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Abstract: We give an alternative proof of a Marcinkiewicz interpolation theorem for non-commu-

tative maximal functions and positive maps and refine earlier versions of the statement. The main

novelty is that it provides a substitute for the maximal function of a martingale in Lp, 1 < p 6 ∞,
losing very little on numerical constants. For non-positive maps, the above mentioned theorem fails

but we can still obtain some interpolation results by weakening the maximal norm that we consider.
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1. Introduction

In classical analysis, a maximal function M is simply the supremum of a given
family of functions (fi)i∈I ,

M := sup
i∈I
|fi|.

Obtaining bounds for certain meaningful maximal functions is a fundamental theme
in harmonic analysis, with a variety of applications ranging from Lebesgue’s differen-
tiation theorem to ergodic theory and the convergence of Fourier series. When trying
to adapt this notion to non-commutative analysis, where functions are replaced by
operators, an immediate difficulty appears: in general, a family of operators does
not admit a supremum. Nonetheless, alternative ways to formulate maximal inequal-
ities exist and can be traced back at least to the 70’s and the early days of non-
commutative martingale and ergodic theory ([6], [15], [21]). A systematic approach
to non-commutative maximal functions was initiated two decades ago in works of
Pisier [19] and Junge [11] and has been widely adopted since.

In this paper, we revisit a result of Junge and Xu [13] that extends Marcinkiewicz
interpolation in the following way: let p0 < p < p1; if a non-commutative positive
maximal operator is weakly bounded on Lp0 and Lp1 , then it is strongly bounded
on Lp. Interpolation generally transfers well from classical to non-commutative func-
tion spaces so this may appear to be a routine result but – details will be given
shortly – weak and strong types have here been defined in different ways and inde-
pendently (weak type in [6] and [21] and strong type in [19]), making this theorem,
if not surprising, quite notable. Our first goal is to present a new, very simple proof
of this theorem and then to explore its potential extensions to operators that are
not necessarily positive. A motivation discussed along the way is to compare different
definitions of maximal norms and how real interpolation might apply to them. Note
that simplifications and refinements of Junge and Xu’s original result can already be
found in [1], [8]. In particular, Junge and Xu always assume strong type (p1, p1) and
the result at the beginning of the paragraph was only proved later by Dirksen [8].
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Let us now recall the definition of maximal norms as introduced by Pisier and
Junge. Let (N , τ) be a von Neumann algebra equipped with a normal semifinite
faithful trace. For 0 < p 6 ∞, the space Lp(N ; `∞) consists of all sequences of
operators x = (xn)n>0 for which there exist operators a, b ∈ L2p(N ) and contrac-
tions (un)n>0 in N such that

(1.1) ∀n > 1, xn = aunb.

We set

‖x‖Lp(N ;`∞) = inf ‖a‖2p‖b‖2p,

where the infimum runs over all decompositions as above. Then Lp(N ; `∞) is a Banach
space for p > 1 and a quasi-Banach for p < 1. We refer to [11] for further details.
When x consists of positive operators, we have a simpler description

‖x‖Lp(N ;`∞) = inf{‖a‖p | ∀n > 0, 0 6 xn 6 a}.

This explains why ‖x‖Lp(N ;`∞) plays the role of the norm of the maximal function.
It is proved in [12] that this infimum is achieved but it may depend on p if x belongs
to Lp(N ; `∞) for multiple values of p. Advantages of these definitions include: a good
behaviour with respect to complex interpolation [11], [20], a nice duality theory, and
the ability to carry out in the non-commutative setting several classical applications
of maximal functions. A drawback is that these spaces do not form a real interpolation
scale [14].

We will also need a weak version that is commonly used in non-commutative anal-
ysis. The space Λp,∞(N ; `∞) consists of all sequences of operators x = (xn)n>0 for
which the following quantity is finite:

‖x‖Λp,∞(N ;`∞) = sup
λ>0

λ inf
e
{(τ(1− e))1/p | ∀n > 0, ‖exne‖ 6 λ},

where the infimum runs over all self-adjoint projections inN . Thus, if x∈Λp,∞(N ; `∞)
with ‖x‖Λp,∞(N ;`∞) < C, then for all λ > 0, there is a projection e ∈ N with

(1.2) τ(1− e) 6 Cp

λp
, ∀n > 0, ‖exne‖ 6 λ.

The space Λp,∞(N ; `∞) is a quasi-Banach space.
At this stage, we point out that it does not match a more natural definition as for

commutative measure spaces commonly denoted by Lp,∞(N ; `∞). If x consists of pos-
itive operators, x ∈ Λp,∞(N ; `∞) does not imply that there exists a ∈ Lp,∞(N ) such
that 0 6 xn 6 a. This requirement would provide better constants for interpolation
(see Remark 3.9) but is too strong in practice to formulate Doob’s weak type inequal-
ity for non-commutative martingales or a weak type inequality for ergodic theory. In
the following,M denotes another von Neumann algebra equipped with an n.s.f. trace.

Definition 1.1. Let S = (Sn)n>0, where Sn : Lp(M)→ L0(N ) is a sequence of maps

• S is said to be of strong type (p, p) with constant C if S is bounded from Lp(M)
to Lp(N ; `∞) with constant C.
• S is said to be of weak type (p, p) if S is bounded from Lp(M) to Λp,∞(N ; `∞).

More precisely, we say that S is of weak type (p, p) with constant C, if for
any x ∈ Lp(M) and λ > 0 there exists a projection e ∈ N such that

(1.3) τ(1− e) 6
Cp‖x‖pp
λp

, ∀n > 0, ‖eSn(x)e‖ 6 λ.
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Note that when p =∞, the weak and strong types are equivalent and simply mean
that the family (Sn) is uniformly bounded from M to N .

The family (Sn) is of weak type (p, p) with constant C iff (Sn):Lp(M)→Λp,∞(N; `∞)
with norm C.

We are now able to state the Marcinkiewicz interpolation theorem for non-commu-
tative maximal functions.

Theorem 1.2 (Junge, Xu, Dirksen). Let 1 6 p0 < p1 6 ∞. Let S = (Sn)n>0 be
a sequence of positive linear maps from Lp0(M) + Lp1(M) to L0(N ). Assume that
S is of weak type (p0, p0) with constant C0 and of weak type (p1, p1) with constant C1.
Let θ ∈ (0, 1) and p be determined by 1/p = (1 − θ)/p0 + θ/p1. Then S is of strong
type (p, p) with constant less than

CC1−θ
0 Cθ1α

2
θ,p0,p1 ,

where C is a universal constant and

αθ,p0,p1 =

(
1

p
− 1

p 0

)−1

+

(
1

p1
− 1

p

)−1

.

Compared to earlier approaches ([13], [1], [7], [8]) ours has two main advantages:
first, it identifies clearly the non-commutative part of the proof, which is reduced to
a single lemma (Lemma 3.1), the rest of the argument consisting of manipulations
of singular values; second, it allows us to construct an element in Lp(N ) playing the
role of a maximal function. Keeping the notations of Theorem 1.2, we have

Theorem 1.3. Let x ∈ Lp0(M) ∩ Lp1(M). Then, there exists a ∈ (L1 + L∞)(N )+

and contractions (un)n>0 such that

∀n > 0, Sn(x) = auna.

Moreover, for any p ∈ (p0, p1)

‖a‖22p 6 CC1−θ
0 Cθ1α

2
θ,p0,p1(lnαθ,p0,p1)2,

where p and θ still verify 1/p = (1− θ)/p0 + θ/p1.

As previously mentioned, in general, the minimizing factorization (xn) = (aynb)
in (1.1) may depend on p. This is an important difference from the commutative
case and can be considered to be at the root of the failure of real interpolation for
non-commutative maximal norms. We show that in this particular case, if we are
willing to lose an exponent in the constants, this phenomenon cannot occur and a
concrete maximal function can be exhibited. In particular, this applies to (Sn)n>0 a
family of conditional expectation to define a maximal function for non-commutative
martingales. We state the results for sequences of maps for convenience; they hold as
well for general families S = (Si)i∈I .

In the rest of the paper, we explore variants and limitations of this theorem. First,
in the remainder of Section 3, we show that the method of proof extends to some
asymmetric versions of the maximal norm, already considered in [11], [9], and [20].
For those, the range of values of p for which the theorem applies has to be restricted
(see Theorem 3.13 and Proposition 3.14).

We begin Section 4 by noting that without the positivity hypothesis on the
maps (Sn), the theorem fails even with M = C. We introduce weaker maximal
quasi-norms taking their inspiration in the definition of weak type rather than strong
type. We show that they form a real interpolation scale and do give rise to Banach
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spaces for some parameters. They seem to be the most well-adapted kind of maxi-
mal inequalities beyond the positive case. They can be useful if one’s goal is only to
study questions of pointwise convergence in tracial von Neumann algebras. We also
show that one of them exactly corresponds to the real interpolated spaces for the
couple (Lp(M; `c∞), L∞(M; `c∞)) of one-sided maximal function spaces. We conclude
with some basic bounds related to asymmetric factorizations of the form:

xn = ayn + znb with (yn), (zn) ∈ L∞(M; `∞) and a, b ∈ Lp(M).

