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Abstract: If (X, r) is a finite non-degenerate set-theoretic solution of the Yang–Baxter equation,

the additive group of the structure skew brace G(X, r) is an FC-group, i.e. a group whose elements
have finitely many conjugates. Moreover, its multiplicative group is virtually abelian, so it is also

close to being an FC-group itself. If one additionally assumes that the derived solution of (X, r) is

indecomposable, then for every element b of G(X, r) there are finitely many elements of the form b∗c
and c ∗ b, with c ∈ G(X, r). This naturally leads to the study of a brace-theoretic analogue of the

class of FC-groups. For this class of skew braces, the fundamental results and their connections with

the solutions of the YBE are described: we prove that they have good torsion and radical theories,
and that they behave well with respect to certain nilpotency concepts and finite generation.
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1. Introduction

The Yang–Baxter equation (YBE) is one of the fundamental equations of physics.
It takes its name from the independent works of the physicists Chen Ning Yang [42]
and Rodney Baxter [4]. It turns out that this equation plays a relevant role in many
different subjects such as knot theory, braid theory, operator theory, Hopf algebras,
quantum groups, 3-manifolds, and the monodromy of differential equations.

A solution of the YBE is a pair (V,R), where V is a vector space and R is a linear
map R : V ⊗ V → V ⊗ V such that

(R⊗ id)(id⊗R)(R⊗ id) = (id⊗R)(R⊗ id)(id⊗R).

At the present time, we are far from being able to provide a full classification of
the solutions of the YBE. However, in recent years, there has been an increasing
interest in the so-called set-theoretic (or combinatorial) solutions of the YBE, i.e.
those solutions (V,R) such that R is induced by linear extensions of a bijective map

r : X ×X −→ X ×X,

where X is a basis of V (see [16]); in this case, also the pair (X, r) is called a set-
theoretic (or combinatorial) solution.

Finding all solutions of the YBE is hard, but one strategy to tackle this prob-
lem is to study solutions that cannot be further reduced to smaller ones (see [18]).
A solution (X, r) is decomposable if there is a partition of X into two disjoint non-
empty subsets X1 and X2 such that r(X1×X1) ⊆ X1×X1, and r(X2×X2) ⊆ X2×X2;
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otherwise (X, r) is indecomposable. Many authors have focused on studying and clas-
sifying such solutions with a special emphasis on those which are also involutive and
non-degenerate, i.e. solutions (X, r) such that r2 = id, and if we write

r(x, y) = (σx(y), τy(x)),

then the maps σx and τy are bijective, for all x, y ∈ X; see [6, 7, 8, 9, 18, 20, 24, 32,
33, 35, 36, 38]. On the other hand, almost nothing is known about indecomposable
solutions which are non-degenerate and non-involutive (see [13, 25, 31]). A particular
family of non-degenerate and non-involutive indecomposable solutions is that given
by those whose derived solution is indecomposable; in the following, we refer to these
as derived-indecomposable solutions (see Definition 4.3).

The aim of this paper is to provide algebraic tools to study derived-indecomposable
solutions. This is accomplished through the study of the structure skew brace G(X, r)
associated with a solution (X, r) of the YBE.

A skew brace is essentially a set endowed with two group structures, linked to-
gether with a “distributivity-like” relation (see [12, 19, 34] and next section for
precise definitions). If (X, r) is a non-degenerate solution, the skew brace control-
ling its structure is the structure skew brace G(X, r) [17, 19, 40]. Understanding
the structure of G(X, r) makes it possible to better understand the structure of the
corresponding solution, and this is the reason why the basic theory of skew braces
has recently been the subject of many papers (see, for example, [5, 11, 13, 22, 23]
and the references therein). Of course, if (X, r) is a solution and X is finite, then the
multiplicative group and the additive group of G(X, r) are finitely generated, but in
general they are both infinite groups. However, in this case, it also turns out that
the multiplicative group is virtually abelian (see, for instance, [25, Corollary 7.2]),
while the additive group is finite over its centre (see [21, Theorem 2.7]). Central-by-
finite groups are very special cases of an intensively studied class of groups: the class
of FC-groups, i.e. the class of groups whose elements have finitely many conjugates
(see the monograph [41]). This class of groups generalises the class of abelian groups
and that of finite groups, and in fact it shares many good properties with these two
classes of groups. Due to its nice behaviour, the class of FC-groups has often been
employed to study very difficult problems in various contexts. For example, Seghal–
Zassenhaus ([37]) and Polcino Milies ([28, 29, 30]) gave a detailed description of the
group rings whose group of invertible elements is an FC-group.

Starting from the above remarks, one naturally defines classes of skew braces that
behave like FC-groups (see Definitions 3.7 and 4.1) and it turns out they control
derived-indecomposable solutions of the YBE (see Theorems 4.4 and 4.5). In addi-
tion, this class of skew braces shares similarities with the classes of finite and trivial
skew braces (see Theorems 3.27 and 4.4), and although it is much bigger, it can still
be described quite well (compare with, for instance, our Theorem 3.37 and [22, The-
orem 5.4]). Moreover, here one can deal with finite generation (see Theorem 3.13),
torsion concepts (see Theorem 3.18), radical theory (see Theorem 3.40), and (under
some mild additional hypotheses) with certain nilpotency concepts (see, for instance,
Corollary 3.35).

The layout of the paper is the following. In Section 2, we give basic results concern-
ing skew braces and FC-groups. In Section 3, we introduce and describe skew braces
with property (S) and their connections with the YBE. In Section 4, we prove an ana-
logue of a theorem of Bernard Neumann for skew braces having the property (BS) and
show how these skew braces naturally arise in the context of derived-indecomposable
solutions of the YBE.
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2. Definitions and preliminaries

In this section we give the necessary background on skew braces and on FC-groups.

2.1. Skew braces. Let B be a set. If (B,+) and (B, ◦) are (not necessarily abelian)
groups, then the triple (B,+, ◦) is a skew (left) brace if the skew (left) distributive
law

a ◦ (b+ c) = a ◦ b− a+ a ◦ c
holds for all a, b, c ∈ B. Now, let (B,+, ◦) be a skew brace. We refer to (B,+) as the
additive group of B and to (B, ◦) as the multiplicative group of B. We denote by 0
the identity of (B,+), by 1 the identity of (B, ◦), by −a and a−1 the inverses of a
in (B,+) and (B, ◦), respectively, and, if n ∈ N, then na = a+ a+ · · ·+ a (n times)
and an = a ◦ a ◦ · · · ◦ a (n times). The skew distributive law easily implies 0 = 1. It
should also be noticed that the map

λ : a ∈ B 7−→ (λa : b 7−→ λa(b) = −a+ a ◦ b) ∈ Aut(B,+)

is a group homomorphism from (B, ◦) to Aut(B,+) and the following relations hold:

a+ b = a ◦ λ−1a (b), a ◦ b = a+ λa(b), −a = λa(a−1).

In analogy with ring theory, a third relevant (not necessarily associative) operation
in skew braces is defined as follows:

a ∗ b = λa(b)− b = −a+ a ◦ b− b,

and one can easily check that it satisfies the relations

a ∗ (b+ c) = a ∗ b+ b+ a ∗ c− b,
(a ◦ b) ∗ c = a ∗ (b ∗ c) + b ∗ c+ a ∗ c,

for all a, b, c ∈ B. If the additive group of B is abelian, we simply call B a (left) brace,
or a skew (left) brace of abelian type. If (G, ·) is any group, then (G, ·, ·) is a skew
brace called a trivial skew brace and (G, ·op, ·) is a skew brace called an almost trivial
skew brace; if (G, ·) is abelian, then the trivial skew brace and the almost trivial skew
brace coincide and we simply speak of a trivial brace.

If we consider the natural semidirect product G = (B,+) o (B, ◦), where

(a, b)(c, d) = (a+ λb(c), b ◦ d)

for all a, b, c, d ∈ B, then an easy computation shows that the operation ∗ corresponds
to a commutator of type

(?) [(0, a), (b, 0)] = (a ∗ b, 0),

for all a, b ∈ B (note that our convention for commutators in a group (G, · ) is [x, y] =
xyx−1y−1).

A left ideal of a skew brace B is a subgroup I of (B,+) such that λa(I) ⊆ I for
all a ∈ B; this is equivalent to B ∗ I ⊆ I, so I is also a subgroup of (B, ◦). An ideal
is a left ideal that is normal in (B,+) and (B, ◦) (note that the last condition is
equivalent to demanding that I ∗B ⊆ I); in this case, it is known that B/I is a skew
brace and a + I = a ◦ I for all a ∈ B. A skew brace is simple if it has no proper
non-zero ideals.

