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CONSTRUCTING COMPACTA FROM POSETS

Adam Bartoš, Tristan Bice, and Alessandro Vignati

Abstract: We develop a simple method of constructing topological spaces from countable posets
with finite levels, one which applies to all second-countable T1 compacta. This results in a duality

amenable to building such spaces from finite building blocks, essentially an abstract analogue of
classical constructions defining compacta from progressively finer open covers.
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Introduction

Background. Connections between topology and order theory have been central
to a large body of mathematical research over the past century. The idea behind
much of this is to study abstract order structures like Boolean algebras, distributive
lattices and semilattices, etc. by representing them as families of subsets of topological
spaces. Stone was the first to initiate this line of research in the 30’s with his classical
dualities (see [30] and [31]), which have since been reformulated and extended in
various ways by people such as Priestley [26], Grätzer [13], and Celani–González [8],
just to name a few. However, the spaces involved in these dualities typically have many
compact open sets, which makes them quite different from the connected spaces more
commonly considered in analysis.

In the opposite direction, other work has been motivated by the idea that topo-
logical spaces, particularly compacta, can be analysed from a more order-theoretic
perspective via (semi)lattices consisting of open sets. This line of research was initi-
ated by Wallman [33] and continued in various forms by people such as Shirota [29],
de Vries [32], Hofmann–Lawson [14], and Jung–Sünderhauf [16], with recent efforts
to unify and extend these results also appearing in [11], [6], [4], [17], and [5].1 In
contrast to the work above, these dualities do encompass connected spaces. However,
so far they have not found many applications in actually building such spaces, like
those considered in continuum theory.

One reason for this is that the order structures involved in these dualities are not so
easily built from finite substructures. In contrast, classical constructions of continua
often proceed by building them up from finitary approximations, e.g. coming from
simplicial complexes or finite open covers. For example, the famous pseudoarc (see [7]
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and [20]) is usually built from successively finer chains of open subsets in R2, each
chain being ‘crooked’ in the previous chain. Our work stems from the simple obser-
vation that the ambient space R2 here is essentially irrelevant; what really matters
is just the poset arising from the inclusion relation between the links in the chains.
More precisely, the covers of the space are completely determined by the levels of the
poset and these, in turn, determine the points of the space. Indeed, points can be
identified with their neighbourhood filters, which are nothing more than subsets of
the poset ‘selecting’ at least one element from each cover.

This leads us to consider a general class of posets formed from sequences of finite
levels. From any such poset, we construct a space of selectors, resulting in a T1 com-
pactum on which the levels of the poset get represented as open covers. Moreover,
we will see that all second-countable T1 compacta arise in this way. Thus, at least
in theory, it should be possible to construct any such space from a sequence of finite
sets defining the levels of such a poset. We further show that continuous functions
between the resulting spaces can be completely described by certain relations between
the original posets. In this way we obtain a duality2 of a somewhat different flavour to
those described above, one which has more potential applications to building spaces
like the pseudoarc from finitary approximations.

Outline. To motivate our construction we first embark on a detailed analysis of
bases of T1 compacta and the posets they form (when ordered by the usual inclusion
relation ⊆). In particular, we examine special subsets of a poset as analogues of open
covers, namely bands and more general caps. On the one hand, caps are always covers,
by Proposition 1.7. Conversely, it is always possible to choose a basis of any second-
countable T1 compactum so that covers are caps. We can also ensure that the basis
forms an ω-poset where ranks and levels are always well defined and finite. Further
order-topological properties of the resulting ω-cap-bases are also explored in §1, e.g.
showing how they are simply characterised in metric compacta as the bases whose
diameters converge to zero (see Proposition 1.17).

In §2, we show how to reverse this process, representing any ω-poset P as an ω-
cap-basis PS of a suitably defined T1 compactum, namely its spectrum SP (which
is then second-countable, as P is countable). Topological properties of SP are thus
determined by the order structure of P. Most notably, SP is Hausdorff precisely when
P is regular, as shown in Corollary 2.40. Subcompacta and subcontinua of SP are
also determined by special subsets of P, as we show in §2.4 and §2.7. With an eye
to our primary motivating example of the pseudoarc, we even show how to charac-
terise hereditary indecomposability of SP via tangled refinements in P which, modulo
regularity, generalise the original crooked refinements of Bing.

Finally, in §3, we show how to encode continuous maps between spectra by cer-
tain relations between the posets we call refiners. A single continuous map can come
from various different refiners and this flexibility yields homeomorphisms between
spectra under some fairly general conditions explored in §3.2. To obtain a more pre-
cise equivalence of categories, we turn our attention to strong refiners in §3.3 under
an appropriate star-composition, thus yielding a combinatorial equivalent S of the
category K of metrisable compacta.

Future work. Naturally, the next step would be to construct the posets themselves
(as well as the refiners between them) in a more combinatorial way. The basic idea

2Or rather an equivalence of categories, as we chose the direction of our relations so that the relevant
functors are covariant (the term ‘duality’ is often reserved for contravariant functors).
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would be to consider categories of finite graphs, much like in the work of Irwin–
Solecki [15] and De↪bski–Tymchatyn [9], except with more general relational mor-
phisms. Sequences of such relations determine the levels of a graded ω-poset, which
then yield T1 compacta from the work presented here. In particular, Fräıssé sequences
in appropriate categories should yield canonical constructions of well-known com-
pacta like the pseudoarc and Lelek fan. Classical properties of these spaces relating
to uniqueness and homogeneity could then be derived in a more canonical Fräıssé-
theoretic way, as we hope to demonstrate in future work.

1. Bases as posets

Here we analyse bases of topological spaces, viewed as posets ordered by inclusion.
In particular, we explore how to characterise covers order-theoretically and how to
construct well-behaved bases satisfying certain order-theoretic properties.

1.1. Preliminaries. We begin with some basic terminology and notation. We view
any ⊏ ⊆ A×B as a relation ‘from B to A’. We call ⊏

(1) a function if every b ∈ B is related to exactly one a ∈ A,
(2) surjective if every a ∈ A is related to at least one b ∈ B,
(3) injective if, for every b ∈ B, we have some a ∈ A which is only related to b.

These notions of surjectivity and injectivity for relations generalise the usual no-
tions for functions. The prefix ‘co’ will be used to refer to the opposite/inverse rela-
tion ⊏−1 = ⊐ ⊆ B × A (where b ⊐ a means a ⊏ b), e.g. we say ⊐ is co-injective to
mean that ⊏ is injective. For example, one can note that every co-injective relation
is automatically surjective, and the converse also holds for functions.

Remark 1.1. While this version of injectivity for relations may not be the most obvious
generalisation from functions, it is the one we need for our work, being closely related
to minimal covers – see Proposition 1.2 below. It is also natural from a categorical
point of view, as the monic morphisms in the category of relations between sets are
exactly those that are injective in this sense. It also corresponds to injectivity of the
image map C 7→ C⊐ on subsets C ⊆ B defined below, i.e. ⊏ is injective precisely
when C⊐ = D⊐ implies C = D, for all C,D ⊆ B.

The motivating situation we have in mind is where ⊏ is the inclusion relation ⊆
between covers A and B of a set X. In this case, ⊏ is surjective precisely when A
refines B in the usual sense (we will also generalise refinement soon below). If B is
even a minimal cover, then ⊏ will also be injective, as we now show.

Let us denote the power set of any set X by

PX = {A : A ⊆ X}.

To say A ⊆ PX covers X of course means X =
⋃
A.

Proposition 1.2. If A,B ⊆ PX cover X and ⊏ = ⊆ on A×B, then

B is minimal and ⊏ is surjective =⇒ ⊏ is injective.

Proof: If B is a minimal cover of X, then every b ∈ B must contain some x∈X which
is not in any other element of B, i.e. x ∈ b \

⋃
(B \ {b}). If A also covers X, then we

must have some a ∈ A containing x. If ⊏ is also surjective, then we have some c ∈ B
with x ∈ a ⊆ c and hence c = b. This shows that a is only related to b, which in turn
shows that ⊏ is injective.
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Again take a relation ⊏ ⊆ A×B. The preimage of any S ⊆ A is given by

S⊏ = ⊐[S] = {b ∈ B : ∃s ∈ S (s ⊏ b)}.(Preimage)

Likewise, the image of any T ⊆ B is the preimage of the opposite relation ⊐, i.e.

T⊐ = ⊏[T ] = {a ∈ A : ∃t ∈ T (a ⊏ t)}.(Image)

We say S ⊆ A refines T ⊆ B if it is contained in its image, i.e. S ⊆ T⊐. Equivalently,
S refines T when the restriction of ⊏ to S × T is surjective. The resulting refinement
relation will also be denoted by ⊏, i.e. for any S ⊆ A and T ⊆ B,

S ⊏ T ⇐⇒ S ⊆ T⊐ ⇐⇒ ∀s ∈ S ∃t ∈ T (s ⊏ t).

Likewise, the corefinement relation will also be denoted by ⊐, i.e.

T ⊐ S ⇐⇒ T ⊆ S⊏ ⇐⇒ ∀t ∈ T ∃s ∈ S (s ⊏ t)

(so refinement and corefinement are not inverses, i.e. S ⊏ T does not mean T ⊐ S).
Here again the motivating situation we have in mind is when ⊏ is the inclusion relation
or, more generally, some partial order or even preorder (recall that a preorder is a
reflexive transitive relation, while a partial order is an antisymmetric preorder).

Given a preorder ≤ on a set P, we define < = ≤ ∩ ̸=, i.e.

p < q ⇐⇒ p ≤ q and p ̸= q.

The antichains3 of P will be denoted by

AP = {A ⊆ P : ∀q, r ∈ A (q ≮ r and r ≮ q)}.
Proposition 1.3. If ≤ is a preorder on P, then so is the refinement relation on PP.
If ≤ is a partial order, then so is the refinement relation when restricted to AP.
Proof: If ≤ is reflexive on P and Q ⊆ P, then q ≤ q, for all q ∈ Q, showing that
Q ≤ Q, i.e. ≤ is also reflexive on PP. On the other hand, if Q ≤ R ≤ S, then, for
any q ∈ Q, we have r ∈ R with q ≤ r, which in turn yields s ∈ S with r ≤ s. If ≤ is
transitive on P, then q ≤ s, showing that Q ≤ S, i.e. ≤ is also transitive on PP.

Finally, say ≤ is also antisymmetric on P and Q≤R≤Q, for some antichains Q,R∈
AP. For all q ∈ Q, we thus have r ∈ R with q ≤ r, which in turn yields q′ ∈ Q
with q ≤ r ≤ q′. Thus q = q′, as Q is an antichain, and hence q = r, as ≤ is
antisymmetric on P. This shows that Q ⊆ R, while R ⊆ Q follows dually.

We will also need to compose relations, which we do in the usual way, i.e. if ⊏ ⊆
A×B and ⊏− ⊆ B × C, then ⊏ ◦ ⊏− ⊆ A× C is defined by

(Composition) a ⊏ ◦ ⊏− c ⇐⇒ ∃b ∈ B (a ⊏ b ⊏− c).

Note that this is consistent with the usual composition of functions as we are taking
the domain of a function to correspond to the right coordinate, not the left, i.e. a
function f : B → A from B to A is a subset of A×B (not B ×A).

As in [7] (see also [20]), we say that B consolidates A when A refines B and
every b ∈ B is a union of elements of A, i.e. b =

⋃
(b⊇ ∩A) =

⋃
{a ∈ A : a ⊆ b}.

Proposition 1.4. Take A,B,C ⊆ PX with ⊏ ⊆ A × B and ⊏− ⊆ B × C defined to
be restrictions of the inclusion relation ⊆ on PX. For any a ∈ A and c ∈ C,

a ⊏ ◦ ⊏− c =⇒ a ⊆ c.

Conversely, if A is a minimal cover, B consolidates A, and C consolidates B, then

a ⊆ c =⇒ a ⊏ ◦ ⊏− c.

3Note that these are more general than the strong antichains usually considered by set theorists

(which are defined to be subsets A of P in which no pair in A has a common lower bound in P).
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Proof: Certainly a ⊆ b ⊆ c implies a ⊆ c. Conversely, say a ⊆ c and A is a minimal
cover so we have x ∈ a \

⋃
(A \ {a}). If c =

⋃
c⊐−, then we have b ∈ B with x ∈ b ⊆ c.

If b =
⋃
b⊐ too, then we have a′ ∈ A with x ∈ a′ ⊆ b and hence a = a′, i.e. a ⊆ b ⊆ c

and hence a ⊏ ◦ ⊏− c.

1.2. Bands and caps. Let us denote the finite subsets of a set X by

FX = {F ⊆ X : |F | <∞}.
The following special subsets of our poset P form the key order-theoretic analogues

of open covers that are fundamental to our work.

Definition 1.5. Take a poset (P,≤).

(1) We call B ∈ FP a band if each p ∈ P is comparable to some b ∈ B.
(2) We call C ∈ PP a cap if C is refined by some band.

Remark 1.6. There is also the related notion of a cutset from [28], which is a subset C
of P overlapping (i.e. intersecting) every maximal chain in P. Put another way, these
are precisely the transversals of maximal cliques of the comparability graph of P, as
studied in [3]. Similarly, bands are the finite dominating subsets of the comparability
graph. By Kuratowski–Zorn, every element of a poset is contained in a maximal
chain and hence every finite cutset is a band. However, the converse can fail, e.g. if
P = {a, b, c, d} with < = {(a, c), (b, c), (b, d)}, then {a, d} is a band but not a cutset,
as it fails to overlap the maximal chain {b, c}. Nevertheless, in graded ω-posets, every
level is a cutset and so in this case every band and hence every cap is at least refined
by a finite cutset, thanks to Proposition 1.13 below.

We denote the bands and caps of P by

BP = {B ∈ FP : P = B≤ ∪B≥},(Bands)

CP = {C ∈ PP : ∃B ∈ BP (B ≤ C)}.(Caps)

The primary example we have in mind is when P is a basis of some topological spaceX
ordered by inclusion ⊆. In this case, caps are meant to correspond to covers of the
space X. More precisely, we have the following.

Proposition 1.7. If P is a basis of non-empty open sets of some T1 topological
space X ordered by inclusion (i.e. ≤ = ⊆), then every cap covers X, i.e.

(1.1) C ∈ CP =⇒
⋃
C = X.

