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MULTISECTIONS OF SURFACE BUNDLES AND BUNDLES

OVER S1

Delphine Moussard

Abstract: A multisection is a decomposition of a manifold into 1-handlebodies, where each subcol-

lection of the pieces intersects along a 1-handlebody except the global intersection, which is a closed

surface. These generalizations of Heegaard splittings and Gay–Kirby trisections were introduced by
Ben Aribi, Courte, Golla, and the author, who proved in particular that any 5-manifold admits such

a multisection. In arbitrary dimension, we show that two classes of manifolds admit multisections:
surface bundles and fiber bundles over the circle, whose fiber itself is multisected. We provide explicit

constructions, with examples.
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1. Introduction

Heegaard splittings are standard decompositions of closed orientable 3-manifolds
into two handlebodies. In [2], Gay and Kirby introduced analogous decompositions of
4-manifolds, the so-called trisections; they proved that all closed orientable smooth
4-manifolds admit such trisections. More recently, in [1], Ben Aribi, Courte, Golla,
and the author studied a notion of multisection for closed orientable manifolds of any
dimension, which encompasses Heegaard splittings and trisections: a multisection of
an (n+1)-manifold is a decomposition into n 1-handlebodies such that each subcollec-
tion intersects along a 1-handlebody, except the global intersection, which is a closed
surface. They proved in particular that any smooth 5-manifold admits a multisection.
Here, we study the existence of multisections in arbitrary dimension for two classes
of manifolds: surface bundles and bundles over the circle. This generalizes works on
4-manifolds by Williams [8] for surface bundles and by Koenig [5] for bundles over
the circle.

Theorem (Theorem 3.2). Any surface bundle admits a multisection.

Theorem (Theorem 4.1). Any fiber bundle over S1 whose fiber admits a multisection
globally preserved by the monodromy ( ie permuting the pieces of the multisection)
admits a multisection.

The proofs are constructive. We show how to get a multisection diagram of the
bundle, either from a suitable decomposition of the base in the case of surface bundles,
or from a multisection diagram of the fiber in the case of bundles over S1.

As noted by Koenig in [5], for a 4-dimensional fiber bundle over S1, the fiber always
admits a Heegaard splitting preserved by the monodromy: if H is a given Heegaard
splitting of the fiber and ϕ is the monodromy, then, by uniqueness of Heegaard split-
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tings, H and ϕ(H) have a common stabilization; this stabilization of H is preserved
by the monodromy. This argument applies to 5-dimensional fiber bundles over S1,
because a given 4-manifold (here, the fiber) always admits a trisection, which is unique
up to stabilization [2]. In higher dimensions, however, the question of uniqueness up
to stabilization of the multisections is open.

It may be worth mentioning that other notions of multisections do exist, that
should not be confused with the ones we consider here. In [7], Rubinstein and Till-
mann defined multisections of PL manifolds, which coincide with Heegaard splittings
in dimension 3 and with trisections in dimension 4. In higher dimensions, however,
these multisections differ from ours; in particular they cannot be represented by dia-
grams. Also, in [3], Islambouli and Naylor introduced multisections of 4-dimensional
manifolds, which generalize trisections to decompositions with an arbitrary number
of pieces.

Throughout the article, all manifolds are orientable. We work in the PL category,
but our constructions of multisections also work in the smooth category, ie with
smooth manifolds and smooth multisections; see Remark 2.1. The only result which
does not adapt to the smooth setting in all dimensions is Proposition 2.2 and this is
clarified at that point.

2. Multisections and diagrams

For n ≥ 3, an n-dimensional handlebody is a manifold that admits a handle de-
composition with one 0-handle and some 1-handles; the number of 1-handles is the
genus of the handlebody.

A multisection, or n-section, of a closed connected (n+ 1)-manifold W is a decom-
position W =

⋃n
i=1Wi where:

• for any non-empty proper subset I of {1, . . . , n}, the intersection WI =
⋂
i∈IWi

is a submanifold of W which is PL-homeomorphic to an (n−|I|+2)-dimensional
handlebody,

• Σ =
⋂n
i=1Wi is a closed connected surface.

