UNCOUNTABLE INTERVAL OF VARIETIES OF INVOLUTION SEMIGROUPS SHARING A COMMON SEMIGROUP VARIETY REDUCT

Edmond W. H. Lee

Abstract: A pair of involution semigroups sharing a common semigroup reduct of order eight is constructed with the property that the varieties they generate bound an interval that contains an uncountable chain. Consequently, there exist uncountably many non-finitely generated varieties of involution semigroups sharing a common semigroup variety reduct that is finitely generated.

2020 Mathematics Subject Classification: 20M07.

Key words: semigroup, involution semigroup, variety.

1. Introduction

Recall that a *unary semigroup* $\langle \mathcal{S}, * \rangle$ is a semigroup S equipped with a unary operation $*$. A unary semigroup $\langle \mathcal{S}, * \rangle$ that satisfies the equations

$$
(1) \t\t\t (x^*)^* \approx x \quad \text{and} \quad (xy)^* \approx y^* x^*
$$

is an involution semigroup. Common examples of involution semigroups include groups $\langle \mathfrak{S},^{-1} \rangle$ under inversion $^{-1}$ and matrix semigroups $\langle \mathfrak{M}_n, T \rangle$ under the usual transposition ^T. An involution semigroup $\langle \mathcal{S}, * \rangle$ and its semigroup *reduct* S are similar in many ways, but the varieties they generate can satisfy very contrasting properties. For instance, the variety $Var\langle \mathcal{S},^* \rangle$ and its semigroup variety reduct Var S can satisfy very different equational properties; see, for example, [[3,](#page-6-0) [5,](#page-6-1) [7,](#page-6-2) [8,](#page-6-3) [11,](#page-6-4) [12,](#page-6-5) [13,](#page-6-6) [16](#page-6-7)].

The lattice \mathscr{L}_{inv} of varieties of involution semigroups and the lattice \mathscr{L}_{sem} of varieties of semigroups are also well known to be highly incompatible [[2,](#page-6-8) [15](#page-6-9)]. Most notably, inclusions in \mathscr{L}_{inv} need not resemble those from \mathscr{L}_{sem} ; for example, there exist an abundance of pairs of finite involution semigroups $\langle \mathcal{S},^* \rangle$ and $\langle \mathcal{T},^* \rangle$ such that $\text{Var}\langle \mathcal{S},^* \rangle \nsubseteq \text{Var}\langle \mathcal{T},^* \rangle$ and $\text{Var}\mathcal{S} \subseteq \text{Var}\mathcal{T}$ [[9](#page-6-10)]. Even in cases when the inclusion $\textsf{Var}\langle \mathcal{S},^* \rangle \subseteq \textsf{Var}\langle \mathcal{T},^* \rangle$ holds, the intervals $[\textsf{Var}\langle \mathcal{S},^* \rangle, \textsf{Var}\langle \mathcal{T},^* \rangle]$ and $[\textsf{Var}\, \mathcal{S}, \textsf{Var}\, \mathcal{T}]$ need not be similar. This is well illustrated by the following example.

Example 1 (Lee [[14](#page-6-11)]). There exist involution semigroups $\langle \mathcal{S}, * \rangle$ and $\langle \mathcal{T}, * \rangle$ of order four such that the interval $[Var\langle \mathcal{S}, * \rangle, Var\langle \mathcal{T}, * \rangle]$ contains an infinite chain even though its semigroup variety reduct [Var S, Var T] is just the chain Var $S \subset Var T$ of order two.

It is of fundamental interest to ask if there exists an example possessing more extreme properties: either $[Var\langle \mathcal{S}, * \rangle, Var\langle \mathcal{T}, * \rangle]$ is uncountable or $[Var \mathcal{S}, Var \mathcal{T}]$ is trivial, that is, $\text{Var } \mathcal{S} = \text{Var } \mathcal{T}$. Surprisingly, the answer to this seemingly elusive question is affirmative, and the construction of such an example is the main goal of the present article.

Theorem 2. There exist involution semigroups $\langle \mathcal{S}_8,^* \rangle$ and $\langle \mathcal{S}_8,^* \rangle$, sharing a common semigroup reduct S_8 of order eight, such that the interval $[Var \langle S_8, * \rangle, Var \langle S_8, * \rangle]$ contains an uncountable chain.

It follows that the variety $\text{Var}\langle \mathcal{S}_8, \mathcal{S} \rangle$ has uncountably many subvarieties. In contrast, the variety $\text{Var}\langle \mathcal{S}_8,^* \rangle$ has only four subvarieties.