The socle of B is defined as Soc(B) = Ker(λ) ∩ Z(B,+) and the annihilator
(see [10]) of B is defined as Ann(B) = Soc(B)∩Z(B, ◦), where Z(B,+) and Z(B, ◦)
are the centre of (B,+) and (B, ◦), respectively. Moreover, we let B(2) = B ∗ B be
the subgroup of (B,+) generated by all elements of the form a ∗ b for all a, b ∈ B. It
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can be proved that Soc(B), Ann(B), and B(2) are ideals. In connection with B(2), we
further observe that B is a trivial skew brace if and only if B(2) = {0}.

Finally, we illustrate the connection between skew braces and solutions of the YBE.
Let B be a skew brace and let

rB : (a, b) ∈ B ×B 7−→ (λa(b), λa(b)−1 ◦ a ◦ b) ∈ B ×B.

Then (B, rB) is a non-degenerate solution of the YBE. Conversely, if (X, r) is a non-
degenerate solution of the YBE, then there is a unique skew brace structure over the
structure group

G(X, r) = 〈X | xy = σx(y)τy(x), x, y ∈ X〉
such that rG(X,r)(ι× ι) = (ι× ι)r, where ι : X → G(X, r) is the canonical map. The
multiplicative group of this skew brace is G(X, r) and the additive is

A(X, r) = 〈X | x+ σx(y) = σx(y) + σσx(y)(τy(x)), for all x, y ∈ X〉

(see [26, 40]). We refer to this skew brace as the structure skew brace of (X, r) [19,
Theorem 3.9].

2.2. FC-groups. Let G be a group. An element x of G is an FC-element of G if
it has finitely many conjugates in G, or, equivalently, if |G : CG(x)| is finite; the
latter condition is also equivalent to requiring that the normal core (CG(x))G of the
centraliser CG(x) of x in G has finite index in G. The set of all FC-elements of G
is a (characteristic) subgroup of G which is called the FC-centre of G and is usually
denoted by FC(G). The group G is an FC-group if G = FC(G). Natural examples of
FC-groups are restricted direct products of finite groups (unrestricted direct products
of infinitely many non-abelian finite groups are not FC-groups); groups with a finite
commutator subgroup (or, by a well-known theorem of Schur, groups which are finite
over their centre); and abelian groups. FC-groups were introduced by Reinhold Baer,
and they have been studied by many authors, including Gorčakov, Hall, Neumann
and, more recently, Kurdachenko and Tomkinson. In this subsection we summarise
some of the main results concerning the class of FC-groups; we refer to [41] as a
general reference on the subject.

A finitely generated FC-group is finite over its centre. Actually, in an arbitrary FC-
group G, the factor group G/Z(G) is locally finite, i.e. every finite subset is contained
in a finite subgroup; thus, it follows from a well-known theorem of Schur that G′ is
locally finite and hence the subset of all periodic elements of G is a subgroup. It
turns out that every FC-group can be embedded in a direct product of a torsion-free
abelian group and a locally finite FC-group, so, in order to prove many properties of
FC-groups, it is often sufficient to prove them in the locally finite case. Furthermore,
the locally finite case is a very good case, because Dietzmann’s lemma holds for FC-
groups: every finite subset of a periodic FC-group is contained in a finite normal
subgroup.

3. Skew braces with property (S)

In this section, we introduce property (S) for skew braces, and we study the basic
theory of skew braces with such a property. The main results describe the finite
generation (see Theorem 3.13) and the torsion theory (see Theorem 3.18) of skew
braces satisfying (S). Exploiting these results we highlight relations between this class
of skew braces and solutions of the YBE. At the end of the section, nilpotency concepts
and radical theory are both studied.
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Let B be a skew brace and let x ∈ B. Let FixrB(x) = {b ∈ B : x ∗ b = 0}; if there is
no ambiguity, we simply write Fixr(x). Clearly, Fixr(x) is a subgroup of (B,+) and
its index is the cardinal number of the set {x ∗ b : b ∈ B} since the assignment

b+ Fixr(x) 7−→ x ∗ b

defines a bijective correspondence between the set of all right cosets of Fixr(x) in (B,+)
and the set {x ∗ b : b ∈ B}.

Similarly, we define FixlB(x) = Fixl(x) = {b ∈ B : b ∗ x = 0}. It is easy to

see that Fixl(x) is a subgroup of (B, ◦) and its index is the cardinal number of the
set {b ∗ x : b ∈ B} since the assignment

b ◦ Fixl(x) 7−→ b ∗ x

defines a bijective correspondence between the set of all right cosets of Fixl(x) in (B, ◦)
and the set {b ∗ x : b ∈ B}.

Moreover, let C
(B,+)
x = C+

x and C
(B,◦)
x = C◦x be the centralisers of x in (B,+)

and (B, ◦), respectively. Then C+
x ∩Fixr(x) is a subgroup of (B,+) and C◦x ∩Fixl(x)

is a subgroup of (B, ◦). Finally, we define the annihilator AnnB(x) of an element x
in B as

AnnB(x) = Ann(x) = Fixr(x) ∩ C+
x ∩ C◦x ∩ Fixl(x).

Remark 3.1. Note that if c ∈ Fixl(x) ∩ Fixr(x), then c ∈ C+
x if and only if c ∈ C◦x.

Thus, Ann(x) could have been defined as Fixl(x) ∩ Fixr(x) ∩ C+
x or as Fixl(x) ∩

Fixr(x) ∩ C◦x.

Lemma 3.2. Let B be a skew brace and let x∈B. If b ∈ C◦x ∩ Fixr(x), then b ◦ a ∈
Fixr(x) if and only if a ∈ Fixr(x).

Proof: Note that

x+x ∗ (b ◦ a)+b ◦ a=x ◦ b ◦ a = b ◦ x ◦ a = b ◦ x+ (b ◦ x) ∗ a+ a

=x ◦ b+ (b ◦ x) ∗ a+ a = x+ b+ b ∗ (x ∗ a) + x ∗ a+ b ∗ a+ a

=x+ b+ b ∗ (x ∗ a) + x ∗ a− b+ b ◦ a = x+ b ◦ (x ∗ a)−b+ b ◦ a

=x+ b ◦ (x ∗ a+ a).

Thus, x ∗ a = 0 if and only if x ∗ (b ◦ a) = 0 and the statement is proved.

Theorem 3.3. Let B be a skew brace. If x ∈ B, then Ann(x) is a subgroup of (B, ◦).

Proof: By Remark 3.1, we have

Ann(x) = Fixl(x) ∩ Fixr(x) ∩ C◦x.

Since we already know that Fixl(x) is a subgroup of (B, ◦), we only need to show that
A(x) = Fixr(x)∩C◦x is a subgroup of (B, ◦). Let b ∈ A(x). Since b◦b−1 = 0 ∈ Fixr(x),
then b−1 ∈ Fixr(B) by Lemma 3.2. Thus, b−1 ∈ A. Moreover, if b, c ∈ A(x), then a
further application of Lemma 3.2 shows that b ◦ c ∈ Fixr(x). Therefore b ◦ c ∈ A(x),
which shows that A(x) is a subgroup of (B, ◦) and completes the proof.

Note that in the case of a two-sided brace the annihilator of an element is a sub-
group of both the underlying additive and multiplicative structures.

The following three easy examples show that, in general, the annihilator of an
element is neither a normal subgroup of (B, ◦) nor a subgroup of (B,+).
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Example 3.4. Let (B,+) = 〈a, b, c | 3a = 2b = 2c = c + b + a = 0〉 be the
symmetric group on three elements and the multiplication be defined in such a way
that (B, ◦) = N oX, where N = {0, a, 2a}, X = {0, b}, a ◦ b = c, and 2a ◦ b = a+ b
(see [1, Theorem 3.12]). It is easy to check that (B,+, ◦) is a skew brace. Moreover,
note that also (B, ◦) is the symmetric group on three elements; however, (B,+, ◦) is
not the trivial skew brace (for example, a+b 6= c = a◦b). Now, Ann(b) = {0, b} is not
a left ideal, since it is not λ-invariant: λa(b) = −a+a◦b = a+a+c = a+b /∈ Ann(b).
It is also clear that Ann(b) is a subgroup with respect to both operations but it is not
normal: −a+ b+ a = a+ b and a−1 ◦ b ◦ a = c.

