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1. Introduction and statement of the main result

Let Ω ⊆ Rd be an arbitrary open set. Denote by A(Ω) the family of all complex
uniformly strictly accretive (also called elliptic) n × n matrix functions on Ω with
L∞ coefficients. That is, the set of all measurable A : Ω → Cd×d for which there
exist λ,Λ > 0 such that for almost all x ∈ Ω we have

Re〈A(x)ξ, ξ〉 > λ|ξ|2, ∀ξ ∈ Cd;(1.1)

|〈A(x)ξ, η〉| 6 Λ|ξ||η|, ∀ξ, η ∈ Cd.(1.2)

Elements of A(Ω) will also more simply be referred to as accretive or elliptic matrices.
For any A ∈ A(Ω) denote by λ(A) the largest admissible λ in (1.1) and by Λ(A) the
smallest Λ in (1.2).

Denote by H1
0 (Ω) the closure of C∞c (Ω) in the Sobolev space H1(Ω) = W 1,2(Ω).

Let V be a closed subspace of H1(Ω) containing H1
0 (Ω), that is,

(1.3) H1
0 (Ω) ⊆ V ⊆ H1(Ω).

Recall that H1
0 (Rd) = H1(Rd); see [1, Corollary 3.19] for a reference.

Furthermore, let V ∈ L1
loc(Ω) be a nonnegative function. We define the operator,

formally denoted by Lu = −div(A∇u) +V u, in the standard manner via sesquilinear
forms; see e.g. [35, Sections 4.1 and 4.7]. Before proceeding, we state that all the
integrals in this paper will be taken with respect to the Lebesgue measure. As the
ambient space we will always take H = L2(Ω).

Let the form a = aA,V = aA,V,V be given by its domain

(1.4) D(a) =

{
u ∈ V ;

∫
Ω

V |u|2 <∞
}

and, for u, v ∈ D(a), the formula

(1.5) a(u, v) :=

∫
Ω

(〈A∇u,∇v〉Cn + V uv̄).
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We define L = LA,V = LA,V,V to be the unbounded, densely defined, closed
operator on L2(Ω), associated with aA,V . See [35, Section 1.2.3] for information about
this construction. So we have∫

Ω

〈Lu, v〉Cn =

∫
Ω

(〈A∇u,∇v〉Cn + V uv̄), ∀u ∈ D(L), v ∈ D(a).

In accordance with Davies [11, 1.8] we call L a generalized Schrödinger operator and
V its potential.

Given ϑ ∈ (0, π), define the (open) sector of angle ϑ by

Sϑ = {z ∈ C \ {0}; |arg z| < ϑ}.

Also set S0 = (0,∞). The basic properties of a are recalled in the following result. Let
ν(A) be the opening angle of the smallest sector whose closure contains the numerical
range of A; see [8, (2.9)] for the definition of ν(A). Surely, the latter was based on the
classical definition of the numerical range [30, p. 267]. The definition of accretivity
implies 0 6 ν(A) 6 arccos(λ/Λ) < π/2 for A ∈ A(Ω). Other notions appearing in the
next statement can be found in [35].

Theorem 1.1. For every φ ∈ R such that |φ| < π/2− ν(A), the form eiφa is densely
defined, sectorial, and closed.

Sectorial forms are automatically accretive and continuous; see e.g. [35, Proposi-
tion 1.8]. Therefore, by [35, Proposition 1.27 and Theorem 1.54], the operator −L
generates on L2(Ω) a strongly continuous semigroup of operators

Tt = TA,Vt = TA,V,Vt = exp(−tL), t > 0,

which is holomorphic and contractive in the sector Sπ/2−ν(A). Hence Tt maps L2(Ω)

into D(L) ⊆ V [23, Theorem II.4.6], and since V ⊆ H1(Ω), the spatial gradient ∇Ttf
is well defined. By [39, p. 72], given f ∈ L2(Ω), we can redefine each Ttf on a set of
measure zero, in such a manner that for almost every x ∈ Ω the function t 7→ Ttf(x)
is real-analytic on (0,∞).

1.1. Special classes of boundary conditions. Here we describe certain classes of
domains V that, on top of (1.3), satisfy additional conditions which will be assumed
throughout the rest of this paper.

We say that the space V ⊂ H1(Ω) is invariant under:

• the function p : C→ C, if u ∈ V implies p(u) := p ◦ u ∈ V ;
• the family P of functions C→ C, if it is invariant under all p ∈P.

Define a function P : C→ C by

(1.6) P (ζ) =

{
ζ; |ζ| 6 1,

ζ/|ζ|; |ζ| > 1.

Thus P (ζ) = min{1, |ζ|} sign ζ, where sign is defined as in [35, (2.2)]:

sign ζ :=

{
ζ/|ζ|; ζ 6= 0,

0; ζ = 0.

Let V be a closed subspace of H1(Ω) containing H1
0 (Ω) and such that

(1.7) V is invariant under the function P.

It is well known (see [35, Proposition 4.11]) that (1.7) is satisfied in these notable
cases which will feature in our bilinear embedding (Theorem 1.4):
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(a) V = H1
0 (Ω),

(b) V = H1(Ω),
(c) V is the closure in H1(Ω) of {u|Ω; u ∈ C∞c (Rd\Γ)}, where Γ is a (possibly

empty) closed subset of ∂Ω.

When V falls into any of the special cases (a)–(c) from Subsection 1.1, we say
that L = LA,V,V is subject to (a) Dirichlet, (b) Neumann, or (c) mixed boundary
conditions.

1.2. The p-ellipticity condition. The concept of p-ellipticity was introduced by
the present authors in [8] as follows.

Given A ∈ A(Ω) and p ∈ (1,∞), we say that A is p-elliptic if ∆p(A) > 0, where

(1.8) ∆p(A) := ess inf
x∈Ω

min
ξ∈Cd
|ξ|=1

Re〈A(x)ξ, ξ + |1− 2/p|ξ̄〉Cd .

Equivalently, A is p-elliptic if there exists C = C(A, p) > 0 such that for a.e. x ∈ Ω,

(1.9) Re〈A(x)ξ, ξ + |1− 2/p|ξ̄〉Cd > C|ξ|2, ∀ξ ∈ Cd.

It follows straight from (1.8) that ∆p is invariant under conjugation of p, meaning
that ∆p(A) = ∆q(A) when 1/p+ 1/q = 1.

The concept of p-ellipticity generalizes the notion of ellipticity [15]. Indeed, the
number ∆p(A) describes the interplay between the matrix A and the Lebesgue expo-
nent p, which is “hidden” in the classical notion of ellipticity, as the latter corresponds
to taking p = 2. Namely, ∆2(A) = λ(A). On the other hand, for any fixed p > 2,
the class of complex p-elliptic matrices is strictly smaller than the class of all elliptic
matrices. Thus when p > 2, the condition of p-ellipticity at the same time strengthens
the classical ellipticity condition.

Denote by Ap(Ω) the class of all p-elliptic matrix functions on Ω. It is known, see
[8], that {Ap(Ω); p ∈ [2,∞)} is a decreasing chain of matrix classes such that

{elliptic matrices on Ω} = A2(Ω),

{real elliptic matrices on Ω} =
⋂

p∈[2,∞)

Ap(Ω).

Since we will be dealing with pairs of matrices, it is useful to introduce further nota-
tion, as in [8, 7]:

∆p(A,B) = min{∆p(A),∆p(B)},
λ(A,B) = min{λ(A), λ(B)},
Λ(A,B) = max{Λ(A),Λ(B)}.

While the present authors were preparing [8], M. Dindoš and J. Pipher were work-
ing on their own article [13]. They found a sharp condition, see [13, (1.3)], which
implies reverse Hölder inequalities for weak solutions of elliptic operators in diver-
gence form with complex coefficients. It turned out that their condition, devised in-
dependently of [8], namely, as a strengthening of [10, (2.25)], was exactly equivalent
to (1.9). The same authors have since then been successfully continuing their line of
exploration of p-ellipticity in PDEs; see their recent papers [14, 12].

The notion of p-ellipticity emerged in [8] after several years of gradually distilling
the Bellman-function-heat-flow method (see Subsection 3.2), initiated in [36, 41],
through [18, 19, 17, 5, 6, 4]. More information about the genesis of p-ellipticity can
be found in [8, 9].
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1.3. Semigroup properties on Lp. Our first result is Theorem 1.2. It generalizes
the implication (a) ⇒ (b) of [8, Theorem 1.3]. See also [7, Proposition 1], where it
was proven in special cases (a)–(c) from Subsection 1.1, and φ = 0, V = 0. The proof
of Theorem 1.2 is a modification of the one from [8], the main difference being that
instead of [35, Theorem 4.7] we now use a more general result [35, Theorem 4.31]. In
all of those cases, we build on a criterion by Nittka (Theorem 2.2). Assuming again
that φ = 0, V = 0, and V is one of the special cases (a)–(c) from Subsection 1.1, a
proof of Theorem 1.2 different from the one above, yet still resting on Nittka’s theorem,
was recently found by Egert [20, Proposition 13]. Compare also with theorems by ter
Elst et al. [22, 21].