Since there exist only countably many finitely generated varieties, uncountably many varieties in the interval $[\text{Var}\langle \mathcal{S}_8, \cdot \rangle, \text{Var}\langle \mathcal{S}_8, \cdot \cdot \rangle]$ are non-finitely generated.

Corollary 3. There exist uncountably many non-finitely generated varieties of involution semigroups whose semigroup variety reduct coincides with the finitely generated *variety* Var S_8 .

Background information is first given in Section [2.](#page-1-0) A sufficient condition is then established in Section [3](#page-2-0) under which an interval in \mathcal{L}_{inv} contains an uncountable chain. Using this condition, the involution semigroups $\langle \mathcal{S}_8,^* \rangle$ and $\langle \mathcal{S}_8,^* \rangle$ in Theorem [2](#page-1-1) are constructed in Section [4.](#page-3-0)

More details on the differences between the lattices \mathscr{L}_{inv} and \mathscr{L}_{sem} can be found in [[15](#page-6-9), Section 1.5].

2. Preliminaries

Acquaintance with rudiments of universal algebra is assumed. Refer to the monograph of Burris and Sankappanavar [[1](#page-6-12)] for more information.

2.1. Words and terms. Let $\mathscr X$ be a countably infinite alphabet and $\mathscr X^* = \{x^* \mid x^* \in \mathscr X\}$ $x \in \mathcal{X}$ be its disjoint copy. Elements of $\mathcal{X} \cup \mathcal{X}^*$ are called variables. The free *involution monoid* over $\mathscr X$ is the free semigroup $(\mathscr X \cup \mathscr X^*)^+$, together with the empty word \emptyset , with unary operation * given by $(x^*)^* = x$ for all $x \in \mathscr{X}$,

$$
(x_1x_2\cdots x_m)^* = x_m^*x_{m-1}^* \cdots x_1^*
$$

for all $x_1, x_2, \ldots, x_m \in \mathscr{X} \cup \mathscr{X}^* \cup \{\varnothing\}$, and $\varnothing^* = \varnothing$. Elements of the involution monoid $(X \cup \mathcal{X}^*)^+ \cup \{\emptyset\}$ are called *words*, while words in the monoid $\mathcal{X}^+ \cup \{\emptyset\}$ are said to be plain.

The set of terms over $\mathscr X$, denoted by $\mathsf T(\mathscr X)$, is the smallest set such that $\mathscr X\cup\{\emptyset\}\subseteq$ $\mathsf{T}(\mathscr{X})$; if $\mathbf{t}_1, \mathbf{t}_2 \in \mathsf{T}(\mathscr{X})$, then $\mathbf{t}_1 \mathbf{t}_2 \in \mathsf{T}(\mathscr{X})$; and if $\mathbf{t} \in \mathsf{T}(\mathscr{X})$, then $\mathbf{t}^* \in \mathsf{T}(\mathscr{X})$. The subterms of a term **t** are then recursively defined as follows: **t** is a subterm of **t**; if s_1s_2 is a subterm of t where $s_1, s_2 \in T(\mathcal{X})$, then so are s_1 and s_2 ; if s^* is a subterm of **t** where $s \in T(\mathcal{X})$, then so is s. The proper inclusion $(\mathcal{X} \cup \mathcal{X}^*)^+ \subset T(\mathcal{X})$ holds and the involution axioms [\(1\)](#page-0-0) can be used to convert any term $\mathbf{t} \in \mathsf{T}(\mathscr{X})\backslash\{\emptyset\}$ into a unique word $\lfloor \mathbf{t} \rfloor \in (\mathcal{X} \cup \mathcal{X}^*)^+$. For instance, $\lfloor x(x^3(yx^*)^*)^*zy^* \rfloor = xy(x^*)^4zy^*$.

Remark 4. For any subterm **s** of a term **t**, either $|\mathbf{s}|$ or $|\mathbf{s}^*|$ is a factor of $|\mathbf{t}|$.

2.2. Equations, deducibility, and satisfiability. An equation is an expression $s \approx$ t formed by terms $s, t \in T(\mathcal{X})\backslash\{\emptyset\}$. Specifically, a *word equation* is an equation $u \approx v$ formed by words $\mathbf{u}, \mathbf{v} \in (\mathcal{X} \cup \mathcal{X}^*)^+$ and a plain equation is an equation $\mathbf{u} \approx \mathbf{v}$ formed by plain words $\mathbf{u}, \mathbf{v} \in \mathcal{X}^+$.