Example 3.5. Let B be the trivial skew brace with additive and multiplicative
groups isomorphic to the symmetric group on three elements 〈a, b, c | 3a = 2b = 2c =
c+ b+ a = 0〉. One can check that Ann(b) = {0, b} is a subgroup of (B,+) and (B, ◦)
and it is clearly λ-invariant, hence Ann(b) is a left ideal of B. On the other hand,
Ann(b) is not a normal subgroup of (B,+), which implies that it is not an ideal of B.

Example 3.6. Let B be the brace whose underlying additive group is isomorphic
to Z/2Z× Z/4Z and whose multiplication is defined by(

y1
z1 + 2x1

)
◦
(

y2
z2 + 2x2

)
=

(
y1 + y2 + (x1 + y1 + z1 + y1z1)z2

z1 + 2x1 + 2z1y2 + 2(y1 + x1z1)z2 + z2 + 2x2

)
for any x1, x2, y1, y2, z1, z2 ∈ {0, 1} (see [2, Theorem 3.1] for further detail). Then
Ann(0, 3) = {(0, 0), (1, 1)} is not a subgroup of (B,+) since (1, 1) + (1, 1) = (0, 2),
but is a subgroup (B, ◦).

We chose to define Ann(x) as above because the annihilator of a skew brace behaves
similarly to the centre of a group (see for instance [5, 22, 23]). Indeed, if g is any
element of Ann(x), then b+ g = g + b = g ◦ b = b ◦ g, for all b ∈ B, so that b ∗ g = 0

and g ∈ Fixl(x); thus, Ann(B) =
⋂
x∈B Ann(x).

Definition 3.7. An element x ∈ B has the property (s) if |(B,+) : Fixr(x) ∩ C+
x |

and |(B, ◦) : Fixl(x) ∩ C◦x| are finite. A skew brace B has the property (S) if all its
elements have property (s).

We chose to denote our property by “(S)” to prevent confusion between the group
theoretical concept of FC-group and skew braces with the property (S). By doing so,
a quick glance enables readers to distinguish whether we are focusing on the attributes
of FC-groups or (S)-braces.

Special cases of skew braces with property (S) are those skew braces in which B(2)

and [B,B]+ are finite, since then also [B,B]◦ is finite. Every skew brace B such that
|B/Ann(B)| <∞ has property (S) by [22, Theorem 5.4]. Other natural examples of
skew braces with property (S) can be constructed by considering the restricted direct
product of (possibly infinitely many) finite skew braces. It is also straightforward to
show that the class of skew braces with property (S) is closed with respect to forming
sub-skew braces, homomorphic images, and restricted direct products. On the other
hand, not every skew brace has property (S). In fact, if B is any finite skew brace
such that Ann(B) < B (such as, for instance, the skew brace in Example 3.8), then
the unrestricted direct product C = Cri∈NBi of infinitely many copies of B (that
is, Bi ' B, for every i ∈ N) does not have property (S): if x ∈ B \ Ann(B), then
(x)i∈N ∈ C has infinitely many conjugates.
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Example 3.8. Let B be the brace whose additive group is isomorphic to Z/4Z and
whose multiplication is defined by x1 ◦x2 = x1 +x2 +2x1x2 (see [2, Proposition 2.4]).
Then the annihilator of B is strictly contained in B, and is given by Ann(B) = {0, 2}.

Notation 3.9. Let B be a skew brace. If x ∈ B, any element of type g ∗ x, x ∗ g,
g ◦ x ◦ g−1, g + x− g, for some g ∈ B, will be referred to as a conjugate of x.

This terminology is justified by the fact that the operation ∗ corresponds to commu-
tation in the semidirect product (B,+) oλ (B, ◦). Under this terminology, an (s)-ele-
ment of a skew brace is just an element having finitely many conjugates.

It is a straightforward (but long) exercise to show that in a two-sided brace B,
the set of all (s)-elements is an ideal. We state this fact as follows, only sketching the
proof.

Proposition 3.10. Let B be a two-sided brace. Then the set S of all (s)-elements
of B is an ideal of B.

Proof: Since B is a brace, we need to show that S is a subgroup of (B,+), a normal
subgroup of (B, ◦), and that S is λ-invariant. We show that S ≤ (B,+), since the
other statements can similarly be proved.

Let b1, b2 ∈ S. We need to show that b1 + b2 ∈ S. Since

(b1 − b2)c,+ = bc,+1 − bc,+2 ,

for all c ∈ B, we have that the set {(b1 − b2)c,+ : c ∈ B} is finite. Now, note that for
all c ∈ B we have

c−1 = c−1 ◦ (c− c) = −c−1 + c−1 ◦ (−c) =⇒ 2c−1 = c−1 ◦ (−c)

and similarly

2c−1 = (−c) ◦ c−1.
This implies that

0 = c ◦ (b1 − b1) ◦ c−1 = bc,◦1 + (−b1)c,◦

and hence that the set {(−b1)c,◦ : c ∈ B} is finite. Therefore

(b1 − b2)c,◦ = bc,◦1 + (−b2)c,◦

assumes finitely many values, as c ranges in B. Finally, the fact that the sets

{c ∗ (b1 − b2) : c ∈ B} and {(b1 − b2) ∗ c : c ∈ B}

are finite depend upon the distributive laws. Thus, b1− b2 ∈ S, and we are done.

However, we are not able to establish if this is the case also for skew braces.

Let B be a skew brace with property (S). Put G = N o X, where N = (B,+),
X = (B, ◦), and the action of X on N is given by λ. A direct consequence of the
definitions is that both X and N are FC-groups, but G is also an FC-group: to see
this, note that equation (?) yields that both X and N are contained in the FC-centre
of G, so G = FC(G). This fact will be very useful in our considerations below and
will sometimes be employed without any further notice.

Our first main result deals with finitely generated skew braces with property (S),
but first, we need a lemma and some definitions.

Definition 3.11 (see also [22, p. 6]). A skew brace B is finitely generated if there is
a finite subset E of B such that B is the smallest sub-skew brace of B containing B.
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Lemma 3.12. Let B be a skew brace whose additive group is generated by the (s)-el-
ements x1, . . . , xn. Then B/Ann(B) is finite.

Proof: Consider the map

f : B/Ann(B) −→ (B(2))2n × ([B,B]+)n

given by the assignment

f(b+ Ann(B)) = (b ∗ x1, . . . , b ∗ xn, x1 ∗ b, . . . , xn ∗ b, [b, x1]+, . . . , [b, xn]+).

It was shown in the second half of [22, Theorem 5.4] that the function f is well defined
and injective. Since every xi is an (s)-element of B, it follows that the image of f is
a finite set, so also B/Ann(B) is finite, and the statement is proved.

Let S = {x1, . . . , xn} be symbols. A b-word with respect to S is a sequence of
symbols recursively defined as follows: the empty sequence is a b-word and so are
the 1-element sequences x1, x2, . . . , xn; if we have two b-words w1 and w2, then the
sequences w1 ◦ w2, w1 + w2, −w1, w−11 are b-words. We define the weight w(w) of
a b-word w with respect to S as follows. Let w(∅) = 0 and w(xi) = 1 for each i =
1, . . . , n. If w1 and w2 are b-words whose weights are n1 and n2, respectively, then
the b-words w1 ◦ w2 and w1 + w2 both have weight n1 + n2, while the b-words −w1

and w−11 both have weight n1 + 1.
Now, let B be a skew brace and let b1, . . . , bn be elements of B. It is clear that

if w(x1, . . . , xn) is any b-word, then we may evaluate w(b1, . . . , bn) in B. Thus, the
smallest sub-skew brace C generated by b1, . . . , bn in B is precisely the set of all
evaluations of b-words. Moreover, if c is any element of C, the weight w(c) of c (with
respect to b1, . . . , bn) is defined as the smallest weight of a b-word w(x1, . . . , xn) such
that c = w(b1, . . . , bn).

Theorem 3.13. Let B be a skew brace with property (S). The following statements
are equivalent:

(1) B is finitely generated.

(2) (B,+) is finitely generated.

(3) (B, ◦) is finitely generated.

Proof: It is clear that (3) =⇒ (1) and (2) =⇒ (1). Assume (1) and let b1, . . . , bn
be generators of B containing their additive inverses. Let G = N o X, where the
action of X = (B, ◦) on N = (B,+) is given by λ. As we already mentioned, G is an
FC-group, so in particular, [G,G] is locally finite.

