relationships stated here.

To continue, we observe now that smoothness was taken for granted in the previ-
ous theorem, but this condition is redundant in some cases. Indeed, if we study the
regularity of the solutions obtained in Theorem 1, we have the following result.

Theorem 3 (Regularity). Consider the stationary fractional Navier–Stokes equa-
tions (1.6).

(i) If 5
3 < α < 2, then the solutions u⃗ ∈ Ḣ

α
2 (R3) obtained via Theorem 1 above are

smooth.
(ii) Let 1 < α ≤ 5

3 and consider a solution u⃗ ∈ Ḣ
α
2 (R3). If we assume that u⃗ ∈

L∞(R3), then these solutions are smooth.

We can see that the smoothness hypothesis in Theorem 2 is actually not necessary
in the case 5

3 < α < 2. Nevertheless, if 1 < α ≤ 5
3 , the regularizing effect of the

operator (−∆)
α
2 seems to be too weak to obtain a gain of regularity and an additional

hypothesis is thus warranted. For the sake of simplicity we assumed here a very strong
condition, namely u⃗ ∈ L∞(R3), but we believe that other more general conditions can
be considered. The study of the regularity in the case 0 < α ≤ 1 is considerably more
difficult and technical to handle and, to the best of our knowledge, it constitutes an
open problem that will not be addressed here.

Note that when proving these results the main difference between the local oper-
ator ∆ and the non-local operator (−∆)

α
2 , with 0 < α < 2, lies in the study of the

commutators. Indeed, in the first case (see [3] or [6]) the classical Leibniz formula is
easy to apply as it is a pointwise relationship, while in the non-local case studied here
we will use Lemma 2.3 below, which is more difficult to apply since it is an integral
relationship.

Finally, let us point out a few open research directions. First, other functional
spaces (such as Besov, Triebel–Lizorkin, Lorentz, Morrey spaces, etc.) can possibly
be used to develop all the previous theorems: indeed, most of the tools used here
possess a similar behavior in these spaces. However, the L2-based Sobolev spaces are
enough to highlight the behavior of the fractional Navier–Stokes equations considered
here. Secondly, although Liouville-type problems comprise a major open area related
to the Navier–Stokes regularity problem, we do not study in this article how to adapt
our work to the time-dependent problem. In the case of the fractional Navier–Stokes
equations, the study of the ancient solutions would require a completely new article.

The plan of the article is the following: in Section 2 we recall some notation and
useful results. In Section 3 we prove Theorem 1 and in Section 4 we prove Theorem 2.
The last section is devoted to proving Theorem 3.

2. Preliminaries

For 1 < p < +∞ and for s > 0 we define the homogeneous Sobolev spaces Ẇ s,p(R3)
by the condition

∥f∥Ẇ s,p = ∥(−∆)
s
2 f∥Lp < +∞.
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In the special case when p = 2 we simply write Ẇ s,2(R3) = Ḣs(R3). The non-homo-
geneous Sobolev spaces W s,p(R3) are defined by the condition

∥f∥W s,p = ∥f∥Lp + ∥(−∆)
s
2 f∥Lp < +∞,

from which we easily deduce the embedding W s,p(R3) ⊂ Ẇ s,p(R3). Note also that,
if s1 > s0 > 0, then we have the space inclusion W s1,p(R3) ⊂ W s0,p(R3). As the
Sobolev spaces will constitute our main framework, we recall in the following lemmas
some classical and useful results.

Lemma 2.1 (Sobolev embeddings).

(i) For 0 < s < 3
p and 1 < p, q < +∞, if we have the relationship − 3

q = s− 3
p , then

we have the classical Sobolev inequality

∥f∥Lq ≤ C∥f∥Ẇ s,p , for each f ∈ C∞
c (Rn).

(ii) If 0 < s0 < s1 and 1 < p0, p1 < +∞ are such that s0 − 3
p0

= s1 − 3
p1
, then we

have the following Sobolev space inclusion:

Ẇ s1,p1(R3) ⊂ Ẇ s0,p0(R3).

Lemma 2.2 (Rellich–Kondrachov). Let Ω ⊂ R3 be a bounded Lipschitz domain. If
0 < s < 3

p , then for all 1 ≤ q < 3p
3−sp we have the following compact inclusion:

Ẇ s,p(Ω) ⋐ Lq(Ω).

A useful consequence of this lemma is that any uniformly bounded sequence in
Ẇ s,p(Ω) has a subsequence that converges in Lq(Ω).

Lemma 2.3 (Fractional Leibniz rule).

(i) Consider f , g two smooth functions. Then we have the estimate

∥(−∆)
s
2 (fg)∥Lp ≤ C∥(−∆)

s
2 f∥Lp0 ∥g∥Lp1 + C∥f∥Lq0∥(−∆)

s
2 g∥Lq1 ,

where 1
p = 1

p0
+ 1

p1
= 1

q0
+ 1

q1
, with 0 < s, 1 < p < +∞, and 1 < p0, p1, q0, q1 ≤

+∞.

(ii) For 0 < s, s1, s2 < 1 with s = s1 + s2 and 1 < p, p1, p2 < +∞ with 1
p = 1

p1
+ 1

p2
,

we have

∥(−∆)
s
2 (fg)− (−∆)

s
2 (f)g − (−∆)

s
2 (g)f∥Lp ≤ C∥(−∆)

s1
2 f∥Lp1∥(−∆)

s2
2 g∥Lp2 .

See [10] and [5] for a proof of these estimates. In the case of the L2-based Sobolev
spaces we also have the following useful estimate:

Lemma 2.4 (Product rule in Sobolev spaces). For 0 ≤ s < +∞ and 0 < δ < 3
2 ,

∥fg∥
Ḣs+δ− 3

2
≤ C(∥f∥Ḣδ∥g∥Ḣs + ∥g∥Ḣδ∥f∥Ḣs).