An equation $s \approx t$ is *directly deducible* from an equation $u_1 \approx u_2$ if there exist a substitution $\varphi: \mathscr{X} \to \mathsf{T}(\mathscr{X}) \setminus \{\varnothing\}$ and distinct $i, j \in \{1, 2\}$ such that $\varphi \mathbf{u}_i$ is a subterm

of s, and replacing this particular subterm $\varphi \mathbf{u}_i$ of s with $\varphi \mathbf{u}_i$ results in the term t. An equation $\mathbf{s} \approx \mathbf{t}$ is *deducible* from a set Σ of equations if there exists a finite sequence

$$
\mathbf{s}=\mathbf{t}_1, \mathbf{t}_2, \ldots, \mathbf{t}_r=\mathbf{t}
$$

of distinct terms such that each equation $\mathbf{t}_i \approx \mathbf{t}_{i+1}$ is directly deducible from some equation in Σ .

An involution semigroup $\langle \mathcal{S},^* \rangle$ satisfies an equation $s \approx t$, or $s \approx t$ is satisfied by $\langle \mathcal{S},^* \rangle$ if, for any substitution $\varphi \colon \mathscr{X} \to \mathcal{S}$, the elements φ s and φ t of S coincide. Satisfaction of equations by semigroups is similarly defined. Note that equations of semigroups are necessarily plain. A class of (involution) semigroups satisfies an equation if every (involution) semigroup in it satisfies the equation.

2.3. Equational theories and bases. For any class \mathcal{R} of involution semigroups, the set of equations satisfied by every involution semigroup in \mathfrak{K} , denoted by Eq \mathfrak{K} , is the equational theory of \mathfrak{K} . The set of word equations in $\mathsf{Eq} \mathfrak{K}$ is denoted by $\mathsf{Eq}_{\mathsf{W}} \mathfrak{K}$. An equational basis for $\mathfrak K$ is any subset Σ of Eq $\mathfrak K$ such that every equation in Eq $\mathfrak K$ is deducible from Σ.

3. Sufficient condition for continuum of subvarieties

A term **u** divides a term **s** if some substitution $\varphi: \mathscr{X} \to \mathsf{T}(\mathscr{X})\backslash\{\varnothing\}$ exists such that φ **u** is a subterm of **s**. It follows that a non-trivial equation **s** \approx **t** cannot be directly deducible from an equation $\mathbf{u}_1 \approx \mathbf{u}_2$ if neither \mathbf{u}_1 nor \mathbf{u}_2 divides s.

For any set $\mathscr{P} \subseteq (\mathscr{X} \cup \mathscr{X}^*)^+$ and any words $\mathbf{p}, \mathbf{q} \in (\mathscr{X} \cup \mathscr{X}^*)^+$, the triple $(\mathscr{P}; \mathbf{p}, \mathbf{q})$ is an *inside-outside triple* if $\mathbf{p} \in \mathscr{P}$ and $\mathbf{q} \notin \mathscr{P}$. A system $\mathfrak{S} = \{(\mathscr{P}_i; \mathbf{p}_i, \mathbf{q}_i) \mid \mathcal{P}_i\}$ $i \in I$ of inside-outside triples is *independent* if for any distinct j, $k \in I$ neither p_i nor \mathbf{q}_i divides any term **t** with $|\mathbf{t}| \in \mathscr{P}_k$.

Theorem 5. Let $\mathfrak{S} = \{ (\mathcal{P}_i; \mathbf{p}_i, \mathbf{q}_i) \mid i \in I \}$ be any countably infinite independent system of inside-outside triples. Suppose that V is any variety of involution semigroups such that for each $i \in I$ the following implication holds for any word $\mathbf{w} \in (\mathcal{X} \cup \mathcal{X}^*)^+$.

$$
\mathbf{p}_i \approx \mathbf{w} \in \operatorname{\mathsf{Eq}}_{\mathsf{W}} \mathbf{V} \implies \mathbf{w} \in \mathscr{P}_i.
$$

Then V contains an uncountable chain of subvarieties. Further, if some subvariety U of **V** satisfies the equations $\{p_i \approx q_i \mid i \in I\}$, then the uncountable chain is contained in the interval $[\mathbf{U}, \mathbf{V}]$.

Proof: For any set $N \subseteq I$, let V_N denote the subvariety of V defined by $\{p_i \approx q_i \mid$ $i \in N$. Since $\mathbf{q}_i \notin \mathscr{P}_i$ by the definition of an inside-outside triple, it follows from [\(2\)](#page-2-1) that $\mathbf{p}_i \approx \mathbf{q}_i \notin \text{Eq}_W \mathbf{V}$. In other words,

(a) $\mathbf{p}_i \approx \mathbf{q}_i \notin \text{Eq V}$ for all $i \in I$.