It follows from equation (?) that, for each c ∈ B and i = 1, . . . , n, the ele-
ment (c ∗ bi, 0) of N is contained in [G,G]. Clearly, also the elements ([c, bi]+, 0) are
contained in [G,G]∩N . Now, since G is an FC-group, the elements of types (c∗ bi, 0)
and ([c, bi]+, 0) are periodic and finite in number; let E be their set. It follows from
Dietzmann’s lemma (see the preliminaries) that the normal closure H of E in G is
finite (and is certainly contained in N).

Let g1 = (b1, 0), . . . , gn = (bn, 0). We claim that N = U , where

U = 〈g1, . . . , gn, H〉

is the subgroup generated by g1, . . . , gn and H. With this aim, by induction on the
weight w(c) of c (with respect to b1, . . . , bn), we prove that an arbitrary element g =
(c, 0) of N belongs to U . If w(c) = 0, this is obvious. Assume w(c) ≥ 1 and the usual
induction hypothesis. By definition, there are elements c1 and c2 of B such that one
of the following alternatives holds:
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(i) c = c1 ◦ c2 and w(c1),w(c2) < w(c).

(ii) c = c1 + c2 and w(c1),w(c2) < w(c).

(iii) c = −c1 and w(c) = w(c1) + 1.

(iv) c = c−11 and w(c) = w(c1) + 1.

It is clear that cases (ii) and (iii) can be neglected, so we only need to deal with
cases (i) and (iv). Let us first deal with (i). In this case, c = c1◦c2 and w(c1),w(c2) <
w(c). By induction, we can write (c2, 0) + H as a sum (with repetitions) of the
elements g1 +H, . . . , gn+H, so, by the skew distributive law, we may assume c2 = bi,
for some i: notice here that for example

c1 ◦ (b1 + h) = c1 ◦ b1 − c1 + c1 ◦ h = c1 ◦ b1 + c1 ∗ h+ h,

whenever (h, 0) ∈ H, and (c1 ∗ h+ h, 0) ∈ H. However, c1 ∗ bi is contained in H, so

g +H = (c1 ◦ bi, 0) +H = (c1, 0) + (bi, 0) +H

and again g belongs to U , by induction.
Now we deal with (iv). In this case, c = c−11 and w(c) = w(c1) + 1, so by induction

c1 belongs to U . For simplicity’s sake, we write every element (b, 0) of N as b; under
this terminology, a ∗ b means (a ∗ b, 0).

We claim that a−1+H = −a+H every time a belongs to U ; this completes the proof
in this case. Write a = b′1 + · · · + b′m + h for some elements b′1, . . . , b

′
m ∈ {b1, . . . , bn}

and h ∈ H. Clearly, for each i,

H = bi ◦ b−1i +H = bi + b−1i +H,

so −bi + H = b−1i + H. Now, since H is a normal subgroup of G, it contains all
elements of the form a ∗ h, where a ∈ N and h ∈ H, and consequently

(b′1 + · · ·+ b′m + h) ◦ (−b′1 + · · · − b′m − h) +H

= (b′1 + · · ·+ b′m + h) ◦ (−b′1 + · · · − b′m)− b′1 + · · · − b′m − h

+ (b′1 + · · ·+ b′m + h) ◦ (−h) +H

= (b′1 + · · ·+ b′m + h) ◦ (−b′1 + · · · − b′m)− b′1 + · · · − b′m − h

+ b′1 + · · ·+ b′m + h− h+H

= (b′1 + · · ·+ b′m + h) ◦ (−b′1 + · · · − b′m)− h+H

= · · · = (b′1 + · · ·+ b′m + h) ◦ (−b′1)− b′2 + · · · − b′m − h+H

= b′1 + · · ·+ b′m + h− b′1 − b′2 − · · · − b′m − h+H = H.

Therefore there is an element d of H such that

(b′1 + · · ·+ b′m + h) ◦ (−b′1 + · · · − b′m − h) = d.

However, H is a normal subgroup of G, so H is a group with respect to ◦, which
means that

d−1 ◦ (b′1 + · · ·+ b′m + h) = (−b′1 + · · · − b′m − h)−1.

Repeated application of the skew distributive law shows that

(−b′1 + · · · − b′m − h)−1 +H = d−1 ◦ (b′1 + · · ·+ b′m + h) +H = (b′1 + · · ·+ b′m) +H.

The fact that b1, . . . , bm, m, h were arbitrary proves the claim.



180 I. Colazzo, M. Ferrara, M. Trombetti

Finally, since H is a finite subgroup of (B,+), it follows that (B,+) is finitely
generated. Moreover, Lemma 3.12 yields that B/Ann(B) is finite. Since (B,+) is
finitely generated also Ann(B) is finitely generated as a subgroup of (B,+), and this
means that it is also finitely generated as a subgroup of (B, ◦). The fact that Ann(B)
has finite index in (B, ◦) means that (B, ◦) is finitely generated and completes the
proof of the theorem.

Corollary 3.14. Let B be a skew brace with property (S). If B is finitely generated,
then B/Ann(B) is finite.

Proof: This is a consequence of Theorem 3.13 and Lemma 3.12.

The set of all periodic elements of a group G is denoted by T (G). For a
skew brace (B,+, ◦), we denote by T+(B) the set of periodic elements of the ad-
ditive group (B,+) and by T◦(B) the set of periodic elements of the multiplica-
tive group (B, ◦). We say that a skew brace B with property (S) is periodic if
(B,+) = T+(B), and is torsion-free if T+(B) = {0}.

Corollary 3.15. Let B be a periodic skew brace. If B is finitely generated, then B is
finite.

Let B be a skew brace. We say that B is locally finite if every finitely generated
sub-skew brace of B is finite.

Corollary 3.16. Let B be a periodic skew brace. Then B is locally finite.

Corollary 3.17. Let B be a skew brace with property (S). If B is finitely generated,
then B/Ann(B) is finite.

Proof: This is a consequence of Theorem 3.13 and Lemma 3.12.

If G is an FC-group, then T (G) is a normal subgroup of G. If B is a skew brace
with property (S), then both (B,+) and (B, ◦) are FC-groups, so T+(B) and T◦(B)
are normal subgroups of (B,+) and (B, ◦), respectively. Our next result justifies the
definition of a periodic skew brace we gave above.

Theorem 3.18. Let B be a skew brace with property (S). The following statements
hold:

(1) T+(B) = T◦(B).

(2) T+(B) is an ideal of B.

(3) T+(B/T+(B)) = {0}.
(4) If B is finitely generated, then T+(B) is finite.

Proof: Let G = N oX, where the action of X = (B, ◦) on N = (B,+) is given by λ.

(1) Let a ∈ B. Of course, a can be regarded as an element g1 = (a, 0) of N and as
an element g2 = (0, a) of X. We need to show that g1 is periodic if and only if g2 is
periodic.

Assume first that g1 is periodic. SinceG is an FC-group, Dietzmann’s lemma yields
that the normal closure M = 〈g1〉G of 〈g1〉 in G is finite. Then M contains [M,X],
which means that if M contains elements of type (b, 0) and (c, 0) for some b, c ∈ B,
then by equation (?) it also contains (b ∗ c, 0) and, consequently, (b ◦ c, 0). Therefore,
every element (b, 0) ∈M is such that b is a periodic element of X. In particular, g2 is
periodic.
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Conversely, assume g2 is periodic. Since G is an FC-group, its derived sub-
group [G,G] is locally finite. In particular, [X,N ] is a locally finite normal subgroup
of G. On the other hand, equation (?) shows that [X,N ] contains every element of
type (b, 0), where b ∈ B(2), so

(b1 + b2, 0) + [X,N ] = (b1 ◦ b2, 0) + [X,N ],

for every b1, b2 ∈ B. It follows that there is a positive integer m such that

(c, 0) = (ma, 0) ∈ [X,N ].

However, this means that c is a periodic element of N , and so a is a periodic element
of N . Thus g1 is periodic, and the statement is proved.

(2) As a consequence of the previous point T+(B) is a normal subgroup of both N
and X. It only remains to show that T+(B) is λ-invariant. However, this immediately
follows from the observation that the set of all periodic elements ofN is a characteristic
subgroup of N , so it is normal in G. Therefore T+(B) is λ-invariant and hence is an
ideal of B.

