UNCOUNTABLE INTERVAL OF VARIETIES OF INVOLUTION SEMIGROUPS SHARING A COMMON SEMIGROUP VARIETY REDUCT

Edmond W. H. Lee

Abstract: A pair of involution semigroups sharing a common semigroup reduct of order eight is constructed with the property that the varieties they generate bound an interval that contains an uncountable chain. Consequently, there exist uncountably many non-finitely generated varieties of involution semigroups sharing a common semigroup variety reduct that is finitely generated.

2020 Mathematics Subject Classification: 20M07.

Key words: semigroup, involution semigroup, variety.

1. Introduction

Recall that a *unary semigroup* $\langle S, * \rangle$ is a semigroup S equipped with a unary operation *. A unary semigroup $\langle S, * \rangle$ that satisfies the equations

(1)
$$(x^*)^* \approx x$$
 and $(xy)^* \approx y^* x^*$

is an *involution semigroup*. Common examples of involution semigroups include groups $\langle \mathfrak{G}, {}^{-1} \rangle$ under inversion ${}^{-1}$ and matrix semigroups $\langle \mathfrak{M}_n, {}^T \rangle$ under the usual transposition T . An involution semigroup $\langle \mathfrak{S}, {}^* \rangle$ and its semigroup *reduct* \mathfrak{S} are similar in many ways, but the varieties they generate can satisfy very contrasting properties. For instance, the variety $\operatorname{Var} \langle \mathfrak{S}, {}^* \rangle$ and its semigroup variety *reduct* $\operatorname{Var} \mathfrak{S}$ can satisfy very different equational properties; see, for example, [3, 5, 7, 8, 11, 12, 13, 16].

The lattice \mathscr{L}_{inv} of varieties of involution semigroups and the lattice \mathscr{L}_{sem} of varieties of semigroups are also well known to be highly incompatible [2, 15]. Most notably, inclusions in \mathscr{L}_{inv} need not resemble those from \mathscr{L}_{sem} ; for example, there exist an abundance of pairs of finite involution semigroups $\langle S, * \rangle$ and $\langle T, * \rangle$ such that $\operatorname{Var}\langle S, * \rangle \not\subseteq \operatorname{Var}\langle T, * \rangle$ and $\operatorname{Var} S \subseteq \operatorname{Var} \mathcal{T}$ [9]. Even in cases when the inclusion $\operatorname{Var}\langle S, * \rangle \subseteq \operatorname{Var}\langle T, * \rangle$ holds, the intervals $[\operatorname{Var}\langle S, * \rangle, \operatorname{Var}\langle T, * \rangle]$ and $[\operatorname{Var} S, \operatorname{Var} \mathcal{T}]$ need not be similar. This is well illustrated by the following example.

Example 1 (Lee [14]). There exist involution semigroups $\langle S, * \rangle$ and $\langle T, * \rangle$ of order four such that the interval $[Var \langle S, * \rangle, Var \langle T, * \rangle]$ contains an infinite chain even though its semigroup variety reduct [Var S, Var T] is just the chain $Var S \subset Var T$ of order two.

It is of fundamental interest to ask if there exists an example possessing more extreme properties: either $[Var\langle S, * \rangle, Var\langle T, * \rangle]$ is uncountable or [Var S, Var T] is trivial, that is, Var S = Var T. Surprisingly, the answer to this seemingly elusive question is affirmative, and the construction of such an example is the main goal of the present article. **Theorem 2.** There exist involution semigroups $\langle S_8, * \rangle$ and $\langle S_8, * \rangle$, sharing a common semigroup reduct S_8 of order eight, such that the interval $[Var\langle S_8, * \rangle, Var\langle S_8, * \rangle]$ contains an uncountable chain.

It follows that the variety $\operatorname{Var}(S_8, {}^{\circledast})$ has uncountably many subvarieties. In contrast, the variety $\operatorname{Var}(S_8, {}^{\ast})$ has only four subvarieties.

Since there exist only countably many finitely generated varieties, uncountably many varieties in the interval $[Var(\mathfrak{S}_8, *), Var(\mathfrak{S}_8, *)]$ are non-finitely generated.

Corollary 3. There exist uncountably many non-finitely generated varieties of involution semigroups whose semigroup variety reduct coincides with the finitely generated variety $Var S_8$.

Background information is first given in Section 2. A sufficient condition is then established in Section 3 under which an interval in \mathscr{L}_{inv} contains an uncountable chain. Using this condition, the involution semigroups $\langle S_8, * \rangle$ and $\langle S_8, * \rangle$ in Theorem 2 are constructed in Section 4.