Therefore, $V \neq V_N$ for all $N \subseteq I$. Seeking a contradiction, suppose that $p_m \approx q_m \in$ Eq V_N for some $m \notin N$. Then there exists a finite sequence $p_m = t_1, t_2, \ldots, t_r =$ \mathbf{q}_m of distinct terms such that each equation $\mathbf{t}_i \approx \mathbf{t}_{i+1}$ is directly deducible from some equation in the equational basis $\textsf{Eq} \mathbf{V} \cup \{ \mathbf{p}_i \approx \mathbf{q}_i \mid i \in N \}$ for \mathbf{V}_N . If every equation $t_j \approx t_{j+1}$ is directly deducible from some equation in Eq V, then $p_m \approx$ $q_m \in \text{Eq V}$ and [\(a\)](#page-2-2) is contradicted. Therefore, some equation $t_j \approx t_{j+1}$ is directly deducible from some equation in $\{p_i \approx q_i \mid i \in N\}$. Let ℓ be the least index such that $\mathbf{t}_{\ell} \approx \mathbf{t}_{\ell+1}$ is directly deducible from $\mathbf{p}_n \approx \mathbf{q}_n$ for some $n \in N$. Then

(b) either \mathbf{p}_n or \mathbf{q}_n divides \mathbf{t}_{ℓ} .

The minimality of ℓ implies that each equation in ${\mathbf \{t_i \approx t_{i+1} \mid 1 \leq j \leq \ell\}}$ is directly deducible from some equation in Eq V, whence $t_1 \approx t_\ell \in Eq$ V. But since $|t_1| \approx$ $|\mathbf{t}_{\ell}| \in \textsf{Eq}_{\mathsf{W}} \mathbf{V}$ with $|\mathbf{t}_1| = \mathbf{p}_m$, it follows from [\(2\)](#page-2-1) that

(c)
$$
[\mathbf{t}_{\ell}] \in \mathscr{P}_m
$$
.

Now $m \neq n$ because $m \notin N$ and $n \in N$. Therefore, the independence of \mathfrak{S} is contradicted by [\(b\)](#page-3-1) and [\(c\).](#page-3-2)

Consequently, $\mathbf{p}_i \approx \mathbf{q}_i \in \text{Eq} \mathbf{V}_N$ if and only if $i \in N$. It follows that $\mathbf{V}_N \supseteq \mathbf{V}_{N'}$ if and only if $N \subseteq N'$, whence the set $\{V_N | N \subseteq I\}$ consists of uncountably many subvarieties of V . A standard argument shows that this set—which is isomorphic to the dual of the power set of I —contains an uncountable chain. Indeed, select any bijection φ from I onto the rational numbers Q and, for any real number $r \in \mathbb{R}$, define $N(r) = \{i \in I \mid \varphi i < r\}$. Then $N(r) \subset N(r')$ if and only if $r < r'$; in other words, $\mathbf{V}_{N(r)} \supset \mathbf{V}_{N(r')}$ if and only if $r < r'$.

Now if some subvariety **U** of **V** satisfies the equations $\{p_i \approx q_i \mid i \in I\}$, then $\mathbf{U} \subseteq \mathbf{V}_N$ for all $N \subseteq I$. Therefore, the uncountable chain is contained in $[\mathbf{U}, \mathbf{V}]$. \Box

4. Construction of $\langle \mathcal{S}_8,^* \rangle$ and $\langle \mathcal{S}_8,^* \rangle$

Let N denote the positive integers. For each $i \in \mathbb{N}$, define the word

$$
\mathbf{p}_i = x_0 t_1 t_2 x_0 \cdot x_1 y_1 x_1 \cdot x_2 y_2 x_2 \cdots x_i y_i x_i \cdot x_{i+1} t_3 t_4 x_{i+1}.
$$

Let $\mathbf{q}_i = x_0 x_0^* \mathbf{p}_i$ and $\mathcal{P}_i = {\mathbf{p}_i}$, so that $(\mathcal{P}_i; \mathbf{p}_i, \mathbf{q}_i)$ is an inside-outside triple.

Lemma 6. The system $\{(\mathcal{P}_i; \mathbf{p}_i, \mathbf{q}_i) \mid i \in \mathbb{N}\}\$ of inside-outside triples is independent.