A multisection is a Heegaard splitting when n = 2, a trisection when n = 3, a
quadrisection when n = 4. The genus of the multisection is the genus of the central
surface Σ.

Remark 2.1. In the smooth category, the WI cannot all be smooth submanifolds of W :
some corners necessarily appear. This forces us to give a more detailed definition;
see [1].

Given a 3-dimensional handlebody H with boundary Σ, a cut system for H is a
collection of disjoint simple closed curves on Σ which bound disjoint properly embed-
ded disks in H such that the result of cutting H along these disks is a 3-ball. Recall
that a cut system is well defined up to handleslides [4, Corollary 1.6]. A multisection
diagram for a multisection as above is a tuple (Σ; (ci)1≤i≤n), where Σ is the central
surface of the multisection and ci is a cut system on Σ for the 3-dimensional han-
dlebody

⋂
j 6=iWj . By [1, Theorem 3.2], a multisection diagram determines a unique

PL manifold (and a unique smooth manifold up to dimension 6).
The connected sum of multisected manifolds can be performed around points of the

central surfaces, so as to produce a multisection of the resulting manifold. This gives a
simple way to define stabilizations of multisections: a stabilization of a multisection of
an (n+ 1)-manifold W is the connected sum of the multisected W with the standard
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sphere Sn+1 equipped with a genus-1 multisection; the latter are given diagrammat-
ically in Figure 1. These stabilization moves can also be described as cut-and-paste
operations on the multisection of W ; see [1].

Sn+1

. . .︸ ︷︷ ︸
k

. . .︷ ︸︸ ︷
n− k

S5

Figure 1. Genus-1 multisection diagrams of the spheres, where 0 < k < n.

Proposition 2.2. Let W be an (n + 1)-manifold with a multisection diagram
(Σ; (ci)1≤i≤n). Assume the diagram contains two groups of k and n−k parallel curves,
with 0 < k < n, such that a curve of one group meets a curve of the other group in
exactly one point. Then the associated multisection is the result of a stabilization.

Proof: Denote by α1, . . . , αk and βk+1, . . . , βn the two groups of curves. Since two
curves in the same collection ci have to be disjoint but not parallel, there is one of
these curves in each ci. If a curve of the diagram, other than the β-curves, meets
the α-curves, then it is in the same collection ci as one of the β-curves, so that it
can be slid along this β-curve until it gets disjoint from the α-curves. The same is
true for a curve, other than the α-curves, that would meet the β-curves. Hence, after
handleslides, we can assume that the α-curves and the β-curves are disjoint from
any other curve of the diagram. Now a regular neighborhood of the α-curves and the
β-curves in Σ is a punctured torus. It implies that the diagram is a connected sum of
a lower-genus diagram with a diagram of Figure 1. Since the multisected manifold is
determined by the diagram, it is the result of a stabilization.

We will use this proposition in Section 4 to simplify some multisection diagrams.
We may note that, for a smooth manifold, this proof works up to dimension 6 only:
the point is that a multisection diagram determines a unique smooth manifold up
to dimension 6 only, so that the last sentence of the proof does not apply in higher
dimensions.

3. Multisecting surface bundles

Surface bundles turn out to admit multisections in any dimension. A multisection
of a surface bundle can be obtained from a suitable decomposition of the base into
balls. This generalizes the work of Gay–Kirby [2] and Williams [8] on trisections of
4-dimensional surface bundles.

Let M be a closed d-manifold. We call good ball decomposition of the manifold M

a decomposition M =
⋃d
i=0Mi where, for all non-empty I ⊂ {0, . . . , d},

⋂
i∈IMi is a

disjoint union of embedded (d− |I|+ 1)-balls. Such decompositions do exist.

Lemma 3.1. Any closed manifold admits a good ball decomposition.

Proof: Let M be a closed d-manifold and T a triangulation of M . We consider the
first and second barycentric subdivisions T 1 and T 2 of T . For i ∈ {0, . . . , d}, let Vi
be the set of barycenters of i-faces of T ; note that the union of the Vi is the set of
vertices of T 1. We define Mi as the union of the stars of the vertices of Vi in T 2; see
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Figure 2. We may note that Mi is the union of i-handles in the handle decomposition
of M associated with the triangulation T (see for instance [6, Proposition 6.9]). The
condition on the intersections is direct.