Theorem 1.2. Choose p > 1, A ∈ A(Ω), φ ∈ R, such that |φ| < π/2 − ν(A) and
∆p(e

iφA) > 0, and a nonnegative V ∈ L1
loc(Ω). Then, for every V satisfying (1.7),

(e−te
iφLA,V,V )t>0

extends to a contractive semigroup on Lp(Ω).

The next corollary extends [7, Lemma 17].

Corollary 1.3. Choose p > 1, A ∈ Ap(Ω), and a nonnegative V ∈ L1
loc(Ω). Let V

satisfy (1.7). Then there exists ϑ = ϑ(p,A) > 0 such that if |1−2/r| 6 |1−2/p|, then
{TA,Vz ; z ∈ Sϑ} is holomorphic and contractive in Lr(Ω).

The proofs of these results will be given in Section 2.

1.4. Main result: the bilinear embedding theorem for pairs of complex p-el-
liptic operators with mixed boundary conditions. In this section we assume
boundary conditions that are less general than those from our contractivity result
(Theorem 1.2). Namely, we take pairs V , W which are of the form (a)–(c) from Sub-
section 1.1. We needed this restriction in order to tackle technical issues which arise
in the proof of this note’s main result, the dimension-free bilinear embedding theorem
which we formulate next.

Theorem 1.4. Choose p > 1. Let q be its conjugate exponent, i.e., 1/p + 1/q = 1.
Suppose that A,B ∈ Ap(Ω) > 0. Let V,W ∈ L1

loc(Ω) be nonnegative. Assume that the
operators LA,V,V and LB,W,W are subject to Dirichlet, Neumann, or mixed boundary
conditions, cf. (a)–(c) from Subsection 1.1.

There exists C > 0 such that for any f, g ∈ (Lp ∩ Lq)(Ω) we have∫ ∞
0

∫
Ω

√
|∇TA,V,Vt f |2 + V |TA,V,Vt f |2

√
|∇TB,W,Wt g|2 +W |TB,W,Wt g|2 6 C‖f‖p‖g‖q.

We may choose C > 0 which depends on p, A, B, but not on the dimension d nor on
the potentials V , W .

This result incorporates several earlier theorems as special cases, including:

• V = W , Ω = Rd, A = B equal and real [18, Theorem 1],
• V = W = 0, Ω = Rd [8, Theorem 1.1],
• V = W = 0 [7, Theorem 2].

See also [19, Theorem 1] for a variant with A = B = I, V = W , Ω = Rd, and
involving the semigroup generated by the square root of the operator L. This variant
also bore consequences in the shape of dimension-free Lp estimates of Riesz trans-
forms associated with the harmonic oscillator (Hermite operator), which are optimal
with respect to p; see [19, Corollary 1]. The difficulty that we encounter in this pa-
per is the generality of the setting in terms of domains (Ω), matrices (A,B), and
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potentials (V,W ), which requires significantly more effort in order to complete the
proof.

Various types of bilinear embeddings have been proven in the last 20 years, often
admitting important consequences, such as Riesz transform estimates and optimal
holomorphic functional calculus. The present authors’ efforts aimed at proving bilin-
ear embedding as in [8, Theorem 1.1] eventually gave rise to the concept of p-ellipticity
summarized in Subsection 1.2. See [9] and the above references for more historical
background and motivation. We also remark that p-ellipticity is the sharp condition
for dimension-free bilinear embeddings; see [8, Section 1.4] for a precise statement.

Finally we remark that one of the natural ways to extend the present work is to
investigate bilinear embeddings for elliptic operators L with first-order terms. This
was recently done by A. Poggio [37]. In order to run the argument in that context,
one needs to adequately extend the p-ellipticity condition so as to take into account
the presence of first-order perturbations.

2. Proof of Theorem 1.2

We first recall the notion of Lp-dissipativity of sesquilinear forms. It was introduced
by Cialdea and Maz’ya in [10, Definition 1] for the case of forms defined on C1

c (Ω) and
associated with complex matrices. In [8, Definition 7.1] the present authors extended
their definition as follows.

Definition 2.1. Let X be a measure space, b a sesquilinear form defined on the
domain D(b) ⊂ L2(X), and 1 < p <∞. Denote

Dp(b) := {u ∈ D(b); |u|p−2u ∈ D(b)}.

We say that b is Lp-dissipative if

Re b(u, |u|p−2u) > 0, ∀u ∈ Dp(b).

The following theorem is due to Nittka [33, Theorem 4.1]. We remark that Nittka
formulated his result for sectorial forms, but it seems that sectoriality is not needed
for our version of his result, since it is not needed for Ouhabaz’s criterion [35, Theo-
rem 2.2], on which Nittka’s own criterion is based. Of course, the forms we are dealing
with in this paper are all sectorial anyway.

Theorem 2.2. Let (Ω, µ) be a measure space. Suppose that the sesquilinear form a
on L2 = L2(Ω, µ) is densely defined, accretive, continuous, and closed. Let L be the
operator associated with a in the sense of [35, Section 1.2.3].

Take p ∈ (1,∞) and define Bp := {u ∈ L2 ∩ Lp; ‖u‖p 6 1}. Let PBp be the
orthogonal projection L2 → Bp. Then the following assertions are equivalent:

(i) ‖exp(−tL)f‖p 6 ‖f‖p for all f ∈ L2 ∩ Lp and all t > 0;
(ii) D(a) is invariant under PBp and a is Lp-dissipative.

Define for p > 1 the operator Ip : Cn → Cn by

(2.1) Ipξ = ξ + (1− 2/p)ξ̄.

Observe that Ip appears in (1.8) and (1.9).
The formula below already appeared in [8, (7.5)], where it was considered under

the assumptions f, |f |p−2f ∈ H1
0 (Ω). Here we need a stronger version that we state

next. For the reader’s convenience, we prove it in Appendix B; see Corollary B.4 and
Remark B.5.
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Lemma 2.3. Suppose that p > 1 and that f and |f |p−2f belong to H1
loc(Ω). Then

(2.2) ∇(|f |p−2f) =
p

2
|f |p−2 sign f · Ip(sign f̄ · ∇f).

Consequently,

(2.3) |∇(|f |p−2f)| ∼ |f |p−2|∇f |.

Hence, for f , p as in Lemma 2.3 and any B ∈ A(Ω) we have

(2.4) 〈B∇f,∇(|f |p−2f)〉Cd =
p

2
|f |p−2〈B(sign f̄ · ∇f), Ip(sign f̄ · ∇f)〉Cd .

Note the symmetric structure of the inner product above, which is expressed in the
appearance of (sign f̄)∇f in both factors.

Taking real parts and recalling (1.8) and (2.1) we conclude

(2.5) Re〈B∇f,∇(|f |p−2f)〉Cd >
p

2
∆p(B)|f |p−2|∇f |2.

This inequality will be eventually used in the proof of Theorem 1.2.

Remark 2.4. In view of Lemma 2.3 it does not come as a surprise that the auxiliary
operator Ip is also a part of the Hessian of |ζ|p. More precisely, we have the following
formula, valid for ζ ∈ C\{0}, ξ ∈ Cd, which is a reformulation of [8, (5.5)]:

d2Fp(ζ)ξ =
p2

2
|ζ|p−2 sign ζ · Ip(sign ζ̄ · ξ).

Here Fp(ζ) = |ζ|p and d2Fp(ζ) is the Hessian of Fp, calculated at ζ ∈ C ≡ R2 and
applied to ξ ∈ Cd ≡ Rd × Rd. Let us reveal the underlying connections further.

An expression akin to (2.4) appears when one differentiates with respect to t the
integral of |exp(−tLB)ϕ|p and then integrates by parts. Indeed, this gives

−
∫

Ω

d

dt
|e−tLBϕ|p = Re

∫
Ω

〈B∇f, 2∇[(∂z̄Fp)(f)]〉Cd with f = e−tLBϕ.

Furthermore, one checks that

(2.6) 2∇[(∂z̄Fp)(f)] = [d2Fp(f)⊗ IRd ]∇f.

At this point observe that 2(∂z̄Fp)(f) = p|f |p−2f and recall Lemma 2.3.

Proof of Theorem 1.2: We will use Nittka’s invariance criterion (Theorem 2.2). Under
our assumptions on φ, the form b := eiφa falls into the framework of Nittka’s criterion,
by Theorem 1.1. The operator associated with b is eiφLA,V .

In order to apply Theorem 2.2, we must check the following:

(a) D(b) = D(a) is invariant under PBp ;
(b) b is Lp-dissipative.