Proof: Consider any $j, k \in \mathbb{N}$ such that $j \neq k$. Since q_j contains the variable x_0 thrice but every variable occurs at most twice in \mathbf{p}_k , it is impossible for \mathbf{q}_i to divide any term **t** with $|\mathbf{t}| \in \mathscr{P}_k = {\mathbf{p}_k}.$

Seeking a contradiction, suppose that \mathbf{p}_j divides some term **t** with $\lfloor \mathbf{t} \rfloor \in \mathscr{P}_k =$ ${\{p_k\}}$. Then by Remark [4](#page-1-2) there exists some substitution $\varphi: \mathscr{X} \to \mathsf{T}(\mathscr{X})\backslash\{\varnothing\}$ such that either $\lfloor \varphi \mathbf{p}_j \rfloor$ or $\lfloor (\varphi \mathbf{p}_j)^* \rfloor$ is a factor of $\lfloor \mathbf{t} \rfloor = \mathbf{p}_k$.

Case 1: $|\varphi \mathbf{p}_i|$ is a factor of \mathbf{p}_k . Note that

$$
\begin{aligned} [\varphi \mathbf{p}_j] &= [\varphi x_0] [\varphi t_1] [\varphi t_2] [\varphi x_0] \cdot [\varphi x_1] [\varphi y_1] [\varphi x_1] \cdot [\varphi x_2] [\varphi y_2] [\varphi x_2] \cdots \\ &\cdots [\varphi x_j] [\varphi y_j] [\varphi x_j] \cdot [\varphi x_{j+1}] [\varphi t_3] [\varphi t_4] [\varphi x_{j+1}] \end{aligned}
$$

and

$$
\mathbf{p}_k = x_0 t_1 t_2 x_0 \cdot x_1 y_1 x_1 \cdot x_2 y_2 x_2 \cdots x_k y_k x_k \cdot x_{k+1} t_3 t_4 x_{k+1}.
$$

If one of the factors $[\varphi x_0], [\varphi x_1], \ldots, [\varphi x_{j+1}]$ of $[\varphi \mathbf{p}_j]$ is not a single variable, then the word $\lfloor \varphi \mathbf{p}_j \rfloor$ is of the form $\cdots z_1z_2\cdots z_1z_2\cdots$ for some $z_1, z_2 \in \mathcal{X} \cup \mathcal{X}^*$ and so cannot be a factor of \mathbf{p}_k . Therefore, every one of $|\varphi x_0|, |\varphi x_1|, \ldots, |\varphi x_{i+1}|$ is a single variable. Now since the prefix $|\varphi x_0| |\varphi t_1| |\varphi t_2| |\varphi x_0|$ and the suffix $|\varphi x_{i+1}| |\varphi t_3| |\varphi t_4| |\varphi x_{i+1}|$ of $|\varphi \mathbf{p}_i|$ are words of length at least four that begin and end with the same variable, they must coincide with the prefix $x_0t_1t_2x_0$ and the suffix $x_{k+1}t_3t_4x_{k+1}$ of \mathbf{p}_k , respectively. It follows that

 $|\varphi x_1||\varphi y_1||\varphi x_1|\cdot|\varphi x_2||\varphi y_2||\varphi x_2|\cdots|\varphi x_j|\lfloor \varphi y_j\rfloor|\varphi x_j] = x_1y_1x_1\cdot x_2y_2x_2\cdots x_ky_kx_k,$ which is impossible due to $j \neq k$.

Case 2: $\lfloor (\varphi \mathbf{p}_j)^* \rfloor$ is a factor of \mathbf{p}_k . Since $\lfloor (\varphi \mathbf{p}_j)^* \rfloor$ has the same form as $\lfloor \varphi \mathbf{p}_j \rfloor$, the argument in [Case 1](#page-3-3) can be repeated to show that the present case is also impossible. \Box

Construction of the involution semigroups $\langle \mathcal{S}_8,^* \rangle$ and $\langle \mathcal{S}_8,^* \rangle$ requires the following matrix semigroups under the usual matrix multiplication: the Brandt monoid

$$
\mathcal{B} = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}
$$

and its subsemilattice

$$
\mathcal{S}\ell = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}.
$$

These matrix semigroups are closed under both the usual transposition T and the skew transposition S across the secondary diagonal:

$$
\begin{bmatrix} a & b \\ c & d \end{bmatrix}^T = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} a & b \\ c & d \end{bmatrix}^S = \begin{bmatrix} d & b \\ c & a \end{bmatrix}.
$$

Note that $x^T = x$ for all $x \in \mathcal{S}\ell$.

Lemma 7. Suppose that $u \approx v \in \text{Eq}_W\langle \mathcal{S}\ell, \mathcal{S}\rangle$. Then the set of variables occurring in \bf{u} coincides with the set of variables occurring in \bf{v} .