This is close in spirit to what Junge and Xu did in [13] for symmetric factorizations.
Unfortunately, one cannot improve them using the machinery of interpolation as the
real method fails for (Lp(M; `c∞))p>1.

2. Preliminaries

We assume that the reader is familiar with non-commutative integration. This
section briefly recalls some standard notations and definitions (see also [19]), and
presents a simple decomposition lemma.

2.1. Non-commutative integration. We will denote by (M, τM) or (N , τN ) non-
commutative measure spaces, meaning thatM and N are von Neumann algebras and
τM (resp. τN ) is a normal semifinite faithful trace on M (resp. on N ). In practice
there will be no ambiguity on the trace used and we will write τ instead of τN
or τM. The space of τ -measurable operators affiliated with M is denoted by L0(M)
and the non-commutative Lp-spaces associated with (M, τ) by Lp(M), p ∈ (0,∞].
For x ∈ L0(M), µ(x) designates the singular value function of x given by, for t > 0,

µt(x) = inf
τ(1−e)6t

‖xe‖,

where the infimum runs over projections e ∈M. The first step of the main proofs of
this paper is to obtain estimates for finite projections. The following simple lemma is
essential to extend those estimates to more general operators.

Lemma 2.1. Let p ∈ (0,∞) and x ∈ L+
p (M). There are finite projections (rn)n∈Z ∈

M so that x =
∑
n∈Z 2−nrn ∈ Lp(M) and for all α > 0∑

n∈Z
2−nα1[0,τ(rn)]6

1

1−2−α
µ(xα) and

∑
n∈Z

(|n|+1)2−n1[0,τ(rn)]6Cµ(x(|ln(x)|+1)).

Proof: Actually, this is a commutative result. Let ϕn be the indicator function on R
of the set of reals whose −nth digit in base 2 is 1. Clearly for all t > 0, t =∑
n∈Z 2−nϕn(t). Set rn = ϕn(x), which is a finite projection as x > 2−nrn, thus

τ(rn) 6 2np‖x‖pp. By Lebesgue’s dominated convergence theorem x =
∑
n∈Z 2−nrn

holds in Lp(M).
Let s > 0. If for all k ∈ Z, τ(rk) < s, then

∑
k∈Z 2−kα1[0,τ(rk)](s) = 0 and

there is nothing to prove. Otherwise set ks = min{k | τ(rk) > s}, which is well

defined as τ(rk) 6 2kp‖x‖pp. Then
∑
k∈Z 2−kα1[0,τ(rk)](s) =

∑
k>ks

2−kα = 2−αks

1−2−α . But

xα > 2−ksαrks (recall that they commute), thus µ(xα)(s) > 2−ksαµ(rks)(s) = 2−ksα.
For the second inequality, follow the same proof and note that

∑
k>ks

(|k|+ 1)2−k 6

(|ks|+ 1)2−ks
∑
k>0(k + 1)2−k.

Remark 2.2. Note that Lemma 2.1 still holds for any x ∈ L0(M)+ but in general the
sum

∑
n∈Z 2−nrn only converges in L0(M).
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2.2. Hardy–Littlewood majorization. Let f and g be two non-increasing func-
tions from (0,∞) to R+. We say that g majorizes f and write f � g if

∀t > 0,

∫ t

0

f 6
∫ t

0

g.

We will use the following properties. First, let p ∈ [1,∞] and x, y ∈ Lp(M), then

µ(x) � µ(y) =⇒ ‖x‖p 6 ‖y‖p.

Second, assume that x =
∑
n∈Z xn, where the sum converges in Lp(M). Then

(2.1) µ(x) �
∑
n∈Z

µ(xn).

One way to justify this inequality is to note that, for any t > 0, x 7→
∫ t

0
µ(x) =

‖x‖L1+tL∞ is a norm and use the triangle inequality.

3. Interpolation for positive maps

Let (M, τ) be a semifinite von Neumann algebra equipped with an n.s.f. trace.

3.1. Majorization and factorization. We start with two easy lemmas that cap-
ture the non-commutative aspects of the proof of our main theorem.

Lemma 3.1. Let N ∈ N and (qk)|k|6N be a sequence of disjoint projections in M
with e =

∑
|k|6N qk. Let (dk)|k|6N be a sequence of strictly positive reals. Then for

any x ∈ L0(M, τ)+:

0 6 exe 6

( ∑
|k|6N

1/dk

) ∑
|k|6N

dkqkxqk.

Proof: The matrix (1/
√
didj)−N6i,j6N corresponds to a rank-one positive operator

with norm C =
∑
|k|6N 1/dk. Thus the matrix (Cδi,j−1/

√
didj)−N6i,j6N is positive,

hence conjugating by (
√
diδi,j), (Cdiδi,j−1)−N6i,j6N also is. We can find T ∈ N and

families of complex numbers (ai,t)|i|6N,t6T such that Cdiδi,j − 1 =
∑T
t=1 ai,taj,t.

Hence

C
∑
|k|6N

dkqkxqk − exe =

T∑
t=1

(∑
|i|6N

ai,tqi

)∗
x

( ∑
|j|6N

aj,tqi

)
> 0.

The following is standard by using polar decompositions in M⊗B(`2(Z)):

Lemma 3.2. Let (ai)i∈Z and (bi)i∈Z be sequences of elements in Lr and Ls such
that

∑
i∈Z aia

∗
i ∈ Lr/2 and

∑
i∈Z b

∗
i bi ∈ Ls/2 with r, s > 0. For any sequence of

contractions (ui)i∈Z in M, there is a contraction u ∈M such that, in Lrs/(r+s),

∑
i∈Z

aiuibi =

(∑
i∈Z

aia
∗
i

)1/2

u

(∑
i∈Z

b∗i bi

)1/2

.
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3.2. The Marcinkiewicz theorem. The first version of the Marcinkiewicz in-
terpolation for maximal functions is given by [13, Theorem 3.1]: assuming weak
type (p0, p0) and strong type (p1, p1), the authors obtain strong type (p, p) for p1 <
p < p0. This has been extended in several directions in [7, 1]. A very satisfactory
statement was obtained by Dirksen in [8]. Our approach is similar to Dirksen’s, the
novelties being in the second statement and in the simplicity of the proof, which is
“almost commutative” apart from Lemmas 3.1 and 3.2. Actually, with a careful look
at [8], fixing p0 < r < s < p1, one can find a depending only on r, s such that
(3.1) hold for r < p < s.

Theorem 3.3. Let 1 6 p0 < p1 6 ∞ and S = (Sn) be a sequence of linear positive
maps from Lp0(M) + Lp1(M) to L0(N ). Assume that S is of weak type (p0, p0)
and (p1, p1) with constants C0 and C1. Let p ∈ (p0, p1) and θ ∈ (0, 1) such that 1

p =
1−θ
p0

+ θ
p1

. Set

αθ,p0,p1 =

(
1

p
− 1

p 0

)−1

+

(
1

p1
− 1

p

)−1

.

Then S is of strong type (p, p) with constant

Cθ,p0,p1 6 CC1−θ
0 Cθ1α

2
θ,p0,p1 .

Moreover, there is a constant C ′θ,p0,p1 such that for any x ∈ Lp0(M) ∩ Lp1(M) there

exist a ∈ (L1 + L∞)+ and contractions un ∈ N independent of p or θ with

(3.1) Sn(x) = auna, ‖a‖22p 6 C ′θ,p0,p1‖x‖p,
and

C ′θ,p0,p1 6 CC1−θ
0 Cθ1 (αθ,p0,p1 ln(αθ,p0,p1))2.

To prove Theorem 3.3, we proceed in two steps. First, in Lemma 3.4, assuming that
x is a projection, we give a construction of a majoring element based on Lemma 3.1.
Second, for a general x, we decompose x into a dyadic combination of projections x =∑

2nxn, apply the first step to each projection and put them back together.

Scaling the trace, we can and will assume C0 = C1 and by homogeneity C0 = 1.
Assume p0 < p < p1 fixed. Let us introduce notations that will play an important

role in the proof of Theorem 3.3. Set I = Z if p1 6= ∞ and I = Z>0 if p1 = ∞. Let
(dk)k∈I be a sequence of positive real numbers such that:

Cd =
∑
k∈I

1

dk
<∞.

Set
d̃k = 4Cddk2−k/p0 if k > 1 and d̃k = 4Cddk2−k/p1 if k 6 0.

We also assume that

(3.2)
∑
k∈I

d̃k2k/p <∞.

For s > 0, define the dilation operator Ds by

Ds : L0(R+) −→ L0(R+)

f 7−→ [t 7→ f(t/s)].