Proof: Note that if B refines C and
⋃
B = X, then

⋃
C = X. Thus it is enough to

show that
⋃
B = X whenever B is a band. Take a band B and suppose that we have

x ∈ X \
⋃
B. For each b ∈ B, let xb be a point in b. As X is T1, c = X \ {xb : b ∈ B}

is an open set containing x. As P is a basis, there is d ∈ P such that x ∈ d ⊆ c. For
each b ∈ B, note that xb ∈ b \ d so b ⊈ d while x ∈ d \ b so d ⊈ b. This shows that
B is not a band, a contradiction.

The converse of (1.1), however, can fail. We can even show that there is no way to
identify the covers of a space purely from the inclusion order on an arbitrary basis.
Indeed, in the following two examples we have bases of different compact Hausdorff
spaces which are isomorphic as posets but have different covers. Specifically, the bases
are both isomorphic to the unique countable atomless pseudo-Boolean algebra (the
atoms of a poset P are its minimal elements and P is atomless if it has no atoms,
while a pseudo-Boolean algebra is a poset P formed from a Boolean algebra B minus
its bottom element 0, i.e. P = B \ {0}).
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Example 1.8. The interval X = [0, 1] in its usual topology has a basis P consisting of
non-empty regular open sets which are unions of finitely many intervals with rational
endpoints (note that regularity disqualifies sets like

(
0, 12

)
and

(
1
4 ,

1
2

)
∪
(
1
2 ,

3
4

)
; only

the interior of their closures
[
0, 12

)
and

(
1
4 ,

3
4

)
lie in P). One immediately sees that

P is then a countable atomless pseudo-Boolean algebra with respect to the inclusion
ordering. We also see that p, q ∈ P are disjoint precisely when they have no lower
bound in P, and no such p and q cover X.

Example 1.9. The Cantor spaceX={0, 1}ω has a basis P consisting of all non-empty
clopen sets. Again P is a countable atomless pseudo-Boolean algebra and p, q ∈ P are
disjoint precisely when they have no lower bound in P. However, this time there are
many disjoint p, q ∈ P that cover X.

In fact, if P is the countable atomless pseudo-Boolean algebra, then its bands
and caps are all trivial in that they must contain the top element. This poset does,
however, have a subposet isomorphic to the full countable binary tree 2<ω, which is
still isomorphic to a basis of the Cantor space (but not the unit interval any more).
In this case, caps of 2<ω do indeed correctly identify the covers of the Cantor space.
This suggests that we might be able to ensure covers of other spaces are also caps by
choosing the basis more carefully. In other words, we might be able to find ‘cap-bases’
or even ‘band-bases’ in the following sense.

Definition 1.10. We call a basis P of a topological space X a

(1) band-basis if BP =
{
B ∈ FP : X =

⋃
B
}
,

(2) cap-basis if CP =
{
C ∈ PP : X =

⋃
C
}
.

Note that every element of a cap-basis or band-basis P of a non-empty space X
must also be non-empty – otherwise ∅ would be a minimum of P and hence a band of P
which does not cover X, contradicting the definition. Further observe that, as every
cap contains a finite subcap, every space with a cap-basis is automatically compact.
And every band-basis of a compact space is a cap-basis, as every cover has a finite
subcover which is then a band and hence a cap. Also, to verify that a basis of non-
empty open sets of a T1 space is a band/cap-basis, it suffices to show that covers are
bands/caps, as the converse follows from (1.1).

Proposition 1.11. Every second-countable compact T1 space has a cap-basis.

Proof: To start with, take any countable basis B of a compact T1 space X and
let (Cn)n∈ω enumerate all finite minimal covers of X from B. Recursively define
(nk)k∈ω as follows. Let n0 be arbitrary. If nk has been defined, then note that, for
any x ∈ X, we have p ∈ Cnk

and q ∈ Ck with x ∈ p∩ q. As B is a basis, we thus have
b ∈ B with x ∈ b ⊆ p ∩ q. By compactness, X has a finite minimal cover of such b’s.
This means we have nk+1 ∈ ω such that Cnk+1

refines both Cnk
and Ck.

Set Bk = Cnk
and P =

⋃
k∈ω Bk. First note that P is still a basis for X. Indeed,

if x ∈ b ∈ B, then, as X is T1, we can cover X \ b with elements of B avoiding x.
Compactness then yields a finite minimal subcover, i.e. we have some k ∈ ω with b ∈
Ck and x /∈

⋃
(Ck \ {b}). Taking c ∈ Bk+1 with x ∈ c, it follows that c ⊆ b, as

Bk+1 refines Ck and b is the only element of Ck containing x. In particular, we have
found c ∈ P with x ∈ c ⊆ b, showing that P is a basis for X.

By definition, Bk+1 refines Bk. We claim Bk also corefines Bk+1, i.e. Bk ⊆ B⊆
k+1.

Indeed, as Bk is a minimal cover, for every p ∈ Bk, we have x ∈ p \
⋃
(Bk \ {p}).

Taking q ∈ Bk+1 with x ∈ q, we see that q ⊆ p, as Bk+1 refines Bk and no other
element of Bk contains x. This proves the claim and hence each Bk is a band of P.
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As every cover of X from B (and, in particular, P) is refined by some Bk, it follows
that every cover of X from P is a cap of P, i.e. P is a cap-basis.

Note that the cap-bases in the above proof are Noetherian, which have also been
studied independently (see e.g. [12]). In general, we call a poset P Noetherian if every
subset of P has a maximal element or, equivalently, if P has no strictly increasing
sequences. Put another way, this is to say that > (where a > b means a ≥ b ̸= a)
is well founded in the sense of [19, Definition I.6.21]. Like in [19, §I.9], we then
recursively define the rank r(p) of any p ∈ P as the ordinal given by

r(p) = sup
q>p

(r(q) + 1).

So, maximal elements of P have rank 0, maximal elements among the remaining subset
have rank 1, and so on. For any ordinal α, we denote the αth cone of P by

Pα = {p ∈ P : r(p) ≤ α}.
The atoms of the αth cone form the αth level of P, denoted by

Pα = {p ∈ Pα : p> ∩ Pα = ∅}.
Note that r−1{α} ⊆ Pα, i.e. the αth level contains all elements of rank α. But this
inclusion can be strict, i.e. the αth level can also contain elements of smaller rank (e.g.
the αth level always contains all atoms of P of rank smaller than α).

If some level Pα of a Noetherian poset P has finitely many elements, then it is
immediately seen to be a band. If P here is a basis of non-empty sets of a T1 space X,
then it follows that Pα covers X, by Proposition 1.7. In fact, even if Pα has infinitely
many elements, it will still cover X as long as α is finite.

Proposition 1.12. If P is a Noetherian basis for a T1 space X, then X =
⋃

Pn, for
all n ∈ ω.

Proof: Every x ∈ X lies in some p ∈ P, as P is a basis. As P is Noetherian, we then
have p0 ∈ P0 with p ⊆ p0 and hence x ∈ p0 too. This shows that P0 covers X. Now
say Pn covers X. This means any x ∈ X lies in some p ∈ Pn. If p = {x}, then p is an
atom of P and hence p ∈ Pn+1 too. Otherwise, we have y ∈ p\{x} and hence p\{y} is
an open neighbourhood of x, as X is T1. Then we have q ∈ P with x ∈ q ⊆ p \ {y}, as
P is a basis, necessarily with r(q) > r(p) = n. Thus we have r ∈ Pn+1 with x ∈ q ⊆ r,
showing that Pn+1 also covers X. By induction, Pn thus covers X, for all n ∈ ω.

1.3. ω-posets. We call a poset P an ω-poset if every principal filter p≤ is finite and
the number of principal filters of size n is also finite, for any n ∈ ω. Equivalently, an
ω-poset is a Noetherian poset in which both the rank of each element of P and the
size of each level (or cone) of P is finite. For example, taking any ω-tree in the sense
of [19, III.5.7] and replacing ≤ with ≥ yields an ω-poset.

The nice thing about ω-posets is that their levels determine the caps; specifically,
caps are precisely the subsets refined by some level. Put another way, the levels are
coinitial with respect to refinement within the family of all caps (and even bands).

Proposition 1.13. If P is an ω-poset, then its levels (Pn) are coinitial in BP.

Proof: First note that each level Pn is a band. Indeed, if r(p) ≤ n, then p must be
above some minimal element of Pn, i.e. some element of Pn. On the other hand, if
r(p) ≥ n, then p is below some element of rank n, which must again lie in Pn.

Conversely, say B ⊆ P is a band and let n = maxb∈B r(b) so B ⊆ Pn. It follows
that no atom of Pn can be strictly above any element of B. Thus every element of Pn
must be below some element of B, as B is a band, i.e. Pn ≤ B.
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In particular, the bands and caps of any ω-poset are (downwards) directed with
respect to refinement. The fact that the levels here are finite is crucial, i.e. there are
simple examples of Noetherian posets for which this fails.

Example 1.14. Take a poset P consisting of two incomparable q, r ∈ P together
with infinitely many incomparable elements which all lie below both q and r, i.e.
P \ {q, r} = q> = r> is infinite and s ≰ t, for all distinct s, t ∈ P \ {q, r}. This poset
is Noetherian with two levels, although only the top level is finite. Note that {q, r} is
a band of P but the only other bands of P contain at least one element of both {q, r}
and P \ {q, r}, while the caps of P are precisely those subsets containing q and/or r.
In particular, no cap refines both the singleton caps {q} and {r}.

Another simple observation about caps in ω-posets is the following.

Proposition 1.15. If P is an ω-poset, then no infinite cap is an antichain, i.e.

AP ∩ CP ⊆ FP.

Proof: If C is an infinite cap, then B ≤ C, for some band B. In particular, B is
finite so we must have c ∈ C with r(c) > maxb∈B r(b). As B is a band, we then have
b ∈ B ∩ c<. As B ≤ C, we then have c′ ∈ C with c < b ≤ c′, showing that C is not
an antichain.

We are particularly interested in ω-posets arising from bases.

Definition 1.16. A (band/cap-)basis that is also an ω-poset (w.r.t. inclusion ⊆) will
be called an ω-(band/cap-)basis.

The proof of Proposition 1.11 shows that every second-countable T1 compactum
has an ω-cap-basis. Further note that if the space there is Hausdorff, then it is metris-
able. In compact metric spaces, we can actually characterise ω-cap-bases as precisely
the countable bases whose diameters converge to zero.

Proposition 1.17. If X is a compact metric space with a countable basis P of non-
empty open sets, then, for any enumeration (pn) of P,

P is an ω-cap-basis ⇐⇒ diam(pn) −→ 0.

Proof: For ε ∈ (0, 1), let Pε = {p ∈ P : diam(p) < ε}, so what we want to show is

P is an ω-cap-basis ⇐⇒ P \ Pε is finite, for all ε > 0.

First say P \ Pε is infinite, for some ε > 0. Assuming P is an ω-poset (otherwise we
are already done), this means that every level of P contains a set with diameter at
least ε. By Proposition 1.13, the same is true of all caps. This means that the cover Pε
of X cannot be a cap and hence P is not a cap-basis.

Conversely, say P \ Pε is finite, for all ε > 0. As p ⊆ q implies diam(p) ≤ diam(q),
P is Noetherian and the rank of each element is finite.

We claim every level Pn of P covers X. To see this, take any x ∈X. If x is not
isolated, then we must have a sequence in P of neighbourhoods of x which is strictly
decreasing with respect to inclusion. There are then sets in P of arbitrary rank con-
taining x; in particular we have some px ∈ P with x ∈ px and r(px) = n and hence
px ∈ Pn. On the other hand, if x is isolated, then either {x}∈Pn and hence we may
take px = {x} ∈ Pn, or r({x}) > n and hence we again have px ∈ P with x ∈ px
and r(px) = n so px ∈ Pn. Then {px : x ∈ X} ⊆ Pn covers X, as claimed.

If P were not an ω-poset, then P would have some infinite level Pn. By the claim
just proved, Pn would then cover X and hence have some finite subcover F ⊆ Pn. By
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the Lebesgue number lemma (see [22, Lemma 27.5]), any cover of a compact metric
space is uniform, i.e. we have some ε > 0 such that every subset of diameter at most ε
is contained in some set in the cover. In particular, we have some ε > 0 such that
Pε refines F . As Pn is infinite, we can take some p ∈ Pn \ F with diam(p) < ε. But
then p ⊆ f , for some f ∈ F , contradicting the fact that elements in the same level
are incomparable. Thus P is indeed an ω-poset.

For any ε > 0, we next claim that Pε contains a band. To see this, first note
that Pε is still a basis for X. In particular, Pε covers X and hence we have a finite
subcover F ⊆ Pε. Again, we have some δ > 0 such that Pδ refines F , i.e. Pδ ≤ F . As
P \ Pδ is finite, we also have finite E ⊆ Pε with P \ Pδ ≥ E. Thus E ∪ F is a band
of P contained in Pε, proving the claim.

Now take any cover C ⊆ P of X. Again C is uniform and is thus refined by Pε, for
some ε > 0, and hence by some band B ⊆ Pε, i.e. C is a cap. Conversely, caps are
covers, by (1.1), so P is indeed a cap-basis.

Note that if U is an up-set of an ω-poset P, i.e. U≤ ⊆ U , then U is again an ω-poset
in the induced ordering ≤U = ≤ ∩ (U × U). Indeed, U being an up-set implies that
the rank within U of any element of U is the same as its rank within the original
ω-poset P. As long as U does not contain any extra atoms, the caps of U will also all
come from caps of P in a canonical way.

Proposition 1.18. If P is an ω-poset, then, for all U ⊆ P,
(1.2) CU ⊆ {C ∩ U : C ∈ CP}.
Moreover, equality holds if U is an up-set whose atoms are all already atoms in P.
Proof: First note that, for any finite F ⊆ P, we can find a level Pn whose overlap
with F consists entirely of atoms. Indeed, as F is finite, we can find a cone Pn
overlapping f>, for each f ∈ F that is not an atom. This means non-atomic elements
of F are never minimal in Pn and hence Pn is the required level. In particular, if F
contains no atoms at all, then it is disjoint from Pn.

Now take any C ∈ CU , which is refined by some B ∈ BU . We thus have a level Pn
disjoint from B<. As B is a band of U , for any u ∈ Pn ∩ U , we have some compara-
ble b ∈ B. As u /∈ B<, it follows that u ≤ b. This shows that Pn ∩ U refines B and
hence C. Thus Pn refines C ∪ (Pn \ U), which is thus a cap of P whose intersection
with U is the original C. This proves (1.2).