• •

•

V0

M0

•

•• V1

M1

•V2

M2

Figure 2. For d = 2, decomposition of a 2-simplex into the Mi.

Let p : W →M be a surface bundle. Taking the preimage of a good ball decompo-
sition of M , we get a decomposition of W into pieces that are products of a surface,
the fiber, with balls. To obtain a multisection from this, we dig some “disk tunnels”
into the different pieces, which we add to other pieces. If N ⊂ M is a disjoint union
of contractible subspaces of M , a disk section of p over N is a submanifold Z of W
such that p−1(x) ∩ Z is a 2-disk for all x ∈ N , and p(Z) = N .

Theorem 3.2. Fix n > 1. Let p : W →M be a surface bundle, where W is a closed
(n + 1)-manifold. Assume we are given a good ball decomposition M =

⋃n
i=1Mi.

Fix pairwise disjoint disk sections Zi of p over Mi, for 1 ≤ i ≤ n. Set Wi =
(p−1(Mi) \ Zi)∪Zi+1, where the indices are considered modulo n. Then W =

⋃n
i=1Wi

is a multisection.

Proof: Set MI =
⋂
i∈IMi. We slightly abuse notation by denoting Zi = Mi × Di,

where Di is a disk in the fiber S above each point of Mi, indeed depending on this
point. In this way, Wi can be written as

Wi = (Mi × S \Di) ∪ (Mi+1 ×Di+1).

More generally, for I ⊂ {1, . . . , n}, one can check by induction on |I| that:

WI =
(
MI × S \

⋃
i∈IDi

)
∪
⋃
i∈I
i+1/∈I

(MI∪{i+1}\{i} ×Di+1) ∪
⋃
i∈I
i+1∈I

(MI\{i} × ∂Di+1).

We fix a non-empty proper subset I of {1, . . . , n} and check that WI is a handle-
body. In the first term, each connected component is a thickening of a surface with
non-empty boundary, thus a handlebody. The second term adds 1-handles to these
handlebodies; indeed, MI and MI∪{i+1}\{i} are made of (n− |I|)-balls that intersect
along (n−|I|−1)-balls. For i ∈ I such that i+1 ∈ I, MI\{i} is made of (n−|I|+1)-balls
and contains in its boundary the (n−|I|)-balls composing MI . Hence each component
of MI\{i}×∂Di+1 is a Dn−|I|+1×S1 glued along some Dn−|I|×S1, with Dn−|I| living

in the boundary of Dn−|I|+1, to some handlebodies in MI × S \
⋃
i∈I Di. This has

the effect of gluing together some of the latter handlebodies along a 1-handle corre-
sponding to the boundary component ∂Di+1 of S \

⋃
i∈I Di. Finally, WI is made of

handlebodies and it remains to check that it is connected.
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Thanks to the above formula for WI , it is enough to check that the different con-
nected components of MI are connected by some number of paths, each contained
in MI∪{i+1}\{i} (which is contained in MI\{i}) for some i ∈ I. Note that the con-
nectedness of M implies that

⋃
|I|=n−1MI is connected (the good ball decomposition

provides a CW-complex structure where the k-skeleton is
⋃
|I|=n−kMI). Hence two

components of MI are always connected by a path in
⋃
|I|=n−1MI , and each interval

of this path which is not in MI is a component of M{1,...,n}\{i} for some i ∈ I, which
is contained in MI∪{i+1}\{i}.

Finally, the central piece Σ = W{1,...,n} is given by

Σ =
(
M{1,...,n} × S \

⋃
i=1

n
Di

)
∪

n⋃
i=1

(M{1,...,n}\{i} × ∂Di+1).

The first term is made of copies of S with the open Di removed, while the second
term is made of tubes joining the boundary components of these copies. Hence Σ is a
closed surface.

Remark 3.3. The multisection obtained in the theorem has genus vg+e−v+1, where
v is the number of points in M{1,...,n}, e is the number of intervals in

⋃
|I|=n−1MI ,

and g is the genus of the fiber.