See [9, Lemma 7.3] for a proof of this inequality.

3. Proof of Theorem 1

We apply the Leray projector P(ψ⃗) = ψ⃗+ ∇⃗ 1
(−∆) (∇⃗ · ψ⃗) to obtain on the one hand

the following equation of the velocity (recall that div(u⃗) = div(f⃗) = 0):

(3.1) (−∆)
α
2 u⃗+ P((u⃗ · ∇⃗)u⃗)− f⃗ = 0,

and on the other hand, using the divergence-free condition of u⃗ and f⃗ , we have the
equation for the pressure:

(3.2) p =
1

(−∆)
(div((u⃗ · ∇⃗)u⃗)).
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We can thus focus our study on the velocity field u⃗ and then we will deduce the
properties needed for the pressure p. In order to solve equation (3.1) we will first
consider a function θ ∈ C∞

0 (R3) such that 0 ≤ θ(x) ≤ 1 with θ(x) = 1 if |x| ≤ 1 and
θ(x) = 0 if |x| > 2; then for R > 1 we set θR(x) = θ

(
x
R

)
. With this auxiliary function

and for some 0 < ϵ < 1 we study the following equation:

(3.3) −ϵ∆u⃗+ (−∆)
α
2 u⃗+ P([(θRu⃗) · ∇⃗](θRu⃗))− f⃗ = 0, div(u⃗) = 0.

Observe that, at least formally, if we make ϵ → 0 and R → +∞, we recover equa-
tion (3.1).

The previous equation (3.3) can be seen as a perturbation of the stationary Navier–
Stokes system (1.3) and we will study the existence of solutions for this modified
problem using the structure of the usual stationary Navier–Stokes. Indeed, we note
that this equation can be rewritten as

(3.4) u⃗ = TR,ϵ(u⃗),

where

(3.5) TR,ϵ(u⃗) =
−1

[−ϵ∆+ (−∆)
α
2 ]
(P([(θRu⃗) · ∇⃗](θRu⃗))− f⃗).

Thus, in order to obtain a solution for the problem u⃗ = TR,ϵ(u⃗) we will apply the
Schaefer fixed-point theorem (see [9, Theorem 16.1]):

Theorem 4 (Schaefer). Consider the following functional space:

(3.6) E = {v⃗ : R3 → R3 : v⃗ ∈ Ḣ1(R3) and div(v⃗) = 0}.
If

(i) the operator TR,ϵ defined in (3.5) is continuous and compact in the space E, and

(ii) if u⃗ = λTR,ϵ(u⃗) for any λ ∈ [0, 1], then we have ∥u⃗∥Ḣ1 ≤M ,

then equation (3.4) admits at least one solution u⃗ ∈ E.

As we can see, in order to obtain a solution of the modified problem (3.3), it is
enough to verify the two points of the previous theorem. We decompose our study
into some propositions and corollaries that will be helpful in the sequel.

Proposition 3.1. The application TR,ϵ is continuous and compact in the space E.

Proof: We start writing

∥TR,ϵ(u⃗)∥Ḣ1 =

∥∥∥∥ −∆

[−ϵ∆+ (−∆)
α
2 ]

−1

(−∆)
P([(θRu⃗) · ∇⃗](θRu⃗)− f⃗)

∥∥∥∥
Ḣ1

=

∥∥∥∥ −∆

[−ϵ∆+ (−∆)
α
2 ]
TR(u⃗)

∥∥∥∥
Ḣ1

,

where the operator TR(u⃗) is given by

(3.7) TR(u⃗) =
−1

(−∆)
(P([(θRu⃗) · ∇⃗](θRu⃗))− f⃗).

Observe now that the symbol σϵ associated to the operator −∆

[−ϵ∆+(−∆)
α
2 ]

is σϵ(ξ) =

|ξ|2
ϵ|ξ|2+|ξ|α , which is a bounded Fourier multiplier, i.e., we have the uniform esti-

mate σϵ(ξ) ≤ C
ϵ , so we can write

∥TR,ϵ(u⃗)∥Ḣ1 =

∥∥∥∥ −∆

[−ϵ∆+ (−∆)
α
2 ]
TR(u⃗)

∥∥∥∥
Ḣ1

≤ C

ϵ
∥TR(u⃗)∥Ḣ1 ,
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but from the proof of Theorem 16.2 in [9] we know that the operator TR(u⃗) is a
continuous and compact operator in the space E (recall that we have the hypothe-

sis f⃗ ∈ Ḣ−1(R3)) and we can deduce from this fact that the operator TR,ϵ is itself
continuous and compact in the space E.

We now need to establish some additional estimates.

Proposition 3.2. If u⃗ belongs to the functional space E given in (3.6) and if u⃗
satisfies

u⃗ =
−1

[−ϵ∆+ (−∆)
α
2 ]
(P([(θRu⃗) · ∇⃗](θRu⃗))− f⃗),

then we have u⃗ ∈ Ḣ1(R3) ∩ Ḣ α
2 (R3), with 0 < α < 2.

Proof: By the previous proposition we already know that if u⃗ ∈ Ḣ1(R3), then the
quantity

−1

[−ϵ∆+ (−∆)
α
2 ]
(P([(θRu⃗) · ∇⃗](θRu⃗))− f⃗)

also belongs to Ḣ1(R3): we only need to study if u⃗ ∈ Ḣ
α
2 (R3). We thus write

∥u⃗∥
Ḣ

α
2
= ∥(−∆)

α
4 u⃗∥L2 =

∥∥∥∥∥ (−∆)
1
2+

α
4

[−ϵ∆+ (−∆)
α
2 ]

(−∆)
1
2

(−∆)
(−P([(θRu⃗) · ∇⃗](θRu⃗)) + f⃗)