Conversely, take C ∈ CP, which is refined by some B ∈ BP.If U is an up-set and
hence an ω-poset in its own right, then we have some level Un of U such that B<∩Un
consists entirely of atoms of U . However, B< does not contain any atoms of P. If all
atoms of U are already atoms of P, this implies B< ∩ Un = ∅. As B is a band of P,
for each u ∈ Un, we have some comparable b ∈ B. As u /∈ B<, this means u ≤ b
and hence u ≤ c, for some c ∈ C, which is necessarily also in U . This shows that
Un refines C ∩ U , which is thus a cap of U , i.e. {C ∩ U : C ∈ CP} ⊆ CU .

The following result and its corollary show how to identify levels of an ω-poset.

Proposition 1.19. The levels of a Noetherian poset P in which each element has
finite rank are the unique antichains (An) ⊆ AP covering P such that, for all n ∈ ω,
An+1 \An refines An \An−1 (taking A−1 = ∅) and An corefines An+1.

Proof: If An+1 \An refines An \An−1, then, in particular, An+1 refines An and hence
Am refines An, for all m ≥ n. From this we can already show that An ⊆ Pn, for
all n ∈ ω. Indeed, this follows immediately from the fact that

(1.3) Am ∋ p < q ∈ An =⇒ m > n.
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To see this, just note that if Am ∋ p < q ∈ An, then m ≤ n would imply An ≤ Am
and hence we would have p′ ∈ Am with p < q ≤ p′, contradicting Am ∈ AP.

Returning to the fact that An+1 \An refines An \An−1, it now follows by induction
that An \ An−1 ⊆ r−1{n}, for all n ∈ ω. Indeed, A0 ⊆ P0 = r−1{0} is immediate
from what we just showed. And if every p ∈ An+1 \ An is (strictly) below some q ∈
An \ An−1 ⊆ r−1{n}, then n + 1 ≥ r(p) > r(q) = n and hence r(p) = n + 1, showing
that An+1 \ An ⊆ r−1{n + 1}. If the (An) cover P, then so do the sets (An \ An−1)
and hence the inclusion must actually be an equality, i.e. for all n ∈ ω,

r−1{n} = An \An−1.

For all n ∈ ω, it follows that Pn =
⋃
k≤nAk and hence An ⊆ Pn, by (1.3).

If An also corefines An+1, for all n ∈ ω, then it again follows by induction that
An = Pn. Indeed, we already know P0 = P0 = A0. And if Pn ≥ An ≥ An+1, then
An+1 must contain all atoms of Pn ∪An+1 = Pn+1, i.e. Pn+1 ⊆ An+1 ⊆ Pn+1.

Let us call an ω-poset P weakly graded if consecutive levels share only atoms
of P. This is equivalent to saying that every non-atomic p ∈ P has a lower bound q
with r(q) = r(p) + 1. Moreover, we immediately see that the following are equivalent.

(1) P is atomless and weakly graded.
(2) Every p ∈ P has a lower bound q with r(q) = r(p) + 1.
(3) The levels of P are disjoint.
(4) Pn = r−1{n}, for all n ∈ ω.

Proposition 1.19 has the following corollary for weakly graded ω-posets.

Corollary 1.20. If P is a poset covered by finite antichains (An)n∈ω ⊆ AP such that
An+1 refines An, An corefines An+1, and An ∩ An+1 contains only atoms of P, for
all n ∈ ω, then P is a weakly graded ω-poset with levels Pn = An, for all n ∈ ω.

Proof: As above, we obtain (1.3) from the fact that each An+1 refines An, showing
that P is a Noetherian poset in which each element has finite rank. To show that
Pn = An and hence that P is an ω-poset, it thus suffices to show that An+1 \ An
refines An \ An−1, for all n ∈ ω. But if An+1 refines An, then, in particular, for
every p ∈ An+1 \ An, we have some q ∈ An with p < q. If An ∩ An−1 contains only
atoms of P, then this implies that q ∈ An \An−1 so we are done.

1.4. Level injectivity. Here we look at order properties related to minimal caps.
First let us denote the order relation between levels m and n of an ω-poset P by

≤mn = ≤ ∩ (Pn × Pm).

Proposition 1.21. For any ω-poset P, the following are equivalent.

(1) Each level Pn is a minimal cap.

(2) ≤mn is injective whenever m ≤ n.

(3) {n : ≤mn is injective} is cofinal in ω, for each m ∈ ω.

Proof: (1)⇒ (2) If ≤mn fails to be injective for somem ≤ n, then we have some p ∈ Pm
such that q≤ ∩ Pm ̸= {p}, for all q ∈ Pn. But then Pn refines Pm \ {p} and hence
Pm \ {p} is a cap, showing that Pm is not a minimal cap.

(2) ⇒ (3) Immediate.

(3) ⇒ (1) If Pm is not a minimal cap, then it has a proper subcap C ⊆ Pm, which
is necessarily refined by Pn, for some n ≥ m, by Proposition 1.13. But then Pk ≤ C
and hence ≤mk is not injective, for all k ≥ n, showing that {n : ≤mn is injective} is not
cofinal in ω.
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Accordingly, let us call an ω-poset P satisfying any/all of the above conditions
level-injective. When P is atomless, we could also replace ≤mn above with <mn =
≤ ∩ (Pn × Pm), when m < n, which is a consequence of the following.

Proposition 1.22. Every level-injective ω-poset P is weakly graded.

Proof: If P is an ω-poset that is not weakly graded, then we have some p ∈ Pn, where
n > r(p). Choosing n maximal with this property, it follows that p /∈ Pn+1, even
though all the lower bounds of p in Pn+1 have rank n + 1 and are thus below some
element of rank n, necessarily different from p. Thus Pn+1 refines Pn \ {p}, showing
that Pn is not a minimal cap and hence P is not level-injective.

With a little extra care, we can also choose the cap-basis in Proposition 1.11 to be
a level-injective ω-poset with levels among some prescribed family of covers.

Proposition 1.23. Any countable family C of minimal open covers of a compact T1

space X that is coinitial (w.r.t. refinement) among all covers of X has a subfamily
that forms the levels of a level-injective ω-cap-basis.

Proof: Like in the proof of Proposition 1.11, let (Cn)n∈ω enumerate C and define
(nk)k∈ω as follows. Let n0 be arbitrary. If nk has been defined, then note that, for
any x ∈ X, we have p ∈ Cnk

and q ∈ Ck with x ∈ p ∩ q. If p ∩ q = {x}, then
set bx = {x}. Otherwise we may take away a point of p ∩ q (as X is T1) to obtain
open bx with x ∈ bx ⫋ p ∩ q. As Cnk

is minimal, this implies that no subset of bx lies
in Cnk

. Now (bx)x∈X is an open cover of X which must then have a refinement Cnk+1
,

for some nk+1. Thus Cnk+1
refines both Cnk

and Ck, with the additional property
that Cnk+1

∩Cnk
consists only of singletons. As in the proof of Proposition 1.11, this

implies that P =
⋃
k∈ω Cnk

is a cap-basis forX and that each Cnk
also corefines Cnk+1

.
Moreover, each Cnk

is a minimal cover and hence a minimal cap in P. Thus P is a
level-injective ω-poset with levels Pk = Cnk

, by Corollary 1.20.

If we want the levels of an ω-poset to determine not just the caps but even the
bands, then we need a slight strengthening of level injectivity. To describe this, let us
introduce some more terminology and notation.

Take a poset (P,≤). The intervals defined by any p, q ∈ P will be denoted by

(p, q) = p< ∩ q> = {r ∈ P : p < r < q},

[p, q] = p≤ ∩ q≥ = {r ∈ P : p ≤ r ≤ q}.

We call p a predecessor of q (and q a successor of p) if p is a maximal element strictly
below q. The resulting predecessor relation will be denoted by ⋖, i.e.

p⋖ q ⇐⇒ p < q and (p, q) = ∅ ⇐⇒ p ̸= q and [p, q] = {p, q}.

Definition 1.24. We call P predetermined if, for all p ∈ P,

(Predetermined) p> ̸= ∅ =⇒ ∃q < p (q< ⊆ p≤).

Equivalently, q < p and q< ⊆ p≤ could be written just as q< = p≤. Also note
that this implies (q, p) = ∅ and hence q ⋖ p, i.e. q is necessarily a predecessor of p. In
other words, P is predetermined precisely when every non-atomic element of P has a
‘predecessor which determines its upper bounds’.

Predetermined ω-posets can also be characterised as follows.
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Proposition 1.25. If P is an ω-poset, then the following are equivalent.

(1) P is predetermined.

(2) Every non-minimal p ∈ P is a band of q<, for some q ∈ P.
(3) For every p ∈ P and n ≥ r(p), we have q ∈ Pn with q≤ = [q, p] ∪ p<.
(4) Every finite cap is a band, i.e. BP = CP ∩ FP.

Proof: (1) ⇒ (2) If P is predetermined, then, for any non-minimal p ∈ P, we have q⋖p
with q< = p≤. In particular, p is a band of q<.

(2) ⇒ (1) Say every non-minimal p ∈ P is a band of q<, for some q ∈ P. If P is also
Noetherian, then (q, p) has a maximal element q′, necessarily with q′< = p≤. This
shows that P is predetermined.

(1) ⇒ (3) If P is a predetermined ω-poset, then, for any p ∈ P and n ≥ r(p), we

can recursively define qk ∈ Pk with q≤k = [qk, p] ∪ p< as follows, for k ≥ n. First
set qn = p. Now assume qk has been defined. If qk is an atom, then we may simply
set qk+1 = qk. Otherwise, we have qk+1 with q<k+1 = q≤k and hence r(qk+1) = r(qk)+1.
Thus qk+1 ∈ Pk+1, as qk ∈ Pk, and

q≤k+1 = {qk+1} ∪ q≤k = {qk+1} ∪ [qk, p] ∪ p< = [qk+1, p] ∪ p<.

(3) ⇒ (4) Assume (3) holds and take some finite cap C ⊆ P. By Proposition 1.13,
Pn ≤ C, for some n ∈ ω, and hence P \ Pn ≤ Pn ≤ C too. On the other hand,
if p ∈ Pn \ Pn, then (3) yields q ∈ Pn with q≤ = [q, p] ∪ p<. As Pn ≤ C, we have
some c ∈ C ∩ q≤ ⊆ p≤ ∪ p≥ and hence p ∈ C≤ ∪ C≥. This shows that C is a band.

(4) ⇒ (1) Assume P is an ω-poset which is not predetermined, so we have some non-
atomic p ∈ P with q< ⊈ p≤, for all q < p. Then we can take minimal n ∈ ω such that
Pn ∩ p> ̸= ∅. For every q ∈ Pn ∩ p>, pick q′ ∈ q< \ p≤ and note that q′ /∈ p≥ too, by
the minimality of n. Thus C = (Pn \p>)∪{q′ : q ∈ Pn \p≤} is a finite cap, as Pn ≤ C,
but not a band, as p /∈ C≤ ∪ C≥.

Corollary 1.26. Every predetermined ω-poset is level-injective.

Proof: Every level of an ω-poset P is a minimal band, being both a band and an
antichain. If P is also predetermined, then any smaller cap would also be a band, by
(4) above, and hence each level is even minimal among all caps.

Corollary 1.27. If X is a T1 compactum and P ⊆ PX, then

P is an ω-band-basis ⇐⇒ P is a predetermined ω-cap-basis.

Proof: If P is an ω-cap-basis of X, then, by (4) above, P is predetermined if and only
if every finite cover is a band, i.e. if and only if P is actually a band-basis.

Using this, we can improve on Proposition 1.11 by showing that every T1 com-
pactum even has an ω-band-basis (unlike the improvement in Proposition 1.23, how-
ever, we cannot specify the potential levels of the ω-band-basis in advance).

First we need the following preliminary result.

Lemma 1.28. For any basis B and finite open family C of a T1 compactum X, there
is a minimal cover D ⊆ B of X and (xd)d∈D ⊆ X such that, for all d ∈ D,

(1.4) d =
⋂

{e ∈ C ∪D : xd ∈ e} and d ̸= {xd} =⇒ d /∈ C.
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Proof: For all F ⊆ C, let us define

LF = {x ∈ X : x∈ ⊆ F} = X \
⋃

(C \ F ),

XF = {x ∈ X : x∈ = F} = LF \
⋃
G⫋F

LG.

Note that each LF is closed and the (XF )F⊆C are disjoint subsets covering X. We
will recursively define further closed subsets KF ⊆ XF with minimal covers DF ⊆ B
of KF such that

⋃
DF ⊆

⋂
F , LF ⊆

⋃⋃
G⊆F DG and

(1.5) G ⫋ F =⇒ KF ∩
⋃
DG = ∅.

(Incidentally, it is quite possible for KF to be empty for many F ⊆ C, but this just
means that DF will also be empty.) If G ⊈ F , then, taking any g ∈ G \ F , we see
that KF ∩

⋃
DG ⊆ LF ∩ g = ∅ too so (1.5) can automatically be strengthened to

F ̸= G =⇒ KF ∩
⋃
DG = ∅.

Once we have constructed these sets we see that, whenever d ∈ DF , minimality
means we have xd ∈ d ∩KF \

⋃
(DF \ {d}). As KF ⊆ X \

⋃
G ̸=F DG, it follows that

xd ∈ d \
⋃
(D \ {d}), where D =

⋃
G⊆C DG. As X = LC ⊆

⋃⋃
G⊆C DG =

⋃
D, this

shows that D is a minimal cover of X and that xd ∈ e∈D implies e= d. Moreover,
xd∈e∈C implies that e∈F , as xd∈KF ⊆ XF ⊆ LF , and hence d ⊆

⋃
DF ⊆

⋂
F ⊆ e.

This proves the first part of (1.4).
To perform the recursive construction, first let D∅ ⊆ B be any minimal cover

of K∅ = L∅ = X∅ = X \
⋃
C. Once KG and DG have been defined, for G ⫋ F , we

set KF = LF \
⋃⋃

G⫋F DG ⊆ LF \
⋃⋃

G⫋F LG = XF ⊆
⋂
F . By compactness, we

then have a minimal cover DF ⊆ B of KF with⋃
DF ⊆

⋂
F ⊆ X \

⋃
G⫋F

XG ⊆ X \
⋃
G⫋F

KG.