The connection between dilation operators and Marcinkiewicz interpolation was made
explicit by Boyd in [3]. A closely related way to approach interpolation of weak type
inequalities was developed earlier by Calderón [4]. We found Boyd’s formulation to
be more convenient in this paper but the two are essentially equivalent (as shown for
example in [16]).
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Lemma 3.4. Let r ∈ M be a finite projection. There exists an element z ∈ Lp(N )
(depending only on r and the choice of (dk)k∈Z) such that

∀n > 0, 0 6 Sn(r) 6 z, µ(z) �
∑
k∈I

d̃kD2k(µ(r)).

Proof: Let r ∈M with τ(r) = t.
The map S is of weak type (p0, p0) with constant 1. Hence, using (1.3) for λ =

2−(k−2)/p0 and k > 1, we obtain projections (ek)k>1 such that

∀k > 1 ∀n > 0, ‖ekSn(r)ek‖ 6 2−(k−2)/p0 , τ(1− ek) 6 2k−2t.

Similarly the weak type (p1, p1) of S gives projections (ek)k60 such that

∀k 6 0 ∀n > 0, ‖ekSn(r)ek‖ 6 2−(k−2)/p1 , τ(1− ek) 6 2k−2t.

Considering 1−
∨
i6k(1−ei) instead of ei, we get a decreasing family of projections

such that

∀n > 0, ‖ekSn(r)ek‖ 6 22/p02−k/p01k>0 + 22/p12−k/p11k60, τ(1− ek) 6 2k−1t.

Set qk=ek−ek+1 and q∞=
∧
k ek, EN =

∑
|k|6N qk; we have

∑
k∈Z qk = 1−q∞ and

τ(qk)62kt. Note that if p1 =∞, we can take ek=1 for k60 so that qk=0 for k < 0.
By Lemma 3.1, for all n,N > 0

0 6 ENSn(r)EN 6 Cd
∑
|k|6N

dkqkSn(r)qk

6 4Cd

( N∑
k=1

dk2−k/p0qk +

N∑
k=0

d−k2k/p1q−k

)
= zN .

By (3.2), the increasing sequence (zN )N>1 converges in Lp(N ) (using that τ(qk) 6
2kt). Denote by z ∈ Lp(N ) its limit. Then, as q∞Sn(r)q∞ = 0, we get

∀n > 0, 0 6 Sn(r) 6 z =
∑
k∈I

d̃kqk.

The inequality τ(qk) 6 2kt yields µ(qk) 6 D2k(1[0,t]). Hence by (2.1)

µ(z) �
∑
k∈I

d̃kD2k(µ(r)),

with appropriate changes if p1 =∞.

Proof of Theorem 3.3: Writing any element x ∈ Lp(M) as a linear combination of
four positive elements with coefficients ik, each having norm less than ‖x‖p and using
Lemma 3.2, it suffices to consider only x > 0. This will only change the constant C.

Let x ∈ L+
p ; we use Lemma 2.1 to write x =

∑
m∈Z 2−mrm. We apply Lemma 3.4

to each rm to obtain some element zm ∈ Lp(M) with

(3.3) ∀n > 0, Sn(rm) 6 zm and µ(zm) �
∑
k∈I

d̃kD2k(µ(rm)),

where I = Z if p1 <∞ and I = Z>0 if p1 =∞. For any finite subset J ⊂ Z,

(3.4) ∀n > 0, 0 6 Sn

(∑
m∈J

2−mrm

)
6 zJ :=

∑
m∈J

2−mzm.

By (2.1),

(3.5) µ(zJ)�
∑
m∈J

2−mµ(zm)�
∑
m∈J

∑
k∈I

2−md̃kD2k(µ(rm))�
∑
k∈I

d̃kD2k

(∑
m∈J

2−mµ(rm)

)
.
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By the construction of Lemma 2.1, we have
∑
m∈Z 2−mµ(rm) 6 2µ(x). Thus the

sum
∑

2−mµ(rm) converges in Lp(0,∞). Combined with (3.5) and (3.2), this implies
that the sum

∑
2−mzm converges in Lp(N ). Set z =

∑
m∈Z 2−mzm; we have

µ(z) �
∑
k∈I

d̃kD2k

(∑
m∈Z

2−mµ(rm)

)
6 2

∑
k∈I

d̃kD2k(µ(x)).

In particular,

(3.6) ‖z‖p 6 2
∑
k∈I

d̃k‖D2k(µ(x))‖p = 2‖x‖p
∑
k∈I

d̃k2k/p.

Moreover, note that by real interpolation each Sn is continuous on Lp since it is of
weak type (p0, p0) and (p1, p1), so

∀n > 0, Sn(x) = Sn

(∑
m∈Z

2−mrm

)
6
∑
m∈Z

zm = z.

To get the first statement, we choose dk = 2k(1/p0−1/p)/2 for k > 1 and dk =
2k(1/p1−1/p)/2 for k60. We get that d̃k2k/p = 4Cd/dk for k∈I, where Cd=

∑
k∈I 1/dk.

Hence, computations in (3.6) give

‖z‖p 6 8

(
1

1− 2(1/p−1/p0)/2
+

2

1− 2(1/p1−1/p)/2

)2

‖x‖p;

when p1 =∞, we get only 1 for the second term in the sum.
To prove the second statement we choose dk = |k|(ln |k|)2 + 1. Thus, given x ∈

Lp0(M) ∩ Lp1(M) thanks to (3.3), we can still define z =
∑
m∈Z 2−mzm, which

makes sense in
⋂
p0<p<p1

Lp(N ) ⊂ Lp0(N ) +Lp1(N ). It is independent of p and (3.6)
becomes

(3.7) ‖z‖p 6 C‖x‖p
∑
k>0

(k(ln |k|)2 + 1)(2−k(1/p0−1/p) + 2−k(1/p−1/p1)).

Up to an absolute factor,
∑
k>0(k(ln |k|)2 + 1)2−ks, s > 0 is controlled by∫ ∞
2

2−tst|ln t|2 dt . |ln s|
2 + 1

s2
.

This yields the estimate.

Remark 3.5. When p1 = ∞, the constant Cθ,p0,∞ actually remains bounded when
θ → 1. One can also see from the proof that z and a are bounded when x is bounded.
Indeed, by construction the family (zm) is uniformly bounded by a constant Cp0 . But
then in x =

∑
mZ 2−mrm, rm is 0 as soon as 2−m > ‖x‖, and z =

∑
2−m6‖x‖ 2−mzm

is bounded by 2Cp0 .

Remark 3.6. The proof only uses estimates for the norm of D2k on Lp. Thus, we may
replace the space Lp in the arguments above with any symmetric function space E ⊂
Lp0 + Lp1 with lower Boyd index p0 and upper Boyd index qE < p1. This way,
we can conclude that S is also bounded from E(M) to E(N ; `∞). We refer to any
of [3, 7, 8, 16] for details.

Remark 3.7. Both in the commutative case and in [8], it is also possible to relax
to 0 < p0 < p1 6 ∞ with worse constants. Let us keep the notations introduced
in the proof of Theorem 3.3 and write zm =

∑
k∈I d̃kqk,m the sequence obtained in

Lemma 3.4. We have z =
∑
m∈Z 2−m

∑
k∈I d̃kqk,m and to estimate its norm, one
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has to use the p-triangular inequality if p < 1 rather than the Hardy–Littlewood
majorization. Indeed, we have

‖z‖pp 6
∑

k∈I,m∈Z
2−mpd̃pk‖qk,m‖

p
p 6

∑
k∈I

d̃pk2k
∑
m∈Z

2−mpτ(rm) 6
‖x‖pp

1− 2−p

∑
k∈I

d̃pk2k.

To obtain the last inequality, we used Lemma 2.1 with α = p. Then, one has to
choose dk as before so that the series converges. Unfortunately, we have no relevant
non-commutative applications for the moment.

Remark 3.8. Both in the commutative case and in [8], we can merely assume that
Sn is sub-additive or even that µ(Sn(f+g)) � µ(Sn(f))+µ(Sn(g)). Indeed, we just use
linearity in (3.4), where sub-additivity is enough if one replaces Sn(rm) with Sn(2mrm)
in the arguments of Lemma 3.4, and there is no need to use homogeneity either.
Moreover, we only used the hypothesis for projections, so we can change weak type
to restricted weak type as in [8].

Remark 3.9. Assume the following stronger form of weak type inequality: for any
projection r there is a ∈ Lp0,∞ with ‖a‖p0p0,∞ 6 τ(r) and 0 6 Sn(p) 6 a, and sim-
ilarly for p1 with an operator b. Then the conclusion of Theorem 3.3 holds with
a better constant, namely it is possible to remove the square in the expression
of Cθ,p0,p1 . Indeed, using the same proof, one can take ek to be a spectral projec-
tion of b for k 6 0 and a spectral projection of e0ae0 for k > 0. The assumption yields
0 6 Sn(r) 6 2((1− e0)b(1− e0) + e0ae0) without Lemma 3.4 being needed so that we
simply end up with 0 6 Sn(p) 6 8

∑
k min(2−k/p0 , 2−k/p1)qk.