Proof: Suppose that x is a variable that occurs in **u** but not in **v**. Generality is not lost by assuming that $x \in \mathcal{X}$. Let $\varphi \colon \mathcal{X} \to \mathcal{S}\ell$ be the substitution that maps x to $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and any other variable to $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Then

$$
\varphi \mathbf{u} = \begin{cases} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} & \text{if } x^* \text{ is in } \mathbf{u}, \\ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} & \text{otherwise;} \end{cases} \qquad \varphi \mathbf{v} = \begin{cases} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} & \text{if } x^* \text{ is in } \mathbf{v}, \\ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & \text{otherwise.} \end{cases}
$$

Therefore, the contradiction $\varphi \mathbf{u} \neq \varphi \mathbf{v}$ is obtained.

Lemma 8. Let $i \in \mathbb{N}$ be odd. Suppose that $\mathbf{p}_i \approx \mathbf{w} \in \text{Eq } \mathcal{B}$ for some $\mathbf{w} \in \mathcal{X}^+$. Then $\mathbf{w} = \mathbf{p}_i.$

Proof: A plain word $\mathbf{u} \in \mathcal{X}^+$ is an *isoterm* for a semigroup S if the following implication holds for every word $\mathbf{w} \in \mathcal{X}^+$:

$$
\mathbf{u} \approx \mathbf{w} \in \text{Eq} \, \mathcal{S} \implies \mathbf{u} = \mathbf{w}.
$$

Jackson ([[4](#page-6-13), proof of Theorem 4.1]) has shown that \mathbf{p}_i is an isoterm for the semigroup $\mathcal{B}' \times \mathcal{B}''$, where $\mathcal{B}' = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ and $\mathcal{B}'' = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1$ are subsemigroups of \mathcal{B} . It follows that \mathbf{p}_i is also an isoterm for \mathcal{B} .

Lemma 9. Let $i \in \mathbb{N}$ be odd. Suppose that $\mathbf{p}_i \approx \mathbf{w} \in \text{Eq}_{\mathcal{W}}\{\langle \mathcal{B}, \mathcal{F} \rangle, \langle \mathcal{S}\ell, \mathcal{S} \rangle\}$ for some $\mathbf{w} \in (\mathcal{X} \cup \mathcal{X}^*)^+$. Then $\mathbf{w} = \mathbf{p}_i$.

Proof: Since $\mathbf{p}_i \approx \mathbf{w} \in \text{Eq}_W \langle \mathcal{S}\ell, \mathcal{S} \rangle$ and the word \mathbf{p}_i is plain, the word w is also plain by Lemma [7.](#page-4-0) Then $\mathbf{p}_i \approx \mathbf{w} \in \text{Eq } \mathcal{B}$, so that $\mathbf{w} = \mathbf{p}_i$ by Lemma [8.](#page-4-1) \Box

Lemma 10. The interval $[\text{Var}(\mathcal{B},T), \text{Var}(\langle \mathcal{B},T \rangle, \langle \mathcal{S}\ell, S \rangle)]$ contains an uncountable chain.

 \Box

Proof: By Lemma [6,](#page-3-4) the system $\mathfrak{S} = \{(\mathscr{P}_i; \mathbf{p}_i, \mathbf{q}_i) \mid i = 1, 3, 5, \dots\}$ of inside-outside triples is independent. By Lemma [9,](#page-4-2) the implication [\(2\)](#page-2-1) holds with $V =$ $\textsf{Var}\{\langle B, \text{I}\rangle, \langle \delta \ell, \text{I}\rangle\}$. Therefore, by Theorem [5,](#page-2-3) the variety **V** contains an uncountable chain of subvarieties. Further, since the subvariety $U = \text{Var}(\mathcal{B}, T)$ of V satisfies the equation $xx*x \approx x$ and so also the equation $\mathbf{p}_i \approx \mathbf{q}_i$ for any i, the uncountable chain is contained in $[\mathbf{U}, \mathbf{V}]$. \Box

Remark 11. The variety $\text{Var}\langle \mathcal{B}, \mathcal{T} \rangle$ has only four subvarieties [[6](#page-6-14)] while the variety $\text{Var}\{\langle \mathcal{B}, \mathcal{F} \rangle, \langle \mathcal{S}\ell, \mathcal{S} \rangle\}$ has uncountably many subvarieties [[10](#page-6-15)].

Define the direct products

 $\langle \mathcal{P},^* \rangle = \langle \mathcal{B},^T \rangle \times \langle \mathcal{S}\ell,^T \rangle \text{ and } \langle \mathcal{P},^{\circledast} \rangle = \langle \mathcal{B},^T \rangle \times \langle \mathcal{S}\ell,^S \rangle;$

in other words, $\mathcal{P} = \mathcal{B} \times \mathcal{S}\ell$ is an involution semigroup under any of the unary operations $(x, y)^* = (x^T, y^T)$ and $(x, y)^* = (x^T, y^S)$.