We now present some examples. When the bundle is simply a product, we define
the disk sections as Zi = Mi ×Di, where the Di are disjoint disks on the fiber.

We start with bundles over spheres. The standard sphere admits the good ball
decomposition given by the following lemma; see Figure 3.

Lemma 3.4. The (n − 1)-sphere admits a good ball decomposition Sn−1 =
⋃n
i=1Bi

where
⋂
i∈I Bi is a single (n− |I|)-ball for I ( {1, . . . , n} and

⋂n
i=1Bi is made of two

points.

Proof: Consider the map ϕ : Sn−1⊂Rn→Rn−1 sending (x1, . . . , xn) to (x1, . . . , xn−1).
Its image Bn−1 can be viewed as an (n− 1)-simplex and cut into the cones with ver-
tex its center and bases its faces. The pull-back of this decomposition provides the
required decomposition of Sn−1.

•

•

S1

•

•

S2

•

•

S3

Figure 3. Good ball decomposition of Sk for small k.

Corollary 3.5. A surface bundle over Sn−1 with fiber a closed surface of genus g
admits a multisection of genus 2g + n− 1.

If W is a surface bundle over Sn−1, the associated multisection has a central surface
given by two copies of the fiber (the preimages of

⋂n
i=1Bi) joined by a tube above

each
⋂
j 6=iBj . Examples of the associated diagram are given in Figures 4 and 5. The
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cut system associated to W{1,...,n}\{i} is obtained as follows. A first curve is given by
a meridian curve around the tube above

⋂
j 6=i−1Bj . Then take a family of properly

embedded arcs on S \
⋃
j 6=iDj that cut it into a disk, and build simple closed curves

on Σ by joining the two copies of these arcs on the two copies of the punctured S by
parallel arcs on the tubes.

Figure 4. Multisection diagrams for S2 × S3 and S2 × S4.

Figure 5. Quadrisection diagram for S1 × S1 × S3.

In dimension 6, we get infinitely many 6-manifolds admitting a 5-section of genus 4,
namely the S2-bundles over S4. Such a bundle can be constructed by gluing two copies
of S2 ×B4 via a map ϕ : S3 → SO(3). We write S3 as the quotient of S2 × [0, 2π] by
the shrinking of S2 × {0} and S2 × {2π}; for m ∈ Z, we define a map ϕm that sends
(x, t) ∈ S2 × [0, 2π] onto the rotation of axis given by x and angle mt. This defines
an S2-bundle W (m). While W (−m) is diffeomorphic to W (m), the group π3(W (m))
is finite of order |m|, which shows that the W (m) for m ∈ N are non-diffeomorphic
(the order of π3(W (m)) can be computed from the homotopy exact sequence of the
fibration). To get a simple multisection diagram of W (m), it appears helpful to modify
the map ϕm by a homotopy. We write S3 as S2 × [−1, 2π] with S2 × {−1} and
S2×{2π} shrunk, and we define ϕm as previously on S2× [0, 2π] and constant equal
to the identity on S2 × [−1, 0]. Taking a good ball decomposition S4 =

⋃
1≤i≤5Bi
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as in Lemma 3.4, we set Ba = B1 ∪ B2 and Bb = B3 ∪ B4 ∪ B5 and we choose the
parametrizations of S3 as the boundary of Ba and Bb so that:

S3 ∩ ∂B1 = (S2 × [−1, 0])/ ∼
S3 ∩ ∂B2 = (S2 × [0, 2π])/ ∼

S3 ∩ ∂B3 = (∆3 × [−1, 2π])/ ∼
S3 ∩ ∂B4 = (∆4 × [−1, 2π])/ ∼
S3 ∩ ∂B5 = (∆5 × [−1, 2π])/ ∼

where S2 = ∆3 ∪∆4 ∪∆5 is a good ball decomposition of S2 as in Figure 3. Now the
bundle W (m) is given by the gluing of S2×Ba and S2×Bb via the map ϕm : ∂Ba =
∂Bb → SO(3). We choose D1 and D2 as small neighborhoods of the two points
in ∆3∩∆4∩∆5, and D3 ⊂ ∆4, D4 ⊂ ∆5, D5 ⊂ ∆3 disjoint from the image of D1∪D2

by all the ϕm(x) ∈ SO(3) acting on S2. This gives explicit disk sections, and a
careful analysis of the gluing locus, where all the 3-dimensional handlebodies of the
multisection lie, provides the diagram in Figure 6. The only 3-dimensional piece where
the gluing is non-trivial is W2345, represented in green.