Remark 3.10. The constant in Theorem 1.3 (or the second part of Theorem 3.3)

for p0 = 1 and p1 = ∞ cannot be improved to CC1−θ
0 Cθ1α

2
θ,p0,p1

as in Theorem 1.2.

More precisely, if Theorem 1.3 holds with constants C ′θ,1,∞ when θ ∈ (0, 1), then

defining f : (1,∞)→ R+ for p ∈ (1,∞) by

C ′1− 1
p ,1,∞

= C
1
p

0 C
1− 1

p

1 f(p)

one must have
lim
p→1+

(p− 1)2f(p) =∞.

This will be proved at the end of the section. We do not know if the constant can be
improved for other values of the indices.

Our main application is about martingale theory to recover the Doob maximal in-
equality of [11]. Assume (M, τ) to be endowed with an increasing filtration (Mn)n>0

and associated conditional expectations (En)n>0.
Cuculescu’s construction gives that S = (En)n>0 is of weak type (1, 1), but it is

obviously of strong type (∞,∞). Then Theorem 3.3 provides a substitute for maximal
functions of martingales.

Corollary 3.11. Let x ∈ (Lp(M) ∩ L1(M))+ for some 1 < p 6 ∞. Then there is
z ∈ Lp(M)+ such that

0 6 En(x) 6 z and ∀1 < q 6 p, ‖z‖q 6 Cq‖x‖q,
with Cq = O(ln(q − 1)/(q − 1))2 when q → 1 and Cq = O(1) when q →∞.

Proof: If x ∈ M+, the statement follows directly from Theorem 3.3 when q < ∞.
For q =∞, this is Remark 3.5.

When x ∈ L+
p , 1 < p <∞, this is justified by (3.7).
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Remark 3.12. Since the optimal behaviour of the constant in the Doob maximal
inequality is known to be of order (p− 1)−2 when p goes to 1, it follows that it is not
possible to strengthen the weak (1, 1)-inequality as in Remark 3.9.

3.3. The asymmetric Marcinkiewicz theorem. In [11], asymmetric maximal
inequalities were considered, and they can be deduced in the same way.

For convenience, we recall the definition of asymmetric maximal function spaces.
For 0 < p 6 ∞ and 0 < γ < 1, Lp(N ; `γ∞) consists of all sequences of operators x =
(xn)n>0 for which there exist operators a, b ∈ Lp(N )+ and contractions (un)n>0 in N
such that

∀n > 1, xn = aγunb
1−γ .

The associated norm is ‖x‖Lp(N ;`∞) = inf ‖a‖p‖b‖p, where the infimum runs over all
decompositions as above. Then Lp(N ; `γ∞) is a Banach space for p > max{2γ, 2(1−γ)}
and a quasi-Banach otherwise. Of course, we recover Lp(N ; `∞) when γ= 1

2 . The limit
cases γ = 0, 1 correspond to the column and row maximal function spaces Lp(N ; `c∞)
and Lp(N ; `c∞) that are recalled at the beginning of Section 4.

For a sequence of maps S = (Sn) as before, we say that it is of strong γ-asymmetric
type (p, p) if S is bounded from Lp(M) to Lp(N ; `γ∞). We easily get

Theorem 3.13. Let 1 6 p0 < p1 6 ∞ and S= (Sn) be a sequence of linear positive
maps from Lp0(M) + Lp1(M) to L0(N ). Assume that S is of weak type (p0, p0)
and (p1, p1) with constants C0 and C1.

Then for any 0 < θ, γ < 1, S is of strong γ-asymmetric (p, p) type, where 1
p =

1−θ
p0

+ θ
p1

if p > max{2γ, 2(1− γ)}.
Moreover, under these conditions, there is a constant Cθ,γ,p0,p1 such that for any x∈

Lp0(M)∩Lp1(M) there exist aγ , bγ ∈ L+
p and contractions un ∈M (all independent

of θ) with

Sn(x) = aγγunb
1−γ
γ , ‖aγ‖p, ‖bγ‖p 6 Cθ,γ,p0,p1‖x‖p.

Proof: This is just a variation on the previous argument. We use the notation from
the proof of Theorem 3.3.

We assume x ∈ Lp0(M) ∩ Lp1(M) is positive. Write x =
∑
m∈Z 2−mrm. We fix

dk = |k|(ln |k|)2 + 1 to construct the elements zm in Lemma 3.4.

We have that there exist contractions cm,n ∈M such that Sn(rm) = z
1/2
m cm,nz

1/2
m .

We use Lemma 3.2 to get contractions vm,n such that

Sn(x)=
∑
m∈Z

2−γmz1/2
m cm,n2−(1−γ)mz1/2

m =

(∑
m∈Z

2−2γmzm

)1/2
vm,n

(∑
m∈Z

2−2(1−γ)mzm

)1/2
.

We set aγ =
(∑

m∈Z 2−2γmzm
)1/(2γ)

and bγ =
(∑

m∈Z 2−2(1−γ)mzm
)1/(2(1−γ))

. We
now justify that they are in Lp, which also legitimates the use of Lemma 3.2. Thanks
to Lemma 2.1

µ(aγ)2γ �
∑
m∈Z

2−2mγµ(zm) �
∑
m∈Z

∑
k∈Z

2−2mγ d̃kD2k(µ(rm)) 6 Cγ
∑
k∈Z

d̃kD2k(µ(x2γ)).

And since p/(2γ) > 1, we can use the triangular inequality to get

‖aγ‖p = ‖a2γ
γ ‖

1/(2γ)
p/(2γ) 6

(
Cγ
∑
k∈Z

d̃k2k/p‖x2γ‖p/(2γ)

)1/(2γ)

6 Cθ,γ,p0,p1‖x‖p.

One deals with bγ = a1−γ in the same way.
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The condition p > max{2γ, 2(1−γ)} cannot be removed in general, and we provide
an easy example for p0 = 1 and p1 =∞.

We choose M = C and N = B(`2) with their natural traces. Let Sn(λ) = λTn
with Tn = e1,1 + 1/

√
n(e1,n + en,1) + 1/nen,n > 0.

It is clear that (Tn)n>1 is bounded in B(`2), thus S is of strong (∞,∞) type.
For any t>0, the projection r =

∑
k>1/t ek,k satisfies τ(1−r) 6 1/t and ‖rTnr‖∞ 6

2t. Thus S is also of weak (1, 1) type.

Proposition 3.14. For θ > 1/2, S is not of strong θ-asymmetric (2θ, 2θ) type.

Proof: Otherwise, there would exist a, b ∈ S+
2θ and contractions un such that Tn =

aθunb
1−θ. Denoting by (δi) the canonical basis of `2, we would have

〈aθδn, unb1−θδ1〉 = 1/
√
n 6 ‖aθδn‖ · ‖b1−θδ1‖.

Thus ‖aθδn‖ > C/
√
n, yielding ‖aθ‖22 >

∑
n>1 C/n =∞ and a /∈ S2θ, a contradiction.

We conclude by noting that Theorem 3.13 also holds for γ = 0, 1 in the case p0 > 1
and p1 =∞ if p > 2p0. Indeed, if x ∈ L+

p , then Sn(x)2 6 C1Sn(x2) (because p1 =∞)

and by Theorem 3.3, Sn(x)2 6 a2 for some a ∈ Lp. Thus we may conclude that
Sn(x) = una = au∗n for some contractions un using the polar decomposition. This is
similar to [11, Section 5]. It is not possible to go down to p = 2p0 with the previous
counterexample when p0 = 1 (or a variation if p0 > 1).

3.4. Constructing counterexamples. We conclude this section by presenting a
proof of Remark 3.10 and a lemma that will be used to construct other counterex-
amples in the next section. Recall than Lemma 3.1 introduced a way to construct a
supremum for families of operators for which a diagonal is controlled. The following
lemma shows that this construction is, in a certain sense, optimal.

Lemma 3.15. Let H be a Hilbert space. Let (pi)i6N be a finite family of orthogonal
projections in B(H) and (αi)i6N positive real numbers. Let a ∈ B(H)+ be such that
a2 > b∗b for any b of the form

b =
∑
i6N

αicipi, ‖ci‖ 6 1.

Set p =
∑
i6N pi. Then there exists an invertible contraction C and a sequence of

positive real numbers (λi)i6N such that

ap =
1

2
C−1

(∑
i6N

λ
−1/2
i αipi

)
and

∑
i6N

λi = 1.

Proof: For i 6 N , set Hi = piH. Without loss of generality, we can assume that
H =

⊕
i6N Hi. Set ã = a

(∑
i6N α

−1
i pi

)
and note that |ã|2 > b∗b for any b of the

form b =
∑
i6N cipi, where ci are contractions.