More details on the differences between the lattices \mathcal{L}_{inv} and \mathcal{L}_{sem} can be found in [15, Section 1.5].

2. Preliminaries

Acquaintance with rudiments of universal algebra is assumed. Refer to the monograph of Burris and Sankappanavar [1] for more information.

2.1. Words and terms. Let \mathscr{X} be a countably infinite alphabet and $\mathscr{X}^* = \{x^* \mid x \in \mathscr{X}\}$ be its disjoint copy. Elements of $\mathscr{X} \cup \mathscr{X}^*$ are called *variables*. The *free involution monoid* over \mathscr{X} is the free semigroup $(\mathscr{X} \cup \mathscr{X}^*)^+$, together with the empty word \mathscr{O} , with unary operation * given by $(x^*)^* = x$ for all $x \in \mathscr{X}$,

$$(x_1 x_2 \cdots x_m)^* = x_m^* x_{m-1}^* \cdots x_1^*$$

for all $x_1, x_2, \ldots, x_m \in \mathscr{X} \cup \mathscr{X}^* \cup \{\emptyset\}$, and $\mathscr{O}^* = \emptyset$. Elements of the involution monoid $(\mathscr{X} \cup \mathscr{X}^*)^+ \cup \{\emptyset\}$ are called *words*, while words in the monoid $\mathscr{X}^+ \cup \{\emptyset\}$ are said to be *plain*.

The set of *terms* over \mathscr{X} , denoted by $\mathsf{T}(\mathscr{X})$, is the smallest set such that $\mathscr{X} \cup \{\varnothing\} \subseteq \mathsf{T}(\mathscr{X})$; if $\mathbf{t}_1, \mathbf{t}_2 \in \mathsf{T}(\mathscr{X})$, then $\mathbf{t}_1 \mathbf{t}_2 \in \mathsf{T}(\mathscr{X})$; and if $\mathbf{t} \in \mathsf{T}(\mathscr{X})$, then $\mathbf{t}^* \in \mathsf{T}(\mathscr{X})$. The *subterms* of a term \mathbf{t} are then recursively defined as follows: \mathbf{t} is a subterm of \mathbf{t} ; if $\mathbf{s}_1\mathbf{s}_2$ is a subterm of \mathbf{t} where $\mathbf{s}_1, \mathbf{s}_2 \in \mathsf{T}(\mathscr{X})$, then so are \mathbf{s}_1 and \mathbf{s}_2 ; if \mathbf{s}^* is a subterm of \mathbf{t} where $\mathbf{s} \in \mathsf{T}(\mathscr{X})$, then so is \mathbf{s} . The proper inclusion $(\mathscr{X} \cup \mathscr{X}^*)^+ \subset \mathsf{T}(\mathscr{X})$ holds and the involution axioms (1) can be used to convert any term $\mathbf{t} \in \mathsf{T}(\mathscr{X}) \setminus \{\varnothing\}$ into a unique word $\lfloor \mathbf{t} \rfloor \in (\mathscr{X} \cup \mathscr{X}^*)^+$. For instance, $\lfloor x(x^3(yx^*)^*)^*zy^* \rfloor = xy(x^*)^4zy^*$.

Remark 4. For any subterm **s** of a term **t**, either $|\mathbf{s}|$ or $|\mathbf{s}^*|$ is a factor of $|\mathbf{t}|$.

2.2. Equations, deducibility, and satisfiability. An *equation* is an expression $\mathbf{s} \approx \mathbf{t}$ formed by terms $\mathbf{s}, \mathbf{t} \in \mathsf{T}(\mathscr{X}) \setminus \{\varnothing\}$. Specifically, a *word equation* is an equation $\mathbf{u} \approx \mathbf{v}$ formed by words $\mathbf{u}, \mathbf{v} \in (\mathscr{X} \cup \mathscr{X}^*)^+$ and a *plain equation* is an equation $\mathbf{u} \approx \mathbf{v}$ formed by plain words $\mathbf{u}, \mathbf{v} \in \mathscr{X}^+$.