Figure 6. Multisection diagram for the S2-bundle W (2) over S4.

For a diagram of W (m), the green curve that differs from the diagram of S2 × S4 has to turn 2m times.

It is an interesting open question to ask whether one can deduce from the diagram
that the W (m) are non-diffeomorphic for distinct non-negative values of m.

We now treat surface bundles over S2 × S1.

Corollary 3.6. A surface bundle over S2×S1 admits a quadrisection of genus 8g+9,
where g is the genus of the fiber.

Proof: We use the following good ball decomposition of S2×S1. The factor S2 is cut
into two disks; each of these disks’ product S1 is then cut into two balls; see Figure 7.
In this decomposition S2 × S1 =

⋃
1≤i≤4Mi, each Mi is a 3-ball, each Mij is made

of two 2-disks, each Mijk is made of four intervals, and M1234 contains exactly eight
points. In the associated quadrisection of a surface bundle over S2 × S1, the central
surface is made of eight copies of the fiber joined by 16 tubes.

•
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•
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0 2 4 6 8 10 12 14 16 18 20 22

1 3 5 7 9 11 13 15 17 19 21 23

Figure 7. Good ball decomposition of S2 × S1: the S2-slices.

Here, S1 is regarded as [0, 24]/(0=24). We represent M1 in blue, M2 in violet, M3 in red, and M4 in green.
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In Figure 8, we give a quadrisection diagram for S2×S2×S1. The surface diagram
is the central surface of the quadrisection, made of eight 2-spheres, one above each
point of M1234, joined by 16 tubes. The eight points of M1234 appear on slices 3, 9,
15, and 21 of Figure 7, two points on each slice, and the corresponding 2-spheres are
drawn in Figure 8 at the upper-right, upper-left, lower-left, and lower-right corners
respectively. The tubes are given by the ∂Dj × Mj,j+1,j+2, where 1 ≤ j ≤ 4 and
each Mj,j+1,j+2 is made of four arcs; the tubes corresponding to j = 1, 2, 3, 4 are
circled by a blue, violet, red, and green meridian respectively in Figure 8.

∂δ1

∂δ2

∂δ3 ∂δ4

∂δ5

Figure 8. Quadrisection diagram for S2 × S2 × S1.

The cut system representing W234, W134, W124, and W123 is in blue, violet, red, and green respectively.

To draw the diagram curves on the genus-9 surface, we need to determine, for each
3-dimensional handlebody of the quadrisection, a family of nine properly embedded
disks that cut the handlebody into a 3-ball. We have

W123 = (M123× (S2 \ (D1 ∪D2 ∪D3)))∪ (M23× ∂D2)∪ (M13× ∂D3)∪ (M412×D4).

From Figure 7, it can be read that M23 (resp. M13) is made of two disks, viewed as
one bigon and one hexagon regarding the repartition of their boundaries along M123

and M234 (resp. M123 and M341). Our nine disks in W123 are as follows (see Figure 9
for the second and third points):

• four meridional disks in the four solid tubes composing D4 ×M412;
• a disk δ1 obtained as the union of:

– the product of a point in ∂D2 and the bigon in M23,
– the product of an arc joining ∂D1 to ∂D2 on S2 and the relevant interval

in M123 (the one on the boundary of the bigon in M23);
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• a disk δ2 obtained as the union of:
– the product of a point in ∂D2 and the hexagon in M23,
– the product of an arc joining ∂D1 to ∂D2 on S2 and the three relevant

intervals in M123;
• disks δ3 and δ4 analogous to δ1 and δ2 with ∂D3 instead of ∂D2 and M13 instead

of M23;
• a disk δ5 obtained as the product of an arc joining ∂D1 to itself around ∂D2

and an interval in M123 (different from the ones corresponding to the bigons).