Let ξ = (ξi)i6N ∈ H. By choosing contractions ci such that∥∥∥∥∑
i6N

ciξi

∥∥∥∥
H

=
∑
i6N

‖ξi‖Hi ,

we obtain

‖aξ‖H >
∑
i6N

‖ξi‖Hi .
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Consequently ã2 > 1 so ã is invertible and its inverse ã−1 can be regarded as a con-
traction from H to `1((Hi)i6N ). Denote by c the anti-adjoint of ã−1; it is contractive
from `∞((Hi)i6N ) to H. Since Hi can sit as a 1-complemented subspace in B(Hi),
c can be extended to a contraction from A = `∞((B(Hi))i6N ), which is a C∗-algebra,
to H. By the little Grothendieck theorem [18, Theorem 9.4], there exists a state ϕ
on A such that for any x = (xi)i6N ∈ A,

‖c(x)‖2H 6 2ϕ(xx∗ + x∗x).

The state ϕ can be decomposed as ϕ(x) =
∑
i6N λiϕi(xi), where ϕi’s are states

on B(Hi) and λi’s are positive real numbers such that
∑
i6N λi = 1. Then

‖c(x)‖2H 6 2
∑
i6N

λiϕi(xix
∗
i + x∗i xi) 6 4

∑
i6N

λi‖xi‖2B(Hi).

Now consider c as a bounded operator from H ⊂ A to H. The previous inequality
shows that c∗c 6 4d2, where d is the diagonal operator d =

∑
i6N

√
λipi. So c can be

factorized as c = 2Cd, where C is a contraction. Hence, ã−1 admits a factorization of
the form ã−1 = 2dC ′, which concludes the proof going back to a.

Proof of Remark 3.10: Set M = C and N = B(`2). For any n > 0, let

qn =

2n+1−2∑
i=2n−1

ei,i ∈ B(`2) and QN =

N∑
n=0

qn.

Let X ⊂ B(`2)+ be the set of operators x of the form

x = b∗b with b =

∞∑
i=0

2−i/2ciqi, ‖ci‖ 6 1.

Consider the family of operators S = (Sx)x∈X : C→ B(`2) defined by

Sx : t ∈ C 7−→ tx.

By basic inequalities ‖Q⊥n xQ⊥n ‖ 6 2−n and trQn = 2n+1 − 1. Hence, one S is of
weak type (1, 1) and of strong type (∞,∞). Let a ∈ B(`2) be such that a > Sx(1) for
any x ∈ X, meaning a > x for any x ∈ X. Let us prove a lower estimate for ‖a‖p as
p goes to 1.

By Lemma 3.15, for anyN > 0, there exists a sequence of positive reals (λi,N )06i6N

such that

4QNaQN >
N∑
i=0

2−iλ−1
i,Nqi and

N∑
i=0

λi,N = 1.

Fix an ultrafilter U on N and let λi = limN,U λi,N . We have
∑∞
i=0 λi 6 1. Since

λ−1
i,N 6 2i+2‖a‖p, we can also conclude that λi > 0 and that for all N , 4QNaQN >∑N
i=0 2−iλ−1

i qi.

Consequently, we have that 4p‖a‖pp >
∑
i>0 λ

−p
i 2i(1−p). Thus using basic inequali-

ties and the Cauchy–Schwarz inequality

‖a‖pp &
1/(p−1)∑

i=1/2(p−1)

λi
−p &

1

(p− 1)2

( ∑
i>1/2(p−1)

λpi

)−1

>
R−1
p

(p− 1)2
,

where Rp =
∑
i>1/2(p−1) λi.

Thus, with the notation of Remark 3.10, we must have (p − 1)2f(p)p & R−1
p , so

that limp→1(p− 1)2f(p) =∞.
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A more careful examination of the estimates above yields a slightly stronger quanti-
tative version of Remark 3.10. Formulating this version in full generality would result
in a convoluted statement of little use so we prefer to briefly illustrate how to opti-
mize the computations with a ln factor. Keeping the notations of the proof above, for
all m > 1, since 0 < λi < 1:

‖a‖pp & 2m(1−p)
m∑
i=0

λi
−p > 2m(1−p)

m∑
i=0

λi
−1 = 2m(1−p)Sm.

We claim that for infinitely many m we have Sm > m2 lnm. Otherwise Sm <
m2 lnm when m > m0 for some m0. Let (λ̃i)i>0 be the non-increasing rearrangement
of (λi)i>0 ∈ `1. We have that for m > m0:

4m2 ln(2m) > S2m > S̃2m =

2m∑
i=0

λ̃−1
i > mλ̃−1

m .

Thus λ̃m & 1
m lnm , which contradicts

∑∞
i=0 λ̃m 6 1.

Let mk be an increasing sequence with Smk > m2
k lnmk and choose pk = 1 +m−1

k .

Thus, we must have (pk−1)2f(pk)pk & ln(pk−1), so that lim supp→1
(p−1)2

ln(p−1)f(p) > 0.

4. Beyond positivity: Λ-spaces

The positivity assumption for S cannot be removed in Theorem 3.3. Indeed, con-
sider M = C and N = B(`2) with their natural traces as above and set Sn(λ) = λTn
with Tn = en,1 + e1,n. The map S = (Sn) is clearly of strong type (∞,∞) and weak
type (1, 1). If S were of strong type (p, p), this would imply that there is A ∈ S+

p such
that −A 6 Tn 6 A. This would force that A1,1An,n > 1 for all n > 1, but this is
impossible as we must also have that An,n goes to 0.

It is, however, possible to obtain some positive results with weaker factorizations
using the row and column `∞-valued Lorentz spaces and other variations of maximal
norms. Our reference is [20].

Let 1 6 p, q 6∞; a sequence x=(xn) of elements in Lp,q(N ) belongs to Lp,q(N ; `c∞)
(or simply Lp,q(`

c
∞)) if there exists a ∈ Lp,q(N )+ and contractions un ∈ N such that

xn = una. This is equivalent to saying that x∗nxn 6 a2 for all n > 0. The infimum
of ‖a‖p,q over all possible a defines the quantity ‖x‖Lp,q(`c∞). We obtain a Banach
space if p > 2 or if p = 2 and q > 2.

The row version Lp,q(N ; `r∞) is obtained by taking adjoints.
The couples (Lq(N ; `c∞), Lr(N ; `c∞)) are compatible in the sense of interpolation

theory (we assume r > q). One of the results in [17], generalized in [20], is that they
behave well with respect to the complex interpolation method (in the Banach spaces
range).

We will also need a weaker version of non-commutative maximal inequalities. The
construction naturally extends the definition of weak type (p, p) for maximal opera-
tors and still coincides with standard maximal inequalities in the commutative case.
It has the advantage of retaining its relation with almost uniform and bilateral al-
most uniform convergence so it may be used as a substitute for the strong version
of maximal inequalities when studying pointwise convergence questions occurring in
ergodic theory and Fourier analysis in tracial von Neumann algebras.

Our starting point is the following notions of non-increasing rearrangement for
a sequence (xn)n>0 that should be thought of as a non-commutative analogue of
µ(supn>0 |xn|).
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Definition 4.1. Given a sequence x = (xn)n>0 in L0(N ), we define three non-in-
creasing functions µ(x), µc(x), µr(x) : R+∗ → R+ as, for t > 0,

µ(x, t) = inf
τ(1−e)6t

sup
n>0
‖exne‖, µc(x, t) = inf

τ(1−e)6t
sup
n>0
‖xne‖, µr((xn)) = µc((x

∗
n)),

where the infimum runs over all projections e ∈ N .

When x is a constant self-adjoint sequence, xn = a = a∗ for all n > 0, we recover
µ(x) = µ(a). We could have used pairs of projections e, f with τ(1−e), τ(1−f) 6 t and
‖fxne‖ to fully recover µ(a) for general a but this would have made no significant
difference. Note also that the following fundamental inequality is still verified for
any s, t > 0 and x = (xn), y = (yn) ∈ L0(N )N:

(4.1) µ](x+ y, t+ s) 6 µ](x, t) + µ](y, s),

with ] = c, r, ∅. This also holds with s = 0 replacing µ](y)(s) with ‖y‖.
The definition is motivated by weak type maximal inequalities and made so that

‖(xn)‖Λp,∞(N ;`∞) = supt>0 t
1/pµ((xn))(t). Indeed, one just needs to set λ = C

t1/p

in (1.2). Thus

Λp,∞(N ; `∞) = {(xn) ∈ Lp(N )N | ‖(xn)‖Λp,∞ = sup
t>0

t1/pµ((xn))(t) <∞}.

It is natural to extend the definition to Lebesgue and Lorentz spaces.

Definition 4.2. For p, q > 0, we define for ] = c, r, ∅
Λp,q(N ; `]∞) = {(xn) ∈ Lp(N )N | ‖(xn)‖Λ]p,q = ‖µ]((xn))‖p,q <∞}.