Let us start with (a). Let−∆+V denote the operator associated with the form aI,V,V.
By the basic assumption (1.7) and [35, Theorem 4.312)], the semigroup

(e−t(−∆+V ))t>0

is contractive on L∞(Ω), and thus, by interpolation with the L2-estimates, on Lp(Ω)
for all p ∈ [1,∞]. Hence Nittka’s Theorem 2.2 gives that D(aI,V,V ) is invariant un-
der PBp . Now use that D(aI,V,V ) = D(a) = D(b).
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The statement (b) follows from the (weak) p-ellipticity of eiφA virtually without
changing the argument from [8]. Indeed, if u ∈ Dp(b), we get from (2.5), applied
with B = eiφA, that

Re b(u, |u|p−2u) = Re〈eiφA∇u,∇(|u|p−2u)〉L2(Ω) + cosφ

∫
Ω

V |u|p

is a sum of two nonnegative terms.

Proof of Corollary 1.3: By the continuity of ε 7→ ∆r(e
iεA), see [8, Section 5.4], and

monotonicity and symmetry properties of r 7→ ∆r(e
iεA), see [8, Corollary 5.16 and

Proposition 5.8], there exists ϑ = ϑ(p,A) > 0 such that ∆r(e
iεA) > 0 for all ε ∈

[−ϑ, ϑ] and all r > 1 satisfying |1−2/r| 6 |1−2/p|. The contractivity part now follows

from Theorem 1.2 and the relation TA,Vteiε = exp(−teiεLA,V ), whereupon analyticity is
a consequence of a standard argument [23, Theorem II.4.6].

3. Proof of Theorem 1.4

In proving Theorem 1.4 we will combine and enhance the following tools:

• contractivity and analyticity properties of the semigroups Tt on Lp [8],
• convexity properties of the appropriate Bellman function [19, 18, 5, 8],
• analysis of the heat flow associated with the regularized Bellman function [5,

8, 7].

The first item was already settled in Theorem 1.2. We treat the remaining two
main steps in separate sections as follows.

3.1. Bellman function. Unless specified otherwise, we assume everywhere in this
section that p > 2 and q = p/(p− 1). Let δ > 0. The Bellman function we use is the
function Q = Qp,δ : C× C→ R+ defined by

(3.1) Q(ζ, η) := |ζ|p + |η|q + δ


|ζ|2|η|2−q; |ζ|p 6 |η|q,

2

p
|ζ|p +

(
2

q
− 1

)
|η|q; |ζ|p > |η|q.

This function is due to Nazarov and Treil. See [8] or [7] for an up-to-date account on
previous appearances of Q in the literature.

It is a direct consequence of the above definition that the function Q belongs
to C1(C2) and is of order C2 everywhere except on the set

Υ = {(ζ, η) ∈ C× C; (η = 0) ∨ (|ζ|p = |η|q)}.
We shall use the notation from [8, Section 2.2] to denote the generalized Hes-

sians H
(A,B)
Q [v;ω] and HA

F [ζ; ξ]. Vaguely speaking, if N ∈ N, σ is a N -tuple of com-

plex numbers, X a N -tuple of vectors from Cd, A a N -tuple of matrices from Cd×d,
and Φ: CN → R is of class C2, then one has

HA
Φ [σ;X] = 〈d2Φ(σ)X,AX〉(Cd)N .

In comparison with the exact definition [8] we have omitted here the tensorization of
the Hessian d2Φ(ω) with the d×d identity matrix, as well as appropriate identifications
of complex objects (vectors, matrices) with their real counterparts.

This is a stronger version of [8, Theorem 5.2] suited for potentials. It evokes [19,
Theorem 3], where similar properties of Q were proven, also for the purpose of treating
Schrödinger operators. The main distinction is that here we treat arbitrary complex
matrix functions A, B, while in [19, Theorem 3] we only addressed the case A = B ≡
I. The reader is also referred to [16].
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Theorem 3.1. Choose p > 2 and A,B ∈ Ap(Ω). Then there exists a continuous
function τ : C2 → [0,+∞) such that τ−1 = 1/τ is locally integrable in C2 and con-
tinuous on C2 \ {(0, 0)}, and δ ∈ (0, 1) such that Q = Qp,δ as in (3.1) admits the
following properties:

(i) for any v = (ζ, η) ∈ C2 \Υ, ω = (ω1, ω2) ∈ Cd × Cd, and a.e. x ∈ Ω, we have

H
(A(x),B(x))
Q [v;ω] & τ |ω1|2 + τ−1|ω2|2;

(ii) for any (ζ, η) ∈ C2, we have

(∂ζQ)(ζ, η) · ζ & τ |ζ|2 and (∂ηQ)(ζ, η) · η & τ−1|η|2.

The implied constants depend on A, B, and p, but not on the dimension d.
We may take τ(ζ, η) = max{|ζ|p−2, |η|2−q}.

Remark 3.2. It seems that, for arbitrary functions, the first property in general does
not imply the second one with the same τ , even in the case A = B ≡ I. See [19,
Section 2.2].

In order to prove Theorem 3.1 we start with a pair of elementary equivalences
which are variants of [8, Lemma 5.24].

Lemma 3.3. Suppose that α, β, γ ∈ R. The following statements are equivalent:

(i) There exists τ > 0 such that αx2 − 2βxy + γy2 > τx2 + τ−1y2 for all x, y ∈ R;

(ii) α, γ > 0 and
√
αγ − |β| > 1.

Proof: (i) ⇒ (ii): By taking x 6= 0 = y and x = 0 6= y we get

(3.2) α > τ >
1

γ
> 0.

The assumption (i) implies that αx2 − 2βxy + γy2 > 2|xy| and hence

αx2 + γy2 > 2(|β|+ 1)|xy|, ∀x, y ∈ R.

Dividing by y2 and writing t = |x/y| we get

αt2 − 2(|β|+ 1)t+ γ > 0, ∀t > 0.

Clearly the above inequality is then also valid for t 6 0, and thus for all t ∈ R. Of
course, this is possible if and only if (|β|+ 1)2 − αγ 6 0.

(ii) ⇒ (i): Define τ :=
√
α/γ. Our assumption implies (3.2). Then for any x, y ∈ R

we have

αx2−2βxy+γy2−τx2−τ−1y2 = (α− τ)x2 + (γ − τ−1)y2 − 2βxy

> 2
√

(α− τ)(γ − τ−1)|xy| − 2|β||xy|

=
2|xy|√

(α− τ)(γ − τ−1) + |β|
((α− τ)(γ − τ−1)− β2).

Since

(α− τ)(γ − τ−1)− β2 = (
√
αγ − 1)2 − β2 > 0,

our proof is complete.
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Corollary 3.4. Suppose a, b, c ∈ R. The following conditions are equivalent:

(i) there exist C, τ > 0 such that ax2−2bxy+cy2 > C(τx2+τ−1y2) for all x, y ∈ R;
(ii) a, c > 0 and ac− b2 > 0.

In this case the largest admissible choice for C is C =
√
ac − |b|. Moreover, we may

take τ =
√
a/c.

Proof: Divide the inequality from the first statement by C and use Lemma 3.3.

Proof of Theorem 3.1: We follow, and adequately modify, the proof of [8, Theo-
rem 5.2], which was in turn modeled after the proofs of [19, Theorem 3], [5, Theo-
rem 15], and [6, Theorem 5.2]. We shall be using the notation Fp(ζ) = |ζ|p for ζ ∈ C,
introduced on page 88.

Let us start with the case p = 2. In this special case the Bellman function reads

(3.3) Q(ζ, η) = (1 + δ)F2(ζ) + F2(η) for all ζ, η ∈ C.

Therefore, by [8, Lemma 5.6],

H
(A,B)
Q [v;ω] = (1 + δ)HA

F2
[ζ;ω1] +HB

F2
[η;ω2]

= 2(1 + δ) Re〈Aω1, ω1〉+ 2 Re〈Bω2, ω2〉
> 2λ(A,B)(|ω1|2 + |ω2|2).

(3.4)

On the other hand, trivial calculations show that

(3.5) if Φ = Fr ⊗ Fs with r, s > 0, then

{
(∂ζΦ)(ζ, η) · ζ = (r/2)Φ(ζ, η),

(∂ηΦ)(ζ, η) · η = (s/2)Φ(ζ, η).

Thus by keeping in mind (3.3) and applying (3.5) separately with (r, s) = (2, 0) and
(r, s) = (0, 2), we arrive at

(∂ζQ)(ζ, η) · ζ = (1 + δ)|ζ|2,
(∂ηQ)(ζ, η) · η = |η|2.

(3.6)

By combining (3.4) and (3.6) we prove the theorem in the case p = 2 with τ = 1.

Now consider the case p > 2. Denote u = |ζ|, v = |η|, A = |ω1|, B = |ω2|. Recall
the notation (1.8). We divide C2\Υ into two natural subdomains in which we analyze
the gradients and Hessians of Q separately.

First assume that up > vq > 0 . Then, by [8, proof of Theorem 5.2, p. 3205 top],

H
(A,B)
Q [v;ω] >

pq∆p(A,B)

2
[(p− 1)up−2A2 + (q − 1)vq−2B2].