∥∥∥∥∥
L2

;

note that the symbol σ̃ϵ(ξ) = |ξ|1+
α
2

ϵ|ξ|2+|ξ|α is a bounded Fourier multiplier as we have

σ̃ϵ(ξ) ≤ C
ϵ and we write

∥u⃗∥
Ḣ

α
2
≤ C

ϵ

∥∥∥∥∥ (−∆)
1
2

(−∆)
(−P([(θRu⃗) · ∇⃗](θRu⃗)) + f⃗)

∥∥∥∥∥
L2

=
C

ϵ

∥∥∥∥ −1

(−∆)
(P([(θRu⃗) · ∇⃗](θRu⃗))− f⃗)

∥∥∥∥
Ḣ1

≤ C

ϵ
∥TR(u⃗)∥Ḣ1 ,

where we used the definition of the operator TR given in (3.7) above. We recall

now that the operator TR is bounded in the space Ḣ1(R3) (recall that we have

f⃗ ∈ Ḣ−1(R3)). Then, as we are assuming that u⃗ ∈ Ḣ1(R3), we have:

∥u⃗∥
Ḣ

α
2
≤ CR

ϵ
∥u⃗∥Ḣ1∥u⃗∥Ḣ1 < +∞.

We have thus proved that u⃗ ∈ Ḣ1(R3) ∩ Ḣ α
2 (R3).

This proposition shows us that, although the operator TR,ϵ defined in (3.5) is

bounded in the space Ḣ1(R3), we have some additional boundedness properties in

the space Ḣ
α
2 (R3) with 0 < α < 2.

Proposition 3.3. Let 0 ≤ λ ≤ 1. If u⃗ belongs to the functional space E given in (3.6)
and if u⃗ satisfies

(3.8) u⃗ = λ

[
−1

[−ϵ∆+ (−∆)
α
2 ]
(P([(θRu⃗) · ∇⃗](θRu⃗))− f⃗)

]
,

for 0 < α < 2, then we have the inequality

(3.9) ϵ∥u⃗∥2
Ḣ1 + ∥u⃗∥2

Ḣ
α
2
≤ λ∥u⃗∥

Ḣ
α
2
∥f⃗∥

Ḣ−α
2
.
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Proof: Let us first observe that since we are working in the space E we have enough

regularity to show that P([(θRu⃗) · ∇⃗](θRu⃗)) ∈ Ḣ−1(R3). Indeed, we write by the

properties of the Leray projector and by the Sobolev embedding Ḣ−1(R3) ⊂ L
6
5 (R3):

∥P([(θRu⃗) · ∇⃗](θRu⃗))∥Ḣ−1 ≤ C∥[(θRu⃗) · ∇⃗](θRu⃗)∥Ḣ−1 ≤ C∥[(θRu⃗) · ∇⃗](θRu⃗)∥
L

6
5
.

Now, by the Hölder inequalities we obtain

≤C
3∑

j=1

∥(θRuj)∂j(θRu⃗)∥
L

6
5
≤ C

3∑
j=1

∥θRuj∥L3∥∂j(θRu⃗)∥L2

≤C
3∑

j=1

∥θR∥L6∥uj∥L6(∥(∂jθR)u⃗∥L2 + ∥θR(∂j u⃗)∥L2)

≤C
3∑

j=1

∥θR∥L6∥uj∥L6(∥∂jθR∥L3∥u⃗∥L6+∥θR∥L∞∥∂j u⃗∥L2)≤CR∥u⃗∥L6(∥u⃗∥L6+∥u⃗∥Ḣ1)

≤CR∥u⃗∥Ḣ1∥u⃗∥Ḣ1 < +∞,

where we used the Sobolev embedding Ḣ1(R3) ⊂ L6(R3) in the last estimate above.
With this information at hand and since div(u⃗) = 0 we can write, by the properties
of the Leray projector:∫

R3

u⃗ · P([(θRu⃗) · ∇⃗](θRu⃗)) dx =

∫
R3

u⃗ · ([(θRu⃗) · ∇⃗](θRu⃗)) dx,

but since by an integration by parts we have∫
R3

u⃗ · ([(θRu⃗) · ∇⃗](θRu⃗)) dx = −
∫
R3

u⃗ · ([(θRu⃗) · ∇⃗](θRu⃗)) dx

we deduce that

(3.10)

∫
R3

u⃗ · ([(θRu⃗) · ∇⃗](θRu⃗)) dx = 0.

With this information, we now rewrite equation (3.8) in the following form:

[−ϵ∆+ (−∆)
α
2 ]u⃗ = −λ[P([(θRu⃗) · ∇⃗](θRu⃗))− f⃗ ] = −λP([(θRu⃗) · ∇⃗](θRu⃗)) + λf⃗ ,

from which we deduce

−ϵ
∫
R3

∆u⃗·u⃗ dx+
∫
R3

(−∆)
α
2 u⃗·u⃗ dx = −λ

∫
R3

P([(θRu⃗)·∇⃗](θRu⃗))·u⃗ dx+λ
∫
R3

P(f⃗)·u⃗ dx.

Using identity (3.10), by the properties of the Leray projector, since div(u⃗) = 0, and
using the properties of the operators ∆ and (−∆)

α
2 , we obtain

ϵ∥u⃗∥2
Ḣ1 + ∥u⃗∥2

Ḣ
α
2
= λ

∫
R3

(−∆)−
α
4 f⃗ · (−∆)

α
4 u⃗ dx ≤ λ∥f⃗∥

Ḣ−α
2
∥u⃗∥

Ḣ
α
2
,

and we have proved estimate (3.9).

This estimate has several consequences and we gather them in the following corol-
lary:
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Corollary 3.1. In the general framework of Proposition 3.3, i.e., if u⃗ belongs to the
functional space E given in (3.6) and if u⃗ satisfies equation (3.8), then we have the
following points:

(i) For ϵ > 0 one has the inequality

(3.11) ∥u⃗∥Ḣ1 ≤ 1√
2ϵ

∥f⃗∥
Ḣ−α

2
.