(3) This is an immediate consequence of (2).

(4) It follows from Theorem 3.13 that (B,+) is finitely generated. Since (B,+) is an
FC-group, we have that T+(B) is finite, which proves the statement.

Periodic skew braces play a very relevant role in the structure of an arbitrary skew
brace with property (S), as the following results show.

Theorem 3.19. Let B be a skew brace with property (S). Then B/Ann(B) is locally
finite.

Proof: By Corollary 3.16, we only need to prove that B/Ann(B) is periodic.
Let b ∈ B. We need to show that there is a positive integer n such that nb belongs

to Ann(B). By Theorem 3.18, this is equivalent to finding a positive integer n such
that bn is contained in Ann(B).

Let G = N oλ X, where N = (B,+) and X = (B, ◦). Since G is an FC-group,
we have that G/Z(G) is a locally finite group. Let x = (0, b). Then there is a positive
integer m such that

(0, bm) = xm ∈ Z(G).

It follows from equation (?) that bm ∗ c = 0, for every c ∈ B; consequently, bm ◦ c =
bm + c for every c ∈ B. So far, we have that bm belongs to Ker(λ) ∩ Z(B, ◦). Let
g = (bm, 0). Then there is a positive integer ` such that

(b`m, 0) = (`bm, 0) = g` ∈ Z(G).

Thus b′ = b`m belongs to Z(B,+). But Ker(λ) ∩ Z(B, ◦) is a subgroup of (B, ◦), so
b′ = (bm)` still belongs to Ker(λ) ∩ Z(B, ◦) and the statement is proved.

Let n ∈ N. A skew brace is locally finite of finite exponent dividing n if every
finitely generated sub-skew brace is finite and both its additive and multiplicative
groups have exponent dividing n. In combination with Theorem 3.19, our next result
has some relevant consequences in the theory of skew braces with property (S). It
generalises well-known results of Schur and Mann (see [27]) in group theory, and it
extends [22, Theorem 5.4].
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Theorem 3.20. Let B be a skew brace.

(1) If B/Ann(B) is locally finite, then B(2) is locally finite.

(2) If B/Ann(B) is locally finite of finite exponent dividing n (resp., finite of ex-
ponent dividing n), then B(2) is locally finite of finite exponent dividing f(n)
(resp., finite of exponent dividing f(n)), where f(n) depends only on n.

Proof: (1) Let b1, . . . , bn∈B(2)and letA be the sub-skew brace generated by b1, . . . , bn.
We need to show that A is finite. By definition of B(2), we can find elements

c1,1, . . . , cn,1, . . . , c1,n, . . . , cn,n and d1,1, . . . , dn,1, . . . , d1,n, . . . , dn,n

such that

b1 ∈ 〈c1,1 ∗ d1,1, . . . , cn,1 ∗ dn,1〉+, . . . , bn ∈ 〈c1,n ∗ d1,n, . . . , cn,n ∗ dn,n〉+.
Now, consider the sub-skew brace C/Ann(B) generated by

c1,1 + Ann(B), . . . , cn,n + Ann(B), d1,1 + Ann(B), . . . , dn,n + Ann(B).

By the hypothesis, C/Ann(B) is finite. But clearly, Ann(B) is contained in Ann(C),
so Lemma 3.12 yields that C(2) is finite. Since A is a sub-skew brace of C(2), it follows
that A is finite and the statement is proved.

(2) Assume first that B/Ann(B) is finite and both its additive and multiplicative
groups have exponent dividing n. Let N = (B,+), X = (B, ◦)/Ker(λ), and G =
NoλX. Since the exponent of (B, ◦)/Ann(B) divides n, it follows that the exponent
of X also divides n.

It is easy to see that Ann(B) as a subgroup of N is contained in the centre Z(G)
of G, so G/Z(G) is finite of exponent dividing n2. It follows from [27] that [G,G] is
finite of exponent dividing g(n2), where g is a function depending only on n. Finally,
equation (?) also shows that B ∗B is finite of exponent dividing g(n2). The statement
is proved in this case.

In order to deal with the locally finite case, we just need to repeat the proof of (1),
replacing Lemma 3.12 with the first part of (2).

As a consequence of Theorems 3.19 and 3.20 we have the following results.

Corollary 3.21. Let B be a skew brace with property (S). Then B(2) is locally finite.

Corollary 3.22. Let B be a skew brace with property (S). If I is a torsion-free ideal
of B, then I ≤ Ann(B).

Proof: By assumptions, T+(I) = {0}, so Corollary 3.21 yields I ∗B = B ∗ I = {0}.
On the other hand, any FC-group has a locally finite commutator subgroup and
consequently [I,B]◦, [I,B]+ ≤ T+(I) = 0. The statement is proved.

Corollary 3.23. Let B be a torsion-free skew brace. Then B is a trivial brace.

Theorem 3.19 also has an immediate consequence on the induced solution (B, rB)
of a skew brace B with property (S).

Corollary 3.24. Let B be a skew brace with property (S). Then the orbits of rB as
an element of Sym(B ×B) are finite.

Proof: Let F be any subset of B. It follows from Lemma 3.12 that the sub-skew
brace C generated by F is finite over Ann(C). Let n be the index of Ann(C) in C.
Then [39, Lemma 4.12(1)] shows that r2nC (a, b) = (a, b), for all a, b ∈ C and completes
the proof of the statement.
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Let (X, r) be a non-degenerate solution of the YBE and ι the natural map
ι : X → G(X, r). If ι is injective, we say that (X, r) is injective. On the other hand,
it is possible for ι to be non-injective. Take for instance X = {1, 2, 3, 4}, f = (1 2),
and g = (3 4); the map r : X × X → X × X given by r(x, y) = (f(y), g(x)) is a
non-degenerate solution of the YBE but it is not injective since 1 = 2 and 3 = 4
in G(X, r). In this case, the injectivisation of (X, r) can be useful (see [40]). If

X̃ = ι(X) and r̃ : X̃ × X̃ → X̃ × X̃ is the restriction of rG(X,r) to X̃ × X̃, then

the pair (X̃, r̃) is an injective non-degenerate solution of the YBE called the injec-

tivisation of (X, r) and is such that G(X, r) ' G(X̃, r̃). Recall also that (X, r) is a
trivial solution if r(x, y) = (y, x) for all x, y ∈ X. Note here that the previous example
shows that the injectivisation of a non-involutive and non-degenerate solution may
be involutive (even trivial).

The trivial solution is involutive, and the following result shows that if G(X, r) has
property (S), then the converse holds for the injectivisation of (X, r).

Corollary 3.25. Let (X, r) be a non-degenerate finite solution of the YBE such that

G(X, r) has property (S). Then (X̃, r̃) is involutive if and only if (X̃, r̃) is trivial.

Proof: If (X̃, r̃) is involutive, then G(X, r) is torsion-free (see [22, Theorem 6.5]) and

so is a trivial brace by Corollary 3.23. Then (X̃, r̃) is the trivial solution.

Theorem 3.26. Let B be a skew brace. If I is a torsion-free sub-brace of Ann(B)
such that B/I is a periodic skew brace, then B has property (S).

Proof: Let b ∈ B. We need to show that the indices

|(B,+) : Fixr(b) ∩ C+
b | and |(B, ◦) : Fixl(b) ∩ C◦b |

are finite. Since B/I has property (S), we have that

|(B/I, ◦) : FixlB/I(b+ I)| <∞.

Let U/I = FixlB/I(b + I). Then U is a subgroup of finite index of (B, ◦). Moreover,

if c ∈ U , then c ∗ b belongs to I. But B(2) is locally finite by Corollary 3.21, and
so c ∗ b = 0. It follows that FixlB(b) has finite index in (B, ◦). Similarly, we prove that
FixrB(b) has finite index in (B,+).

A theorem of Chernikov [14] (which is in fact the group theoretical analogue of
the result we are proving) now shows that also the indices

|(B,+) : C+
b | and |(B, ◦) : C◦b |

are finite, and the proof of the statement follows.

One of the most interesting connections between arbitrary and periodic skew braces
is given by the following result.

Theorem 3.27. Let B be a skew brace with property (S). Then B is a subdirect
product of a trivial brace C and a periodic skew brace D. Moreover, C and D are
homomorphic images of B.

Proof: Let T = T+(B). By Corollary 3.23, B/T is a trivial brace. Now, every subgroup
of the additive group of Ann(B) is an ideal of B. Let F be a maximal free abelian
subgroup of Ann(B) (this certainly exists by Zorn’s lemma). Then F is an ideal of B
and Ann(B)/F is periodic. Thus B/F is also periodic.