So in this case we may take τ = (p− 1)up−2, as in [19, proof of Theorem 3].
Regarding the last pair of estimates, since here Qp,δ is a linear combination of

functions Fp ⊗ F0 and F0 ⊗ Fq, it follows from (3.5) that, similarly to (3.6),

(∂ζQ)(ζ, η) · ζ = C1(p, δ)|ζ|p,
(∂ηQ)(ζ, η) · η = C2(p, δ)|η|q.

Therefore, since vq−2 > u2−p > 0, with τ = (p− 1)up−2 we get

(∂ζQ)(ζ, η) · ζ = C̃1(p, δ)τ |ζ|2,

(∂ηQ)(ζ, η) · η > C̃2(p, δ)τ−1|η|2.
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Suppose now that up < vq . Extend the definition (1.8) to all p ∈ (0,∞]. Then, as
in [8, proof of Theorem 5.2],

H
(A,B)
Q [v;ω] > 2δ

(
λ(A)v2−qA2 − 2(2− q)Λ(A,B)AB +

Γ

4
vq−2B2

)
,

where

Γ =
q2∆q(B)

δ
+ (2− q)2∆2−q(B).

Since ∆p(B) > 0, we have that Γ grows to infinity as δ ↘ 0. Since we also have
λ(A) > 0, there exists δ = δ(p,A,B) > 0 such that

λ(A)Γ

4
> [(2− q)Λ(A,B)]2,

which through Corollary 3.4 implies the existence of τ > 0 that accommodates the
first requirement of Theorem 3.1. Moreover, we may take τ = Dv2−q, where D =
2
√
λ(A)/Γ.

Now consider the gradient estimates. In the domain {up < vq} we have

Q = Fp ⊗ F0 + F0 ⊗ Fq + δF2 ⊗ F2−q.

Again (3.5) implies that with (the above chosen) τ = Dv2−q we get

(∂ζQ)(ζ, η) · ζ =
p

2
|ζ|p + δ|ζ|2|η|2−q > δ|η|2−q|ζ|2 >

δ

D
τ |ζ|2,

(∂ηQ)(ζ, η) · η =
q

2
|η|q + δ · 2− q

2
|ζ|2|η|2−q > q

2
|η|q−2|η|2 >

Dq

2
τ−1|η|2.

This finishes the proof of the theorem.

Identification operators. We will explicitly identify Cd with R2d. For each d ∈ N
consider the operator Vd : Cd → Rd × Rd, defined by

Vd(α+ iβ) = (α, β).

One has, for all z, w ∈ Cd,

Re〈z, w〉Cd = 〈Vd(z),Vd(w)〉R2d .

If (ω1, ω2) ∈ Cd × Cd, then V2d(ω1, ω2) = (Reω1,Reω2, Imω1, Imω2) ∈ (Rd)4. On
Cd × Cd define another identification operator, W2d : Cd × Cd → (Rd)4, by

W2d(ω1, ω2) = (Vd(ω1),Vd(ω2)) = (Reω1, Imω1,Reω2, Imω2).

When the dimensions of the spaces on which the identification operators act are
clear, we will sometimes omit the indices and instead of Vn, Wm only write V, W.
For example,

W(ζ, η) = (V(ζ),V(η)), ∀ζ, η ∈ C.

For functions Φ on spaces Ck we will sometimes use their “pullbacks” defined
on R2k, namely

ΦV = Φ ◦ V−1 or ΦW = Φ ◦W−1.
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Regularization of Q. Denote by ∗ the convolution in R4 and let (ϕκ)κ>0 be a
nonnegative, smooth, and compactly supported approximation of the identity on R4.
Explicitly, ϕκ(y) = κ−4ϕ(y/κ), where ϕ is smooth, nonnegative, radial, of integral 1,
and supported in the closed unit ball in R4. If Φ: C2 → R, define Φ ∗ ϕκ = (ΦW ∗
ϕκ) ◦W : C2 → R. Explicitly, for v ∈ C2,

(Φ ∗ ϕκ)(v) =

∫
R4

ΦW(W(v)− y)ϕκ(y) dy

=

∫
R4

Φ(v −W−1(y))ϕκ(y) dy.

(3.7)

Now we can formulate a version of Theorem 3.1 for the mollifications Q ∗ ϕκ, in
the fashion of [19, Theorem 4]. It also strengthens [8, Corollary 5.5].

Theorem 3.5. Choose p > 2 and A,B ∈ Ap(Ω). Let δ ∈ (0, 1) and τ : C2 → [0,∞)
be as in Theorem 3.1. Then for Q = Qp,δ as in (3.1) and any v = (ζ, η) ∈ C2 we have,
for a.e. x ∈ Ω and every ω = (ω1, ω2) ∈ Cd × Cd,

(3.8) H
(A(x),B(x))
Q∗ϕκ [v;ω] & (τ ∗ ϕκ)(v) · |ω1|2 + (τ−1 ∗ ϕκ)(v) · |ω2|2,

with the implied constant depending on A, B, and p, but not on the dimension d.

Proof: As in [8, proof of Corollary 5.5] we obtain, for v ∈ C2, ω ∈ Cd×Cd, and κ > 0,

H
(A,B)
Q∗ϕκ [v;ω] =

∫
R4

H
(A,B)
Q [v −W−1(y);ω]ϕκ(y) dy.

The first estimate of Theorem 3.1 now gives

H
(A,B)
Q∗ϕκ [v;ω] &

∫
R4

(τ(v −W−1(y))|ω1|2 + τ−1(v −W−1(y))|ω2|2)ϕκ(y) dy.

By recalling the convention (3.7), we see that we just obtained (3.8).

3.2. Heat flow. As announced before, we prove the bilinear embedding by means
of a heat flow technique applied to the Nazarov–Treil function Q. We follow the
outline of the method in [8, 7], where we proved the theorem for V = W = 0. The
presence of nonzero potentials, considered in this paper, calls for settling a couple of
technical problems which do not appear in the homogeneous case. As a historical note
we mention that the early versions of the heat flow method associated with Bellman
functions go back to the papers by Petermichl–Volberg [36] and Volberg–Nazarov [41].

Proving bilinear embedding on arbitrary open sets Ω [7], as opposed to proving
it for Ω = Rd [8], requires a major modification of the heat flow argument. See [7,
Section 1.4] for an explanation. The gist of the problem is to justify integration by
parts, which was overcome in [7] by approximating Q by a specifically constructed
sequence of functions; see [7, Theorem 16].

For f, g ∈ (Lp ∩ Lq)(Ω) and A,B ∈ A(Ω) define

E(t) =

∫
Ω

Q(TA,V,Vt f, TB,W,Wt g), t > 0.

Known estimates of Q and its gradient [4, Theorem 4] and the analyticity of (TAt )t>0

and (TBt )t>0 (see Theorem 1.2) imply that E is continuous on [0,∞) and differentiable
on (0,∞) with a continuous derivative. As in our previous works involving heat flow,
our aim is to prove two-sided estimates of

(3.9) −
∫ ∞

0

E′(t) dt,

which will then, in a by now familiar Bellman-heat fashion (see e.g. [8, 7] and the
references there) merge into bilinear embedding.
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Regarding the upper estimates of (3.9), we use upper pointwise estimates on Q

(see, for example, [8, Proposition 5.1]) to get

(3.10) −
∫ ∞

0

E′(t) dt 6 E(0) . ‖f‖p + ‖g‖q.

Now we turn to lower estimates. For

(3.11) (v, w) = (TA,V,Vt f, TB,W,Wt g)

we have, by Corollary 1.3, that v, w ∈ Lp ∩ Lq and

(3.12) − E′(t) = 2 Re

∫
Ω

(〈(∂ζ̄Q)(v, w), LA,V v〉C + 〈(∂η̄Q)(v, w), LB,Ww〉C).

See [7, Section 6.1] for more details on how to justify (3.12).

3.3. Special case: bounded potentials. First we prove the bilinear embedding
under the additional assumption that V , W are (nonnegative and) essentially bounded.
In that case, D(LA,V ) = D(LA,0) and for u ∈ D(LA,V ) we have

LA,V u = LA,0u+ V u

and the same for B and W . Consequently, (3.12) gives

(3.13) − E′(t) = I1 + I2,

where

I1 = 2 Re

∫
Ω

(〈(∂ζ̄Q)(v, w), LA,0v〉C + 〈(∂η̄Q)(v, w), LB,0w〉C),

I2 = 2

∫
Ω

[V (∂ζQ)(v, w) · v +W (∂ηQ)(v, w) · w].

The integral I2 is absolutely convergent by the upper pointwise estimates of the gradi-
ent of Q (see, for example, [8, Proposition 5.1]), Hölder’s inequality, the contractivity
of the semigroups from (3.11) on Lp and Lq, respectively (cf. Theorem 1.2), and the
assumption that V,W ∈ L∞(Ω).

We will estimate the terms I1, I2 separately.

3.3.1. Estimate of I1. As in [7, Section 6.1, p. 23] we get

I1 > lim inf
κ↘0

∫
Ω

H
(A,B)
Q∗ϕκ [(v, w); (∇v,∇w)].