(ii) We also have the uniform estimate

(3.12) ∥u⃗∥
Ḣ

α
2
≤ ∥f⃗∥

Ḣ−α
2
.

Proof: From estimate (3.9) we write, by the Young inequalities for the product:

ϵ∥u⃗∥2
Ḣ1 + ∥u⃗∥2

Ḣ
α
2
≤ λ

2
(∥f⃗∥2

Ḣ−α
2
+ ∥u⃗∥2

Ḣ
α
2
),

from which we easily obtain ϵ∥u⃗∥2
Ḣ1 +

(
1− λ

2

)
∥u⃗∥2

Ḣ
α
2
≤ λ

2 ∥f⃗∥
2

Ḣ−α
2
and since 0 ≤ λ ≤ 1

we easily deduce the two desired estimates.

End of the proof of Theorem 1: By the Schaefer fixed-point theorem, in order to ob-
tain the existence of a solution of the problem (3.4)–(3.5) we only need to prove the
two points given in Theorem 4. Thus, for some fixed parameters R > 1, ϵ > 0, we
know by Proposition 3.1 that the application TR,ϵ is continuous and compact in the
space E given in (3.6). The second point of Theorem 4 is given by estimate (3.11)
stated in Corollary 3.1. We thus have the existence of a solution of the problem

u⃗ =
−1

[−ϵ∆+ (−∆)
α
2 ]
(P([(θRu⃗) · ∇⃗](θRu⃗))− f⃗),

where u⃗ ∈ Ḣ1(R3) ∩ Ḣ α
2 (R3).

Remark 3.1. Note that the solution obtained above depends on the parameters R > 1
and ϵ > 0 and they will be denoted by u⃗R,ϵ.

Now we need to recover the initial problem by making R → +∞ and ϵ → 0 in
the solutions u⃗R,ϵ. To do so, we will first fix ϵ > 0 and then we will take the limit
when R→ +∞. Indeed, we observe that for a fixed ϵ > 0 we have the uniform (in R)
estimate (3.12), and thus there exists a sequence Rk → +∞ such that u⃗Rk,ϵ converges

weakly in Ḣ
α
2 (R3) to some limit u⃗ϵ. Moreover, by Lemma 2.2, we have for all 0 < α <

2 the strong convergence of u⃗Rk,ϵ to some limit u⃗ϵ in the space L2
loc(R3). These two

facts allow us to obtain a weak convergence (in D′) of the nonlinear term ([(θRu⃗R,ϵ) ·
∇⃗](θRu⃗R,ϵ)) to ([u⃗ϵ · ∇⃗]u⃗ϵ) when R → +∞. We thus obtain a function u⃗ϵ which is a
solution of the problem

−ϵ∆u⃗ϵ + (−∆)
α
2 u⃗ϵ + P([u⃗ϵ · ∇⃗]u⃗ϵ)− f⃗ = 0.

Similarly, since we have the uniform (in ϵ) control ∥u⃗ϵ∥Ḣ α
2
≤ ∥f⃗∥

Ḣ−α
2
given in esti-

mate (3.12), there exists a subsequence ϵk → 0 such that u⃗ϵk converges weakly to a

limit u⃗ in the space Ḣ
α
2 (R3). Again, by Lemma 2.2, we obtain the strong convergence

of u⃗ϵk to u⃗ in L2
loc(R3) and from these facts we obtain the weak convergence (in D′)

of the quantity [u⃗ϵ · ∇⃗]u⃗ϵ to (u⃗ · ∇⃗)u⃗ when ϵ→ 0. We have thus obtained a solution u⃗
of the equation

(−∆)
α
2 u⃗+ P((u⃗ · ∇⃗)u⃗)− f⃗ = 0,

which belongs to the space Ḣ
α
2 (R3) and satisfies ∥u⃗∥

Ḣ
α
2
≤ ∥f⃗∥

Ḣ−α
2
.
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To end the proof, we need to study the pressure p. By equation (3.2) and by the
divergence-free property of u⃗ we can write

∥p∥
Ḣα− 3

2
= ∥(−∆)

α− 3
2

2 p∥L2 =

∥∥∥∥∥∥ (−∆)
α− 3

2
2

(−∆)
div(div(u⃗⊗ u⃗))

∥∥∥∥∥∥
L2

= ∥(−∆)
α− 3

2
2 (u⃗⊗ u⃗)∥L2 = ∥u⃗⊗ u⃗∥

Ḣα− 3
2
.

Now by the product rule in Sobolev spaces given in Lemma 2.4 we have

∥u⃗⊗ u⃗∥
Ḣα− 3

2
≤ C∥u⃗∥

Ḣ
α
2
∥u⃗∥

Ḣ
α
2
< +∞,

from which we easily deduce that ∥p∥
Ḣα− 3

2
< +∞ and this ends the proof of Theo-

rem 1.

4. Proof of Theorem 2

We start the proof of this theorem with the following:

Lemma 4.1. Let (u⃗, p) be a solution of the fractional Navier–Stokes equation

(−∆)
α
2 u⃗+ (u⃗ · ∇⃗)u⃗+ ∇⃗p = 0, div(u⃗) = 0.

If we have u⃗ ∈ Lq(R3) for some 2 < q < +∞, then the pressure p belongs to the

space L
q
2 (R3).

Proof: Applying the divergence operator to the equation above and using the di-

vergence-free property of u⃗ we obtain div((u⃗ · ∇⃗)u⃗) + div(∇⃗p) = 0, which leads us
to the equation ∆p = − div(div(u⃗ ⊗ u⃗)), from which we deduce the expression p =

1
(−∆) div(div(u⃗⊗ u⃗)). Thus, taking the L

q
2 (R3) norm, we have

∥p∥
L

q
2
=

∥∥∥∥ 1

(−∆)
div(div(u⃗⊗ u⃗))

∥∥∥∥
L

q
2

.