Since F ∩ T = {0}, we have that the map

b ∈ B 7−→ (b+ T, b+ F ) ∈ B/T ×B/F
is a monomorphism of skew braces and the statement follows.
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In dealing with periodic skew braces, one would hope an analogue of Dietzmann’s
lemma for FC-groups would hold. Unfortunately, it is not quite clear if a result of
this type holds or not.

Question 3.28. Let B be a periodic skew brace. Is it true that any finitely generated
ideal of B is finite?

A positive answer to the above question would provide a great deal of information
about the structure of an arbitrary skew brace with property (S). In this context, the
best we can do is Theorem 3.29. Here, an ideal I of a skew brace B with property (S) is
said to be good if every finitely generated ideal J of B with J ⊆ I is finitely generated
as a skew brace. Using this terminology, Question 3.28 can be rephrased as follows: is
every periodic skew brace good? Actually, as a consequence of Theorems 3.19, 3.29,
and 3.31, it turns out that the previous question is equivalent to the following one: is
every skew brace with property (S) good?

It is clear that every restricted direct product of finite skew braces is a good skew
brace with property (S). We anticipate that, in Section 4, we will show that this is
also the case for the class of skew braces with property (BS) (see Definition 4.1); in
particular, this will be a direct consequence of Corollary 3.30 and Theorem 4.2.

Theorem 3.29. Let B be a skew brace with property (S). If I ⊆ J are ideals of B
such that I and J/I are good ideals of B and B/I, respectively, then J is a good ideal
of B.

Proof: Let F be a finite subset of J (containing its additive inverses). We need to
show that the ideal L generated by F in B is finitely generated as a skew brace.

Note that a combination of Theorem 3.18 and Theorem 3.20 shows that a finitely
generated skew brace with property (S) satisfies the ascending chain condition on
sub-skew braces (recall that a finitely generated FC-group has a finite commutator
subgroup), so to achieve our goal, we just need to prove that L is contained in some
finitely generated sub-skew brace of B; this remark also allows us to factor out every
ideal which is finitely generated as a skew brace.

Now, the ideal K/I generated by the image of F in B/I is finitely generated as a
skew brace, so it follows from Theorem 3.18 that T+(K/I) is finite; the same result
also shows that H/I = T+(K/I) is an ideal of B/I. Moreover, Theorem 3.20 shows
that K/H is a finitely generated torsion-free trivial brace. It is therefore enough to
split the proof into two cases according to whether K/I is finite or a finitely generated
torsion-free trivial brace.

Let us first deal with the latter case, i.e. K/I is a torsion-free trivial brace generated
by x1, . . . , xn. Let A be the sub-skew brace of B generated by F and x1, . . . , xn. Then
A satisfies the ascending chain condition on sub-skew braces, and consequently, A∩ I
is a finitely generated skew brace. Since I is good, the ideal M generated by A ∩ I is
finitely generated as a skew brace and, factorising by M , we may assume A∩I = {0}.
In particular, A is a trivial brace generated by x1, . . . , xn. Since B has property (S),
there are finitely many possibilities for x◦,gi = g◦xi◦g−1, where g ∈ B and i = 1, . . . , n,
and, by the hypothesis on K/I, each of these possibilities can be written as a linear
combination u(i, g) = m1x1 + · · ·+mnxn modulo I. Similarly, there are finitely many

possibilities for the elements of type x+,gi = g + xi − g (resp., g ∗ xi), where g ∈ B
and i = 1, . . . , n, and each of these can be written as a linear combination v(i, g)
(resp., z(i, g)) modulo I of x1, . . . , xn. Thus the set

U = {u(i, g)− x◦,gi , v(i, g)− x+,gi , z(i, g)− g ∗ xi : g ∈ B, i = 1, . . . , n}
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is finite and is contained in I, so the ideal generated by U is finitely generated as a
skew brace and then we may factor it out. Now, since A is generated additively and
multiplicatively by x1, . . . , xn, we have that A is a normal subgroup of both (B,+)
and (B, ◦). Moreover, g∗x belongs to A, for any g ∈ B and x ∈ A, since g∗xi ∈ A, for
every i and we may write x = v1x1 + · · ·+vnxn for some integers v1, . . . , vn. It follows
that A is an ideal which is finitely generated as a skew brace and the statement is
proved in this case.

We now turn to the case in which K/I is finite. This case can essentially be dealt
with as above when we replace x1, . . . , xn with a complete set of representatives of K
modulo I.

Corollary 3.30. Let B be a skew brace with property (S). If

{0} = I0 ⊆ I1 ⊆ · · · Iα ⊆ Iα+1 ⊆ · · · J =
⋃
α<µ

Iα

is an ascending chain of ideals whose factors are good, then J is a good ideal of B.

Proof: Since J is an ideal of B, being a union of a chain of ideals, we only need to
show that J is good. Let γ be the smallest ordinal number such that Iγ is not good.
Of course, γ > 0. Moreover, by Theorem 3.29, γ cannot be a successor, so γ is the
limit. We have reached a contradiction since the union of any chain of good ideals is
good.

The above corollary shows that skew braces with property (S) contain many natural
ideals which are good.

Let B be a skew brace. We recursively define the upper socle series of B as follows.
Put Soc0(B) = {0} and Soc1(B) = Soc(B) = Ker(λ) ∩ Z(B,+). If α is an ordinal
number, put

Socα+1(B)/ Socα(B) = Soc(B/ Socα(B)).

If µ is a limit ordinal, put

Socµ(B) =
⋃
γ<µ

Socβ(B).

The smallest ordinal number α such that Socα(B) = Socα+1(B) is the upper socle
length of B and is denoted by s(B); the last term of the upper socle series is the
hyper-socle of B and is denoted by Soc(B). Note that every term of the upper socle
series is an ideal of B and it is easy to see that Soc(B/Soc(B)) is zero. This series of
ideals is relevant in some nilpotency theory of skew braces: it turns out, for instance,
that a skew brace B of nilpotent type is right-nilpotent if and only if B = Socn(B)
for some positive integer n (see [13, Lemmas 2.15 and 2.16]).

Theorem 3.31. Let B be a skew brace with property (S). Then Soc(B) is a good
ideal of B.

Proof: By definitions and Corollary 3.30, we just need to show that S = Soc(B) is a
good ideal of B.

Let G = N oλ X, where N = (B,+) and X = (B, ◦). Let E be any finite subset
of S. Since G is an FC-group, the normal closure F of E (here we see E as a subgroup
of N) in G is finitely generated. As a subset of B, F is a finitely generated normal
subgroup of (B,+), is a subgroup of (B, ◦), and is invariant under the action of λ.
But F is still contained in Soc(B), so, if x ∈ F and b ∈ B, then [13, Lemma 1.10]
yields that b ◦ x ◦ b−1 = λb(x) ∈ F . It follows that F is a normal subgroup of (B, ◦)
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and hence F is an ideal of B containing E. Since F is additively finitely generated, it
is also finitely generated as a skew brace and the statement is proved.

In a similar way we define the upper annihilator series {Annα(B)}α∈Ord of B.
The smallest ordinal number a(B) such that Anna(B)(B) = Anna(B)+1(B) is the
upper annihilator length. The last term of the upper annihilator series is the hyper-
annihilator and is denoted by Ann(B). Again, every term of the upper annihilator
series is an ideal and Ann(B/Ann(B)) is zero. Moreover, for each ordinal number α,
Annα(B) ⊆ Socα(B), so that Ann(B) ⊆ Soc(B), and hence the hyper-annihilator
is a good ideal by Theorem 3.31. Note that the latter inclusion can be strict even
in the case of a periodic skew brace. For instance, let B be the brace obtained as
the semidirect product C o A, where A, C are the unique braces of orders 3 and 2,
respectively, and the action is the unique non-trivial action of C on A (see [12]). One
can check that Soc2(B) = B, but the annihilator of B is zero.

A skew brace B such that B = Annn(B) for some non-negative integer n is called
annihilator-nilpotent (of length n). In fact, the upper annihilator series can be thought
of as an analogue of the upper central series of a group using the notion of nilpotency
introduced in [5] (called “annihilator-nilpotent” in [23]). It is well known that in any
FC-group the upper central length is bounded by ω and it turns out that a similar
statement holds for skew braces having property (S).