(It is here that we needed to restrict the choice of V , W to (a)–(c) from Subsection 1.1.
Besides, let us remark that this step entails integration by parts referred to on page 93;
see also [7, Section 2.4] for a clarification of the notion of integration by parts as
perceived in this paper.)

Next we apply Theorem 3.5 for

I1 & lim inf
κ↘0

∫
Ω

[(τ ∗ ϕκ)(v, w) · |∇v|2 + (τ−1 ∗ ϕκ)(v, w) · |∇w|2].

Now, since both τ and τ−1 are continuous on C2 \ {(0, 0)} (see Theorem 3.1), Fatou’s
lemma implies

I1 &
∫

Ω\{v=0, w=0}
[τ(v, w) · |∇v|2 + τ(v, w)−1 · |∇w|2].
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3.3.2. Estimate of I2. Using that V , W are nonnegative, we get from Theorem 3.1

I2 &
∫

Ω\{v=0, w=0}
(τ(v, w) · V |v|2 + τ(v, w)−1 ·W |w|2).

The last two estimates, along with (3.13) and the fact that for u ∈ H1(Ω) we have
∇u = 0 almost everywhere on {u = 0}, yield

(3.14) − E′(t) &
∫

Ω

√
|∇v|2 + V |v|2

√
|∇w|2 +W |w|2.

3.3.3. Summary. By merging (3.10) and (3.14) we get∫ ∞
0

∫
Ω

√
|∇TA,V,Vt f |2 + V |TA,V,Vt f |2

√
|∇TB,W,Wt g|2 +W |TB,W,Wt g|2 dx dt

. ‖f‖p + ‖g‖q.

Now use the standard trick and replace f by µf and g by µ−1g, with µ > 0, and
minimize in µ. This finishes the proof of Theorem 1.4 in the case of bounded V , W .

3.4. General case: unbounded potentials. Theorem 1.4 will follow from the spe-
cial case of bounded potentials already proven in Subsection 3.3, once we prove the
following approximation result.

Let U ∈ L1
loc(Ω) be a nonnegative function. For each n ∈ N define

Un := min{U, n}.

We also set U∞ = U .

Theorem 3.6. For all f ∈ L2(Ω), A ∈ A(Ω), U ∈ L1
loc(Ω), and all t > 0 we have

∇TA,Unt f → ∇TA,Ut f in L2(Ω;Cd),

U1/2
n TA,Unt f → U1/2TA,Ut f in L2(Ω),

as n→∞.

The proof will be given in page 99. First we need a few technical results.

Notation 3.7. Until the end of this chapter we will work with a single matrix func-
tion A. Therefore, in order to make the text more readable, we will from now on omit A
in the notation for the operators and semigroups. For example, we will write TUt in-

stead of TA,Ut and LU instead of LA,U .

Recall that ν(A) was defined on page 84. It then follows from the positivity of U
and the estimate [35, (1.26)] that the operators LUn , n ∈ N ∪ {∞}, are uniformly
sectorial of angle ν = ν(A) in the sense that

(3.15) ‖(ζ − LUn)−1‖2 6
1

dist(ζ,Sν)
, ∀ζ ∈ C \ Sν .

We will use the next lemma, whose proof is based on an idea of Ouhabaz [34] that
we learnt from [3].

Lemma 3.8. For all f ∈ L2(Ω) and all s > 0 we have

(3.16) (s+ LUn)−1f → (s+ LU )−1f in L2(Ω), as n→∞.
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Sketch of the proof: The proof is based on the argument presented in [3, pp. 19–20].
Let us outline the main steps.

Recall the definitions (1.4) and (1.5) and consider the sesquilinear forms a = aU
and an := aUn . We define operations on forms as in [30, Chapter VI, §1.1]. For z ∈ C
and n ∈ N denote

az := Re a + z Im a,

an,z := Re an + z Im an.

Note that a = ai. Set δ = δ(A) = cot ν(A) and O := {z ∈ C; |Re z| < δ}. It can be
shown that if z ∈ O, then az and an,z are closed sectorial forms.

Let Lz and Ln,z be the operators associated with az and an,z, respectively. For z ∈
O and s > 0, the operator s+Lz is invertible and ‖(s+Lz)

−1f‖2 6 ‖f‖2/s, cf. (3.15).
A theorem by Kato [30, p. 395], see also [40], shows that z 7→ (s+Lz)

−1 is holomorphic
as a map from O to the space of bounded linear operators on L2(Ω). The same holds
for the map z 7→ (s+ Ln,z)

−1.
A monotone convergence theorem for sequences of symmetric sesquilinear forms

(see [30, Theorem 3.13a, p. 461] and [38, Theorem 3.1]) gives that for every s > 0,
z ∈ (−δ, δ), and f ∈ L2(Ω) we have

(s+ Ln,z)
−1f → (s+ Lz)

−1f in L2(Ω), as n→∞.

A vector-valued version of Vitali’s theorem ([2, Theorem A.5]) implies that (s +
Ln,z)

−1f → (s+ Lz)
−1f for all z ∈ O, and (3.16) follows by taking z = i.

Proposition 3.9. For all f ∈ L2(Ω) and all ζ ∈ C \ Sν we have

(ζ − LUn)−1f → (ζ − LU )−1f in L2(Ω),(3.17)

∇(ζ − LUn)−1f → ∇(ζ − LU )−1f in L2(Ω;Cd),(3.18)

U1/2
n (ζ − LUn)−1f → U1/2(ζ − LU )−1f in L2(Ω),(3.19)

as n→∞.

Proof: Recall the notation U∞ = U . Fix f ∈ L2(Ω). For n ∈ N∪{∞} and ζ ∈ C \Sν
set

un(ζ) := (LUn − ζ)−1f ∈ D(LUn) ⊆ V ⊆ H1(Ω).

By ellipticity of A, for every n ∈ N ∪ {∞} and ζ ∈ C \ Sν we have

λ‖∇un‖22 + ‖U1/2
n un‖22 6 Re

∫
Ω

[〈A∇un,∇un〉+ Ununun]

= Re

∫
Ω

(LUnun)un

= Re

∫
Ω

fun + (Re ζ)

∫
Ω

|un|2

6 ‖f‖2‖un‖2 + |Re ζ| · ‖un‖22.

Therefore, the uniform sectoriality estimate (3.15) gives, for all n ∈ N ∪ {∞} and
ζ ∈ C \ Sν ,

(3.20) ‖un(ζ)‖2 + ‖∇un(ζ)‖2 + ‖U1/2
n un(ζ)‖2 6 Cλ,ν(ζ)‖f‖2,

where Cλ,ν(ζ) > 0 is continuous in ζ.
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Now temporarily fix s > 0 and set

un = un(−s),

u = u∞(−s).

By (3.20), the sequence (un)n∈N is bounded in H1(Ω), hence it admits a weakly
convergent subsequence. That is, there exists a subsequence of indices (nj)j∈N and
a function w ∈ H1(Ω) such that unj ⇀ w in H1(Ω). Here the symbol ⇀ denotes
weak convergence (in other words, convergence in the weak topology; see e.g. [24,
Appendix D.4] for an explicit description in Lp). Lemma 3.8 reads

(3.21) lim
n→∞

un = u in L2(Ω), ∀s > 0,

which implies that w = u. Thus unj ⇀ u in H1(Ω).

Again by (3.20), the sequence (U
1/2
n un)n∈N is bounded in L2(Ω). From (3.21) and

a standard theorem we derive a subsequence (unl)l∈N such that unl → u almost every-

where on Ω. Recall that U
1/2
n → U1/2 pointwise on Ω, just by the construction of Un.

Hence U
1/2
nl unl → U1/2u almost everywhere on Ω. Now a well-known theorem [28,

Theorem 13.44] gives U
1/2
nl unl ⇀ U1/2u in L2(Ω).

We proved that in L2 we have

(3.22) un → u, ∇unk ⇀ ∇u, and U1/2
nk

unk ⇀ U1/2u.

We now show that the last two convergences in (3.22) are also in the normed topology
of L2(Ω).

By ellipticity,

Jnk := s‖unk − u‖22 + λ‖∇unk −∇u‖22 + ‖U1/2
nk

unk − U1/2u‖22

6 s‖unk‖22 + s‖u‖22 − 2sRe

∫
Ω

unk ū+ ‖U1/2
nk

unk‖22 + ‖U1/2u‖22

− 2 Re

∫
Ω

U1/2
nk

U1/2unk ū+ Re

∫
Ω

〈A(∇unk −∇u), (∇unk −∇u)〉

= I0 + I1
nk

+ I2
nk

+ I3
nk
,

where

I0 = s‖u‖22 + Re

∫
Ω

〈A∇u,∇u〉+ ‖U1/2u‖22,

I1
nk

= s‖unk‖22 + Re

∫
Ω

〈A∇unk ,∇unk〉+ ‖U1/2
nk

unk‖22,

I2
nk

= −2sRe

∫
Ω

unk ū− 2 Re

∫
Ω

U1/2
nk

U1/2unk ū,

I3
nk

= −Re

(∫
Ω

〈A∇unk ,∇u〉+

∫
Ω

〈A∇u,∇unk〉
)
.
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Sending k →∞, we obtain

I0 = Re

∫
Ω

((s+ LU )u)ū = Re

∫
Ω

fū,

because u ∈ D(LU );

I1
nk

= Re

∫
Ω

((s+ LUnk )unk)ūnk = Re

∫
Ω

fūnk → Re

∫
Ω

fū,

because unk → u in L2(Ω);

I2
nk

= −2 Re

(
s

∫
Ω

unk ū+

∫
Ω

(U1/2
nk

unk)(U1/2ū)

)
→ −2s‖u‖22 − 2‖U1/2u‖22,

by (3.22), since u ∈ D(aU ) implies U1/2ū ∈ L2(Ω); and finally

I3
nk
→ −2 Re

∫
Ω

〈A∇u,∇u〉

by (3.22) again, since A ∈ A(Ω) implies |A∇u|, |A∗∇u| . |∇u| ∈ L2(Ω).