An equation $\mathbf{s} \approx \mathbf{t}$ is *directly deducible* from an equation $\mathbf{u}_1 \approx \mathbf{u}_2$ if there exist a substitution $\varphi \colon \mathscr{X} \to \mathsf{T}(\mathscr{X}) \setminus \{\varnothing\}$ and distinct $i, j \in \{1, 2\}$ such that $\varphi \mathbf{u}_i$ is a subterm

of s, and replacing this particular subterm $\varphi \mathbf{u}_i$ of s with $\varphi \mathbf{u}_j$ results in the term t. An equation $\mathbf{s} \approx \mathbf{t}$ is *deducible* from a set Σ of equations if there exists a finite sequence

$$\mathbf{s} = \mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_r = \mathbf{t}$$

of distinct terms such that each equation $\mathbf{t}_i \approx \mathbf{t}_{i+1}$ is directly deducible from some equation in Σ .

An involution semigroup $\langle S, * \rangle$ satisfies an equation $\mathbf{s} \approx \mathbf{t}$, or $\mathbf{s} \approx \mathbf{t}$ is satisfied by $\langle S, * \rangle$ if, for any substitution $\varphi \colon \mathscr{X} \to S$, the elements $\varphi \mathbf{s}$ and $\varphi \mathbf{t}$ of S coincide. Satisfaction of equations by semigroups is similarly defined. Note that equations of semigroups are necessarily plain. A class of (involution) semigroups satisfies an equation if every (involution) semigroup in it satisfies the equation.

2.3. Equational theories and bases. For any class \mathfrak{K} of involution semigroups, the set of equations satisfied by every involution semigroup in \mathfrak{K} , denoted by $\mathsf{Eq}\,\mathfrak{K}$, is the *equational theory* of \mathfrak{K} . The set of word equations in $\mathsf{Eq}\,\mathfrak{K}$ is denoted by $\mathsf{Eq}_W\,\mathfrak{K}$. An *equational basis* for \mathfrak{K} is any subset Σ of $\mathsf{Eq}\,\mathfrak{K}$ such that every equation in $\mathsf{Eq}\,\mathfrak{K}$ is deducible from Σ .

3. Sufficient condition for continuum of subvarieties

A term **u** divides a term **s** if some substitution $\varphi \colon \mathscr{X} \to \mathsf{T}(\mathscr{X}) \setminus \{\emptyset\}$ exists such that $\varphi \mathbf{u}$ is a subterm of **s**. It follows that a non-trivial equation $\mathbf{s} \approx \mathbf{t}$ cannot be directly deducible from an equation $\mathbf{u}_1 \approx \mathbf{u}_2$ if neither \mathbf{u}_1 nor \mathbf{u}_2 divides **s**.

For any set $\mathscr{P} \subseteq (\mathscr{X} \cup \mathscr{X}^*)^+$ and any words $\mathbf{p}, \mathbf{q} \in (\mathscr{X} \cup \mathscr{X}^*)^+$, the triple $(\mathscr{P}; \mathbf{p}, \mathbf{q})$ is an *inside-outside triple* if $\mathbf{p} \in \mathscr{P}$ and $\mathbf{q} \notin \mathscr{P}$. A system $\mathfrak{S} = \{(\mathscr{P}_i; \mathbf{p}_i, \mathbf{q}_i) \mid i \in I\}$ of inside-outside triples is *independent* if for any distinct $j, k \in I$ neither \mathbf{p}_j nor \mathbf{q}_j divides any term \mathbf{t} with $\lfloor \mathbf{t} \rfloor \in \mathscr{P}_k$.

Theorem 5. Let $\mathfrak{S} = \{(\mathscr{P}_i; \mathbf{p}_i, \mathbf{q}_i) \mid i \in I\}$ be any countably infinite independent system of inside-outside triples. Suppose that \mathbf{V} is any variety of involution semigroups such that for each $i \in I$ the following implication holds for any word $\mathbf{w} \in (\mathscr{X} \cup \mathscr{X}^*)^+$:

(2)
$$\mathbf{p}_i \approx \mathbf{w} \in \mathsf{Eq}_W \mathbf{V} \implies \mathbf{w} \in \mathscr{P}_i.$$

Then **V** contains an uncountable chain of subvarieties. Further, if some subvariety **U** of **V** satisfies the equations $\{\mathbf{p}_i \approx \mathbf{q}_i \mid i \in I\}$, then the uncountable chain is contained in the interval $[\mathbf{U}, \mathbf{V}]$.

Proof: For any set $N \subseteq I$, let \mathbf{V}_N denote the subvariety of \mathbf{V} defined by $\{\mathbf{p}_i \approx \mathbf{q}_i \mid i \in N\}$. Since $\mathbf{q}_i \notin \mathscr{P}_i$ by the definition of an inside-outside triple, it follows from (2) that $\mathbf{p}_i \approx \mathbf{q}_i \notin \mathsf{Eq}_W \mathbf{V}$. In other words,

(a) $\mathbf{p}_i \approx \mathbf{q}_i \notin \mathsf{Eq} \mathbf{V}$ for all $i \in I$.