As usual, we will write Λp instead of Λp,p. In order to lighten notations, we may
also write Λ]p,q instead of Λp,q(N ; `]∞). Of course Λ]∞ = L∞(N ; `]∞) = `∞(N ). Let us
collect a few simple properties of these spaces.

Proposition 4.3. Let p, q ∈ (0,∞].

(1) Λp,q(N ; `]∞) is a quasi-Banach space,

(2) for any sequence x ∈ Lp(M; `]∞),

‖x‖Λp(N ;`]∞) 6 21/p‖x‖Lp(M;`]∞).

Proof: Point (1) is clear using (4.1). Let us prove (2). Let X = (xn)n>0 be a sequence
in Lp(N ; `∞). Let a, b ∈ Lp/2(N ) and (yn)n>0 in N a sequence of contractions such
that for any n > 0, xn = aynb. Let t > 0. We can find a projection e ∈ N such
that τ(e1) 6 t and ‖ea‖∞ 6 µ(a, t). Similarly, we choose a projection e2 such that
τ(e2) 6 t and ‖be2‖∞ 6 µ(b, t). Set e = e1 ∨ e2. It is clear that τ(e2) 6 2t and for
any n > 0, ‖exne‖∞ 6 µ(a, t)µ(b, t). Therefore

µ(X, 2t) 6 µ(a, t)µ(b, t),

which implies the desired inequality by integrating over t and Hölder’s inequality.
When ] = c, r, the proof is simpler and there is actually no factor 21/p.

Controlling the Λp norm of a sequence (xn)n>0 is much weaker than controlling
its standard maximal norm. In particular, it does not allow us to exhibit an element
in Lp(N ) that would play the role of supn>0 xn, even for positive sequences.

Recall that we use the classical notation from [2] concerning interpolation theory.
Since every Λ]p,q can be continuously embedded in the topological vector space L0(N )N,
these spaces are all compatible in the sense of interpolation. The following proposition
asserts that the Λ]p,q form a (real) interpolation scale.
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Proposition 4.4. For 0 < p <∞, t > 0, and any x = (xn) ∈ Λ]p + Λ]∞:

K(t, x,Λ]p,Λ
]
∞) 'p K(t, µ](x), Lp, L∞).

Consequently, for 0 < θ < 1, 0 < p0 < p1 6 ∞, and 0 < q 6 ∞ such that 1
p =

1−θ
p0

+ θ
p1

,

(Λ]p0,q0 ,Λ
]
p1,q1)θ,q ' Λ]p,q.

Proof: We detail the proof only in the case ] = ∅; the others are similar.
First, fix t > 0, ε > 0, and choose a decomposition x = a + b such that ‖a‖Λp +

t‖b‖Λ∞ 6 (1 + ε)K(t, x,Λp,Λ∞). Since ‖b‖Λ∞ = ‖b‖∞, we have that µ(x)(t) 6
µ(a)(t) + ‖b‖∞. Hence, we can decompose µ(x) = α + β with α 6 µ(a) and β 6
‖b‖∞. It follows thatK(t, µ(x), Lp, L∞) 6 ‖a‖Λp+t‖b‖Λ∞ . ThusK(t, µ(x), Lp, L∞) 6
Kt(t, x,Λp,Λ∞).

For the reverse inequality, we use the Holmstedt formula K(t, µ(x), Lp, L∞) 'p(∫ tp
0
µ(x)p(s) ds

)1/p
for t > 0. Fix t > 0; we can find a projection e ∈N such that

τ(1 − e) 6 tp and for any n ∈ N, ‖exne‖ 6 2µ(x)(tp). We decompose x = exe +
((1 − e)x + ex(1 − e)) = b + a. If s > tp, then clearly µ(a)(s) = 0, and otherwise,
µ(a)(s) 6 µ(x)(s) + µ(b)(0) 6 µ(x)(s) + 2µ(x)(tp). We get

‖µ(a)‖pp .p
∫ tp

0

µ(x)p(s) ds+ tpµ(x)p(tp) 6 2

∫ tp

0

µ(x)p(s) ds.

Thus Kt(t, x,Λp,Λ∞) 6 ‖µ(a)‖p+ t2µ(x)(tp) .p
(∫ tp

0
µ(x)p(s) ds

)1/p
. This concludes

the proof of the K-functional equivalence.
The last statement follows from the estimate for the K-functional, the correspond-

ing result for commutative Lp, and the reiteration principle.

The following version of the Marcinkiewicz theorem is now clear:

Proposition 4.5. Assume that S is of weak type (p0, p0) and (p1, p1) with 0 <
p0, p1 6∞. Then S : Lp(M)→ Λp(N ; `∞) is bounded.

Quite surprisingly, the spaces Λcp,q are connected to Lp,q(`
c
∞) via real interpolation.

To make this precise, we start with an effective characterization of Λ]p.
To improve clarity, we use capital letters for sequences. Thus recall that ifX = (xn),

for an element n ∈ N , we set Xq = (xnq) and similarly on the left. We will consider
the weighted Lorentz spaces `ωp,q associated to the measure on Z given by ω({n}) = 2n.

Lemma 4.6. Let 0 < p <∞ and 0 < q 6∞. We have:

(1) A sequence X ∈ Λcp,q if and only if there exist a sequence of disjoint projec-

tions qk ∈ N with τ(qk) 6 2k, (ak) ∈ `ω,+p,q , and contractions Uk = (un,k) ∈
`∞(N ) for k ∈ Z such that X =

∑
k∈Z akUkqk. Moreover,

‖X‖Λcp,q 'p,q inf
(ak)k∈Z

‖(ak)‖p,q,ω,

where the infimum over all the sequences (ak)k∈Z such that a decomposition of
the form X =

∑
k∈Z akUkqk exists.

(2) Λp,q = Λcp,q + Λrp,q with equivalent semi-norms.

Proof: We start with the left to right implication in (1). We may assume that ‖X‖Λcp,q=
1. From the definition of µc, we may find projections fk such that τ(1− fk) 6 2k and

‖Xfk‖ 6 µc(X)(2k) + 2−k
2

= ak. As we did in Lemma 3.4, we may replace (fk) with
a sequence of smaller decreasing projections (ek) such that τ(1 − ek) 6 2k+1. Since
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∑
k∈Z(µc(2

k) + 2−k
2

)1(2k,2k+1) on R and (ak) on (Z, ω) have the same distribution up
to a dilation by 2, we deduce that ‖(ak)‖p,q,ω 6 Cp, where the constant Cp depends
only on p and goes to infinity only when p goes to 0. Set qk = ek−ek−1, and note that
these projections are disjoint. We clearly have the decomposition with Uk = a−1

k Xqk.
The convergence of the series holds in L0(N )N for instance.

For the other implication, we prove it first when q = p and p > 1. Assume that
X =

∑
k∈Z akUkqk. Clearly

µc(X, 2
l) 6

∥∥∥∥∑
k>l

akUkqk

∥∥∥∥ 6
∑
k>l

ak 6

(∑
k>l

2kapk

)1/p(∑
k>l

2−k/(p−1)

)(p−1)/p

,

thanks to the Hölder inequality. We get

‖µc(X)‖pp 6
∑
l∈Z

2lµc(X, 2
l)p 6

1

(1− 2−1/(p−1))p−1

∑
l∈Z

∑
k>l

2kapk 6 Kp

∑
k∈Z

2kapk.

Note that K
1/p
p remains bounded when p→ 1 but goes to ∞ with p.

If p 6 1, one just needs to use
(∑

k>l ak
)p

6
∑
k>l a

p
k to get the same estimate

with Cp = 2.
The Lorentz case follows easily by interpolation using the linear map (ak) 7→∑
k∈Z akUkqk.

To deal with (2), first the bounded inclusion Λcp,q + Λrp,q ⊂ Λp,q is clear as µ 6
µc, µr. We use (1) for the reverse. Let X ∈ Λp,q with norm 1. Just as we did, we can
find a sequence of decreasing projections fk such that τ(1− fk) 6 2k and ‖fkXfk‖ 6
µ(X)(2k) + 2−k

2

= ak. Set qk = fk − fk−1 and as X =
∑
k∈Z fkXqk + fk+1Xqk,

decompose

X =
∑
k∈Z

ak(a−1
k fkXqk)qk + akqk(a−1

k qkXfk+1) =
∑
k∈Z

ak(Ukqk + qkVk).

Clearly Uk, Vk are contractions. By the first point
∑
k∈Z akUkqk ∈ Λcp,q with norm

less than Cp,q and similarly for
∑
k∈Z akqkVk ∈ Λrp,q.

The version of the Marcinkiewicz theorem for Λ-spaces included in Proposition 4.4
can now be written as

Corollary 4.7. Assume that S is of weak type (p0, p0) and (p1, p1) with 0 < p0 <
p1 6 ∞. Let p0 < p < p1; then for any X ∈ Lp(M), there exist Z ∈ Λp(`

c
∞),

Y ∈ Λp(`
r
∞) so that S(x) = Z + Y and

‖Z‖Λcp + ‖Y ‖Λrp 6 Cp‖X‖p.