As X is T1, we can further ensure that d ⫋
⋂
F and hence d /∈ C, for each d ∈ DF ,

unless KF =
⋂
F = {x}, for some x ∈ X, in which case the only option is DF =

{{x}}. This ensures that the second part of (1.4) also holds. Now just note that

LF ⊆ KF ∪
⋃ ⋃

G⫋F

DG ⊆
⋃
DF ∪

⋃ ⋃
G⫋F

DG =
⋃ ⋃

G⊆F

DG

so the recursive construction may continue.

Theorem 1.29. Any countable basis of a T1 compactum contains an ω-band-basis.

Proof: As in the proof of Proposition 1.11, let (Cn)n∈ω enumerate all finite minimal
covers of a T1 compactumX coming from any given countable basis B. Recursively de-
fine finite minimal covers (Bn)n∈ω as follows. Let Dk = Ck∪

⋃
j<k Bj . By Lemma 1.28

we have a minimal cover Bk ⊆ B, such that Bk ∩Dk contains only singletons, as well
as (xb)b∈Bk

⊆ X such that b =
⋂
{e ∈ Bk ∪ Dk : xb ∈ e}, for all b ∈ Bk. In other

words, xb ∈ b ⊆ e, for any e ∈ Bk ∪ Dk with xb ∈ e, so Bk refines Ck and Bj , for
all j < k. As in the proof of Proposition 1.11, this implies that P =

⋃
k∈ω Bk is a

cap-basis and each Bk also corefines Bk+1. By construction, Bk+1 ∩Bk contains only
singletons, which are atoms in P. Thus P is an ω-poset with levels Pk = Bk, by Corol-
lary 1.20. Also, for every b ∈ Bk, we have c ∈ Bk+1 with xb ∈ c. Then c < a implies
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xb ∈ a ∈ Bj , for some j ≤ k, and hence b ≤ a. This shows that c< ⊆ b≤ and hence
c< = b≤, as long as b is not an atom. Thus P is also predetermined and hence an
ω-band-basis, by Corollary 1.27.

1.5. Graded posets. We call a Noetherian poset P graded if the rank function maps
intervals to intervals, i.e. for all p, q ∈ P,

p < q =⇒ r[(p, q)] = (r(q), r(p)).

In particular, this means the rank function turns predecessors into successors, i.e.

p⋖ q =⇒ r(p) = r(q) + 1.

In fact, if every element of P has finite rank, then P is graded precisely when this
happens. This also makes it clear that every graded ω-poset is indeed weakly graded.

Remark 1.30. Hasse diagrams of atomless graded ω-posets can thus be viewed as
Bratteli diagrams (see [27, Definition 3.1]) where the levels (Pn) form the vertex sets
and the edges come from the predecessor relation ⋖. Indeed, any Bratteli diagram
with at most one edge between distinct vertices arises as the Hasse diagram of some
atomless graded ω-poset. Whether one chooses to work with diagrams or posets is
thus a matter of taste, although the diagram picture will be particularly instructive
in future work when we construct graded ω-posets associated to interesting compacta
(e.g. see Example 2.16).

Graded ω-posets are completely determined by the order relation between consecu-
tive levels. As such, they are the strongest interpretation of what it means for a poset
to be built from a sequence of finite levels. Naturally, we would like to construct bases
of this special form. First we begin with some simple observations.

Proposition 1.31. Let P be a graded ω-poset.

(1) P is level-injective if and only if P is predetermined.

(2) The levels are pairwise disjoint if and only if P is atomless.

(3) If P is a basis of a T1 space, then every level Pn consolidates Pn+1.

Proof: The ‘if’ part of (1) follows from Corollary 1.26. Conversely, suppose that P is
not predetermined so we have non-atomic p ∈ Pn such that q< \p≤ ̸= ∅, for every q ∈
Pn+1 ∩ p>. Since P is graded, we then have r ∈ Pn ∩ q< \ p≤. It follows that Pn \ {p}
is refined by Pn+1, and so Pn is not a minimal cap.

As P is graded and hence weakly graded, (2) is immediate.
To prove (3), take b ∈ Pn and let B = {c ∈ Pn+1 : c ⊆ b}. If we have x ∈ b \

⋃
B,

then we have u ∈ P such that x ∈ u ⊆ b as P is a basis. We may further assume
that u ̸⊆ c for every c ∈ B as the space is T1. Hence, u ∈ Pm for some m > n. But
since P is graded, we get u ⊆ v ⊆ b for some v ∈ Pn+1. Hence, x ∈ v ∈ B, which is a
contradiction.

To ensure the cap-bases in Proposition 1.11 are graded, we need the following.

Lemma 1.32. Let (Cn) be a sequence of minimal covers of a set X with each Cn
consolidating Cn+1 and Cn+1∩Cn only containing singletons {{x} : x ∈ X}. Further
let P =

⋃
n∈ω Cn, considered as a poset with ≤ = ⊆. Then

(1) P is a predetermined graded poset with nth level Pn = Cn, and

(2) if P is a basis for a compact topology, then P is also an ω-cap-basis.



Constructing compacta from posets 231

Proof: (1) First note that C≤
n =

⋃
k≤n Ck, for all n ∈ ω. Indeed, if we had c < d ∈ Ck,

for some k > n, then, as Ck ≤ Cn, we would have some c′ ∈ Cn with c < d ≤ c′,
contradicting the minimality of Cn. In particular, as C0 = C≤

0 is a minimal cover
of X, it consists entirely of maximal elements of P, i.e. elements of rank 0.

We claim that, for all n ∈ ω,

(Cn+1 \ Cn)⋖ ⊆ Cn \ {{x} : x ∈ X} ⊆ r−1{n}.

For the first inclusion, take c ∈ (Cn+1 \ Cn)⋖, which means we have d ∈ Cn+1 \ Cn
with d⋖c. In particular, c ∈ C⋖

n+1 so we must havem ≤ n with c ∈ Cm. By minimality,
we can choose some x ∈ d \

⋃
(Cn+1 \ {d}). As each cover consolidates the next, we

have cm ≥ · · · ≥ cn+1 with cm = c and x ∈ ck ∈ Ck, for all k between m and n + 1.
By our choice of x, we must have cn+1 = d and hence cn > d because d ∈ Cn+1 \Cn.
In particular, cn is not a singleton so other inequalities must be strict too, i.e. c =
cm > · · · > cn+1 = d. The only way we could have d⋖ c then is if m = n. This proves
the first inclusion. The second now follows by induction – the n = 0 case was observed
above, while all successors of elements of Cn+1 \ {{x} : x ∈ X} ⊆ Cn+1 \Cn must lie
in Cn \ {{x} : x ∈ X} and hence have rank n, so all elements of Cn+1 \ {{x} : x ∈ X}
have rank n+ 1.

In particular, each p ∈ P has finite rank and all its successors p⋖ have the same
rank, proving that P is graded. Also note that singletons persist as soon as they
appear, i.e. if {x} ∈ Cn, then {x} ∈ Cn+1, again because each cover consolidates
the next. Thus each Cn consists precisely of the elements of rank n together with
singletons (and hence minimal elements of P) of smaller rank, i.e. Cn = Pn. Finally,
for any p ∈ P we can again take x ∈ p \

⋃
(Cr(p) \ p). If p is not minimal, we can

then take q ∈ Cr(p)+1 with x ∈ q < p and show that q< = p≤, which means that P is
predetermined.

(2) Now assume P is also a basis for a compact topology. In particular, each minimal
cover Cn must be finite and hence P is an ω-poset. We claim that, moreover, every
cover C ⊆ P must be refined by some level Cn. Indeed, by compactness, we can
replace C with a finite subset if necessary. As each level is a consolidation of the
next, we can further replace each non-atomic element of C having smallest rank with
elements in a level below. Continuing in this manner, we eventually obtain a new
cover D refining the original cover C whose elements are all contained in a single
level Cn. As Cn is a minimal cover, D must then be the entirety of Cn, proving the
claim. As levels are caps, this shows that P is a cap-basis.

Note that for P to be graded here, not just Noetherian, it is crucial that each cover
is not only refined by the next cover but also consolidates it, as the following shows.

Example 1.33. Let X = [0, 1] and define

C1 =
{[
0, 34

)
,
(
1
4 , 1
]}
,

C2 =
{[
0, 23

)
,
(
1
3 , 1
]}
,

C3 =
{[
0, 12

)
,
(
1
4 ,

2
3

)
,
(
1
3 ,

3
4

)
,
(
1
2 , 1
]}
.
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The Hasse diagram of the resulting poset (C1 ∪ C2 ∪ C3,⊆) looks like this:[
0, 34

) (
1
4 , 1
]

[
0, 23

) (
1
3 , 1
]

[
0, 12

) (
1
4 ,

2
3

) (
1
3 ,

3
4

) (
1
2 , 1
]

Note that C3 refines C2 which in turn refines C1. However, C3 ∋
(
1
4 ,

2
3

)
⊆
(
1
4 , 1
]
∈ C1

even though there is no element of C2 in between, i.e. C1 ∪ C2 ∪ C3 is not graded.

Using Lemma 1.32 we can construct graded ω-band-bases.

Theorem 1.34. Every second-countable T1 compactum has a graded ω-band-basis.

Proof: We modify the proof of Proposition 1.11 so we can use Lemma 1.32. To start
with, again take any countable basis B for T1 compactum X and let (Bn)n∈ω enumer-
ate all finite covers of X from B. Recursively define another sequence of finite open
covers (Cn) as follows. Let C0 = {X}. If Cn has been defined, then, for each x ∈ X,
let

dx =
⋂

{a ∈ Bn ∪ Cn : x ∈ a}.
As Bn and Cn are finite, so is D = {dx : x ∈ X}. For each d ∈ D, choose some xd
such that d = dxd

and denote the set of all the other chosen points by

fd =
⋃

e∈D\{d}

{xe}.

We then have a minimal open cover refining both Bn and Cn given by

E = {d \ fd : d ∈ D}.
Also note that if y ∈ c ∈ Cn, then y ̸= xd for any d ̸= dy (because y = xd implies
dy = dxd

= d) so y ∈ dy \ fdy ⊆ c. This shows that c =
⋃
(E ∩ c≥), for all c ∈ Cn,

i.e. Cn consolidates E. At this stage it is possible that there could be some non-
singleton c ∈ Cn ∩E. However, this can only happen when c is contained in some b ∈
Bn and disjoint from all other subsets in (Bn \ {b}) ∪ Cn and hence E – otherwise
we would have some d ∈ D with d ⫋ c and so certainly d \ fd ⫋ c, while all other
elements of E would avoid xd ∈ d ⊆ c. For any non-singleton c ∈ Cn ∩ E, we can
thus pick arbitrary distinct yc, zc ∈ c and replace c with c \ {yc} and c \ {zc} without
destroying the minimality of E. In other words, to ensure consecutive covers can only
contain singletons, we define Cn+1 by

Cn+1 = E \ Cn ∪
⋃

c∈E∩Cn

{c \ {yc}, c \ {zc}}.

This completes the recursion and the poset P =
⋃
n∈ω Cn is then a predetermined

graded ω-poset, by Lemma 1.32. As X is compact, every cover of X from P is refined
by Bn and hence Cn+1, for some n ∈ ω. As in the proof of Proposition 1.11, P is then
an ω-cap-basis and hence an ω-band-basis, by Corollary 1.27.

Unlike in Theorem 1.29, we cannot choose the graded ω-band-bases above to lie
within some basis given in advance. Indeed, the following result shows that most
Hausdorff compacta have bases which do not contain any graded ω-basis.
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As usual, we view any ordinal α as a topological space with respect to the interval
topology, i.e. generated by subbasic sets β< and β>, for all β < α.

Proposition 1.35. For any Hausdorff compactum X, the following are equivalent.

(1) X is homeomorphic to α, for some α < ω2.
(2) Every basis for X contains a graded ω-(cap-)basis.

Proof: If X = α < ω2, then any basis for X contains a basis P such that each p ∈ P
is either a singleton or contains a unique non-zero limit ordinal ω(n + 1) such that
p ⊆ (ωn, ω(n + 1) + 1). Taking a further subset if necessary, we can ensure that the
neighbourhoods of any fixed non-zero limit ordinal ωn are linearly ordered and hence
Tn = {p ∈ P : p ⊆ (ωn, ω(n + 1) + 1)} consists of atoms together with at most
one decreasing sequence. In particular, each Tn is graded and hence P = {{0}} ∪⋃
ωn+1∈α Tn is a graded ω-cap-basis.

Conversely, sayX is not homeomorphic to any α < ω2. We can further assume that
X is second-countable (otherwiseX certainly could not have any ω-basis and we would
be done). We claim that the non-isolated points of X have some limit point y ∈ X.
Indeed, X = Y ∪ S, for (unique) perfect Y and countable scattered S. If Y ̸= ∅,
then just take any y ∈ Y . If Y = ∅, then X = S must be homeomorphic to some
ordinal α > ω2 and we can just take y to be (the point identified with) ω2, which is the
limit of (ω(n+1))n∈ω. This proves the claim and it follows that y has a neighbourhood
basis consisting of non-closed open sets – if O is a clopen neighbourhood of y, just
take any non-isolated z ∈ O \ {y} and note that O \ {z} is still open but no longer
closed. These neighbourhoods of y together with all open sets avoiding y thus form a
basis B for X. As X is Hausdorff and hence regular, we can argue as in the proof of
Proposition 1.11 to obtain another basis P ⊆ B such that strict containment implies
closed containment (just choose each b ∋ x there so that cl(b) ⊆

⋂{
c ∈

⋃
j≤k Cnj

:

x ∈ c
}
), i.e.

p ⫋ q =⇒ cl(p) ⊆ q.

As each p ∈ P containing y is not closed, p can never be the union of a finite subset
of P \ {p} (as p would then be the union of their closures too and hence itself closed).
In particular, P cannot contain a graded ω-basis, as each level would then have to
consolidate the next, by Proposition 1.31.

The following summarises Proposition 1.23, Theorem 1.29, and Theorem 1.34.

Theorem 1.36. Every second-countable T1 compactum X has an ω-cap-basis P.
Moreover, we can arrange any of the following (but not any two simultaneously).

(1) P is level-injective and the levels Pn are members of a given coinitial family of
minimal open covers.

(2) P is predetermined and its elements are members of a given countable basis.
(3) P is predetermined and graded.

1.6. Additional properties. Before moving on, let us examine some other simple
order properties possessed by all cap-bases of T1 spaces. Specifically, let us call a
poset P branching if no principal down-set p> has a singleton band, i.e.

(Branching) p < q =⇒ ∃r < q (p ≰ r and r ≰ p).