Therefore, $\mathbf{V} \neq \mathbf{V}_N$ for all $N \subseteq I$. Seeking a contradiction, suppose that $\mathbf{p}_m \approx \mathbf{q}_m \in \mathsf{Eq} \mathbf{V}_N$ for some $m \notin N$. Then there exists a finite sequence $\mathbf{p}_m = \mathbf{t}_1, \mathbf{t}_2, \ldots, \mathbf{t}_r = \mathbf{q}_m$ of distinct terms such that each equation $\mathbf{t}_j \approx \mathbf{t}_{j+1}$ is directly deducible from some equation in the equational basis $\mathsf{Eq} \mathbf{V} \cup \{\mathbf{p}_i \approx \mathbf{q}_i \mid i \in N\}$ for \mathbf{V}_N . If every equation $\mathbf{t}_j \approx \mathbf{t}_{j+1}$ is directly deducible from some equation in $\mathsf{Eq} \mathbf{V}$ and (a) is contradicted. Therefore, some equation $\mathbf{t}_j \approx \mathbf{t}_{j+1}$ is directly deducible from such that $\mathbf{t}_\ell \approx \mathbf{t}_{\ell+1}$ is directly deducible from $\mathbf{p}_n \approx \mathbf{q}_i \mid i \in N$. Let ℓ be the least index such that $\mathbf{t}_\ell \approx \mathbf{t}_{\ell+1}$ is directly deducible from $\mathbf{p}_n \approx \mathbf{q}_n$ for some $n \in N$. Then

(b) either \mathbf{p}_n or \mathbf{q}_n divides \mathbf{t}_{ℓ} .

The minimality of ℓ implies that each equation in $\{\mathbf{t}_j \approx \mathbf{t}_{j+1} \mid 1 \leq j < \ell\}$ is directly deducible from some equation in $\mathsf{Eq} \mathbf{V}$, whence $\mathbf{t}_1 \approx \mathbf{t}_\ell \in \mathsf{Eq} \mathbf{V}$. But since $\lfloor \mathbf{t}_1 \rfloor \approx \lfloor \mathbf{t}_\ell \rfloor \in \mathsf{Eq}_W \mathbf{V}$ with $\lfloor \mathbf{t}_1 \rfloor = \mathbf{p}_m$, it follows from (2) that

(c)
$$[\mathbf{t}_{\ell}] \in \mathscr{P}_m$$

Now $m \neq n$ because $m \notin N$ and $n \in N$. Therefore, the independence of \mathfrak{S} is contradicted by (b) and (c).

Consequently, $\mathbf{p}_i \approx \mathbf{q}_i \in \mathsf{Eq} \mathbf{V}_N$ if and only if $i \in N$. It follows that $\mathbf{V}_N \supseteq \mathbf{V}_{N'}$ if and only if $N \subseteq N'$, whence the set $\{\mathbf{V}_N \mid N \subseteq I\}$ consists of uncountably many subvarieties of \mathbf{V} . A standard argument shows that this set—which is isomorphic to the dual of the power set of *I*—contains an uncountable chain. Indeed, select any bijection φ from *I* onto the rational numbers \mathbb{Q} and, for any real number $r \in \mathbb{R}$, define $N(r) = \{i \in I \mid \varphi i < r\}$. Then $N(r) \subset N(r')$ if and only if r < r'; in other words, $\mathbf{V}_{N(r)} \supset \mathbf{V}_{N(r')}$ if and only if r < r'.

Now if some subvariety **U** of **V** satisfies the equations $\{\mathbf{p}_i \approx \mathbf{q}_i \mid i \in I\}$, then $\mathbf{U} \subseteq \mathbf{V}_N$ for all $N \subseteq I$. Therefore, the uncountable chain is contained in $[\mathbf{U}, \mathbf{V}]$. \Box

4. Construction of $\langle S_8, * \rangle$ and $\langle S_8, * \rangle$

Let \mathbb{N} denote the positive integers. For each $i \in \mathbb{N}$, define the word

 $\mathbf{p}_i = x_0 t_1 t_2 x_0 \cdot x_1 y_1 x_1 \cdot x_2 y_2 x_2 \cdots x_i y_i x_i \cdot x_{i+1} t_3 t_4 x_{i+1}.$

Let $\mathbf{q}_i = x_0 x_0^* \mathbf{p}_i$ and $\mathscr{P}_i = {\mathbf{p}_i}$, so that $(\mathscr{P}_i; \mathbf{p}_i, \mathbf{q}_i)$ is an inside-outside triple.