Since 1 < q
2 < +∞, the Riesz transforms are bounded in the space L

q
2 (R3) and we

can write∥∥∥∥ 1

(−∆)
div(div(u⃗⊗ u⃗))

∥∥∥∥
L

q
2

≤ C∥u⃗⊗ u⃗∥
L

q
2
≤ C∥u⃗∥Lq∥u⃗∥Lq < +∞,

and we obtain that p ∈ L
q
2 (R3).

This simple remark allows us to deduce some integrability results for the pressure
from the information available on the velocity field u⃗.

We will now prove that in the framework of Theorem 2 the unique solution of
equation (1.6) is the trivial solution. For this we consider θ ∈ C∞

0 (R3) a smooth cut-
off function given by 0 ≤ θ ≤ 1, θ(x) = 1 if |x| < 1

2 , and θ(x) = 0 if |x| ≥ 1. For R > 1
a real parameter, we define the function

θR(x) = θ
( x
R

)
.

In particular, we have θR(x) = 1 if |x| < R
2 and θR(x) = 0 if |x| ≥ R and thus

supp(θR) ⊂ BR, where BR denotes the ball B(0, R). With this auxiliary function, we
multiply equation (1.6) by (θRu⃗) and we integrate:

(4.1)

∫
R3

(−∆)
α
2 u⃗ · (θRu⃗)︸ ︷︷ ︸
(1)

+(u⃗ · ∇⃗)u⃗ · (θRu⃗)︸ ︷︷ ︸
(2)

+ ∇⃗p · (θRu⃗)︸ ︷︷ ︸
(3)

dx = 0,
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and we study each one of these terms separately. For the first term in (4.1) we write,
using the properties of the operator (−∆)

α
2 :∫

R3

(−∆)
α
2 u⃗ · (θRu⃗) dx=

∫
R3

(−∆)
α
4 u⃗ · (−∆)

α
4 (θRu⃗) dx

=

∫
R3

(−∆)
α
4 u⃗ · [((−∆)

α
4 u⃗)θR+(−∆)

α
4 (θRu⃗)−((−∆)

α
4 u⃗)θR] dx,

and we have∫
R3

(−∆)
α
2 u⃗ · (θRu⃗) dx =

∫
BR

|(−∆)
α
4 u⃗|2θR dx

+

∫
R3

(−∆)
α
4 u⃗ · [(−∆)

α
4 (θRu⃗)− ((−∆)

α
4 u⃗)θR] dx,

(4.2)

where we used the fact that supp(θR) ⊂ BR in the second integral above.

For the second term of (4.1) we have:

∫
R3

(u⃗ · ∇⃗)u⃗ · (θRu⃗) dx =

3∑
i,j=1

∫
R3

uj(∂xj
ui)(θRui) dx =

3∑
i,j=1

∫
R3

θRuj(∂xj
ui)ui dx

=

3∑
i,j=1

∫
R3

θRuj(∂xj

(
u2i
2

)
) dx,

and by an integration by parts we obtain

3∑
i,j=1

∫
R3

θRuj

(
∂xj

(
u2i
2

))
dx = −

3∑
i,j=1

∫
R3

θR(∂xj
uj)

u2i
2
dx−

∫
R3

∇⃗θR ·
(
|u⃗|2

2
u⃗

)
dx.

Now, using the fact that div(u⃗) = 0, we have that the second integral above is null
and we can write

(4.3)

∫
R3

(u⃗ · ∇⃗)u⃗ · (θRu⃗) dx = −
∫
BR

∇⃗θR ·
(
|u⃗|2

2
u⃗

)
dx,

where we used the support property of the auxiliary function θR.

Finally, for the last term of (4.1), by an integration by parts, using again the
fact div(u⃗) = 0 and the support property of θR, we obtain

∫
R3

∇⃗p · (θRu⃗) dx =

3∑
i=1

∫
R3

(∂xi
p)θRui dx = −

3∑
i=1

∫
R3

p ∂xi
(θRui) dx

= −
3∑

i=1

∫
R3

p(∂xi
θR)(ui) dx = −

∫
BR

∇⃗θR · (pu⃗) dx.

(4.4)
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Thus, with the expressions (4.2), (4.3), and (4.4), we can rewrite equation (4.1) in
the following manner:∫

BR

|(−∆)
α
4 u⃗|2θR dx+

∫
R3

(−∆)
α
4 u⃗ · [(−∆)

α
4 (θRu⃗)− ((−∆)

α
4 u⃗)θR] dx

−
∫
BR

∇⃗θR ·
(
|u⃗|2

2
u⃗

)
dx−

∫
BR

∇⃗θR · (pu⃗) dx = 0,

from which we obtain the equation∫
BR

|(−∆)
α
4 u⃗|2θR dx =

∫
R3

(−∆)
α
4 u⃗ · [((−∆)

α
4 u⃗)θR − (−∆)

α
4 (θRu⃗)] dx

+

∫
BR

∇⃗θR ·
(
|u⃗|2

2
u⃗

)
dx

+

∫
BR

∇⃗θR · (pu⃗) dx.

We recall now that since 0 ≤ θR(x) ≤ 1 and θR(x) = 1, if |x| < R
2 , we have the

estimate ∫
BR

2

|(−∆)
α
4 u⃗|2 dx ≤

∫
BR

|(−∆)
α
4 u⃗|2θR dx,

and we can write∫
BR

2

|(−∆)
α
4 u⃗|2 dx ≤

∫
R3

(−∆)
α
4 u⃗ · [((−∆)

α
4 u⃗)θR − (−∆)

α
4 (θRu⃗)] dx︸ ︷︷ ︸

(Ia)

+

∫
BR

∇⃗θR ·
(
|u⃗|2

2
u⃗

)
dx︸ ︷︷ ︸

(Ib)

+

∫
BR

∇⃗θR · (pu⃗) dx︸ ︷︷ ︸
(Ic)

.