Figure 16 indicates which curves in the diagram represent the boundaries of the five
disks δi.

S2

D1 D2
• •

γ

∗1 ∗2

bigon in M23

interval in M234

interval
in M123

γ

∗2

∗1

hexagon in M23

intervals in M234

intervals in M123

γ

∗2

∗1

Figure 9. Meridional disks in W123.

The other cut systems are obtained similarly. We may note that a simpler quadri-
section diagram of S2 × S2 × S1 is provided in the next section.

We end this section with surface bundles over real projective spaces.

Corollary 3.7. A surface bundle over RPn admits a multisection of genus 2ng +
2n−1(n− 1) + 1, where g is the genus of the fiber.

Proof: We need to give a suitable good ball decompositions of RPn. Using homo-
geneous coordinates [x0 : · · · : xn] for RPn, we set Mi = {|xi| ≥ |xj | | ∀j}. This
defines a good ball decomposition of RPn where M{0,...,n} contains 2n points and

each M{0,...,n}\{i} is made of 2n−1 intervals, for a total of e = (n + 1)2n−1 inter-
vals.

4. Multisecting fiber bundles over the circle

For a closed 3-manifold that fibers over the circle, there is a simple construction
of a Heegaard splitting, which is the one described in the previous section. It has
been generalized to dimension 4 by Gay and Kirby [2] and Koenig [5]. A similar
construction can indeed be performed in any dimension.

Theorem 4.1. Let W be an (n+ 1)-manifold which fibers over S1 with fiber a closed

n-manifold X and monodromy ϕ. Assume that X admits a multisection X =
⋃n−1
i=1 Xi

preserved by ϕ, meaning that there is a permutation σ of {1, . . . , n − 1} such that
ϕ(Xi) = Xσ(i). Then W admits a multisection of genus (c + n − 1)g + 1, where g is
the genus of S = X{1,...,n−1} and c is the number of cycles in the decomposition of σ
(including fixed points as order-1 cycles).

The following proof generalizes Koenig’s proof in dimension 4. In that case, the
permutation σ is the identity or a transposition; Koenig indeed obtains a trisection of
genus 4g+ 1 in the first case and 3g+ 1 in the second case. Further, he shows that, in
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the case where σ is the identity, some destabilizations can be performed such that one
finally ends with a trisection of genus 3g + 1 in both cases. Similar destabilizations
can be performed in some examples in higher dimensions, as in Figures 15 and 16, but
we could not find a general argument. It would be interesting to determine whether
one can always get a multisection of genus ng + 1.

Proof: We construct a multisection of W using the multisection of X and a decom-
position of S1 into intervals. Identifying W with X × I/(x, 0) ∼ (ϕ(x), 1), we define
the Wi in the product X × I.

W3 W4 W1

W1 W2

W2 W3

X1

X2

X3

σ = (123)

W1 W4 W1

W3 W4 W2

W2 W3

σ = (23)

W1 W4 W1

W2 W4 W2

W3 W4 W3

σ = id

Figure 10. Scheme of the quadrisection of W for different permutations σ.

Assume first n = 4. There are three cases, depending on the type of σ: identity,
transposition, or 3-cycle. These are schematized in Figure 10. For instance, when
σ = (123), we first set:

W ′1 =

(
X1×

[
4

5
, 1

])⋃
ϕ

(
X2×

[
0,

3

5

])
, W ′2 =

(
X2×

[
3

5
, 1

])⋃
ϕ

(
X3×

[
0,

2

5

])
,

W ′3 =

(
X3×

[
2

5
, 1

])⋃
ϕ

(
X1×

[
0,

1

5

])
, W ′4 = X1×

[
1

5
,

4

5

]
.