Lemma 6. The system $\{(\mathscr{P}_i; \mathbf{p}_i, \mathbf{q}_i) \mid i \in \mathbb{N}\}$ of inside-outside triples is independent.

Proof: Consider any $j, k \in \mathbb{N}$ such that $j \neq k$. Since \mathbf{q}_j contains the variable x_0 thrice but every variable occurs at most twice in \mathbf{p}_k , it is impossible for \mathbf{q}_j to divide any term \mathbf{t} with $|\mathbf{t}| \in \mathscr{P}_k = {\mathbf{p}_k}$.

Seeking a contradiction, suppose that \mathbf{p}_j divides some term \mathbf{t} with $\lfloor \mathbf{t} \rfloor \in \mathscr{P}_k = \{\mathbf{p}_k\}$. Then by Remark 4 there exists some substitution $\varphi \colon \mathscr{X} \to \mathsf{T}(\mathscr{X}) \setminus \{\varnothing\}$ such that either $\lfloor \varphi \mathbf{p}_j \rfloor$ or $\lfloor (\varphi \mathbf{p}_j)^* \rfloor$ is a factor of $\lfloor \mathbf{t} \rfloor = \mathbf{p}_k$.

Case 1: $\lfloor \varphi \mathbf{p}_j \rfloor$ is a factor of \mathbf{p}_k . Note that

$$[\varphi \mathbf{p}_j] = [\varphi x_0] [\varphi t_1] [\varphi t_2] [\varphi x_0] \cdot [\varphi x_1] [\varphi y_1] [\varphi x_1] \cdot [\varphi x_2] [\varphi y_2] [\varphi x_2] \cdots \\ \cdots [\varphi x_j] [\varphi y_j] [\varphi x_j] \cdot [\varphi x_{j+1}] [\varphi t_3] [\varphi t_4] [\varphi x_{j+1}]$$

and

$$\mathbf{p}_{k} = x_{0}t_{1}t_{2}x_{0} \cdot x_{1}y_{1}x_{1} \cdot x_{2}y_{2}x_{2} \cdots x_{k}y_{k}x_{k} \cdot x_{k+1}t_{3}t_{4}x_{k+1}.$$

If one of the factors $\lfloor \varphi x_0 \rfloor, \lfloor \varphi x_1 \rfloor, \ldots, \lfloor \varphi x_{j+1} \rfloor$ of $\lfloor \varphi \mathbf{p}_j \rfloor$ is not a single variable, then the word $\lfloor \varphi \mathbf{p}_j \rfloor$ is of the form $\cdots z_1 z_2 \cdots z_1 z_2 \cdots$ for some $z_1, z_2 \in \mathscr{X} \cup \mathscr{X}^*$ and so cannot be a factor of \mathbf{p}_k . Therefore, every one of $\lfloor \varphi x_0 \rfloor, \lfloor \varphi x_1 \rfloor, \ldots, \lfloor \varphi x_{j+1} \rfloor$ is a single variable. Now since the prefix $\lfloor \varphi x_0 \rfloor \lfloor \varphi t_1 \rfloor \lfloor \varphi t_2 \rfloor \lfloor \varphi x_0 \rfloor$ and the suffix $\lfloor \varphi x_{j+1} \rfloor \lfloor \varphi t_3 \rfloor \lfloor \varphi t_4 \rfloor \lfloor \varphi x_{j+1} \rfloor$ of $\lfloor \varphi \mathbf{p}_j \rfloor$ are words of length at least four that begin and end with the same variable, they must coincide with the prefix $x_0 t_1 t_2 x_0$ and the suffix $x_{k+1} t_3 t_4 x_{k+1}$ of \mathbf{p}_k , respectively. It follows that

 $\lfloor \varphi x_1 \rfloor \lfloor \varphi y_1 \rfloor \lfloor \varphi x_1 \rfloor \cdot \lfloor \varphi x_2 \rfloor \lfloor \varphi y_2 \rfloor \lfloor \varphi x_2 \rfloor \cdots \lfloor \varphi x_j \rfloor \lfloor \varphi y_j \rfloor \lfloor \varphi x_j \rfloor = x_1 y_1 x_1 \cdot x_2 y_2 x_2 \cdots x_k y_k x_k,$ which is impossible due to $j \neq k$.