Therefore, using that u ∈ D(LU ), we obtain, as k →∞,

I0 + I1
nk
→ 2 Re

∫
Ω

fū,

I2
nk

+ I3
nk
→ −2 Re

∫
Ω

((s+ LU )u)ū = −2 Re

∫
Ω

fū.

It follows that Jnk → 0 as k →∞, so

(3.23) ∇unk → ∇u and U1/2
nk

unk → U1/2u in L2(Ω),

as desired.
By repeating verbatim the argument following (3.22), we may prove that every

subsequence of (un)n has its own subsequence for which (3.23) holds. Therefore, by
a standard convergence argument involving subsequences, (3.18) and (3.19) hold for
all ζ = −s, s > 0. (Recall that for (3.17) we already know that, by virtue of(3.21).)

It remains to prove (3.17), (3.18), and (3.19) for all ζ ∈ (C \ Sν) \ (−∞, 0). Fix
f ∈ L2(Ω) and for each n ∈ N ∪ {∞} consider the function

Gn : C \ Sν → L2(Ω)× L2(Ω)× L2(Ω;Cd) =: H

given by

Gn(ζ) = (un(ζ), U1/2
n un(ζ),∇un(ζ)).

By (3.20), the family {Gn : n ∈ N+} is locally uniformly bounded in C \ Sν . Hence
[2, Proposition A.3] implies that the functions Gn are holomorphic, because the
complex-valued function 〈Gn(·),g〉H is holomorphic for all g from the norming sub-
space L2(Ω) × C∞c (Ω;Cd) × C∞c (Ω) of H. Moreover, since we have already proven
that Gn(−s) → G∞(−s) in H for all s > 0, it follows from Vitali’s theorem [2,
Theorem A.5] that the convergence holds true for all ζ ∈ C \ Sν .
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Proof of Theorem 3.6: We use the standard representation of the analytic semi-
group TUnt , n ∈ N ∪ {∞}, by means of a Cauchy integral (see, for example, [23,
Chapter II] or [27, Lemma 2.3.2]). We used it earlier in the proof of [8, Lemma A.4].
Fix δ > 0, ϑ > ν(A), and denote by γ the positively oriented boundary of Sϑ ∪ {ζ ∈
C; |ζ| < δ}. Then

‖∇TUnt f −∇TUt f‖2 .
∫
γ

e−tRe ζ‖∇(ζ − LUn)−1f −∇(ζ − LU )−1f‖2 |dζ|,

‖U1/2
n TUnt f − U1/2TUt f‖2 .

∫
γ

e−tRe ζ‖U1/2
n (ζ − LUn)−1f − U1/2(ζ − LU )−1f‖2 |dζ|.

By Proposition 3.9, the integrands converge to zero, as n→∞. An examination of the
constant Cλ,ν(ζ) from (3.20) shows that for ζ along the curve γ we have Cλ,ν(ζ) . 1
uniformly in n ∈ N ∪ {∞} and ζ ∈ γ. This means that we can apply the dominated
convergence theorem in the two integrals above and complete the proof.

Appendix A. Invariance of form domains under normal
contractions

Following [35, Section 2.4], we say that a function p : C→ C is a normal contraction
if it is Lipschitz on C with constant 1 and p(0) = 0. Denote by N the set of all normal
contractions. Define T : C → C by T (ζ) = (Re ζ)+, where x+ = max{x, 0}. Recall
that we defined P : C→ C in (1.6). Functions P , T belong to the class N . Moreover,
they are in a particular sense fundamental representatives of this class, as we show
next.

Proposition A.1. Let V be a closed subspace of H1(Ω) containing H1
0 (Ω). Then V is

invariant under P and T if and only if it is invariant under the (whole) class N .

Proof: Suppose that V is invariant under P and T . Let ∆ be the Euclidean Laplacian
on Ω subject to the boundary conditions embodied in V . That is, −∆ is the operator
arising from the form b, defined by D(b) = V and

(A.1) b(u, v) =

∫
Ω

〈∇u,∇v〉Cd , ∀u, v ∈ V .

Parts 1) and 2) of [35, Theorem 4.31] imply that (e−t(−∆))t>0 is sub-Markovian. Now
[35, Theorem 2.25] implies that V is invariant under N .

The implication in the opposite direction is obvious, as P, T ∈ N .

Proposition A.2. When V is any of the special cases (a)–(c) from Subsection 1.1,
then V is invariant under N .

Proof: By [35, Theorem 2.25], it suffices to find a sesquilinear form b such that:

• D(b) = V ;
• b is symmetric, accretive, and closed on L2(Ω);
• if L is the operator associated with b, then the semigroup exp(−tL ) is sub-

Markovian.

We define b on V by (A.1). Thus L = −∆, with boundary conditions embodied in V .
Then D(b) = V by construction, and the form is clearly symmetric and accretive. It
is closed by Theorem 1.1. In order to check that the semigroup is sub-Markovian, we
have to check (cf. [35, Definition 2.12]) that it is positive and contractive on L∞.
Now, these properties are proven in [35, Corollary 4.3] and [35, Corollary 4.10],
respectively.
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Appendix B. Chain rule formula

In this section we give two proofs of the formulæ (2.2) and (2.3). The first follows
the description of Sobolev spaces involving the notion of weak differentiability, while
the second one is based on their description by means of absolute continuity along
lines.

B.1. The distributional proof. Here we prove several versions of the chain rule
in H1(Ω), aiming for those that will lead to the formula (2.2). The first one is mod-
eled after [29, Lemma 10.2.3]. Other useful references for this section are [42, Theo-
rem 2.1.11], [25, Theorem 4.4], and [26, Section 7.4].

Recall the standard notion of a weak derivative [24, p. 256]. If all weak partial
derivatives ∂xju exist, we denote by ∇u the weak gradient (∂x1

u, . . . , ∂xnu).

Theorem B.1. Let Ω be an open subset of Rn and u, v ∈ W 1,1
loc (Ω) real functions.

Suppose that F ∈ C1(R2) is real and |∇F | ∈ L∞(R2). Then F ◦ (u, v) is weakly
differentiable and

(B.1) ∇[F ◦ (u, v)] = Fx(u, v) · ∇u+ Fy(u, v) · ∇v.

Proof: Set M := ‖|∇F |‖L∞(R2). By Lagrange’s theorem, for any a, b ∈ R2 there exists

some ξ ∈ R2 on the line segment between a and b such that

(B.2) F (a)− F (b) = 〈∇F (ξ), a− b〉.

In particular, |F (a)| 6 |F (0)|+M |a|. This implies that F (u, v) ∈ L1
loc(Ω).

Clearly, Φ := Fx(u, v) · ∇u + Fy(u, v) · ∇v ∈ L1
loc(Ω). Take φ ∈ C∞c (Ω) and write

K := suppφ. Let η be the standard mollifier on R2 [24, Appendix C.5]. If 0 < ε <
d(K, ∂Ω)/2, define uε = u∗ηε on Ωε := {x ∈ Ω; d(x, ∂Ω) > ε} and the same for v. Let
also Kε := {x ∈ Ω; d(x,K) < ε}. Observe that K ⊂ Kε ⊂ Ωε for any ε as specified
before. From (B.2) we get

(B.3) |F (u, v)− F (uε, vε)| 6M |(u, v)− (uε, vε)|.

Then for such ε > 0 we get∫
Ω

F (u, v)∇φ =

∫
Kε

F (u, v)∇φ

= lim
ε→0

∫
Kε

F (uε, vε)∇φ

= − lim
ε→0

∫
Kε

(Fx(uε, vε)∇uε + Fy(uε, vε)∇vε) · φ

= −
∫
Kε

Φ · φ

= −
∫

Ω

Φ · φ.

The second identity above follows from (B.3) and the fact that uε → u, vε → v in
L1

loc(Ω) [25, Theorem 4.1(iii)].
The third identity follows from the usual integration by parts [24, Appendix C.2].

The fact that we make no assumptions on the boundary of Kε is not an obstacle
because of the presence of the function φ, which is smooth and compactly supported
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in Kε. Thus, instead of with Kε, we may work with its subset whose boundary is
piecewise smooth; namely, a finite union of open balls containing the support of φ.