Theorem 3.32. Let B be a skew brace with property (S). Then B admits a series of
ideals

{0} ⊆ S0(B) ⊆ S1(B) ⊆ · · · ⊆ Sn(B) ⊆ Sn+1(B) ⊆ · · · ⊆ Sω(B) = Ann(B)

such that:

(1) S0(B) is torsion-free and S0(B) ⊆ Ann(B);

(2) for each i ∈ N ∪ {0}, Si+1(B)/Si(B) ⊆ Ann(B/Si(B)) and Si+1(B)/Si(B) is a
restricted direct product of finite ideals of B/Si(B).

In particular, a(B) ≤ ω.

Proof: By Theorem 3.19, we may assume that B is locally finite. Theorem 3.31 shows
that every minimal ideal of B contained in Ann(B) is finite. Now we define a series of
ideals of B as follows. Let S0 = {0}. An easy application of Zorn’s lemma yields that
the ideal S1(B) = S(B) generated by all minimal ideals of B which are contained
in Ann(B) is the direct product of some of them. If α is any ordinal number, we put

Sα+1(B)/Sα(B) = S(B/Sα(B)),

while if µ is any limit ordinal, we put

Sµ(B) =
⋃
α<µ

Sα(B).

It is clear that each Sα(B) is an ideal of B contained in Ann(B). Let I be any finite
ideal of B contained in Ann(B). We prove by induction on the cardinality of I that
I is contained in Sω(B). Clearly, I contains a minimal ideal J of B, so J is contained
in S1(B) and (I + S1(B))/S1(B) has smaller order, so induction yields that it is
contained in S`(B/S1(B)) for some `. Consequently, I is contained in S`+1(B) and
we are done.

By Theorem 3.31, every finite subset of Ann(B) is contained in some finite ideal,
which means that it is also contained in Sω(B) by the above claim. It follows that
Sω(B) = Ann(B).
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Finally, we claim that Sm(B) is contained in Annm(B) for every m: this will show
that Annω(B) = Sω(B) = Ann(B) and complete the proof of the statement. In order
to prove the claim, it is enough to show that S1(B) is contained in Ann(B) so that
every minimal ideal I of B which is contained in Ann(B) is also contained in Ann(B).
Let α be the smallest ordinal number such that I ∩ Annα(B) is non-trivial (such
an ordinal exists because I is contained in Ann(B)); in particular, I ⊆ Annα(B). Of
course, α is not limit and not 0, so I∩Annα−1(B) = {0}. Let x ∈ I. For each b ∈ B, we
have that x∗b, b∗x, [x, b]+, [x, b]◦ are elements of I and are trivial modulo Annα−1(B).
Therefore

x ∗ b, b ∗ x, [x, b]+, [x, b]◦ ∈ I ∩Annα−1(B) = {0}
and hence I ⊆ Ann(B). This completes the proof.

Remark 3.33. If we replace the operator “Ann” with the operator “Soc”, an analogue
of Theorem 3.32 holds with the same proof.

Now, using the concept of good ideals of a skew brace with property (S), we are
able to locally characterise those ideals which are contained in the hyper-annihilator.

Theorem 3.34. Let B be a skew brace with property (S) and let I be an ideal of B.
Then the following conditions are equivalent:

(1) I is good, and if A is a finitely generated sub-skew brace of B, then A ∩ I is
contained in Ann(A).

(2) I ⊆ Ann(B).

Proof: First, we prove (2) implies (1). Let A be any finitely generated sub-skew brace
of B. It follows from Theorem 3.31 that I is good. Moreover, for each ordinal α, we
have that

Annα(B) ∩A ⊆ Annα(A),

so

I ∩A ⊆ Ann(B) ∩A ⊆ Ann(A)

and we are done.

Now, we prove (1) implies (2). Let J be a finitely generated ideal of B contained
in I, so by the hypothesis, J is finitely generated as a skew brace. Let T = T+(J). Then
T is a finite ideal of B (see Theorem 3.18). Moreover, J/T is contained in Ann(B/T )
by Corollary 3.22, so it only remains to show that T is contained in Ann(B). To this
end we may assume I is finite and non-zero. Let F be a minimal ideal of B contained
in I, so F is finite. Then, it is certainly possible to find a finitely generated sub-skew
brace E of B such that F is a minimal ideal of E. But F ⊆ E ∩ I is contained
in the hyper-annihilator of E, so an argument we employed at the end of the proof
of Theorem 3.32 yields that F ⊆ Ann(E). Since every sub-skew brace containing E
has the same property as E, it follows that F ⊆ Ann(B). Let K = I ∩ Ann(B); in
particular, K is a finite ideal of B. Now, I/K satisfies the hypotheses of (1) in B/K,
so by induction we get that I/K lies in the hyper-annihilator of B/K. Then I lies in
the hyper-annihilator of B and the statement is proved.

A skew brace is locally annihilator-nilpotent if every finitely generated sub-skew
brace is annihilator-nilpotent. As a consequence of the above result, we have an in-
teresting characterisation of locally annihilator-nilpotent skew braces in the universe
of good skew braces satisfying property (S). This corresponds to the fact that an
FC-group is locally nilpotent if and only if it is hypercentral.
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Corollary 3.35. Let B be a good skew brace having property (S). Then the following
conditions are equivalent:

(1) B is locally annihilator-nilpotent.

(2) B = Ann(B).

Remark 3.36. In Theorem 3.34, the operator “Ann” can be replaced by the opera-
tor “Soc”.

We now give an application of Theorem 3.27 and Theorem 3.31. As already noticed,
a theorem of Issai Schur states that if a group is finite over its centre, then also its
commutator subgroup is finite; it is also well known that the converse to this statement
holds whenever the group is finitely generated. Analogous results for skew braces were
proved in [22] (see also our Lemma 3.12). Schur’s theorem is a very particular case
of a more general result of Baer [3], which states that if a group is finite over its n-th
centre, then the (n+ 1)-term of its lower central series is finite. The analogue of this
result is true for skew braces with property (S), but it is not clear if this is the case
without such an assumption.

Theorem 3.37. Let B be a skew brace with property (S) and let n be a positive integer.
If B/Annn(B) is finite, then B has a finite ideal I such that B/I is annihilator-
nilpotent of length n.

Proof: Theorems 3.29 and 3.31 show that B is good, so every factor group of B is
good and Theorem 3.27 shows that we may assume B periodic. Let F be a complete
set of representatives of A = Annn(B) in (B,+). Then the ideal I generated by F is
finite and B = A+ I and the statement is proved.

The theorems of Schur and Baer can be generalised in many other ways. For ex-
ample, it was proved in [15] that if G is finite over its hypercentre, then G has a finite
normal subgroup whose factor group is hypercentral. The proof of the above result
also makes it possible to prove a corresponding statement in the case of skew braces
having property (S).

Theorem 3.38. Let B be a skew brace with property (S). If B is finite over the
hyper-annihilator, then B has a finite ideal I such that B/I coincides with its hyper-
annihilator.

We end this section dealing with the radical theory of skew braces having prop-
erty (S). The radical theory of a skew brace was introduced in [22] as follows. Let
B be a skew brace. Then Rad(B) is defined as the intersection of all maximal ideals
of B. Theorem 3.10 of that paper shows that if B is Artinian (that is, B satisfies
the minimal condition on ideals), then B/Rad(B) is isomorphic to a direct product
of finitely many simple skew braces. We can prove something similar in the universe
of skew braces with property (S). First, we need the following analogue of a classical
argument of Remak. In what follows, “Dr” denotes the restricted direct product.

Lemma 3.39. Let B be a skew brace with property (S) and assume B = Dri∈I Bi,
where Bi is a simple skew brace which is not the trivial brace. If I is an ideal of B,
then I is the direct product of certain Bi.

Proof: Clearly, we may factor out any Bi contained in I, assuming therefore that
I ∩ Bi = {0}, for all i. Moreover, since none of the Bi is the trivial brace, we have
that Ann(B) = {0}.

Now, [I,Bi]+ ⊆ I ∩ Bi = {0} and similarly [I,Bi]◦ = I ∗ B = B ∗ I = {0}. Thus
I ⊆ Ann(B) = {0} and the statement is proved.
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Theorem 3.40. Let B be a skew brace with property (S) and R = Rad(B). Then
B/R can be embedded into the direct product C ×D, where

(1) C is the restricted direct product of all simple homomorphic images of B which
are not trivial braces, and

(2) D is a trivial brace which is an unrestricted direct product of trivial braces of
prime order.