(4.5)

We will now show that (a) lim
R→+∞

Ia = 0, (b) lim
R→+∞

Ib = 0, and (c) lim
R→+∞

Ic = 0.

Indeed:

(a) For the first term above, we write by the Cauchy–Schwarz inequality

Ia =

∫
R3

(−∆)
α
4 u⃗ · [((−∆)

α
4 u⃗)θR − (−∆)

α
4 (θRu⃗)] dx

≤ ∥(−∆)
α
4 u⃗∥L2∥((−∆)

α
4 u⃗)θR − (−∆)

α
4 (θRu⃗)∥L2

≤ ∥u⃗∥
Ḣ

α
2
(∥(−∆)

α
4 (θRu⃗)− ((−∆)

α
4 u⃗)θR − ((−∆)

α
4 θR)u⃗∥L2 + ∥((−∆)

α
4 θR)u⃗∥L2).

We now apply the second point of Lemma 2.3 to obtain the estimate

Ia ≤ ∥u⃗∥
Ḣ

α
2
(∥(−∆)

α1
4 θR∥Lp1 ∥(−∆)

α2
4 u⃗∥Lp2 + ∥((−∆)

α
4 θR)u⃗∥L2),

where α = α1 + α2, 0 < α,α1, α2 < 2, and 1
2 = 1

p1
+ 1

p2
.
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Recall now that we have 0 < α < 2 and that we are assuming in all the cases

stated in Theorem 2 the condition u⃗ ∈ L
6−ϵ
3−α (R3) with 0 < ϵ < 2α, thus by the Hölder

inequality with 1
2 = 2α−ϵ

12−2ϵ +
3−α
6−ϵ we have

Ia ≤ ∥u⃗∥
Ḣ

α
2
(∥(−∆)

α1
4 θR∥Lp1 ∥(−∆)

α2
4 u⃗∥Lp2 + ∥(−∆)

α
4 θR∥

L
12−2ϵ
2α−ϵ

∥u⃗∥
L

6−ϵ
3−α

)

≤ ∥u⃗∥
Ḣ

α
2
(CR−α1

2 + 3
p1 ∥(−∆)

α2
4 u⃗∥Lp2 + CR−α

2 +3 2α−ϵ
12−2ϵ ∥u⃗∥

L
6−ϵ
3−α

),

where we used the properties of the function θR in the last estimate above. Let us
also note that, due to the complex interpolation theory (see [1, Theorem 6.4.5]), we
have

[Ḣ
α
2 , L

6−ϵ
3−α ]ν = Ẇ

α2
2 ,p2 and ∥(−∆)

α2
4 u⃗∥Lp2 = ∥u⃗∥

Ẇ
α2
2

,p2
≤ C∥u⃗∥ν

Ḣ
α
2
∥u⃗∥1−ν

L
6−ϵ
3−α

,

with the relationships

(4.6) α2 = να,
1

p2
=
ν

2
+ (1− ν)

3− α

6− ϵ
for some 0 < ν < 1,

and then we can write

Ia ≤ ∥u⃗∥
Ḣ

α
2
(CR−α1

2 + 3
p1 ∥u⃗∥ν

Ḣ
α
2
∥u⃗∥1−ν

L
6−ϵ
3−α

+ CR−α
2 +3 2α−ϵ

12−2ϵ ∥u⃗∥
L

6−ϵ
3−α

).

But since we have α = α1+α2 and 1
2 = 1

p1
+ 1

p2
, following the conditions (4.6) above,

we obtain that α1 = (1− ν)α and 1
p1

= (1− ν) 2α−ϵ
12−2ϵ and we can write

Ia ≤ C∥u⃗∥
Ḣ

α
2
(R(1−ν)[−α

2 + 6α−3ϵ
12−2ϵ ]∥u⃗∥ν

Ḣ
α
2
∥u⃗∥1−ν

L
6−ϵ
3−α

+R−α
2 + 6α−3ϵ

12−2ϵ ∥u⃗∥
L

6−ϵ
3−α

).

Observe that since 0 < α < 2 and 0 < ϵ < 2α we always have 6α−3ϵ
12−2ϵ <

α
2 and thus all

the powers of the parameter R in the right-hand side above are negative. Moreover,
we have ∥u⃗∥

Ḣ
α
2
< +∞ and ∥u⃗∥

L
6−ϵ
3−α

< +∞, so we obtain

(4.7) lim
R→+∞

Ia = 0.

Remark 4.1. Note that in all the cases α = 1, 1 < α < 2, and 3
5 < α < 1 stated

in Theorem 2, in order to obtain the previous limit (4.7) we only require the infor-

mation u⃗ ∈ L
6−ϵ
3−α (R3) for some 0 < ϵ < 2α and no further conditions are needed

for the parameter ϵ. The conditions (1.7) and (1.8) will appear in the study of the
limits lim

R→+∞
Ib and lim

R→+∞
Ic.

(b) For the second term of (4.5) we recall that θR(x) = 1 if |x| < R
2 and θR(x) = 0

if |x| ≥ R and thus we have

(4.8) supp(∇⃗θR) ⊂
{
x ∈ R3 : R

2 < |x| < R
}
= C

(
R
2 , R

)
,

and with this remark we can write

Ib =

∫
BR

∇⃗θR ·
(
|u⃗|2

2
u⃗

)
dx =

∫
C(R

2 ,R)

∇⃗θR ·
(
|u⃗|2

2
u⃗

)
dx.

In order to study the limit when R → +∞, we decompose our study following the
values of α and the information available. Indeed:
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• If α = 1, we have u⃗ ∈ Ḣ
1
2 (R3) and thus by the Sobolev embeddings we also

have u⃗ ∈ L3(R3), so we can write:

(4.9) Ib ≤ C∥∇⃗θR∥L∞(C(R
2 ,R))∥u⃗∥3L3(C(R

2 ,R))
≤ CR−1∥u⃗∥3

L3(C(R
2 ,R))

,

from which we easily deduce that

lim
R→+∞

Ib = 0.