The fourth identity follows from the estimate∣∣∣∣∫
K

Fx(uε, vε)∇uε · φ−
∫
K

Fx(u, v)∇u · φ
∣∣∣∣

6

∣∣∣∣∫
K

Fx(uε, vε)(∇uε −∇u) · φ
∣∣∣∣+

∣∣∣∣∫
K

[Fx(uε, vε)− Fx(u, v)]∇u · φ
∣∣∣∣

6M‖∇uε −∇u‖L1(K)‖φ‖L∞(K) +

∫
K

|Fx(uε, vε)− Fx(u, v)||∇u| · |φ|.

The first term in the last row tends to zero because uε → u in W 1,1
loc (Ω); see [25,

Theorem 4.1(vi)]. The second term in the last row tends to zero because of the es-
timate |Fx(uε, vε) − Fx(u, v)||∇u| · |φ| 6 2M‖φ‖L∞(K)|∇u| ∈ L1(K), the fact that
(uε, vε) → (u, v) a.e. K, cf. [25, Theorem 4.1(iv)], and the dominated convergence
theorem.

Theorem B.2. Let Ω be an open subset of Rn and u, v ∈ H1
loc(Ω) real functions.

Suppose that F = F (x, y) : R2 → R is of class C1 and such that

F (u, v) and |∇F |(u, v) belong to L2
loc(Ω).

Then F (u, v) is weakly differentiable and (B.1) holds.

Proof: We reduce the proof to Theorem B.1. To this end we apply an approximation
argument as follows.

Let η ∈ C∞c (R2) be such that η ∈ [0, 1] everywhere, η ≡ 1 on B(0, 1), and η ≡ 0
on B(0, 2)c. For R > 0 and ξ ∈ R2 define

ηR(ξ) := η

(
ξ

R

)
and FR(ξ) := F (ξ)ηR(ξ).

Take j ∈ {1, . . . , n}, ϕ ∈ C∞c (Ω), and let K := suppϕ.
Write a := (u, v). Since F (a) ∈ L2

loc(Ω) ⊂ L2(K) ⊂ L1(K), ∂xjϕ ∈ L∞(K), and
|η| 6 1, we may apply the dominated convergence theorem and conclude that

(B.4)

∫
Ω

F (a)·∂xjϕ =

∫
K

F (a)·∂xjϕ = lim
R→∞

∫
K

FR(a)·∂xjϕ = lim
R→∞

∫
Ω

FR(a)·∂xjϕ.

Because FR ∈ C1
c (R2), we may apply Theorem B.1 and obtain

(B.5) lim
R→∞

∫
Ω

FR(a) · ∂xjϕ = − lim
R→∞

∫
Ω

[(∂xFR)(a)∂xju+ (∂yFR)(a)∂xjv]ϕ.

We calculate

(B.6) ∂xFR = ∂xF · ηR + F · (∂xη)

(
·
R

)
1

R

and similarly for ∂yFR. Thus it suffices to show that

(B.7)

lim
R→∞

∫
Ω

(∂xF )(a) · η
(
a

R

)
· ∂xju · ϕ =

∫
Ω

(∂xF )(a) · ∂xju · ϕ,

lim
R→∞

1

R

∫
Ω

F (a) · (∂xη)

(
a

R

)
· ∂xju · ϕ = 0,

and similarly for ∂yFR.
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Regarding the first integral, since |η| 6 1 and ϕ is bounded,∣∣∣∣(∂xF )(a) · η
(
a

R

)
· ∂xju · ϕ

∣∣∣∣ 6 ‖ϕ‖∞ · |(∇F )(a)| · |∂xu| · χK .

Due to our assumptions on F and a, this function belongs to L1(Ω). Now we may
apply the dominated convergence theorem and obtain the first identity in (B.7).

Regarding the second integral, we have∣∣∣∣F (a) · (∂xη)

(
a

R

)
· ∂xju · ϕ

∣∣∣∣ 6 ‖ϕ‖∞‖∂xη‖∞|F (a)χK ||∇u|.

This implies, by Hölder’s inequality, that

1

R

∣∣∣∣∫
Ω

F (a) · (∂xη)

(
a

R

)
· ∂xju · ϕ

∣∣∣∣ 6 1

R
‖ϕ‖∞ · ‖∂xη‖∞ · ‖F (a)‖L2(K) · ‖∂xu‖L2(K).

Clearly, this vanishes as R→∞, which proves the second identity in (B.7).
We point out that the assumption F (u, v) ∈ L2

loc(Ω) was mainly used to justify
applying the Lebesgue dominated convergence theorem.

Going back to (B.4), i.e., combining it with (B.5), (B.6), and (B.7), we obtain∫
Ω

F (a) · ∂xjϕ = −
∫

Ω

[(∂xF )(a) · ∂xju+ (∂yF )(a) · ∂xjv]ϕ,

which is precisely what had to be proven.

Chain rule for complex functions. Now we also consider complex functions in
H1

loc(Ω). More precisely, we formulate a “complex version” of Theorem B.2. Recall
the operators ∂z = (∂x − i∂y)/2 and ∂z̄ = (∂x + i∂y)/2.

Theorem B.3. Let Ω⊂Rn be open. Take functions f=u+ iv∈H1
loc(Ω) and Φ: C→

C. Define Φ̃ : R2 → C by Φ̃(x, y) :=Φ(x+ iy). Assume that Φ̃∈C1(R2) and that

Φ ◦ f = Φ̃(u, v) and |∇Φ̃|(u, v) belong to L2
loc(Ω).

Then Φ ◦ f is weakly differentiable and we have

(B.8) ∇(Φ ◦ f) = (∂zΦ̃)(u, v) · ∇f + (∂z̄Φ̃)(u, v) · ∇f̄ .

Proof: Introduce U, V : R2 → R by U = Re Φ̃ and V = Im Φ̃. That is,

U(x, y) = Re Φ(x+ iy),

V (x, y) = Im Φ(x+ iy).

Another way of writing the theorem’s conclusion (B.8) is

∇(Φ ◦ f) = (∂xU)(u, v)∇u+ (∂yU)(u, v)∇v + i[(∂xV )(u, v)∇u+ (∂yV )(u, v)∇v].

In order to prove it, apply Theorem B.2 separately to U(u, v) = Re(Φ ◦ f) and
V (u, v) = Im(Φ ◦ f).

By taking Φ of the form Φ̃=∂z̄F for some F ∈C2(R2), one eventually recovers (2.6).
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Proof of Lemma 2.3. Our foremost special case is discussed in the corollary below.
We introduce the notation p∗ = max{p, q}, where p > 1 and 1/p+ 1/q = 1.

Define, for f ∈ C and F ∈ Cd,
τp(f) = |f |p−2f,

Λp(f, F ) =
p

2
|f |p−2 sign f · Ip(sign f̄ · F ).

In this notation, the formula (2.2) reads ∇(τp(f)) = Λp(f,∇f).
If 1/p+1/q = 1, then we may easily verify the following pair of inversion formulæ:

f = τq(τp(f)),(B.9)

F = Λq(τp(f),Λp(f, F )).(B.10)

Corollary B.4. Suppose that p > 1 and f : Ω→ C is such that

τmin{p,2}(f) ∈ H1
loc(Ω),(B.11)

τmax{p,2}(f) ∈ L2
loc(Ω).(B.12)

Then τmax{p,2}(f) is also weakly differentiable and (2.2), (2.3) hold.

Remark B.5. Observe that we have {τmin{p,2}(f), τmax{p,2}(f)} = {f, |f |p−2f} and
that the conditions (B.11), (B.12) can be rewritten as{

f ∈ H1
loc(Ω) and |f |p−2f ∈ L2

loc(Ω) if p > 2,

f ∈ L2
loc(Ω) and |f |p−2f ∈ H1

loc(Ω) if p 6 2.

Since these conditions clearly hold if f, |f |p−2f ∈ H1
loc(Ω), this proves Lemma 2.3.

Proof: We split the proof into two cases (not counting p = 2, which obviously holds).
First assume that p > 2. In this case, the function Φ(ζ) = |ζ|p−2ζ satisfies the as-

sumptions of Theorem B.3. Now notice that we have the identities ∂zΦ̃ = (p/2)|z|p−2

and ∂z̄Φ̃ = (p/2− 1)(z/z̄)|z|p−2 (and zero at z = 0) and use (B.8).
Suppose now that 1 < p < 2. Write g = τp(f). Because of (B.9), the assumption f ∈

L2
loc(Ω), τp(f) ∈ H1

loc(Ω), now reads g ∈ H1
loc(Ω), τq(g) ∈ L2

loc(Ω). Since q > 2, we
may apply the part proven so far, which gives that f = τq(g) is weakly differentiable
and ∇f = ∇(τq(g)) = Λq(g,∇g). Now (B.10) returns

∇(τp(f)) = ∇g = Λp(τq(g),Λq(g,∇g)) = Λp(f,∇f),

as desired. These reasonings are surely valid on {f, g 6= 0} = {f = 0} = {g = 0}. On
the other hand, ∇g = 0 on {f, g = 0} by a known result.