In particular, this implies that no p ∈ P has a unique predecessor, so the Hasse diagram
of P does indeed branch as much as possible. This even characterises branching posets
among ω-posets or, more generally, posets which only have finite intervals.

Proposition 1.37. Any basis of non-empty open sets of a T1 space is branching.
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Proof: Take a basis P of non-empty sets of a T1 space X. For any p, q ∈ P with p < q,
we can take x ∈ p and y ∈ q \ p. We then have some r ∈ P with y ∈ r ⊆ q \ {x}. Note
that p ≰ r, as x ∈ p \ r, and r ≰ p, as y ∈ r \ p. This shows that P is branching.

In particular, every poset arising in Theorem 1.29 is branching. It is natural to
wonder if this is the only extra restriction, i.e. does every branching predetermined
ω-poset arise as a cap-basis of some (necessarily compact) T1 space? In fact, this will
even hold under a certain weaker assumption which we now describe.

First let us define the cap-order relation ≾ on PP by

(Cap-order) Q ≾ R ⇐⇒ ∀F ⊆ P (F ∪Q ∈ CP =⇒ F ∪R ∈ CP).
Note it suffices to consider finite F here, as every cap has a finite subcap. Further
note that ≾ is a preorder containing refinement as a subrelation. In particular, on
singletons it contains the original order ≤. Let us call a poset P cap-determined if it
actually agrees with ≤ on singletons, i.e. for all p, q ∈ P,
(Cap-determined) p ≾ q =⇒ p ≤ q.

More explicitly this means that, whenever p ≰ q, we have some F ⊆ P (which we can
take to be finite) such that F ∪ {p} is a cap but F ∪ {q} is not.

Proposition 1.38. Every cap-basis of a T1 space is cap-determined.

Proof: Take a cap-basis P of a T1 space X. Whenever p ≰ q, we have some x ∈ p \ q.
As X is T1 and P is a basis, we can cover X \ p with a subcollection F ⊆ P whose
elements all avoid x. Thus F ∪{p} is a cover of X and hence a cap of P. On the other
hand, no member of F ∪ {q} contains x so it cannot be a cover of X and is thus not
a cap of P, by (1.1). This shows that P is cap-determined.

The relationship between these various notions can be summarised as follows.

Proposition 1.39. If P is an ω-poset, then

P is branching and predetermined =⇒ P is cap-determined =⇒ P is branching.

Proof: For the first implication, assume P is predetermined and take any p ∈ P. We
claim that we can recursively construct (pn)n≥r(p) such that pn ∈ Pn and p is a band

of p≤n , for all n ≥ r(p). First set pr(p) = p. Now assume pn has already been constructed.
If pn is already minimal in P, then it must lie in all levels beyond n too and we may
simply set pn+1 = pn. Otherwise, we can take pn+1 ⋖ pn such that p<n+1 = p≤n , as
P is predetermined, noting that this implies r(pn+1) = r(pn) + 1 (otherwise we would
have q ⋗ pn+1 with r(q) = r(pn+1)− 1 > r(pn) so q ≱ pn, a contradiction). As p is a

band for p≤n = p<n+1, it is also a band for p≤n+1 = p<n+1 ∪ {pn+1}. This completes the
recursion.

Now say that p ≰ q. First consider the case where q ≰ p as well. Let F = Pr(p)\{p}
so certainly F ∪{p} is a cap. However, F ∪{q} is not refined by Pn, for any n > r(p),
because Pn contains the pn constructed above, which cannot be below any element
of F ∪ {q}, as none of these are comparable with p. Thus F ∪ {q} is not a cap, by
Proposition 1.13. On the other hand, if q < p, then, as long as P is branching, we
can take r < p, which is incomparable with q. The argument just given then yields F
such that F ∪ {r} and hence F ∪ {p} is a cap while F ∪ {q} is not. This shows that
P is cap-determined.

For the second implication, assume P is cap-determined. So if p < q, then we
have F ⊆ P such that F ∪ {q} is a cap but F ∪ {p} is not. Take any n > r(p) such
that Pn refines F ∪ {q}. As F ∪ {p} is not a cap, we have r ∈ Pn \ (F ∪ {p})≥. In
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particular, r ≰ p but also p ≰ r, as r(p) < n ≤ r(r). Moreover, r ≰ f , for all f ∈ F ,
and hence r ≤ q, as Pn refines F ∪ {q}. This shows that P is branching.

Even when P is not cap-determined, B ≾ C is meant to signify that B is covered
by C in a certain sense, which we will make more precise in (2.1) below. For the
moment, let us just note a few further properties of ≾. Firstly, as one would expect,
the caps of P are precisely the maximal elements with respect to ≾, i.e.

(1.6) C ∈ CP ⇐⇒ P ≾ C.

Indeed, if C is a cap, then B ≾ C, for any B ⊆ P, as every superset of a cap is a
cap (in particular, we can take B = P). On the other hand, if C = C ∪ ∅ is a cap
and C ≾ A, then A = A ∪ ∅ is also a cap (in particular, we can take C = P).

We also immediately see that the empty set ∅ is minimal with respect to≾, although
in general there can be elements of P that are minimal too. However,

(1.7) P is cap-determined =⇒ ∀p ∈ P (p ̸≾ ∅).

Indeed, if p ≾ ∅, then p ≾ q, for all q ∈ P, so if P is cap-determined, then p is a
minimum of P, i.e. P = p≤. But then {p} itself is already a band and hence a cap,
even though the empty set ∅ is never a cap, contradicting p ≾ ∅.

Lastly, we show that ≾ is determined by its restriction to singletons on the left.

Proposition 1.40. For any poset P and B,C ⊆ P,

(1.8) B ≾ C ⇐⇒ ∀b ∈ B (b ≾ C).

Proof: First let us note that ≾ respects pairwise unions, i.e. for all A,B,C ⊆ P,

(1.9) A,B ≾ C =⇒ A ∪B ≾ C.

To see this, take any F ⊆ P such that A∪B∪F ∈ CP. If A ≾ C, then this implies that
B∪C∪F ∈ CP. If B ≾ C too, then this further implies that C∪F = C∪C∪F ∈ CP.
This shows that A ∪B ≾ C.

Now if B ≾ C, then certainly b ≾ C, for all b ∈ B. Conversely, if B ̸≾ C, then we
have some D ⊆ P such that B ∪D ∈ CP but C ∪D /∈ CP. We then have some finite
F ⊆ B such that F ∪D is still a cap and hence F ̸≾ C. If we had f ≾ C, for all f ∈ F ,
then (1.9) would imply F ≾ C, a contradiction. Thus f ̸≾ C, for some f ∈ F ⊆ B, as
required.

We summarise implications between considered properties of ω-posets in Figure 1.
The notion of a prime poset is defined in Definition 2.27 in the next section.

Predetermined

Level-injective

Weakly gradedPrime

Cap-determined Graded

Branching

Predetermined
branching

Level-injective
graded

Figure 1. Implications between properties of ω-posets.
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2. The spectrum

In this section, we construct a T1 compactum from any poset and relate its topo-
logical properties to the order properties of the original poset.

Throughout this section fix some poset (P,≤).

2.1. Selectors. The points of our desired compactum will be certain subsets of P
which contain at least one element from every cap (i.e. ‘transversals’ of the caps).

Definition 2.1. We call S ⊆ P a selector if it overlaps all caps, i.e.

(Selector) C ∈ CP =⇒ S ∩ C ̸= ∅.

Equivalently, S ⊆ P is a selector precisely when its complement P \ S is not a cap
(as being a cap and containing a cap are the same thing).

We will be particularly interested in minimal selectors.

Proposition 2.2. Every selector contains a minimal selector.

Proof: Note that every cap C contains a finite subcap – bands are finite by definition
so if B is a band refining C, then we can simply choose a finite subset of C that is still
refined by B. For S to be a selector, it thus suffices for S to select elements from just
the finite caps. The intersection of a chain of selectors is therefore again a selector so
Kuratowski–Zorn implies that every selector contains a minimal selector.

The first thing to note about minimal selectors is the following.

Proposition 2.3. Every minimal selector is an up-set.

Proof: Take a minimal selector S ⊆ P. Minimality means that, for every s ∈ S, we
have some C ∈ CP such that S ∩ C = {s} (otherwise S \ {s} would be a strictly
smaller selector). For any p ≥ s, note that (C \ {s})∪ {p} is refined by C and is thus
also a cap. As S must also overlap this new cap, the only possibility is that S also
contains p. This shows that S≤ = S, i.e. S is an up-set.

Moreover, to verify that an up-set is a selector, it suffices to consider a subfamily
of caps B ⊆ CP that is coinitial with respect to refinement, e.g. the bands BP or even
just the levels (Pn) if P is an ω-poset, thanks to Proposition 1.13.

Proposition 2.4. Take an up-set U ⊆ P. For any coinitial B ⊆ CP,

U is a selector ⇐⇒ U overlaps every B ∈ B.

If P is an ω-poset, U is a selector precisely when U is infinite or contains an atom.

Proof: As B ⊆ CP, ⇒ is immediate. Conversely, say U ∩ B, for all B ∈ B. For
any C ∈ CP, coinitiality yields B ∈ B refining C. This means any b ∈ B ∩ U has an
upper bound c ∈ C, which is thus also in U , as U is an up-set. Thus U is a selector.

Next note that if a ∈ P is an atom, then a≤ is a selector. Indeed, for any band B ∈
BP, the minimality of a implies a ∈ B≥ and hence a≤ ∩ B ̸= ∅. As a≤ is up-set and
bands are coinitial in CP, we are done.

It follows that if U contains an atom, then U is a selector. Now assume P is an
ω-poset. If U is infinite, then U contains elements of arbitrary rank. In particular,
U overlaps all levels of P, which are coinitial by Proposition 1.13, showing that U is
again a selector. Conversely, if U is finite and contains no atoms, then we have a level
of P which is disjoint from U , showing U is not a selector.
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2.2. Spectra. As alluded to above, minimal selectors will form the points of the
desired compactum SP that we are about to define. While the definition of SP applies
to arbitrary P, it is best behaved when P is an ω-poset, as we will soon see. For ex-
ample, minimal selectors are then special kinds of filters, as noted in Proposition 2.13
below, just like in many more classical topological dualities. Under suitable regularity
conditions, they can even be characterised as the maximal round filters, as shown
below in Proposition 2.41.

First let us define the power space of P as the power set PP with the topology
generated by the subbasis (p∈P)p∈P, where

p∈P = {S ∈ PP : p ∈ S}.
Equivalently, this is the topology we get from identifying every S ⊆ P with its char-
acteristic function χS ∈ 2P, where 2 = {0, 1} is the Sierpiński space (where {1} is
open but {0} is not) and 2P is given the usual product topology.

Definition 2.5. The spectrum is the subspace of PP consisting of minimal selectors

SP = {S ⊆ P : S is a minimal selector}.

So SP has a subbasis consisting of the sets p∈S = p∈P ∩ SP, for p ∈ P. From now on
we will usually drop the subscript and just write p∈S as p∈.

By Proposition 2.3, minimal selectors are always up-sets so, for all p, q ∈ P,

p ≤ q =⇒ p∈ ⊆ q∈.

We can thus view the sets (p∈)p∈P as a more concrete representation of the poset P
as a subbasis of a topological space. However, this representation may not always
be faithful, at least with respect to the original ordering, i.e. it is possible to have
p∈ ⊆ q∈ even when p ≰ q. It is even possible for p∈ to be empty, for some p ∈ P.

For example, consider the graded ω-poset P = ω × {0, 1} where

(n, δ) ≤ (n′, δ′) ⇐⇒ n′ ≤ n and δ′ ≤ δ.

The levels of P are then given by P0 = {(0, 0)} and Pn = {(n, 0), (n − 1, 1)}, for
all n > 0. The only minimal selector is then ω × {0} so (n, 1)∈ = ∅, for all n ∈ ω.

The representation p 7→ p∈ will, however, be faithful with respect to ≾, as defined
in (Cap-order). In particular, it will be faithful with respect to the original order
precisely when P is cap-determined.

Proposition 2.6. For any A,B ⊆ P,

(2.1) A ≾ B ⇐⇒
⋃
a∈A

a∈ ⊆
⋃
b∈B

b∈.

Proof: By (1.8), it suffices to consider a singleton A = {a}.
Now take a minimal selector S ∈ a∈. Minimality means we have a cap C∈CP such

that C ∩ S = {a}. If a ≾ B, then it follows that B ∪ (C \ {a}) is a cap and hence
B ∩S = (B ∪ (C \ {a}))∩S ̸= ∅, as S is a selector, i.e. S ∈

⋃
b∈B b

∈. This shows that
a∈ ⊆

⋃
b∈B b

∈.
Conversely, if a ̸≾ B, then we have F ⊆ P such that {a} ∪ F is a cap but B ∪ F is

not. This means P \ (B ∪F ) is a selector and hence contains a minimal selector S, by
Proposition 2.2. As {a}∪F is a cap and F is disjoint from S, it follows that a ∈ S so
S ∈ a∈ \

⋃
b∈B b

∈, as B is disjoint from S, i.e. S witnesses a∈ ⊈
⋃
b∈B b

∈.

For any C ⊆ P, we denote the corresponding family of open sets in SP by

CS = {c∈ : c ∈ C}.
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Corollary 2.7. The map p 7→ p∈ is an order isomorphism from P onto the canonical
subbasis PS of the spectrum precisely when P is cap-determined.

Proof: For any p, q ∈ P we have

p ≤ q =⇒ p ≾ q ⇐⇒ p∈ ⊆ q∈

by (2.1) and former observations. The remaining implication p ≤ q ⇐ p ≾ q is
equivalent by definition to P being cap-determined.

Proposition 2.6 yields the first fundamental properties of the spectrum.

Proposition 2.8. The spectrum is a compact T1 space. Moreover, C ⊆ P is a cap
precisely when the corresponding subbasic sets CS cover the whole spectrum.

Proof: Given any distinct S, T ∈ SP, minimality implies that we have s ∈ S \ T
and t ∈ T \ S. This means S ∈ s∈ ̸∋ T and T ∈ t∈ ̸∋ S, showing that SP is T1.

By (1.6), C ⊆ P is a cap precisely when P ≾ C, which is equivalent to saying
CS covers the entire spectrum, by (2.1). As every cap contains a finite subcap, X is
compact, by the Alexander–Wallman subbasis lemma (see [33] or [1]).