Lemma 12. The inclusion $\text{Var}\langle \mathcal{P},^* \rangle \subseteq \text{Var}\langle \mathcal{P},^* \rangle$ holds and consequently the interval $[Var \langle \mathcal{P}, * \rangle, Var \langle \mathcal{P}, * \rangle]$ contains an uncountable chain.

Proof: Since $\langle \mathcal{S}\ell, T \rangle$ is an involution subsemigroup of $\langle \mathcal{B}, T \rangle$,

$$
\mathrm{Var} \langle \mathcal{P},^* \rangle = \mathrm{Var} \langle \mathcal{B},^T \rangle \subseteq \mathrm{Var} \{ \langle \mathcal{B},^T \rangle, \langle \mathcal{S} \ell,^S \rangle \} = \mathrm{Var} \langle \mathcal{P},^{\circledast} \rangle.
$$

The result then follows from Lemma [10.](#page-4-3)

Now let S_8 be the subset of $\mathcal{P} = \mathcal{B} \times \mathcal{S} \ell$ consisting of the elements

$$
o = (\mathbf{0}, \mathbf{0}), \qquad A = \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \mathbf{0} \end{pmatrix}, \quad B = \begin{pmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \mathbf{0} \end{pmatrix}, \quad C = \begin{pmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \mathbf{0} \end{pmatrix},
$$

$$
D = \begin{pmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \mathbf{0} \end{pmatrix}, \quad E = \begin{pmatrix} \mathbf{0}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix}, \quad F = \begin{pmatrix} \mathbf{0}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix}, \quad I = (\mathbf{1}, \mathbf{1}),
$$

where $\mathbf{0} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ and $\mathbf{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Then \mathcal{S}_8 is a subsemigroup of \mathcal{P} that is closed under both of the unary operations^{*} and [®]. It is clear that $\langle \mathcal{S}_8, \cdot \rangle$ is an amalgamation of

$$
\langle \mathfrak{B},^T\rangle\cong \langle \{\text{O},\text{A},\text{B},\text{C},\text{D},\text{I}\},^*\rangle\quad \text{and}\quad \langle \mathcal{S}\ell,^T\rangle\cong \langle \{\text{O},\text{E},\text{F},\text{I}\},^*\rangle,
$$

and that $\langle \mathcal{S}_8, \mathcal{S} \rangle$ is an amalgamation of

$$
\langle \mathfrak{B},^T\rangle\cong \langle \{\texttt{O},\texttt{A},\texttt{B},\texttt{C},\texttt{D},\texttt{I}\},^{\circledast}\rangle\quad \text{and}\quad \langle \mathcal{S}\ell,^S\rangle\cong \langle \{\texttt{O},\texttt{E},\texttt{F},\texttt{I}\},^{\circledast}\rangle.
$$

It follows that $\text{Var}\langle \mathcal{S}_8,^* \rangle = \text{Var}\langle \mathcal{P},^* \rangle$ and $\text{Var}\langle \mathcal{S}_8,^* \rangle = \text{Var}\langle \mathcal{P},^* \rangle$. Theorem [2](#page-1-1) is thus a consequence of Lemma [12.](#page-5-0)

Remark 13. Since the variety $\text{Var}\langle \mathcal{B}, S \rangle$ has uncountably many subvarieties [[10](#page-6-15)], it is natural to question whether or not Lemma [12](#page-5-0) is also true if the varieties $\text{Var}\langle \mathcal{P}, * \rangle$ and $\text{Var}\langle \mathcal{P}, \mathcal{P}\rangle$ are replaced by $\text{Var}\langle \mathcal{B}, \mathcal{P}\rangle$ and $\text{Var}\langle \mathcal{B}, \mathcal{S}\rangle$. But since $\langle \mathcal{B}, \mathcal{P}\rangle$ does not satisfy the equation $xx^* \approx x^*x$ of $\langle \mathfrak{B}, \mathfrak{S} \rangle$ while $\langle \mathfrak{B}, \mathfrak{S} \rangle$ does not satisfy the equation $xx^*x \approx x$ of $\langle \mathcal{B}, \mathcal{F} \rangle$, the varieties $\text{Var}(\mathcal{B}, \mathcal{F})$ and $\text{Var}(\mathcal{B}, \mathcal{S})$ exclude one another, and certainly do not bound a non-empty interval.