Case 2: $\lfloor (\varphi \mathbf{p}_j)^* \rfloor$ is a factor of \mathbf{p}_k . Since $\lfloor (\varphi \mathbf{p}_j)^* \rfloor$ has the same form as $\lfloor \varphi \mathbf{p}_j \rfloor$, the argument in Case 1 can be repeated to show that the present case is also impossible.

Construction of the involution semigroups $\langle S_8, * \rangle$ and $\langle S_8, * \rangle$ requires the following matrix semigroups under the usual matrix multiplication: the Brandt monoid

$$\mathcal{B} = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

and its subsemilattice

$$\mathcal{S}\ell = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}.$$

These matrix semigroups are closed under both the usual transposition T and the skew transposition S across the secondary diagonal:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^T = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} a & b \\ c & d \end{bmatrix}^S = \begin{bmatrix} d & b \\ c & a \end{bmatrix}.$$

Note that $x^T = x$ for all $x \in \mathcal{S}\ell$.

Lemma 7. Suppose that $\mathbf{u} \approx \mathbf{v} \in \mathsf{Eq}_W(\mathcal{S}\ell, {}^S)$. Then the set of variables occurring in \mathbf{u} coincides with the set of variables occurring in \mathbf{v} .

Proof: Suppose that x is a variable that occurs in **u** but not in **v**. Generality is not lost by assuming that $x \in \mathscr{X}$. Let $\varphi \colon \mathscr{X} \to \mathcal{S}\ell$ be the substitution that maps x to $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and any other variable to $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Then

Therefore, the contradiction $\varphi \mathbf{u} \neq \varphi \mathbf{v}$ is obtained.

Lemma 8. Let $i \in \mathbb{N}$ be odd. Suppose that $\mathbf{p}_i \approx \mathbf{w} \in \mathsf{Eq} \mathcal{B}$ for some $\mathbf{w} \in \mathscr{X}^+$. Then $\mathbf{w} = \mathbf{p}_i$.

Proof: A plain word $\mathbf{u} \in \mathscr{X}^+$ is an *isoterm* for a semigroup S if the following implication holds for every word $\mathbf{w} \in \mathscr{X}^+$:

$$\mathbf{u}\approx\mathbf{w}\in\mathsf{Eq}\,\$\implies \mathbf{u}=\mathbf{w}.$$

Jackson ([4, proof of Theorem 4.1]) has shown that \mathbf{p}_i is an isoterm for the semigroup $\mathcal{B}' \times \mathcal{B}''$, where $\mathcal{B}' = \{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \}$ and $\mathcal{B}'' = \{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \}$ are subsemigroups of \mathcal{B} . It follows that \mathbf{p}_i is also an isoterm for \mathcal{B} .

Lemma 9. Let $i \in \mathbb{N}$ be odd. Suppose that $\mathbf{p}_i \approx \mathbf{w} \in \mathsf{Eq}_W\{\langle \mathcal{B}, T \rangle, \langle \mathcal{S}\ell, S \rangle\}$ for some $\mathbf{w} \in (\mathscr{X} \cup \mathscr{X}^*)^+$. Then $\mathbf{w} = \mathbf{p}_i$.

Proof: Since $\mathbf{p}_i \approx \mathbf{w} \in \mathsf{Eq}_W(\mathcal{S}\ell, S)$ and the word \mathbf{p}_i is plain, the word \mathbf{w} is also plain by Lemma 7. Then $\mathbf{p}_i \approx \mathbf{w} \in \mathsf{Eq}\mathcal{B}$, so that $\mathbf{w} = \mathbf{p}_i$ by Lemma 8.

Lemma 10. The interval $[Var\langle \mathcal{B}, T \rangle, Var\{\langle \mathcal{B}, T \rangle, \langle \mathcal{S}\ell, S \rangle\}]$ contains an uncountable chain.

Proof: By Lemma 6, the system $\mathfrak{S} = \{(\mathscr{P}_i; \mathbf{p}_i, \mathbf{q}_i) \mid i = 1, 3, 5, ...\}$ of insideoutside triples is independent. By Lemma 9, the implication (2) holds with $\mathbf{V} =$ $\mathsf{Var}\{\langle \mathcal{B}, T \rangle, \langle \mathcal{S}\ell, S \rangle\}$. Therefore, by Theorem 5, the variety \mathbf{V} contains an uncountable chain of subvarieties. Further, since the subvariety $\mathbf{U} = \mathsf{Var}\langle \mathcal{B}, T \rangle$ of \mathbf{V} satisfies the equation $xx^*x \approx x$ and so also the equation $\mathbf{p}_i \approx \mathbf{q}_i$ for any i, the uncountable chain is contained in $[\mathbf{U}, \mathbf{V}]$.