• If 1 < α < 2, we know by hypothesis that u⃗ ∈ L
6−ϵ
3−α (R3) and recall that

we have in this case the condition (1.7), i.e., 1 + ϵ
3 ≤ α ≤ 5

3 + 2
9ϵ. Thus, if

1 + ϵ
3 < α ≤ 5

3 + 2
9ϵ, by the Hölder inequality with 3α−3−ϵ

6−ϵ + 3
(
3−α
6−ϵ

)
= 1, we

can write

Ib ≤ C∥∇⃗θR∥
L

6−ϵ
3α−3−ϵ (C(R

2 ,R))
∥u⃗∥3

L
6−ϵ
3−α (C(R

2 ,R))

≤ CR−1+3 3α−3−ϵ
6−ϵ ∥u⃗∥3

L
6−ϵ
3−α (C(R

2 ,R))
.

Then if 1 + ϵ
3 < α < 5

3 + 2
9ϵ, the power of the parameter R above is neg-

ative and then the quantity above will tend to 0 if R → +∞. But if α =
5
3 + 2

9ϵ, we have −1 + 3 3α−3−ϵ
6−ϵ = 0; then since u⃗ ∈ L

6−ϵ
3−α (R3), we will have

∥u⃗∥
L

6−ϵ
3−α (C(R

2 ,R))
−−−−−→
R→+∞

0. Finally, if 1 + ϵ
3 = α, then we have L

6−ϵ
3−α (R3) =

L3(R3); moreover, the power of R is negative and equal to −1 and we can
proceed as in (4.9). Thus, in any case we obtain

lim
R→+∞

Ib = 0.

Note that in the case 1 < α < 2 besides the condition 0 < ϵ < 2α we need the
relationship (1.7) between α and ϵ.

• If 3
5 < α < 1, in this case we have the additional condition u⃗ ∈ L

6+ϵ
3−α (R3) with

the relationship 1 − ϵ
3 ≤ α ≤ 5

3 − 2
9ϵ (recall the condition (1.8)). As above, if

1 − ϵ
3 < α ≤ 5

3 − 2
9ϵ, by the Hölder inequality with 3α−3+ϵ

6+ϵ + 3
(
3−α
6+ϵ

)
= 1, we

obtain

Ib ≤ CR−1+3 3α−3+ϵ
6+ϵ ∥u⃗∥3

L
6+ϵ
3−α (C(R

2 ,R))
.

Note that if 1− ϵ
3 < α < 5

3−
2
9ϵ, the power of the parameter R is negative, while if

α = 5
3 −

2
9ϵ, we have −1+3 3α−3+ϵ

6+ϵ = 0, but we have ∥u⃗∥
L

6+ϵ
3−α (C(R

2 ,R))
−−−−−→
R→+∞

0.

Observe also that if α = 1 − ϵ
3 , then L

6+ϵ
3−α (R3) = L3(R3), the power of R is

equal −1 and we can proceed as in (4.9). In any case we have

lim
R→+∞

Ib = 0.

Remark 4.2. Note that when 3
5 < α < 1 we need the information u⃗ ∈ L

6−ϵ
3−α (R3)

with the condition 0 < ϵ < 2α in order to obtain the limit (4.7) for the term Ia, but

we also need the information u⃗ ∈ L
6+ϵ
3−α (R3) with the constraint (1.8) to obtain that

lim
R→+∞

Ib = 0.

Note also that the lower limit 3
5 < α is a consequence of the conditions 1− ϵ

3 ≤ α
and 0 < ϵ < 2α. We recall that these conditions are technical and we do not claim
any optimality on them.



On an almost sharp Liouville-type theorem for fractional Navier–Stokes equations 41

(c) For the last term of (4.5) we write, using the support property (4.8):

Ic =

∫
BR

∇⃗θR · (pu⃗) dx =

∫
C(R

2 ,R)

∇⃗θR · (pu⃗) dx.

The study of this term is very similar to that of the previous one since by Lemma 4.1
we also have some information on the pressure p. Indeed:

• If α = 1, we have u⃗ ∈ Ḣ
1
2 (R3) and thus by the Sobolev embeddings we have

u⃗ ∈ L3(R3) but we also have p ∈ L
3
2 (R3) by Lemma 4.1, and we write

Ic ≤ C∥∇⃗θR∥L∞(C(R
2 ,R))∥p∥L 3

2 (C(R
2 ,R))

∥u⃗∥L3(C(R
2 ,R))

≤ CR−1∥p∥
L

3
2 (R3)

∥u⃗∥L3(R3),
(4.10)

from which we easily deduce that

lim
R→+∞

Ic = 0.

• If 1 < α < 2, we have u⃗ ∈ L
6−ϵ
3−α (R3) and by Lemma 4.1 we have p ∈ L

6−ϵ
6−2α (R3).

If 1 + ϵ
3 < α ≤ 5

3 +
2
9ϵ, by the Hölder inequality with 3α−3−ϵ

6−ϵ + 6−2α
6−ϵ + 3−α

6−ϵ = 1
we obtain

Ic ≤ ∥∇⃗θR∥
L

6−ϵ
3α−3−ϵ (C(R

2 ,R))
∥p∥

L
6−ϵ
6−2α (C(R

2 ,R))
∥u⃗∥

L
6−ϵ
3−α (C(R

2 ,R))

≤ CR−1+3 3α−3−ϵ
6−ϵ ∥p∥

L
6−ϵ
6−2α (C(R

2 ,R))
∥u⃗∥

L
6−ϵ
3−α (C(R

2 ,R))
.