At this stage, the W ′i are handlebodies, but their intersections are not. We shall
again fix this by tubing. We say that a 4-ball in X is in good position if it is transverse
to the Xi, the Xij , and the central surface S, and if it intersects each of these pieces
along a ball of the corresponding dimension. Note that such balls do exist: take a
small enough neighborhood of a point in the central surface. For each interval in our
construction, namely

[
i
5 ,

i+1
5

]
for i = 1, 2, 3 and

[
4
5 , 1
]
∪
[
0, 1

5

]
, we take a tube B4× I

made of a 4-ball in good position above each point of the interval, and we add it to
the W ′i which does not appear above this interval. For instance, a tube above

[
2
5 ,

3
5

]
is removed from W1 ∪W3 ∪W4 and added to W ′2 to form W2. We require distinct
tubes to be disjoint.

Let us check that this defines a quadrisection of W . Each Wi is a 4-dimensional
handlebody times an interval (namely W ′i ) connected to itself by a 1-handle, thus
a 5-dimensional handlebody. The Wij are made of copies of some Xk and copies
of some Xk` times an interval, joined by two tubes, hence they are 4-dimensional
handlebodies; for instance, W12 is the union of X2×

{
3
5

}
and

(
X12×

[
4
5 , 1
])⋃

ϕ

(
X23×[

0, 2
5

])
joined by the tubes above

[
2
5 ,

3
5

]
and

[
3
5 ,

4
5

]
. The Wijk are made of two copies

of some X`m and a copy of the surface S = X123 times an interval, joined by three
tubes. Finally, the central surface Σ = W1234 is given by four copies of S, above i

5
for i = 1, . . . , 4, joined by tubes.

The genera of the surfaces are related by g(Σ) = 4g + 1, where g = g(S). The
schemes of Figure 10 show how to apply this construction for other permutations of
the trisection of X. The genus of Σ is then given by 5g + 1 and 6g + 1 respectively.
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Wn−1 Wn W1

W1 W2

Wn−2 Wn−1

...
...

...

X1

X2

Xn−1

Figure 11. Scheme of the multisection of W for a monodromy inducing a cycle.

W2 W6 W1

W1 W2

W5 W6 W3

W3 W4

W4 W5

X1

X2

X3

X4

X5

n = 6 σ = (12)(345)

W2 W7 W1

W1 W2

W4 W7 W3

W3 W4

W6 W7 W5

W5 W6

X1

X2

X3

X4

X5

X6

n = 7 σ = (12)(34)(56)

Figure 12. Other schemes of multisections.

Wi1 Wn W1

W1 W2

Wi1−1 Wi1

Wi2 Wn Wi1+1

Wi1+1 Wi1+2

Wi2−1 Wi2

Wic Wn Wic−1+1

Wic−1+1 Wic−1+2

Wic−1 Wic

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

X1

X2

Xn−1

Figure 13. Scheme for the permutation (1 · · · i1)(i1 + 1 · · · i2) . . . (ic−1 + 1 · · · ic).

The blocks in blue, green, and red correspond to the cycles (1 · · · i1), (i1 + 1 · · · i2), and (ic−1 + 1 · · · ic)
respectively.

In higher dimensions, the same construction works, as long as we can determine the
right scheme. The idea is to use the decomposition of σ into disjoint cycles. Figure 11
gives a model for an (n − 1)-cycle. Then different cycles can be stacked together
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as exemplified in Figures 10 and 12; the general pattern is given in Figure 13. In
doing so, we decompose the interval [0, 1] into N intervals I` =

[
`

N+1 ,
`+1
N+1

]
for ` =

1, . . . , N − 1 and IN =
[
N
N+1 , 1

]
∪
[
0, 1

N+1

]
; note that N equals the number of cycles

in the decomposition of σ (including fixed points as order-1 cycles) plus n− 1. Also
note that, above each interval I`, n−1 distinct Wi’s appear (see Figure 13). As above,
we first define W ′i as the disjoint union of the Xk× I` for each interval I` above which
Wi appears in the Xk-line. We say that an n-ball in X is in good position if it meets
each XI transversely along a ball. Then, for each interval I`, we take a tube Bn × I`
made of a ball in good position above each point of I`, so that the different tubes
are disjoint, and we add this tube to the only Wi which does not appear above I`.
This tube is thus removed from the other Wj ’s; since the trace of the tube on a
Wj is a collar neighborhood of a disk in ∂Wj , this amounts to modifying Wj by an
isotopy. Thus constructed, the Wi are made of n-dimensional handlebodies times an
interval joined by 1-handles, hence they are (n+ 1)-dimensional handlebodies. For a
non-empty proper subset I of {1, . . . , n}, WI is made of some XJ × I` with |J | = |I|
and some XJ ×

{
`

N+1

}
with |J | = |I| − 1, joined by 1-handles; hence WI is an

(n − |I| + 2)-dimensional handlebody. Finally, Σ = W{1,...,n} is made of N copies of
the punctured S joined by N tubes.