Remark 11. The variety $\operatorname{Var}\langle \mathfrak{B}, T \rangle$ has only four subvarieties [6] while the variety $\operatorname{Var}\{\langle \mathfrak{B}, T \rangle, \langle \mathfrak{S}\ell, S \rangle\}$ has uncountably many subvarieties [10].

Define the direct products

 $\langle \mathfrak{P}, {}^* \rangle = \langle \mathfrak{B}, {}^T \rangle \times \langle \mathfrak{S}\ell, {}^T \rangle \quad \text{and} \quad \langle \mathfrak{P}, {}^\circledast \rangle = \langle \mathfrak{B}, {}^T \rangle \times \langle \mathfrak{S}\ell, {}^S \rangle;$

in other words, $\mathcal{P} = \mathcal{B} \times \mathcal{S}\ell$ is an involution semigroup under any of the unary operations $(x, y)^* = (x^T, y^T)$ and $(x, y)^{\circledast} = (x^T, y^S)$.

Lemma 12. The inclusion $Var\langle \mathcal{P}, * \rangle \subseteq Var\langle \mathcal{P}, * \rangle$ holds and consequently the interval $[Var\langle \mathcal{P}, * \rangle, Var\langle \mathcal{P}, * \rangle]$ contains an uncountable chain.

Proof: Since $\langle S\ell, T \rangle$ is an involution subsemigroup of $\langle \mathcal{B}, T \rangle$,

$$\mathsf{Var}\langle \mathfrak{P},^*\rangle = \mathsf{Var}\langle \mathfrak{B},^T\rangle \subseteq \mathsf{Var}\{\langle \mathfrak{B},^T\rangle, \langle \mathfrak{S}\ell,^S\rangle\} = \mathsf{Var}\langle \mathfrak{P},^{\circledast}\rangle.$$

The result then follows from Lemma 10.

Now let S_8 be the subset of $\mathcal{P} = \mathcal{B} \times S\ell$ consisting of the elements

$$O = (\mathbf{0}, \mathbf{0}), \qquad A = \left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \mathbf{0} \right), \quad B = \left(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \mathbf{0} \right), \quad C = \left(\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \mathbf{0} \right), \\D = \left(\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \mathbf{0} \right), \quad E = \left(\mathbf{0}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right), \quad F = \left(\mathbf{0}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right), \quad I = (\mathbf{1}, \mathbf{1}),$$

where $\mathbf{0} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ and $\mathbf{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Then S_8 is a subsemigroup of \mathcal{P} that is closed under both of the unary operations * and \mathfrak{B} . It is clear that $\langle S_8, * \rangle$ is an amalgamation of

$$\langle \mathfrak{B}, {}^{T} \rangle \cong \langle \{ O, A, B, C, D, I \}, {}^{*} \rangle \quad \text{and} \quad \langle \mathfrak{S}\ell, {}^{T} \rangle \cong \langle \{ O, E, F, I \}, {}^{*} \rangle,$$

and that $\langle S_8, ^{(*)} \rangle$ is an amalgamation of

$$\langle \mathfrak{B}, {}^T \rangle \cong \langle \{ \mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{I} \}, {}^\circledast \rangle \quad \text{and} \quad \langle \mathbb{S}\ell, {}^S \rangle \cong \langle \{ \mathrm{O}, \mathrm{E}, \mathrm{F}, \mathrm{I} \}, {}^\circledast \rangle.$$

It follows that $\operatorname{Var}(\mathfrak{S}_8, *) = \operatorname{Var}(\mathfrak{P}, *)$ and $\operatorname{Var}(\mathfrak{S}_8, *) = \operatorname{Var}(\mathfrak{P}, *)$. Theorem 2 is thus a consequence of Lemma 12.