Acknowledgments

The author is indebted to the anonymous reviewers for a number of useful suggestions.

 \Box

References

- [1] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Grad. Texts in Math. 78, Springer-Verlag, New York-Berlin, 1981.
- [2] S. CRVENKOVIĆ AND I. DOLINKA, Varieties of involution semigroups and involution semirings: a survey, Bull. Soc. Math. Banja Luka 9 (2002), 7–47.
- [3] M. Gao, W. T. Zhang, and Y. F. Luo, A non-finitely based involution semigroup of order five, Algebra Universalis 81(3) (2020), Paper no. 31, 14 pp. DOI: [10.1007/s00012-020-00662-w](http://dx.doi.org/10.1007/s00012-020-00662-w).
- [4] M. JACKSON, Finite semigroups whose varieties have uncountably many subvarieties, J. Algebra 228(2) (2000), 512–535. DOI: [10.1006/jabr.1999.8280](http://dx.doi.org/10.1006/jabr.1999.8280).
- [5] M. Jackson and M. Volkov, The algebra of adjacency patterns: Rees matrix semigroups with reversion, in: Fields of Logic and Computation, Lecture Notes in Comput. Sci. 6300, Springer, Berlin, 2010, pp. 414–443. DOI: [10.1007/978-3-642-15025-8_20](http://dx.doi.org/10.1007/978-3-642-15025-8_20).
- [6] E. I. KLEĬMAN, Bases of identities of varieties of inverse semigroups (Russian), Sibirsk. Mat. Zh. 20(4) (1979), 760–777, 926. English translation: Siberian Math. J. 20(4) (1979), 530–543. DOI: [10.1007/BF00970367](http://dx.doi.org/10.1007/BF00970367).
- [7] E. W. H. Lee, Finite involution semigroups with infinite irredundant bases of identities, Forum Math. 28(3) (2016), 587–607. DOI: [10.1515/forum-2014-0098](http://dx.doi.org/10.1515/forum-2014-0098).
- [8] E. W. H. Lee, Finitely based finite involution semigroups with non-finitely based reducts, $Quaest. Math. 39(2)$ $(2016), 217-243.$ DOI: [10.2989/16073606.2015.1068239](http://dx.doi.org/10.2989/16073606.2015.1068239).
- [9] E. W. H. Lee, On a class of completely join prime J-trivial semigroups with unique involution, Algebra Universalis 78(2) (2017), 131-145. DOI: [10.1007/s00012-017-0442-3](http://dx.doi.org/10.1007/s00012-017-0442-3).
- [10] E. W. H. Lee, Varieties generated by unstable involution semigroups with continuum many subvarieties, C. R. Math. Acad. Sci. Paris 356(1) (2018), 44–51. DOI: [10.1016/j.crma.2017.](http://dx.doi.org/10.1016/j.crma.2017.12.001) [12.001](http://dx.doi.org/10.1016/j.crma.2017.12.001).
- [11] E. W. H. Lee, A sufficient condition for the absence of irredundant bases, Houston J. Math. 44(2) (2018), 399–411.
- [12] E. W. H. Lee, Non-finitely based finite involution semigroups with finitely based semigroup reducts, Korean J. Math. 27(1) (2019), 53–62. DOI: [10.11568/kjm.2019.27.1.53](http://dx.doi.org/10.11568/kjm.2019.27.1.53).
- [13] E. W. H. Lee, Varieties of involution monoids with extreme properties, Q. J. Math. 70(4) (2019), 1157–1180. DOI: [10.1093/qmath/haz003](http://dx.doi.org/10.1093/qmath/haz003).
- [14] E. W. H. Lee, Intervals of varieties of involution semigroups with contrasting reduct intervals, Boll. Unione Mat. Ital. 15(4) (2022), 527–540. DOI: [10.1007/s40574-022-00317-9](http://dx.doi.org/10.1007/s40574-022-00317-9).
- [15] E. W. H. LEE, Advances in the Theory of Varieties of Semigroups, Front. Math., Birkhäuser/ Springer, Cham, 2023. DOI: [10.1007/978-3-031-16497-2](http://dx.doi.org/10.1007/978-3-031-16497-2).
- [16] M. V. SAPIR, Identities of finite inverse semigroups, Internat. J. Algebra Comput. 3(1) (1993), 115–124. DOI: [10.1142/S0218196793000093](http://dx.doi.org/10.1142/S0218196793000093).

Department of Mathematics, Nova Southeastern University, Fort Lauderdale, FL 33328, USA $E\text{-}mail\;address:$ edmond.lee@nova.edu

Received on June 12, 2023. Accepted on November 22, 2023.