The spectrum can also recover a space from the order structure of a cap-basis.

Proposition 2.9. If P is a cap-basis of a T1 space X, then

x 7−→ x∈ = {p ∈ P : x ∈ p}
is a homeomorphism from X onto SP.

Proof: Take any x ∈ X. By assumption, any cap C ∈ CP is a cover of X and hence
we have some c ∈ C containing x, i.e. c ∈ x∈ ∩ C. This shows that x∈ is a selector.
Now take any p ∈ x∈. For any y ∈ X \ p, we have some q ∈ y∈ \ x∈, as X is T1. This
means C = {p} ∪ (P \ x∈) is a cover of X and hence a cap of P with C ∩ x∈ = {p}.
Thus x∈ is a minimal selector.

On the other hand, for any selector S ∈ SP, we know that P \ S cannot cover X
(otherwise it would be a cap with S ∩ (P \ S) = ∅, a contradiction). So we can
pick x ∈ X not covered by P \ S, which means x∈ ⊆ S. If S is a minimal selector,
then this implies x∈ = S. This shows that SP = {x∈ : x ∈ X}. Also x ̸= y implies
x∈ ̸= y∈, as X is T1, so x 7→ x∈ is a bijection from X onto SP.

Finally, note that x 7→ x∈ maps each p ∈ P onto p∈, as

x ∈ p ⇐⇒ p ∈ x∈ ⇐⇒ x∈ ∈ p∈.

As P is a (sub)basis of X and (p∈)p∈P is a subbasis of the spectrum SP, this shows
that the map x 7→ x∈ is a homeomorphism from X onto SP.

Spectra thus yield a large class of spaces.

Corollary 2.10. Every second-countable compact T1 space arises as the spectrum of
some predetermined branching graded ω-poset.

Proof: By Corollary 1.27, any second-countable compact T1 space X has a graded
ω-band-basis P, which is predetermined, by Theorem 1.34, and branching, by Propo-
sition 1.37. Moreover, its spectrum SP is homeomorphic to X, by Proposition 2.9.

Remark 2.11. Any graded ω-poset is determined by the order relation between con-
secutive levels. By Corollary 2.10, we should therefore be able to construct any
second-countable compact T1 space by recursively defining relations between finite
sets P0,P1, . . . and then looking at the spectrum of the resulting poset P =

⋃
n∈ω Pn.
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The exact nature of the construction will of course depend on the space we wish to
construct, as we will soon see in the examples of the next subsection. In future work,
we will examine more examples constructed within the framework of Fräıssé theory
as it applies to certain subcategories of relations between graphs.

In Lemma 1.32, we saw how graded posets arise from consolidations. Conversely,
levels of graded posets correspond to consolidations in the spectrum.

Note that PnS below refers to the S operation applied to the nth level of P, i.e.
PnS = {p∈ : p ∈ Pn}.

Proposition 2.12. If P is a graded ω-poset, then PmS consolidates PnS when m ≤ n.

Proof: If P is an ω-poset and m ≤ n, then certainly Pn ≤ Pm and hence PnS ≤ PmS.
Now take any p ∈ Pm. For any S ∈ p∈, minimality yields C ∈ CP with C ∩ S = {p}.
Then we have k ≥ n with Pk ≤ C and hence Pk ∩ S ⊆ p≥. As P is graded, for
any q ∈ Pk ∩ S, we have r ∈ Pn ∩ (q, p) ⊆ q≤ ⊆ S and hence S ∈ r∈ ⊆ p∈. Thus
p∈ =

⋃
{r∈ : r ∈ Pn ∩ p≥}, showing that PmS consolidates PnS.

Before moving on, however, let us make a couple more observations about spectra
arising from general ω-posets. The first thing to note is that every element S of the
spectrum of an ω-poset is not just an up-set but even a filter, i.e.

(Filter) p, q ∈ S ⇐⇒ ∃r ∈ S (r ≤ p, q)

(note that ⇒ means S is down-directed while ⇐ just means S is an up-set).

Proposition 2.13. If P is an ω-poset, then every S ∈ SP is a filter.

Proof: Assume P is an ω-poset and take a minimal selector S ∈ SP. For any q, r ∈ S,
we have caps C,D ∈ CP such that C∩S = {q} and D∩S = {r}. By Proposition 1.13,
C and D are refined by levels of P. As the levels are linearly ordered by refinement,
we can find a single level L ∈ CP which refines both C and D. As S is a selector,
we can take s ∈ S ∩ L. As L refines C and D, we have c ∈ C and d ∈ D such that
s ≤ c, d and hence c, d ∈ s≤ ⊆ S. But q and r are the only elements of S in C and D
respectively so q = c ≥ s and r = d ≥ s, which shows that S is down-directed. By
Proposition 2.3, S is also an up-set.

Corollary 2.14. If P is an ω-poset, then PS is a basis for SP.

Proof: Whenever S ∈ p∈ ∩ q∈, we have r ∈ S with r ≤ p, q, by Proposition 2.13. But
this means S ∈ r∈ ⊆ p∈ ∩ q∈, showing that PS is a basis.

This yields a kind of converse to Theorem 1.34.

Corollary 2.15. Any cap-determined ω-poset P arises as a cap-basis of a T1 space.

Proof: Immediate from Corollary 2.7, Proposition 2.8, and Corollary 2.14.

2.3. Examples. Our spectrum generalises the well-known construction of a metris-
able Stone space from the branches of an ω-tree (sometimes called its branch space,
as in [10, §III] for example). Of course, the advantage of our spectrum, as applied
to more general graded ω-posets, is that we can also construct connected spaces, the
simplest example being the arc.

Example 2.16. Let X be the arc, which we can take to be the unit interval [0, 1] in
its usual topology. Define open covers (Cn) of X by

Cn = {int([(k − 1)/2n+1, (k + 1)/2n+1]) : 1 ≤ k ≤ 2n+1 − 1}.
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So each Cn consists of 2n+1 − 1 evenly spaced intervals, each of length 2−n. Then
P =

⋃
n∈ω Cn is a predetermined graded ω-poset, by Lemma 1.32, which can also be

seen directly from its Hasse diagram, as drawn below.

[0, 1]

[
0, 12

) (
1
4 ,

3
4

) (
1
2 , 1
]

[
0, 14

) (
1
8 ,

3
8

) (
1
4 ,

1
2

) (
3
8 ,

5
8

) (
1
2 ,

3
4

) (
5
8 ,

7
8

) (
3
4 , 1
]

...

Note that P is a cap-basis, by Proposition 1.17 (or Lemma 1.32(2)). By Proposi-
tion 2.9, the spectrum of P then recovers the original space X, i.e. the arc. A more
combinatorial construction of the arc could thus proceed as follows – first define re-
lations between finite linearly ordered sets Pn such that each element of Pn is related
to three consecutive elements of Pn+1 and consecutive pairs in Pn are related to ex-
actly one common element in Pn+1. Then let P =

⋃
n∈ω Pn with the order defined

from the relations between consecutive Pn’s. Finally, define the arc as the spectrum
of P.

The following example shows that a basis forming a cap-determined poset is not
necessarily a cap-basis, i.e. the converse of Proposition 1.38 is not true (although the
poset will yield a cap-basis of a different space, namely its spectrum, which will be a
quotient of the original space – see Corollary 2.46 below).

Example 2.17. Let Y be the unit circle in the complex plane with the usual topology,
and let θ : R → Y be the covering map x 7→ e2πix, so the restriction θ : [0, 1] → Y is
the quotient map identifying the endpoints. We define open covers (Dn) of Y by

Dn = {θ[((k − 1)/2n+1, (k + 1)/2n+1)] : 0 ≤ k < 2n+1}.
So each Dn for n ≥ 1 consists of 2n+1 evenly spaced arcs of length 2π/2n. In par-
ticular, D1 consists of the images of the intervals (−1/4, 1/4), (0, 1/2), (1/4, 3/4),
and (1/2, 1). We put D0 = {X} and Q =

⋃
n∈ωDn. As in the previous example, Q is

a predetermined graded ω-poset and a cap-basis of Y so the spectrum of Q recovers
the space Y , i.e. the circle.

Let C ′
n = Cn∪{[0, 1/2n+1)∪ (1−1/2n+1, 1]}, where Cn is the cover of the arc X =

[0, 1] from the previous example for n ≥ 1 and C ′
0 = C0 = {X}, and let P′ =

⋃
n∈ω C

′
n.

Observe that p 7→ int(θ[p]) is an isomorphism of posets P′ → Q. It follows that P′ is a
cap-determined poset and an open basis of X (as it contains the original cap-basis P),
but is not a cap-basis of X (as its spectrum is the circle and not the arc).

Our primary interest is in Hausdorff spaces, but our spectrum can indeed produce
more general T1 spaces. Some of these are not even sober (⇔ each irreducible closed
set has a unique dense point), like the cofinite topology on a countably infinite set.

Example 2.18. Let X = ω with the cofinite topology (i.e. non-empty open sets
are exactly the cofinite ones), and let P = {pn,i : i ≤ n, n ∈ ω}, where pn,i =



Constructing compacta from posets 241

(ω \ n + 1) ∪ {i}, so p0,0 = ω, p1,0 = ω \ {1}, p1,1 = ω \ {0}, p2,0 = ω \ {1, 2},
p2,1 = ω \ {0, 2}, p2,2 = ω \ {0, 1}, and so on. Clearly, {pn,i : n > i} is an open basis
at i ∈ X, and so P is an open basis of X.

Every pn,i, i ≤ n ∈ ω, has exactly two immediate predecessors: pn+1,i and pn+1,n+1,
and so every pn,i with i < n ̸= 0 has a unique immediate successor pn−1,i, while pn,n
with n ̸= 0 has all elements pn−1,i for i ≤ n − 1 as immediate successors. It follows
that P is a predetermined branching atomless graded ω-poset, as shown in Figure 2,
with disjoint levels Pn = {pn,i : i ≤ n}.

The levels Pn are minimal covers of X since pn,i is the unique set containing i.
Also, every Pn is a consolidation of Pn+1 since pn,i = pn+1,i ∪ pn+1,n+1. Altogether,
P is a cap-basis of X by Lemma 1.32.

...

Figure 2. The poset P for the cofinite topology on ω.

However, this does not have an uncountable extension.

Example 2.19. An uncountable set X with the cofinite topology has no cap-basis.

Proof: Suppose Q is a subbasis of X consisting of non-empty and so cofinite sets. By
the ∆-system lemma, there are pairwise disjoint finite sets R and Fα, α ∈ ω1, such
that D = {X \ (R ∪ Fα) : α ∈ ω1} ⊆ P. Let B ⊆ P be any band. Since B is finite,
there is b ∈ B comparable to uncountably many elements of D. Since b is cofinite,
it cannot be below uncountably many elements of D. Hence, b is above uncountably
many elements of D, and so b ⊇ X \ R. It follows that the finite upwards closed
family F = {b ⊆ X : b ⊇ X \R} is a selector.

If Q were a cap-basis, a minimal selector contained in F would correspond to a
point of X with a finite local (sub)basis, by Proposition 2.9, which is impossible.

The following gives an example of a spectrum that is not a first-countable space.

Example 2.20. Let κ be an infinite cardinal, let X = κ ∪ {∞} be the one-point
compactification of κ with the discrete topology, and let P = {F, κ\F : F ⊆ κ finite}\
{∅} be the finite-cofinite algebra on κ minus the bottom element. For every α ∈ κ,
let Sα = {α}⊆ be the principal filter generated by {α}, and let S∞ be the family of
all cofinite elements of P. We show that the map f : X → SP defined by x 7→ Sx is a
homeomorphism.

Proof: Since Sα is an up-set and {α} is an atom in P, Sα is a selector as every
band contains an element above {α}. Moreover, Sα is a minimal selector since every
subselector S ⊆ Sα has to overlap the band {{α}, κ \ {α}} and so contains {α}. By
Proposition 2.2 there is a minimal selector S′ ⊆ S, and it is equal to Sα as it is an
up-set (Proposition 2.3) containing {α}.
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S∞ is a selector since every band is finite and so has to contain a cofinite element.
For every finite F ⊆ κ, the family {{α} : α ∈ F} ∪ {κ \ F} is a band, and so every
selector either contains an atom {α} or contains all cofinite elements. Hence, S∞ is a
minimal selector, and SP = {Sα : α ∈ κ} ∪ {S∞}.

We have already shown that f is a bijection. Now for every finite F ⊆ κ we have
F∈ = {Sα : α ∈ F} and (κ \ F )∈ = {Sα : α /∈ F} ∪ {S∞}, and so the elements of P
correspond to basic open sets of X.

2.4. Subcompacta. Next we examine closed subsets of the spectrum.

Proposition 2.21. Any Q ⊆ P determines a closed subset of SP given by

Q⊇ = {S ∈ SP : S ⊆ Q}.

Proof: If S ∈ cl(Q⊇), then every subbasic neighbourhood p∈ containing S must also
contain some T ∈ Q⊇. In other words, for every p ∈ S, we have T ∈ SP with p ∈ T ⊆
Q. Thus S ⊆ Q, showing that S ∈ Q⊇ and hence cl(Q⊇) = Q⊇.

In fact, every closed subset of the spectrum of an ω-poset arises in this way.

Proposition 2.22. If P is an ω-poset, then the closure of any X ⊆ SP is given by

(2.2) cl(X) =
(⋃

X
)⊇

.

Proof: By the previous result,
(⋃

X
)⊇

is a closed subset of SP which certainly con-

tains X. Conversely, if S ∈
(⋃

X
)⊇

, then, for any p ∈ S, we have some T ∈ X
with p ∈ T , i.e. every subbasic neighbourhood of S contains an element of X. How-
ever, if P is an ω-poset, then (p∈)p∈P is actually a basis for SP, by Corollary 2.14.

Thus this shows that S ∈ cl(X), which in turn shows that cl(X) =
(⋃

X
)⊇

.

Let us call Q ⊆ P prime if q ̸≾ P \ Q, for all q ∈ Q, where ≾ is the relation
from (Cap-order). Put another way, this means that Q must overlap every subset
which is cap-above any element of Q, i.e. for all C ⊆ P,

(Prime) Q ∋ q ≾ C =⇒ Q ∩ C ̸= ∅.

Indeed, if q ̸≾ P \ Q and q ≾ C, then C ⊈ P \ Q, i.e. Q ∩ C ̸= ∅, showing (Prime)
holds. Conversely, if Q ∋ q ≾ P \Q, then P \Q itself witnesses the failure of (Prime).