If 1 + ϵ
3 < α < 5

3 + 2
9ϵ, the power of the parameter R is then negative and we

have lim
R→+∞

Ic = 0, while if α = 5
3 + 2

9ϵ, we use the fact that ∥p∥
L

6−ϵ
6−2α (C(R

2 ,R))
,

∥u⃗∥
L

6+ϵ
3−α (C(R

2 ,R))
−−−−−→
R→+∞

0. Now in the case α = 1 + ϵ
3 , we have u⃗ ∈ L3(R3),

p ∈ L
3
2 (R3) and we can proceed as in (4.10). We thus have lim

R→+∞
Ic = 0.

• If 3
5 < α < 1, we have u⃗ ∈ L

6+ϵ
3−α (R3) and by Lemma 4.1 we also have

p ∈ L
6+ϵ

6−2α (R3). As above, if 1 − ϵ
3 < α ≤ 5

3 − 2
9ϵ, by the Hölder inequality

with 3α−3−ϵ
6−ϵ + 6−2α

6−ϵ + 3−α
6−ϵ = 1 we obtain

Ic ≤ CR−1+3 3α−3−ϵ
6−ϵ ∥p∥

L
6−ϵ
6−2α (C(R

2 ,R))
∥u⃗∥

L
6−ϵ
3−α (C(R

2 ,R))
.

Note that if 1− ϵ
3 < α < 5

3−
2
9ϵ, the power of the parameter R is negative, while if

α = 5
3 −

2
9ϵ, we have −1+3 3α−3+ϵ

6+ϵ = 0, but we have ∥u⃗∥
L

6+ϵ
3−α (C(R

2 ,R))
−−−−−→
R→+∞

0.

Observe also that if α = 1 − ϵ
3 , then u⃗ ∈ L

6+ϵ
3−α (R3) = L3(R3) < +∞ by

hypothesis, p ∈ L
3
2 (R3) < +∞ by Lemma 4.1, and we can proceed as in (4.10).

In any case we have lim
R→+∞

Ic = 0.

We have proved that

lim
R→+∞

Ia = 0, lim
R→+∞

Ib = 0, and lim
R→+∞

Ic = 0;

thus, by making R→ +∞ in both sides of inequality (4.5) we easily obtain that

∥u⃗∥
Ḣ

α
2
= 0,

from which we deduce by the Sobolev embeddings that ∥u⃗∥
L

6
3−α

= 0 and we finally

obtain that u⃗ ≡ 0. Theorem 2 is proved.
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5. Proof of Theorem 3

(i) We start by proving the first point of Theorem 3. Recall that in this case we have
5
3 < α < 2. Thus, applying the Leray projector P to the fractional Navier–Stokes

equation and applying the divergence-free condition, we have the equation (−∆)
α
2 u⃗ =

−P(div(u⃗⊗ u⃗)), which can be rewritten as

u⃗ = −P(div(u⃗⊗ u⃗))

(−∆)
α
2

.

Now, for some index σ > 0 that will be defined later, we write

∥(−∆)
σ
2 u⃗∥L2 =

∥∥∥∥(−∆)
σ
2
P(div(u⃗⊗ u⃗))

(−∆)
α
2

∥∥∥∥
L2

≤ C∥(−∆)
σ−α+1

2 (u⃗⊗ u⃗)∥L2 ,

where we used the boundedness properties of the Leray projector in the L2 space. At
this point we apply the product law given in Lemma 2.4 to obtain (since u⃗ ∈ Ḣ

α
2 (R3))

(5.1) ∥(−∆)
σ−α+1

2 (u⃗⊗ u⃗)∥L2 = ∥u⃗⊗ u⃗∥Ḣσ−α+1 ≤ C∥u⃗∥
Ḣ

α
2
∥u⃗∥

Ḣ
α
2
< +∞,

as long as σ − α + 1 = α − 3
2 , from which we deduce that σ = 2α − 5

2 . Now, since

α > 5
3 we have that σ > α

2 . We have thus proved that

∥(−∆)
σ
2 u⃗∥L2 = ∥u⃗∥Ḣσ < +∞,

which is a gain of regularity. By iterating this process we easily obtain that the
solutions of equation (1.6) are smooth.

(ii) We now study the second point of Theorem 3, where we have 1 < α ≤ 5
3 . In this

case, we have u⃗ ∈ Ḣ
α
2 (R3), which does not seem to be enough to obtain a gain of

regularity when applying Lemma 2.4 in estimate (5.1). To circumvent this issue, we
will use the additional hypothesis given by u⃗ ∈ L∞(R3), instead of Lemma 2.4 we use
the Leibniz fractional inequality given in Lemma 2.3, and in (5.1) we write:

∥(−∆)
σ−α+1

2 (u⃗⊗ u⃗)∥L2 ≤ C∥(−∆)
σ−α+1

2 u⃗∥L2∥u⃗∥L∞ ,

which is a finite quantity as long as σ − α + 1 = α
2 , which gives σ = 3

2α − 1. Since

1 < α ≤ 5
3 we have σ > α

2 and we have obtained a gain of regularity as we have proved

that u⃗ ∈ Ḣσ(R3). Again, by iteration we obtain that the solutions of equation (1.6)
are smooth.

Theorem 3 is now proved.
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[9] P. G. Lemarié-Rieusset, The Navier–Stokes Problem in the 21st Century, CRC Press, Boca

Raton, FL, 2016. DOI: 10.1201/b19556.

[10] V. Naibo and A. Thomson, Coifman–Meyer multipliers: Leibniz-type rules and applications to
scattering of solutions to PDEs, Trans. Amer. Math. Soc. 372(8) (2019), 5453–5481. DOI: 10.

1090/tran/7866.
[11] G. Seregin, Liouville type theorem for stationary Navier–Stokes equations, Nonlinearity 29(8)

(2016), 2191–2195. DOI: 10.1088/0951-7715/29/8/2191.

[12] G. Seregin, A Liouville type theorem for steady-state Navier–Stokes equations, Journées
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