Actually, Z and Y only depend on X, not on p.

Remark 4.8. We choose to use (2k) for simplicity but the above lemma works more
generally for any geometric sequence (2αk) with α > 0. Namely, X ∈ Λcp,q iff it can
be decomposed as X =

∑
k∈Z akUkqk, where (qk) is a sequence of disjoint projections

with τ(qk) 6 2αk, (ak) ∈ `ωα,+p,q , and Uk = (un,k) ∈ `∞(N ) are contractions for k ∈ Z.
Moreover, ‖X‖Λcp,q 'p,q,α ‖(ak)‖p,q,ωα .

Corollary 4.9. Let 0 < p < ∞, 0 < q 6 ∞, 0 < θ < 1, and set 1
pθ

= 1−θ
p . Then

with equivalent semi-norms:

(Lp(`
c
∞), L∞(`c∞))θ,q = Λpθ,q(`

c
∞).
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Proof: As we saw in Proposition 4.3, the Markov inequality gives contractive inclu-
sions Lp(`

c
∞) ⊂ Λp(`

c
∞) for p > 0. Thus interpolation immediately gives a bounded

inclusion

(Lp(`
c
∞), L∞(`c∞))θ,q ⊂ (Λp(`

c
∞),Λ∞(`c∞))θ,q ' Λpθ,q(`

c
∞).

For the reverse, first take X ∈ Λpθ (`
c
∞) and consider the decomposition from Lem-

ma 4.6(1) and Remark 4.8 with α = p. We have written X =
∑
akUkqk in L0(N )N

with

J(2k, Xk, Lp(`
c
∞), L∞(`c∞)) = max{‖akUkqk‖Lp(`c∞), 2

k‖akUkqk‖L∞(`c∞)} 6 ak2k.

Moreover,
(∑

k∈Z 2kpapθk
)1/pθ . ‖X‖Λcpθ . Since∑

k∈Z
(2−kθJ(2k, Xk, Lp(`

c
∞), L∞(`c∞))pθ 6

∑
k∈Z

2kpapθk ,

we conclude that X ∈ (Lp(`
c
∞), L∞(`c∞))θ,pθ by the equivalence between the J- and

K-methods (for quasi-normed spaces). Thus (Lp(`
c
∞), L∞(`c∞))θ,pθ ' Λpθ (`

c
∞). The

general statement follows by the reiteration theorem.

More generally, choosing the correct weight ωα, the same proof gives that with 0 <
p0 < p1 and 0 < θ < 1 with 1

p = 1−θ
p0

+ 1
p1

and 0 < q 6∞:

(Lp0(`c∞), Lp1(`c∞))θ,q = Λpθ,q(`
c
∞).

Corollary 4.10. For 2 < p <∞ and 1 6 q 6∞, Λp,q(`
]
∞) has an equivalent norm.

Proof: For ] = c, this is clear from Corollary 4.9 as Lp,q(`
c
∞) is a Banach space. The

case ] = r is obtained by taking adjoints. The remaining case then follows using
Lemma 4.6(2).

At this point, it is worth justifying that Λp(`
c
∞) 6= Lp(`

c
∞):

Proposition 4.11. Set N = B(`2). Let 0 < p < ∞, and q > 2. The formal iden-
tity map on Lp(`

c
∞) is not bounded from Λp,q(`

c
∞) to Lp,∞(`c∞), nor from Λp(`

c
∞)

to Lp(`
c
∞).

Proof: Set N > 0 and let pi =
∑2i−1
k=2i−1 ek,k for i = 1, . . . , N . Choose some families

of contractions (un,i)n>0, i 6 N , such that {(un,1, . . . , un,N ); n > 0} is dense in BN ,

where B is the unit ball of compact operators. Set Xi = 2−i/p(un,ipi)n>0 ∈ Lp(`c∞)∩
L∞(`c∞).

By Lemma 4.6, the norm of X =
∑N
i=1Xi in Λcp,q is controlled by Cp,qN

1/q.

Similarly, we also have ‖X‖Λcp .p N1/p.

Next we estimate the norm of X in Lp,∞(`c∞) and in Lp(`∞).
By definition, we can find a ∈ S+

p,∞ (or a ∈ Sp) such that ‖a‖p,∞ 6 2‖X‖Lp,∞(`c∞)

(or ‖a‖p 6 2‖X‖Lp(`c∞)) and∣∣∣∣ N∑
i=1

2−i/pun,ipi

∣∣∣∣2 =

( N∑
i=1

2−i/ppi

)∣∣∣∣ n∑
i=1

un,ipi

∣∣∣∣2( N∑
i=1

2−i/ppi

)
6 a2.

We may apply Lemma 3.15 to get λi > 0 with
∑N
i=1 λi = 1 and C an invertible

contraction such that a = (2C)−1
∑N
i=1 2−i/pλ

−1/2
i pi for some contraction C.

Note that at least one of the λi is smaller than 1
N . It follows that ‖a‖p,∞ &

N1/22−i/p‖pi‖p,∞ = N1/2, whereas ‖X‖Λcp,q . N1/q.
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We also have the estimate 2‖a‖p >
(∑N

i=1 λ
−p/2
i

)1/p
. Thanks to the Hölder in-

equality with q = 1 + p
2 ,

N =

N∑
i=1

λ
p/(2q)
i

λ
p/(2q)
i

6

( N∑
i=1

λ
−p/2
i

)1/q( N∑
i=1

λi

)1/q′

.

Thus, similarly 2‖a‖p > N1/p+1/2, whereas ‖X‖Λcp .p N1/p.

Remark 4.12. The same proposition applies to row spaces by taking adjoints. Actually,
it is easy to see that the formal identity map on Lp(`

c
∞) ∩ L∞(`c∞) is not bounded

from Λp,q to Lp,∞(`c∞) + Lp,∞(`r∞) using the same counterexample. Indeed, let s ∈
B(`2) be the shift operator: if (ei)i>0 is the canonical basis of `2, then sei = ei+1

for every i > 0. We can assume that the set {(un,i);n > 0} is also stable by left
multiplication by s. Now, assume that X = (xn)n in the proof above decomposes
as Y + Z with Y = (wn)a, Z = b(vn) with (vn), (wn) bounded and a, b ∈ Lp,∞. For
any k > 0, by assumption on (un,i), s

kX is a subsequence of X so there are indices nk
such that skxn = wnka+ bvnk . Thus xn = (s∗)kwnka+ (s∗)kbvnk for all n. Since b is
in the Schatten (p,∞)-class, s∗kb goes to 0 in the (p,∞)-norm and we can assume by
weak-∗ compacity that xn = w̃na for some bounded sequence (w̃n). This implies that
‖X‖Lp(`c∞)+Lp(`r∞) = ‖X‖Lp(`c∞).

Remark 4.13. When the second index q 6 2 and 2 < p <∞, we have an inclusion

Λp,q(`
c
∞) ⊂ Lp,∞(`c∞).

One can see it using duality. The space Lp,q(`
c
∞) is the anti-dual of Lp′,q′(`

c
1) when q >

2 with 1
p + 1

p′ = 1 and 1
q + 1

q′ = 1. It consists of sequences (xn) such that there are

column contractions (un) and (vn) in N and α ∈ L2(N ) and β ∈ Lp#,q#(N ), where

1/2 + 1/q# = 1/q′ and 1/2 + 1/p# = 1/p′ with xn = αu∗nvnβ. The norm is obtained
by taking the infimum of ‖α‖2 · ‖β‖p#,q# over all possible decompositions.

Using Lp#,q# = (L2# , L2)1− 2
p ,q

# , it follows that the inclusion

Lp′,q′(`
c
1) ⊂ (L2(`c1), L1(`c1))1− 2

p ,q
#

is bounded. This yields a bounded inclusion

(L2(`c∞), L∞(`c∞))1− 2
p ,

2q
q+2
⊂ Lp,q(`c∞).

In particular, Λθ,q(`
c
∞) ⊂ Λθ,2(`c∞) ⊂ Lp,∞(`c∞).

Remark 4.14. The previous arguments can be used to actually prove that one cannot
replace Λcp + Λrp with Lp(`

c
∞) + Lp(`

r
∞) in this corollary when 0 < p1 6 ∞ in gen-

eral. Indeed, using the notation from Proposition 4.11, set Ui = (un,i)i>0 and define

a map S : `ω
2

0 → B(`2)N by S((xi)) =
∑N
i>0 xiUipi. By Lemma 4.6, it is bounded

from `ω
2

q to Λcq for all q < ∞ and thus of weak type (q, q) with constant Cq inde-

pendent of N . For q = ∞, its norm is controlled by
√
N . Taking x = (2−2i/p) as in

Proposition 4.11, we have ‖x‖p = N1/p but Remark 4.12 yields

‖S(x)‖Lp(`c∞)+Lp(`r∞) = ‖S(x)‖Lp(`c∞) & N1/2+1/p.