Moreover, B/A is isomorphic to C, where A/R = Ann(B/R).

Proof: We may clearly assume R = {0}. Let I be the set of all maximal ideals of B.
Let b ∈ B and let Jb be the subset of I made by all ideals J such that

b+ J /∈ Ann(B/J)

and B/J is not the trivial brace. We claim that Jb is finite. Suppose this is not the
case. Since B has property (S), we have that the number of conjugates of b in B is
finite, say mb. Let I1, . . . , Imb

be distinct elements of Jb such that

I1 ⊃ I1 ∩ I2 ⊃ · · · ⊃ I1 ∩ · · · ∩ Imb
= Jb

(the existence of these ideal is guaranteed by Lemma 3.39). The argument employed
in the proof of [22, Theorem 3.10] shows that the map

ϕb : a+ Jb ∈ B/Jb 7−→ (a+ I1, . . . , a+ Imb
) ∈ B/I1 × · · · ×B/Imb

is an isomorphism. However, it is easy to see that the number of conjugates of ϕb(b)
is at least mb + 1, a contradiction. Thus, Jb is finite.

Let T be the subset of I made by all maximal ideals I of B such that B/I is a
trivial brace. The previous claim shows that for each b ∈ B there are finitely many
elements I in I \T such that b /∈ I. Let N be the intersection of all members of T , so
B/N is isomorphic to an unrestricted direct product of trivial braces of prime order.
It follows that the map

ϕ : b ∈ B 7−→ ((b+ I)I∈I\T , b+N) ∈ Dr
I∈I\T

(B/I)×B/N

is a monomorphism.
Finally, let M be the intersection of all ideals in I \ T . Since M ⊆ ϕ−1(B/N), it

follows that M is contained in Ann(B). If we let

ψ : B −→ Dr
I∈I\T

(B/I)

be the natural projection, we see that M = Ker(ψ). We need to show that ψ is
surjective.

Let I ∈ I \ T and take x ∈ B \ I. Let J1, . . . , Jn be the elements of I \ T such
that J1 = I. Since B/J1 is a simple skew brace which is not the trivial brace, we
can find c ∈ B such that one of the elements x ∗ c, c ∗ x, x◦,c, x+,c, call it u, is not
contained in J1. As we notice above, there is y ∈ B such that y + J1 = c + J1 and
y ∈ J2∩· · ·∩Jn. It follows that u belongs to N and to all elements of I \T except J1.
The ideal generated by u + J1 in B/J1 is B/J1. As I was arbitrary, this shows that
ψ is surjective and completes the proof.

With respect to the previous result, we observe that a simple skew brace with
property (S) must be locally finite (see Theorem 3.18 and Corollary 3.21).
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4. Skew braces with property (BS)

Recall that a group G is a BFC-group if there is a positive integer n such that
every element of G has at most n conjugates in G. The main result of this section can
be understood as a brace-theoretic analogue of a well-known result of B. H. Neumann
stating that a group G is a BFC-group if and only if [G,G] is finite.

Definition 4.1. An arbitrary skew brace has property (BS) if there is a positive
integer n such that

sup{|(B,+) : Fixr(x) ∩ C+
x |, |(B, ◦) : Fixl(x) ∩ C◦x| : x ∈ B} ≤ n.

Of course, every skew brace B such that |B/Ann(B)| < ∞ satisfies (BS), so the
next result can also be seen as a generalisation of the first half of [22, Theorem 5.4].

Theorem 4.2. Let B be a skew brace. Then B has property (BS) if and only if B(2)

and [B,B]+ are finite.

Proof: If B(2) and [B,B]+ are finite, then also [B,B]◦ is finite and the statement is
proved. Assume conversely that B has property (BS). Therefore there is a positive
integer n such that

sup{|(B,+) : Fixr(x) ∩ C+
x |, |(B, ◦) : Fixl(x) ∩ C◦x| : x ∈ B} ≤ n.

Let G = N oλ X, where N = (B,+) and X = (B, ◦). We claim that G is a BFC-
group. Let g ∈ N . Then g has at most n conjugates in N . It follows from equation (?)
that every element of N has at most n conjugates under the action of X, which means
that every element of N has at most n2 conjugates in G. Similarly, any element of X
has at most n2 conjugates in G. Finally, let g be an arbitrary element of G. Then we
can write g = g1g2, where g1 = (0, x), g2 = (y, 0), x, y ∈ B. Since

|G : CG(g1) ∩ CG(g2)| ≤ |G : CG(g)|,
it follows that |G : CG(g)| ≤ n4 and the claim is proved.

Now, by Neumann’s theorem, we have that [G,G] is finite; in particular [B,B]+ is
finite. The fact that B(2) is finite can be deduced from equation (?). The statement
is proved.

Finally, we show how skew braces with property (BS) come into play in the context
of the YBE. Let (X, r) be a set-theoretic non-degenerate solution of the YBE. Recall
first that the (left) derived solution (X, r′) of (X, r) is the non-degenerate solution
defined as follows: r′(x, y) = (y, ηy(x)), where

ηy(x) = σy(τσ−1
x (y)(x)).

It is easy to see that the structure group G(X, r′) coincides with A(X, r) (see [18,
Theorem 2.4]).

Definition 4.3. A non-degenerate solution (X, r) of the YBE is said to be derived-in-
decomposable if its derived solution (X, r′) is indecomposable.

One of the main objects controlling the decomposability of a non-degenerate solu-
tion (X, r) is its permutation group, i.e. the subgroup G(X, r) = 〈σx, τy : x, y ∈ X〉
of Sym(X). Indeed, by [13, Proposition 6.6], (X, r) is indecomposable if and only
if G(X, r) acts transitively on X. Moreover, by the proof of [8, Theorem 2.2], one
obtains that the action of the permutation group is the same as the action of the
group 〈σx, ηx : x∈X〉. Thus, if (X, r′) is indecomposable, then G(X, r′) = 〈ηx : x∈X〉
is transitive, so that 〈σx, ηx : x ∈ X〉 is transitive and hence (X, r) is indecomposable.



Derived-indecomposable solutions of the YBE 191

More specifically, there exists a unique derived-indecomposable involutive solution,
namely the involutive solution defined on the set of one element, but among non-
involutive ones there are large classes of solutions which are derived-indecomposable
(see for instance [25, Appendix A]). However, even in the non-involutive case, in-
decomposable does not imply derived-indecomposable, as shown by the following
example. Let X = {1, 2, 3, 4} and define

σx =

{
(1 4 2 3) if x = 1, 2,

(1 3 2 4) if x = 3, 4 and τx = (1 3)(2 4).

It follows that r(x, y) = (σx(y), ρy(x)) is an indecomposable solution but its derived
solution defined by

ηx(y) =

{
(3 4) if x = 1, 2,

(1 2) if x = 3, 4

is decomposable with orbits {1, 2} and {3, 4}.
Similarly to Corollary 3.25, in the case of skew braces with property (S), the

converse holds.

Theorem 4.4. Let (X, r) be a non-degenerate finite solution of the YBE such that
G(X, r) has property (S). Then (X, r) is indecomposable if and only if (X, r) is derived-
indecomposable.

Proof: By our remark above, we only need to show that if (X, r) is indecomposable,
then (X, r′) is such. Therefore assume (X, r) is indecomposable. It follows from [25,
Proposition 7.3] that G(X, r)/T is infinite cyclic, where T is the subgroup of all peri-
odic elements of G(X, r). But G(X, r) ∗G(X, r) is periodic by Corollary 3.21, so also
A(X, r)/T is infinite cyclic. But A(X, r) = G(X, r′), so G(X, r′)/T is infinite cyclic. A
further application of [25, Proposition 7.3] shows that (X, r′) is indecomposable.

Our last result shows that the derived-indecomposability has a very strong impact
on the behaviour of the structure skew brace.

Theorem 4.5. Let (X, r) be a non-degenerate finite solution of the YBE. If (X, r) is
derived-indecomposable, then the skew brace G(X, r) has property (BS).

Proof: Let A be the additive group of skew brace G(X, r). It follows from [22, Theo-
rem 6.2] that G(X, r) ∗G(X, r) is finite. On the other hand, A is finite over its centre
(this is seen by adapting the proof of [21, Theorem 2.7]), so Schur’s theorem gives
that [A,A]+ is finite. Then G(X, r) has property (BS) by Theorem 4.2.
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