X1

X2

X3

W2 W1 W2

W3 W2 W3

W4 W3 W4

Figure 14. Trisection diagram for CP2 and scheme of a quadrisection of CP2 × S1.

S6

S5

S4S3

S2

S1 After destabilizing

Figure 15. Quadrisection diagrams of CP2 × S1.
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We shall explain on the example of CP2 × S1 how to draw a diagram of the
multisection we have constructed. We start with the diagram of CP2 given on
the left hand side of Figure 14, whose surface is denoted by S, where the red
curve represents X12, the blue curve represents X23, and the green curve repre-
sents X13. We use the alternative scheme given on the right hand side of Figure 14
(this is just for convenience, because a nice picture came out with this scheme). We
draw the surface Σ as N = 6 copies Si of S set along a cycle and joined by tubes
creating the hole in the middle; see Figure 15. The 3-dimensional handlebodies
of the quadrisection are made of copies of the 3-dimensional handlebodies of
the trisection of CP2 and copies of the product of the punctured surface S with
an interval, joined by tubes. For instance, in our example, the handlebody W124 is
made of:

• copies of X13 represented by the purple curves on S1 and S6,

• the product of a punctured S with an interval running from S2 to S3, where the
purple curves represent arcs on the punctured S that define disks in the product:
here we take any pair of disjoint properly embedded arcs in the punctured S
that cut it into a disk, and their product with the interval are disks whose
boundaries form a cut system of the associated 2-handlebody,

• the same thing between S4 and S5,

• the tubes joining the above pieces, to which corresponds a meridian purple curve
which could be drawn between Si and Si+1 for any i 6= 2, 4.

The other cut systems are obtained accordingly; the orange one represents W123,
the blue one W134, and the green one W234. If the monodromy ϕ were non-trivial,
then the green curves on S1/S6 would have to join arcs on S6 to their images by ϕ
on S1. Note that we have to represent the successive copies of S with alternat-
ing orientation. The monodromy ϕ reverses the orientation of S precisely when n
is odd.

In this diagram, two destabilizations can be performed. Sliding the orange curve
on S2 along the orange curve on S1 and the green curve on S2 along the green
curve on S3, we get parallel green and purple curves dual to parallel blue and orange
curves. Thanks to Proposition 2.2, this allows us to destabilize once. The second
destabilization is symmetric with respect to a vertical axis.

Starting with the genus-2 trisection diagram of S2×S2 given in Figure 16, we get a
quadrisection diagram of S2×S2×S1 in a completely analogous manner. In particular,
we use the same scheme (see Figure 14) and the same colors. This first gives the genus-
13 quadrisection diagram at the top-left of Figure 16. Performing four destabilizations
similar to that of Figure 15, we get the genus-9 quadrisection diagram in Figure 16.
We can then perform two more destabilizations, which successively merge the pairs
of “holes” marked with ∗: at the first step we readily have a pair of parallel blue and
purple curves, and we slide some green curves to get the destabilization conditions;
at the second step we slide the green curve around the upper ∗-marked hole along the
similar green curve on the right, and we slide blue and purple curves to get parallel
curves joining the ∗-marked holes. Finally, we get the genus-7 diagram at the top-right
of Figure 16.

Note that we obtain a genus-7 quadrisection, which is strictly less than 9 = ng+ 1.
This might not be surprising since the last two destabilizations seem to occur by
chance more than following a general pattern.
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∗ ∗

∗

∗

∗

∗

Figure 16. Trisection diagram of S2 × S2 and quadrisection diagrams of S2 × S2 × S1.
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