This covers the case p1 < ∞ choosing p ∈ (max{p0, 2}, p1). For p1 = ∞, one just
needs to note that homogeneity would imply that for such p and θ ∈ (0, 1) such that
1
p = 1−θ

p0
:

√
N . ‖S‖`ω2

p →Lp(`c∞)+Lp(`r∞) . C1−θ
p0

√
N
θ
.
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The previous remark shows that we cannot expect the spaces Lp(`
c
∞) + Lp(`

r
∞)

to form a real interpolation scale or satisfy a Marcinkiewicz-type theorem for non-
positive maps. We can nonetheless formulate some positive results involving those
(quasi)-norms by employing variations of the argument used in the previous section.

Lemma 4.15. Assume that S is of weak type (p0, p0) and (p1, p1) with constants 1
with p0, p1 > 1. Then for any finite projection r ∈ M, there exist disjoint projec-
tions qk, k ∈ Z, with τ(qk) 6 2kτ(r) sequences un, vn ∈ N and a constant C =
Cp0,p1 > 0

∀n > 0, Sn(r) = zun + vnz, with z =
∑
k

ckqk, and ‖un‖, ‖vn‖ 6 C,

where ck = 2k/p1(|k|+ 1) for k 6 0 and ck = 2−k/p0k for k > 1.
In particular, for p ∈ (p0, p1)

‖S(r)‖Lp(`c∞)+Lp(`r∞) 6 Cp,p0,p1‖r‖p.

Proof: With the notation from the proof of Lemma 3.4,

Sn(r) =
∑
k∈Z

(qkSn(r)ek+1 + ekSn(r)qk).

For k ∈ Z, set bk = min(2k/p0 , 2k/p1) and put

un =
∑
k∈Z

bk
|k|+ 1

qkSn(r)ek+1, vn =
∑
k∈Z

bk
|k|+ 1

ekSn(r)qk, z =
∑
k∈Z

bk(|k|+ 1)qk.

Then one easily checks Sn(r) = zun+vnz, ‖un‖, ‖vn‖ 6 Cp0,p1 and the estimate for z
as well as Sn(r) = zun + vnz. The last estimate is also clear.

Remark 4.16. For a ∈ L+
2p, p > 1, and any contraction u ∈M, one can always find a

contraction v ∈ M such that aua = 1
2 (a2v + va2); this follows for instance from the

Cauchy formula for the holomorphic function F (z) = a2(1−z)ua2z with values in Lp.
Thus, when S is positive, Lemma 3.4 implies this one.

For general elements, we can get

Proposition 4.17. Assume that S is of weak type (p0, p0) and (p1, p1) with con-
stants 1. Then for any x ∈ Lp0(M)∩Lp1(M), there exist z ∈

⋂
p0<p<p1

Lp(N )+ and
sequences un, vn ∈ N such that

∀n > 0, Sn(x) = zun + vnz, ‖un‖, ‖vn‖ 6 1,

and

∀p0 < p < p1, ‖z‖p 6 Cp‖x‖1−θp0 ‖x‖
θ
p1 ,

where 1
p = 1−θ

p0
+ θ

p1
.

Proof: Decomposing x as a combination of four positive elements and using the fact
that Lp(N ; `c∞) and Lp(N ; `r∞) are quasi-Banach spaces, we can assume that x ∈ L+

p .
Using homogeneity, we may assume that ‖x‖p = 1. We use Lemma 2.1 to write

x =
∑
m∈Z 2−mrm for some finite projections rm.
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We can apply Lemma 4.15 to each rm to get

Sn(x) =
∑
m∈Z

2−m(zmum,n + vm,nzm),

with ‖um,n‖, ‖vm,n‖ 6 1 and µ(zm) �
∑
k∈Z 2−kckD2k(µ(rm)).

Using Lemma 3.2, we can find elements un and vn in N such that∑
m∈Z

2−mzmum,n =

(∑
m∈Z

2−2mm2z2
m

)1/2

un,

∑
m∈Z

2−mvm,nzm = vn

(∑
m∈Z

2−2mm2z2
m

)1/2

,

with ‖un‖, ‖vn‖ bounded by an absolute constant C.

Set z =
(∑

m∈Z 2−2mm2z2
m

)1/2
. Then z⊗ e0,0 is the modulus of

∑
m∈Z 2−mmzm⊗

em,0 in Lp(N⊗B(`2)). Thus

µ(z) �
∑
m∈Z

2−mm
∑
k∈Z

ckD2k(µ(rm)) =
∑
k∈Z

ckD2k

(∑
m∈Z

2−mmµ(rm)

)
.

By Lemma 2.1,
∑
m∈Z 2−mmµ(rm) 6 Cµ(x(|ln(x)|+ 1)) for some constant C > 0.

We get

‖z‖p .
∑
k∈Z

ck2k/p‖x(|ln(x)|+ 1)‖p,

where we used that D2k has norm less than 2k/p on Lp.
We have the inequalities tp(|ln(t)| + 1)p .p,p0 t

p0 for 0 < t < 1 and tp(|ln(t)| +
1)p .p,p1 t

p1 for t > 1. They yield that ‖x(|ln(x)|+ 1)‖pp . ‖x‖p0p0 + ‖x‖q1q1 .
Hence we have that ‖z‖p . ‖x‖p0p0+‖x‖q1q1 . The conclusion follows using homogeneity

as usual.

Unfortunately, trying to improve the above estimate using reiteration as in [13]
does not provide anything more than Corollary 4.7.

Let us conclude by highlighting the link between Λ-spaces and bilateral almost
uniform convergence. Recall that a sequence of operators (xn) converges bilaterally
almost uniformly (b.a.u.) to x if and only if for any ε > 0, there exists a projection e ∈
M such that

τ(1− e) 6 ε and ‖e(xn − x)e‖ −→ 0.

This notion was introduced to serve as one of the non-commutative analogues of point-
wise convergence (see [10] for more details and the early developments related to this
form of convergence). Let (Sn)n>0 be a sequence of operators defined on L1(M)+M.
A standard approach to prove the convergence of (Sn)n>0 to some limit operator S∞
on Lp(M) is the following: first, prove convergence on a dense subset of Lp(M) (usu-
ally taken to be L1(M) ∩M); second, prove a maximal inequality and use a form of
Banach principle to extend the convergence on all of Lp(M).

Proposition 4.18. Let p ∈ [1,∞) and S = (Sn) be a sequence of maps from Lp(M)
to Lp(N ) such that S is bounded from Lp(M) to Λp(N ; `∞). Assume that there exists
a bounded linear map S∞ from Lp(M) to Lp(N ) and a dense subset E ⊂ Lp(M)
such that for any x ∈ E, (Sn(x)) converges b.a.u. to S∞(x). Then (Sn(x)) converges
b.a.u. to S∞(x) for any x ∈ Lp(M).
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As the topic of b.a.u. convergence is not central to this paper, the proof is left to
the reader. The intended application for such a result would be to the convergence of
sequences of operators that are not positive, that verify weak type maximal inequali-
ties, and for which the strong type cannot be proved. But no natural example of such
a behaviour has been discovered so far, as every proof of maximal inequality relies
in one way or another on a reduction to positive operators. A good candidate would
be the matrix-valued Carleson operator. In the meantime, we believe that the propo-
sition (or more refined versions that would involve symmetric spaces) complements
results of b.a.u. convergence in tracial von Neumann algebras in the spirit of [5].

Acknowledgement. The authors are supported by ANR-19-CE40-0002. The au-
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Astérisque 247 (1998), 131 pp.

http://dx.doi.org/10.1090/tran/6663
http://dx.doi.org/10.1090/tran/6663
https://doi.org/10.1007/978-3-642-66451-9
https://doi.org/10.1007/978-3-642-66451-9
http://dx.doi.org/10.4153/CJM-1969-137-x
http://dx.doi.org/10.4064/sm-26-3-301-304
http://dx.doi.org/10.1016/j.jmaa.2020.124710
http://dx.doi.org/10.1016/j.jmaa.2020.124710
http://dx.doi.org/10.1016/0047-259X(71)90027-3
http://dx.doi.org/10.1090/S0002-9947-2014-06185-0
http://dx.doi.org/10.7900/jot.2014mar12.2022
http://dx.doi.org/10.1007/s00220-016-2581-3
http://dx.doi.org/10.1007/BFb0101453
http://dx.doi.org/10.1515/crll.2002.061
http://dx.doi.org/10.1214/aop/1048516542
http://dx.doi.org/10.1090/S0894-0347-06-00533-9
http://dx.doi.org/10.1007/s10473-021-0622-2
http://dx.doi.org/10.1007/BF01390319
http://dx.doi.org/10.1016/S0022-1236(03)00099-5
http://dx.doi.org/10.1090/cbms/060
http://dx.doi.org/10.1090/cbms/060


216 L. Cadilhac, É. Ricard
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Institut de Mathématiques de Jussieu, Sorbonne Université - Paris, France
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