B.2. The ACL proof. Here we prove the following version of Lemma 2.3:

Lemma B.6. Let f ∈ H1(Ω) and p ∈ (1,∞). The function |f |p−2f belongs to H1(Ω)
if and only if |f |p−2f ∈ L2(Ω) and |f |p−2∇f ∈ L2(Ω;Cn). In this case, (2.2) and
(2.3) hold.

We shall systematically use the ACL characterization of Sobolev spaces [32], which,
for the sake of simplicity, we enunciate below for the Sobolev space H1(Ω) only; see,
for example, [31, Theorem 11.45].

Proposition B.7. Let Ω ⊆ Rn be an open set. Denote by Lk the k-dimensional
Lebesgue measure. A function u ∈ L2(Ω) belongs to H1(Ω) if and only if it has a
representative u∗ that is absolutely continuous on Ln−1-a.e. line segments of Ω that
are parallel to the coordinate axes and whose first-order classical partial derivatives
belong to L2(Ω). Moreover, the classical partial derivatives of u∗ agree Ln-a.e. with
the weak derivatives of u.
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We shall also use the following results.

Lemma B.8 ([31, Lemma 3.60]). Let I ⊆ R be an interval. Let h : I → Rk, where
k ∈ N+. Assume that h is differentiable on a set E ⊆ I, with H1(h(E)) = 0
(here H1 denotes the 1-dimensional Hausdorff measure on Rk). Then, h′(t) = 0 for
L1-a.e. t ∈ E.

Corollary B.9. Let Ω ⊆ Rn be open. Let u : Ω → C. Assume that the first-order
partial derivatives of u exist in a Lebesgue measurable set G ⊆ Ω, with H1(u(G)) = 0
(here H1 denotes the 1-dimensional Hausdorff measure on C = R2). Then, ∇u(x) = 0
for Ln-a.e. x ∈ G.

Proof: For E ⊆ Ω and y ∈ Rn−1 let Ey = {x ∈ R : (x, y) ∈ E}. If Ωy 6= ∅,
define uy(x) = u(x, y) for all x ∈ Ωy. Fix y ∈ Rn−1 such that Gy 6= ∅. Then the
function uy is differentiable at every x ∈ Gy, and H1(uy(Gy)) 6 H1(u(G)) = 0.
Hence, by Lemma B.8, we have that (∂xu)(x, y) = (uy)′(x) = 0, for L1-a.e. x ∈ Gy.
Let S = {(x, y) ∈ G : (∂xu)(x, y) 6= 0}. We have proven that L1(Sy) = 0, for
all y ∈ Rn−1. Therefore, by Fubini’s theorem, Ln(S) = 0.

Lemma B.10. Let (vn)n>1 be a bounded sequence in H1(Ω) such that vn(x)→ v(x)
for almost every x ∈ Ω. Then v ∈ H1(Ω) and vn ⇀ v in H1(Ω).

Suppose further that ∇vn(x)→ F (x) for almost every x ∈ Ω. Then F = ∇v.

Proof: By the Banach–Alaoglu theorem, for any subsequence, there exist another
subsequence (unk)k>1 and a function u ∈ H1(Ω) such that unk ⇀ u in L2(Ω) and
∇unk ⇀ ∇u in L2(Ω;Cn). Since vnk converges almost everywhere to v, it follows
from [28, Theorem 13.44] that u = v almost everywhere in Ω. This proves that
(vn)n>1 weakly converges to v in H1(Ω). The second part of the lemma follows by
using once again [28, Theorem 13.44].

Remark B.11. We note that in the proof above, instead of relying on the Severini–
Egorov theorem as used in [28, Theorem 13.44], one can utilize Mazur’s lemma.

Proof of Lemma B.6: For every p ∈ (1,∞) define Φp(z) = |z|p−2z, z ∈ C. Note that
when p ∈ (1, 2) the function Φp is not differentiable at z = 0.

Fix p ∈ (1,∞) and f ∈ H1(Ω) such that Φp(f) = |f |p−2f ∈ H1(Ω). By Propo-
sition B.7 there exist ACL representatives f∗ and g∗ of f and Φp(f), respectively.
We also set h∗ = Φp(f∗). Then, g∗(x) = h∗(x) for Ln-a.e. x ∈ Ω, and the first-order
partial derivatives of both f∗ and g∗ exist Ln-a.e. in Ω.

Therefore, there exists Ω0 ⊂ Ω such that Ln(Ω0) = 0 and

(B.13)
g∗(x) = h∗(x), ∀x ∈ Ω \ Ω0;

∃∇f∗(x), ∃∇g∗(x), ∀x ∈ Ω \ Ω0.

Let E0 = {x ∈ Ω\Ω0 : f∗(x) = 0}. Since Φp ∈ C1(C\{0}), it follows from (B.13) and
the classical chain rule that the first-order partial derivatives of h∗ exist at every x ∈
(Ω \ Ω0) \ E0, and

∇h∗(x) = ∇Φp(f∗(x)) =
p

2
|f∗(x)|p−2 sign f∗(x) · Ip(sign f̄∗(x) · ∇f∗(x)),

for all x ∈ (Ω \ Ω0) \ E0.
Since g∗(x)−h∗(x) = 0 for every x ∈ Ω \Ω0, it follows from Corollary B.9 and the

equality above that

∇g∗(x) =
p

2
|f∗(x)|p−2 sign f∗(x) · Ip(sign f̄∗(x) · ∇f∗(x)), Ln-a.e. x ∈ (Ω \ Ω0) \E0.
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On the other hand, the gradient of both f∗ and g∗ exists at every point of E0 and

g∗(x) = h∗(x) = Φp(f∗(x)) = 0, ∀x ∈ E0.

Therefore, by Corollary B.9,

∇g∗(x) = ∇f∗(x) = 0, Ln-a.e. x ∈ E0.

To prove (2.2), observe that, by Proposition B.7, the weak gradients of Φp(f) and f
agree with ∇g∗ and ∇f∗, respectively, almost everywhere on Ω with respect to the
Lebesgue measure Ln. It now follows from (2.2) and the definition ofIp that

|∇(|f |p−2f)| ∼p |u|p−2|∇u|.

Given our assumption that |f |p−2f ∈ H1(Ω), we conclude that both |f |p−1f and
|f |p−2∇f are square-integrable over Ω.

We now prove that if f ∈ H1(Ω), |f |p−1f ∈ L2(Ω), and |f |p−2∇f ∈ L2(Ω;Cn),
then |f |p−2f ∈ H1(Ω).

The technical issue here is that when p < 2, the function z 7→ |z|p−2z is not locally
Lipchitz at z = 0. To better explain this issue, let us prove by means of Proposition B.7
the well-known fact that the absolute value of a Sobolev function is also a Sobolev
function. Let f∗ be an ACL representative of f (see Proposition B.7). Since z 7→ |z|
is Lipschitz, the function |f∗| is ACL on Ω, and therefore its gradient exists almost
everywhere on Ω. It follows from Lemma B.8 that ∇|f∗(x)| = 0 = ∇f∗(x) almost
everywhere on the set {f∗ = 0}. On the other hand, since | · | ∈ C1(C \ {0}), by the
classical chain rule, we have that ∇|f∗(x)| = Re(sign(f̄∗(x))∇f∗(x)), for all x ∈ Ω
such that f∗(x) 6= 0 and the gradient of f∗ exists at x.

For every ε > 0 consider the function Ψε(t, z) = (t+ ε)p−2z, t > −ε, z ∈ C. Let

vε = Ψε(|f∗|, f∗).

Since both f∗ and |f∗| are ACL on Ω and Ψε ∈ C1((−ε,+∞)×C), we have that vε is
ACL on Ω and, by the classical chain rule,

∇vε(x) = (|f∗(x)|+ ε)p−2

(
∇f∗(x) + (p− 2) Re

(
f̄∗(x)

|f∗(x)|+ ε
∇f∗(x)

))
,

for almost every x in Ω. Therefore, given the assumptions, it follows from Propo-
sition B.7 that vε ∈ H1(Ω) and the net (vε)ε∈(0,1) is uniformly bounded in H1(Ω).
Also,

lim
ε↘0

vε(x) = |f∗(x)|p−2f∗(x)

for all x ∈ Ω.
Therefore, by Lemma B.10, the function |f∗|p−2f∗ belongs to H1(Ω), as required

to finish the proof of the lemma.
We remark that since ∇f∗ = 0 almost everywhere on {f∗ = 0}, we conclude that

lim
ε↘0
∇vε(x) = |f∗(x)|p−2(Re(sign(f̄∗(x))∇f∗(x))∇f∗(x))χ{f∗ 6=0}(x),

for almost every x ∈ Ω. Hence, by Lemma B.10, we deduce the equality (2.2), which
was established earlier in the proof, under the assumption that |f |p−2f ∈ H1(Ω).
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