Remark 13. Since the variety $\operatorname{Var}(\mathfrak{B}, {}^{S})$ has uncountably many subvarieties [10], it is natural to question whether or not Lemma 12 is also true if the varieties $\operatorname{Var}(\mathfrak{P}, {}^{*})$ and $\operatorname{Var}(\mathfrak{P}, {}^{\circledast})$ are replaced by $\operatorname{Var}(\mathfrak{B}, {}^{T})$ and $\operatorname{Var}(\mathfrak{B}, {}^{S})$. But since $\langle \mathfrak{B}, {}^{T} \rangle$ does not satisfy the equation $xx^{*} \approx x^{*}x$ of $\langle \mathfrak{B}, {}^{S} \rangle$ while $\langle \mathfrak{B}, {}^{S} \rangle$ does not satisfy the equation $xx^{*}x \approx x$ of $\langle \mathfrak{B}, {}^{T} \rangle$, the varieties $\operatorname{Var}(\mathfrak{B}, {}^{T})$ and $\operatorname{Var}(\mathfrak{B}, {}^{S})$ exclude one another, and certainly do not bound a non-empty interval.

Acknowledgments

The author is indebted to the anonymous reviewers for a number of useful suggestions.

References

- S. BURRIS AND H. P. SANKAPPANAVAR, A Course in Universal Algebra, Grad. Texts in Math. 78, Springer-Verlag, New York-Berlin, 1981.
- [2] S. CRVENKOVIĆ AND I. DOLINKA, Varieties of involution semigroups and involution semirings: a survey, Bull. Soc. Math. Banja Luka 9 (2002), 7–47.
- [3] M. GAO, W. T. ZHANG, AND Y. F. LUO, A non-finitely based involution semigroup of order five, Algebra Universalis 81(3) (2020), Paper no. 31, 14 pp. DOI: 10.1007/s00012-020-00662-w.
- [4] M. JACKSON, Finite semigroups whose varieties have uncountably many subvarieties, J. Algebra 228(2) (2000), 512–535. DOI: 10.1006/jabr.1999.8280.
- [5] M. JACKSON AND M. VOLKOV, The algebra of adjacency patterns: Rees matrix semigroups with reversion, in: *Fields of Logic and Computation*, Lecture Notes in Comput. Sci. **6300**, Springer, Berlin, 2010, pp. 414–443. DOI: 10.1007/978-3-642-15025-8_20.
- [6] E. I. KLEĬMAN, Bases of identities of varieties of inverse semigroups (Russian), Sibirsk. Mat. Zh. 20(4) (1979), 760-777, 926. English translation: Siberian Math. J. 20(4) (1979), 530-543. DOI: 10.1007/BF00970367.
- [7] E. W. H. LEE, Finite involution semigroups with infinite irredundant bases of identities, Forum Math. 28(3) (2016), 587–607. DOI: 10.1515/forum-2014-0098.
- [8] E. W. H. LEE, Finitely based finite involution semigroups with non-finitely based reducts, Quaest. Math. 39(2) (2016), 217–243. DOI: 10.2989/16073606.2015.1068239.
- [9] E. W. H. LEE, On a class of completely join prime J-trivial semigroups with unique involution, Algebra Universalis 78(2) (2017), 131–145. DOI: 10.1007/s00012-017-0442-3.
- E. W. H. LEE, Varieties generated by unstable involution semigroups with continuum many subvarieties, C. R. Math. Acad. Sci. Paris 356(1) (2018), 44-51. DOI: 10.1016/j.crma.2017. 12.001.
- [11] E. W. H. LEE, A sufficient condition for the absence of irredundant bases, Houston J. Math. 44(2) (2018), 399–411.
- [12] E. W. H. LEE, Non-finitely based finite involution semigroups with finitely based semigroup reducts, Korean J. Math. 27(1) (2019), 53-62. DOI: 10.11568/kjm.2019.27.1.53.
- [13] E. W. H. LEE, Varieties of involution monoids with extreme properties, Q. J. Math. 70(4) (2019), 1157-1180. DOI: 10.1093/qmath/haz003.
- [14] E. W. H. LEE, Intervals of varieties of involution semigroups with contrasting reduct intervals, Boll. Unione Mat. Ital. 15(4) (2022), 527–540. DOI: 10.1007/s40574-022-00317-9.
- [15] E. W. H. LEE, Advances in the Theory of Varieties of Semigroups, Front. Math., Birkhäuser/ Springer, Cham, 2023. DOI: 10.1007/978-3-031-16497-2.
- [16] M. V. SAPIR, Identities of finite inverse semigroups, Internat. J. Algebra Comput. 3(1) (1993), 115–124. DOI: 10.1142/S0218196793000093.

Department of Mathematics, Nova Southeastern University, Fort Lauderdale, FL 33328, USA *E-mail address*: edmond.lee@nova.edu

Received on June 12, 2023. Accepted on November 22, 2023.