It follows that any non-empty prime Q ⊆ P is automatically a selector – if q ∈ Q
and C ∈ CP, then certainly q ≾ C and hence Q ∩ C ̸= ∅. Actually, more is true.

Proposition 2.23. Prime subsets are precisely the unions of minimal selectors.

Proof: Take a minimal selector S ⊆ P. For every s ∈ S, minimality yields F ⊆ S \ P
such that F ∪{s} is a cap. But S \P(= (S \P)∪F ) is not a cap, simply because S is
a selector, so F witnesses s ̸≾ S \ P. This shows that every minimal selector is prime
and hence the same is true of any union of minimal selectors.

Conversely, take any prime Q ⊆ P. For every q ∈ Q, this means q ̸≾ P \ Q so we
have S ∈ q∈ \

⋃
p∈P\Q p

∈, by (2.1), and hence q ∈ S ⊆ Q. This shows that Q is a

union of minimal selectors.

In fact, as long as P is an ω-poset, the minimal selectors forming a prime subset Q
determine the spectrum of Q when considered as an ω-poset in its own right.

Proposition 2.24. If P is an ω-poset and Q ⊆ P is prime, then SQ = Q⊇.
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Proof: First we claim that the atoms of any prime Q ⊆ P must already be atoms in P.
Indeed, any q ∈ Q is contained in some S ∈ Q⊇. If q is not an atom in P, then we have
some level Pn disjoint from q≤. Making n larger if necessary, we may further assume
that S∩Pn ⊆ q≥, as S is a minimal selector, and hence ∅ ≠ S∩Pn ⊆ q>, showing that
q is not an atom in S ⊆ Q. This proves the claim and hence CQ = {C ∩Q : C ∈ CP},
by Proposition 1.18. But if S ⊆ Q and C ∈ CP, then S ∩ C = S ∩ C ∩ Q ̸= ∅, so
it follows that S is a selector in P if and only if S is a selector in Q. The same then
applies to minimal selectors, i.e. SQ = Q⊇.

In this way, prime subsets of P correspond exactly to closed subsets of SP.

Corollary 2.25. If P is an ω-poset, then we have mutually inverse order isomor-
phisms between prime Q ⊆ P and closed subsets X of the spectrum SP given by

(2.3) Q 7−→ SQ and X 7−→
⋃
X.

Proof: By Proposition 2.21, Proposition 2.23, and Proposition 2.24, X 7→
⋃
X and

Q 7→ Q⊇ = SQ take prime selectors to closed subsets and vice versa. By Proposi-

tion 2.22, X =
(⋃

X
)⊇

whenever X is closed. By Proposition 2.23 again, Q =
⋃
(Q⊇)

whenever Q is prime. Thus these maps are inverse to each other.

Remark 2.26. The frame of open subsets of SP can thus be obtained directly from P.
Specifically, complements of prime subsets ordered by inclusion form a frame F which
is order-isomorphic to the open subsets of SP, by Corollary 2.25. Thus F can be viewed
as a kind of completion of P, once we identify each p ∈ P with p≿ ∈ F.

Definition 2.27. Let us call a poset P prime if it is prime in itself, i.e. if p∈ ̸= ∅ or,
equivalently, p ̸≾ ∅, for all p ∈ P.

While there do exist non-prime ω-posets (e.g. P = ω×{0, 1}, mentioned just before
Proposition 2.6), every ω-poset P contains a prime ω-subposet

⋃
SP with exactly the

same spectrum, by Proposition 2.24. Also, cap-determined ω-posets are necessarily
prime, by (1.7), as are level-injective ω-posets.

Proposition 2.28. Every level-injective ω-poset is prime.

Proof: If P is level-injective, then every level of P is a minimal cap. For any p ∈ P,
this means Pr(n) \ {p} is not a cap and hence p ̸≾ ∅, showing that P is prime.

Theorem 2.29. If P is a prime ω-poset, then PS is an ω-cap-basis for SP.

Proof: We already showed that PS is a basis in Corollary 2.14.
Now take a cover of SP from PS, i.e. of the form CS, for some C ⊆ P. Then C is a

cap of P, by Proposition 2.8, and is thus refined by some band B ⊆ P. This implies
BS is a band of PS which refines CS, showing that CS is a cap of PS. Conversely, caps
of PS are covers, by Proposition 1.7, seeing as p∈ ̸= ∅, for all p ∈ P, as P is prime.
This shows that PS is a cap-basis.

Next say that we have p ∈ P and infinite Q ⊆ P such that p∈ ⫋ q∈, for all q ∈ Q.
Then p /∈ Q≤ ⊆ S ∋ p, for any S ∈ p∈, even though Q≤ is an infinite up-set and
hence a selector, contradicting the minimality of S. Thus PS is Noetherian and every
element of PS has finite rank.

Now say PS has an infinite level PSn, which must cover SP, by Proposition 1.12.
Take minimal L ⊆ P with LS = PSn, which must be an antichain in P, as LS is an
antichain in PS. By Proposition 1.15, L cannot be a cap, i.e. P \ L is a selector and
hence contains a minimal selector S /∈

⋃
LS , contradicting the fact that LS covers SP.

Thus PS has finite levels and is thus an ω-poset.
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When P is prime and X = p∈ in (2.3), the union
⋃
X can be described in simple

terms using the common lower bound relation ∧ = ≥◦≤, i.e. p∧ q means there exists
some r ∈ P below both p and q or, more symbolically,

p ∧ q ⇐⇒ ∃r ∈ P (p, q ≥ r).

Note that the following is equivalent to saying that p∧q holds precisely when p∈∩q∈ ̸=
∅.

Proposition 2.30. If P is a prime ω-poset, then, for all p ∈ P,

(2.4)
⋃
p∈ = p∧.

Proof: If P is an ω-poset, then every S ∈ p∈ is a filter, by Proposition 2.13, and hence
S ⊆ p∧, showing that

⋃
p∈ ⊆ p∧. Conversely, if P is prime and p ∧ q, then, taking

any r ∈ p≥ ∩ q≥, by assumption we have some S ∈ r∈ ⊆ p∈ ∩ q∈ and hence q ∈
⋃
p∈,

showing that p∧ ⊆
⋃
p∈.

Incidentally, this result also holds for any cap-basis P of a space X (which again
applies to all cap-determined ω-posets, by Corollary 2.15). Indeed, in this case

p ∧ q ⇐⇒ p ∩ q ̸= ∅,
for if p, q ⊇ r ∈ P, then p ∩ q ̸= ∅, as r ̸= ∅ (see the comments after Definition 1.10).
Conversely, if x ∈ p ∩ q, then, as P is a basis, we have r ∈ P with x ∈ r ⊆ p ∩ q.
Proposition 2.9 then yields

⋃
p∈ =

⋃
x∈p x

∈ = p∧.
Here is another simple observation about ∧ that will soon be useful.

Proposition 2.31. For any p, q ∈ P and C ∈ CP,
p ∧ q =⇒ ∃c ∈ C (p ∧ c ∧ q).

Proof: If C ∈ CP, then we have B ∈ BP with B ≤ C. If p ∧ q, then we have r ≤ p, q.
As B is a band, we then have b ∈ B∩(r≤∩r≥). If b ≤ r, then b ≤ p, q, b, while if r ≤ b,
then r ≤ p, q, b. In either case p ∧ b ∧ q and hence p ∧ c ∧ q, for any c ∈ C ∩ b≤.

2.5. Stars. For Hausdorff spectra, stars play a particularly important role. Specifi-
cally, as in [25, §2.3], we denote the star of p ∈ P in C ∈ CP by

Cp = C ∩ p∧.
The first thing to observe is the following.

Proposition 2.32. Stars are never empty.

Proof: For any p ∈ P and C ∈ CP, certainly p∧p so Cp ̸= ∅, by Proposition 2.31.

For any C ∈ CP, let us define a relation ◁C on P by

p ◁C q ⇐⇒ Cp ≤ q.

Note that ◁C is also compatible with the ordering, i.e. for all p, p′, q, q′ ∈ P,
(Compatibility) p ≤ p′ ◁C q′ ≤ q =⇒ p ◁C q.

Indeed, if p ≤ p′ ◁C q′ ≤ q, then Cp ⊆ Cp′ ≤ q′ ≤ q, i.e. p ◁C q. Also

(Transitivity) p ◁C q ◁C r =⇒ p ◁C r,

as the left-hand side means Cp ≤ q and hence Cp ⊆ Cq ≤ r, thus giving the right-hand
side. Also note that refining the cap results in a weaker relation, i.e. for all B,C ∈ CP,
(2.5) B ≤ C =⇒ ◁C ⊆ ◁B .

Indeed, if B ≤ C and p ◁C q, then pB ≤ pC ≤ q, i.e. p ◁B q.
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The star-below relation is the minimal relation ◁ on P containing all of these

(Star-below) ◁ =
⋃
C∈CP

◁C ,

i.e. p ◁ q means p ◁C q, for some C∈CP and hence some B ∈ BP, by (2.5). Whenever
p ◁C q, for some C ∈ CP, note that we can always replace C with D = C \ q≥∪{q} ∈
CP. In other words, ◁ could also be defined more explicitly by

p ◁ q ⇐⇒ ∃C ∈ CP (Cp = {q}).

We again immediately see that ◁ is compatible with the ordering. As long as P is
an ω-poset then it is also transitive – in this case any B,C ∈ CP has a common
refinement D ∈ CP and so p ◁B q ◁C r implies p ◁D q ◁D r, by (2.5), and hence
p ◁D r, by (Transitivity). We also see that ◁⊆ ∧ and even

(2.6) ∧ ◦◁ ⊆ ∧.

Indeed, if p ∧ q ◁ r, then we have s ≤ p with s ≤ q ◁ r and hence s ◁C r, for
some C ∈ CP. Then Proposition 2.32 yields t ∈ Cs so p ≥ s ∧ t ≤ r and hence p ∧ r.

The significance of ◁ is that it represents ‘closed containment’ in the spectrum.

Proposition 2.33. If P is an ω-poset, then, for all p ∈ P,

(2.7) p ◁ q =⇒ cl(p∈) ⊆ q∈.

The converse also holds when P is also prime.

Proof: If p ◁ q, then we have C ∈ CP with Cp ≤ q. Take S ∈ cl(p∈) =
(⋃

p∈
)⊇

,
by (2.2). By Proposition 2.13, all minimal selectors are filters so

⋃
p∈ ⊆ p∧ and

hence S ⊆ p∧. It follows that ∅ ≠ S ∩C ⊆ Cp ≤ q and hence q ∈ S≤ = S, i.e. S ∈ q∈.
This shows that cl(p∈) ⊆ q∈.

Now assume P is prime. If p ̸◁ q, then Cp ≰ q, for every C ∈ CP, i.e. p∧ \ q≥ is
a selector. By Proposition 2.3, we have a minimal selector S ⊆ p∧ \ q≥ and hence

S ∈ p∧⊇ =
(⋃

p∈
)⊇

= cl(p∈), by (2.2) and (2.4) (this is where we need P to be
prime). Thus S ∈ cl(p∈) \ q∈ witnesses cl(p∈) ⊈ q∈.

In particular, p ◁ q implies p∈ ⊆ q∈ and hence p ≾ q, by (2.1), so

P is a cap-determined ω-poset =⇒ ◁ ⊆ ≤.

However, there are non-cap-determined ω-posets with ◁ ⊈ ≤. For example, if we take
P = −ω, then, for any p, q ∈ P, we see that C = {min(p, q)} is a band with Cp = C ≤ q
and hence p ◁ q, i.e. ◁ = P× P ⊈ ≤.

There is one other situation worth noting, though, when p ◁ q implies p ≤ q.

Proposition 2.34. If P is an ω-poset and p ∈ P is an atom, then p◁ = p≤.

Proof: Take a level L containing p and note that pL = {p}. Indeed, if l ∈ pL, then
we have q ∈ p≥ ∩ l≥ so q = p, as p is an atom, and hence l = p, as distinct elements
of L are incomparable. Thus p ≤ q implies p ◁L q. Conversely, if p ◁ q, then we have
a band B with p ◁B q. Thus we have b ∈ B comparable to p and hence p ≤ b, as p is
an atom. Thus b ∈ Bp ≤ q and hence p ≤ b ≤ q.

But sometimes we can replace ◁ with ◁ ∩ ≤. First let us call R ⊆ P round if

(Round) R ⊆ R◁,
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i.e. R is round if each r ∈ R is star-above some q ∈ R. Let us also call S ⊆ P star-prime
if it overlaps every star of every element of S, i.e.

(Star-prime) p ∈ S and C ∈ CP =⇒ S ∩ Cp ̸= ∅.
For example, P itself is always star-prime, by Proposition 2.32.

Proposition 2.35. If P is an ω-poset and S ⊆ P is both round and star-prime, then,
for every r ∈ S, we have s ∈ S such that both s ◁ r and s ≤ r hold.

Proof: Take any r ∈ S. If S is round, then we have p, q ∈ S and C,D ∈ CP with p ◁C
q ◁D r. If P is an ω-poset, then we have B ∈ CP refining both C and D. If S is
star-prime, then we have s ∈ Bp ∩ S. We then have c ∈ C with c ≥ s ∧ p and
hence c ∈ Cp ≤ q. So s ≤ c ≤ q ◁ r and hence s ◁ r, by (Compatibility). On the
other hand, we also have d ∈ D with d ≥ s ≤ q so d ∈ Dq ≤ r and hence s ≤ d ≤ r.

If P is round, we can also improve on (2.6) as follows.

Proposition 2.36. If P is round, then

∧ = ∧ ◦◁.

Proof: We already know ∧ ⊇ ∧ ◦ ◁, by (2.6). Conversely, say p ∧ q, so we have r ∈
p≥ ∩ q≥. If P is round, then we have s ◁ r so p, q ▷ s, by (Compatibility), and hence
p ∧ s ◁ q, by (2.6) again, showing that ∧ ⊆ ∧ ◦◁.

To say more, we will also need the caps to be ‘round’ in an appropriate sense.

2.6. Regularity. The key condition for Hausdorff spectra is regularity.

Definition 2.37. We call P regular if every cap is ◁-refined by another cap, i.e.

(Regular) CP ⊆ CP◁.

Equivalently, here we could strengthen ◁-refinement to star-refinement where

(Star-refinement) C star-refines D ⇐⇒ C ◁C D.

Proposition 2.38. An ω-poset P is regular precisely when every band or cap is star-
refined by another band or cap.

Proof: One direction is immediate from the fact that star-refinement is stronger
than ◁-refinement. Conversely, say P is regular and take D ∈ CP. By regularity
and (Compatibility), we have B ∈ BP with B ◁ D, i.e. for each b ∈ B, we have Cb ∈
CP and db ∈ D with Cbb ≤ db. As B is finite and P is an ω-poset, we have A ∈ BP
with A ≤ B and A ≤ Cb, for all b ∈ B. For every p ∈ A, we then have b ∈ B with p ≤ b
and hence Ap ≤ Cbp ⊆ Cbb ≤ db, showing that A ◁A D.

In regular ω-posets, the spectrum consists of round filters. In fact, it suffices to
consider L ⊆ P that are merely linked in that p ∧ q, for all p, q ∈ L.

Proposition 2.39. Every round linked selector is minimal. If P is an ω-poset,

every minimal selector is round ⇐⇒ P is regular.

Proof: If S is round, then, for any s ∈ S, we have t ∈ S and C ∈ CP with t ◁C s. If
S is also linked, then S ∩ C ⊆ Ct so this implies S ∩ C ≤ s and hence (C \ S) ∪ {s}
is a cap, as it is refined by the cap C. As S ∩ ((C \ S) ∪ {s}) = {s}, if S is also a
selector, then this shows that it must be minimal.

Now if P is not regular, then we have C ∈ CP \CP◁. This means that C▷ does not
contain any cap, i.e. P \C▷ is a selector and hence contains some minimal selector S,
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by Proposition 2.3. In particular, we have some c ∈ C ∩ S and hence s ◁̸ c, for
all s ∈ S, showing that S is not round.

Conversely, say P is a regular ω-poset and take a minimal selector S. For any s ∈ S,
minimality yields C ∈ CP such that S ∩ C = {s}. As P is regular, we have D ∈CP
with D ◁D C. As S is a selector, we have d ∈ D ∩ S. Taking c ∈ C with d ◁D c and
hence d ≤ c, it follows that c ∈ S so s = c ▷ d, showing that S is round.

Regularity thus means that the spectrum is Hausdorff/regular/metrisable.

Corollary 2.40. If P is an ω-poset, then

P is regular =⇒ SP is Hausdorff.

The converse also holds as long as P is prime.

Proof: If P is a regular ω-poset, then, whenever S ∈ p∈, Proposition 2.39 yields q ∈ S
with q ◁ p so S ∈ q∈ and cl(q∈) ⊆ p∈, by (2.7). This shows that SP is a regular space
and, in particular, Hausdorff.

Conversely, if P is a prime ω-poset that is not regular, then, by Proposition 2.39,
we have some non-round S ∈ SP, i.e. we have c ∈ S \S◁ so cl(s∈) ⊈ c∈, for all s ∈ S,
by Proposition 2.33. This means that S has no closed neighbourhood contained in c∈,
showing SP is not a regular space. This, in turn, means that SP is not even Hausdorff,
as we already know that SP is compact, by Proposition 2.8.

We can now also characterise minimal selectors in regular ω-posets as follows. In
particular, in this case the spectrum consists precisely of maximal round filters, just
like those considered in compingent lattices in [29] and [32].

Proposition 2.41. If P is a regular ω-poset, then

SP = {S ⊆ P : S is a round linked selector}
= {S ⊆ P : S is a round filter selector}
= {S ⊆ P : S is a maximal round filter}.

Proof: By Proposition 2.39, every round linked selector is minimal and every minimal
selector is round. By Corollary 2.14, every minimal selector is also a filter and, in
particular, linked. This proves the first two equalities.

For the last, first note that any round filter R containing a selector S must again be
a selector and hence a minimal selector, by what we just proved, which implies R =
S. This shows that round filter selectors are always maximal among round filters.
Conversely, say M is a maximal round filter. If M were not a selector, then it would
be finite and not contain any atoms of P, by Proposition 2.4. AsM is a filter, finiteness
implies it has a minimum m, but then M = m≥ would not be maximal, as m is not
an atom, a contradiction. Thus M is a selector.

When the space X in Proposition 1.23 and Theorem 1.29 is Hausdorff, minor mod-
ifications of the proofs allow us to construct the cap-bases so that strict containment
implies closed containment, i.e.

p ⫋ q =⇒ cl(p) ⊆ q.

In terms of the resulting poset, this means < ⊆ ◁ (and we can likewise modify the
proof of Theorem 3.10 below when P is regular to ensure < ⊆ ◁ on the subposet Q).
When < ⊆ ◁, our spectrum consists precisely of the ultrafilters, i.e. the maximal filters
in P. This ultrafilter spectrum is just like that considered for Boolean algebras in the
classical Stone duality (originally formulated in terms of maximal ideals – see [30])
and has also been considered for general posets more recently in [21].
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Corollary 2.42. If P is a regular ω-poset with < ⊆ ◁, then

SP = {U ⊆ P : U is an ultrafilter}.

Proof: Assume P is an ω-poset with < ⊆ ◁. Take an ultrafilter U ⊆ P. If U has no
minimum, then it is round because < ⊆ ◁. If U has a minimum m, then this must be
an atom, by maximality, in which case m ◁ m so U is again round. So all ultrafilters
are round and hence these are precisely the maximal round filters. The result now
follows immediately from Proposition 2.41.

However, for graded posets, this only happens when ◁ is reflexive. In this case the
spectrum has to be totally disconnected and so this never happens for the continua
(⇔ connected compacta) we are primarily interested in.

Proposition 2.43. If P is a graded ω-poset with < ⊆ ◁, then ◁ is reflexive.

Proof: Assume P is an ω-poset with < ⊆ ◁ and take any p ∈ P. If p is an atom,
then, in particular, p ◁ p. If p is not an atom, then F = p≥ ∩ Pr(p)+1 is a finite set

with p> =
⋃
f∈F f

≥. As < ⊆ ◁, we then have C ∈ CP with f ◁C p, for all f ∈ F .
Take any q∈ Cp, so q∈ C and we have r ≤ p, q. If r = p, then q = p because p = r < q
would imply q ≥ f and, in particular, q ∈ Cf ≤ p, for any f ∈ F , a contradiction. On
the other hand, if r < p, then r ≤ f , for some f ∈ F , which implies q ∈ Cf ≤ p. In
either case, q ≤ p, showing that Cp ≤ p, i.e. p ◁C p. As p was arbitrary, this proves
that ◁ is reflexive.

Regularity also yields the following characterisations of prime subsets.

Proposition 2.44. Consider the following statements about some S ⊆ P.
(1) S is prime.
(2) S is star-prime and round.
(3) S is a round up-set whose atoms are all already atoms in P.

If P is an ω-poset, then (2) ⇒ (3) ⇒ (1). If P is also regular, then (1) ⇒ (2) as well.

Proof: (2) ⇒ (3) If S is round, then, for any p ∈ S, we have q ∈ S and C ∈ CP
with q ◁C p. For any t ≥ p, this means D = (C \ Cq) ∪ {t} is refined by C and is
thus also a cap with Dq = {t}. If S is also star-prime, then t ∈ S, showing that S is
an up-set. Moreover, if p is not an atom in P, then we can choose B ∈ CP refining C
with p /∈ B (e.g. take t < p and B = Pn for some n ≥ r(t) with Pn ≤ C). As S is
star-prime, we then have r ∈ S ∩ Bq ≤ Cq ≤ p. Thus S ∋ r < p, showing that p is
not an atom in S either.

(3) ⇒ (1) Take any p ∈ S. If we have some atom a of P with a ◁ p and hence a ≤ p,
then a≤ is a minimal selector containing p. Otherwise, assuming S is round and has
no extra atoms, we can recursively define a sequence of distinct pn ∈ S with p = p0
and pn ▷ pn+1, for all n ∈ ω. As long as S is also an up-set, the upwards clo-
sure U =

⋃
n∈ω p

≤
n is then a round linked selector. In particular, U is a minimal

selector containing p, by Proposition 2.39. So S is a union of minimal selectors and
thus prime, by Proposition 2.23.

(1) ⇒ (2) Now if P is regular, then every S ∈ SP is round and linked, by Proposi-
tion 2.39. Thus, for every s ∈ S and C ∈ CP, ∅ ≠ S ∩ C ⊆ S ∩ Cs, i.e. S ∩ Cs ̸= ∅.
So every minimal selector is round and star-prime and hence the same applies to
any union of minimal selectors. By Proposition 2.23, these are precisely the prime
subsets.
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As P itself is always star-prime, the above result implies that, in particular, any
round ω-poset is prime and, conversely, any regular prime ω-poset is round. Also, if
◁ ⊆ < (e.g. if P is a cap-basis of proper open subsets of a continuum), then no round
subset can contain any atoms, making the last condition in (3) superfluous, i.e. in
this case every round up-set is prime (and conversely if P is also regular).

Lastly, we note that linked selectors can be made round by taking the star-up-
closure.

Corollary 2.45. If P is regular and S ⊆ P is a linked selector, then S◁ ∈ SP.

Proof: First note S◁ is linked, by (2.6). To see that S◁ is a selector, take any C ∈
CP. As P is regular, we have B ∈ CP with B ◁ C. As S is a selector, we have
b ∈ B ∩ S. Then we have c ∈ C ∩ b◁ ⊆ C ∩ S◁, as required. To see that S◁ is
round, take any t∈S◁, so we have s ∈ S and C ∈ CP with s ◁C t. As P is regular,
we have B ∈ CP with B ◁ C. As S◁ is a selector, we have b ∈ B ∩ S◁. Then we
have c ∈ C ∩ b◁ ⊆ C ∩ S◁◁ ⊆ Cs, again by (2.6), so b ◁ c ≤ t, showing that S◁ is
indeed round. Thus S◁ is a minimal selector, by Proposition 2.39.

This gives us the following variant of Proposition 2.9, showing that Example 2.17
is one instance of a more general phenomenon where the spectrum of a regular ω-basis
is a quotient of the original compactum.

Corollary 2.46. If P ⊆ PX \ {∅} is a regular ω-basis of a T1 space X, then

η(x) = x∈◁ = {p ∈ P : ∃q ∈ P (x ∈ q ◁ p)}
defines a continuous map η : X → SP. If X is compact, then η is also a closed sur-
jective map. In this case, η is also injective precisely when P is a cap-basis.

Proof: Take any x ∈ X and first note that x∈ is linked, as P is a basis. Also any C ∈ CP
coversX, by Proposition 1.7, and hence overlaps x∈, showing that x∈ is also a selector.
By Corollary 2.45, x∈◁ ∈ SP, showing that η maps X to SP. Continuity is then
immediate from the fact that η−1[p∈] =

⋃
p▷, for all p ∈ P.

Now assume X is compact. First we claim that, for all p, q ∈ P,
p ◁ q =⇒ cl(p) ⊆ q.

To see this, just note again that any C ∈ CP covers X, by Proposition 1.7, and hence
p ◁C q implies cl(p) ⊆

⋃
Cp ⊆ q, as P is a basis. By Proposition 2.39, any S ∈ SP is

round and so this means
⋂
S =

⋂
s∈S cl(s) ̸= ∅, as X is compact. Taking any x ∈

⋂
S,

it follows that S ⊆ x∈ and hence S ⊆ S◁ ⊆ x∈◁. Thus S = x∈◁, as x∈◁ is a minimal
selector, showing that η is surjective.

Similarly, we can show that η is a closed map. To see this, take any closed Y ⊆ X
and any S ∈ cl(η[Y ]). By compactness, ∅ = Y ∩

⋂
S
(
= Y ∩

⋂
s∈S cl(s)

)
would imply

that Y ∩
⋂
F = ∅, for some finite F ⊆ S. As S ∈ cl(η[Y ]) ∩

⋂
f∈F f

∈, we would

then have y ∈ Y with η(y) ∈
⋂
f∈F f

∈. But this means F ⊆ y∈◁ ⊆ y∈ and hence y ∈
Y ∩

⋂
F = ∅, a contradiction. Thus we must have some y ∈ Y ∩

⋂
S so S ⊆ S◁ ⊆ y∈◁

and hence S = y∈◁ ∈ η[Y ], showing that η[Y ] is closed.
If P is a cap-basis, then x∈ is already a minimal selector so x∈◁ = x∈, for any x ∈ X,

and hence η is injective, by Proposition 2.9. Conversely, if P is not a cap-basis, then
X has a cover C ⊆ P which is not a cap. Thus P \C is a selector and hence contains
a minimal selector S, again with

⋂
S ̸= ∅, by compactness. If we had

⋂
S = {x}, for

some x ∈ X, then x would lie in some c ∈ C. But then
⋂
S \ c = ∅, so compactness

would yield finite F ⊆ S with
⋂
F \ c = ∅. As P is a basis, we would then have s ∈ S

with x ∈ s ⊆
⋂
F and hence s \ c = ∅, meaning s ⊆ c and hence c ∈ s≤ ⊆ S,
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contradicting S ⊆ P\C. Thus
⋂
S contains at least two distinct x, y ∈ X, necessarily

with S ⊆ x∈ ∩ y∈ and hence S = η(x) = η(y), showing that η is not injective.

2.7. Subcontinua. Next we examine connected subsets of the spectrum.
While the open subset p∈ coming from a single p ∈ Pmay not be connected, subsets

of P can still form analogous ‘clusters’. First let us extend ∧ to subsets A,B ⊆ P by
defining

A ∧B ⇐⇒ ∃a ∈ A∃b ∈ B (a ∧ b).
We call C ⊆ P a cluster if

(Cluster) A ̸= ∅ ≠ B and A ∪B = C =⇒ A ∧B.
In other words, C is a cluster precisely when it is connected as a subset of the graph
with edge relation ∧. Put another way, C fails to be a cluster precisely when C has
a non-trivial discrete partition {A,B}, meaning A ̸= ∅ ̸= B, A ∩ B = ∅, A ∪ B = C,
and a≥ ∩ b≥ = ∅, for all a ∈ A and b ∈ B.

The first thing to observe is that clusters are ‘upwards closed’. For convenience,
here and below we let ⊏D = ⊏|D = ⊏ ∩ (P×D), for any ⊏ ⊆ P× P and D ⊆ P.

Proposition 2.47. If C ⊆ P is a cluster and C ≤ D, then C≤D is also a cluster.

Proof: Say C≤D = A ∪ B, where A ̸= ∅ ≠ B and hence A≥C ̸= ∅ ≠ B≥C . If C ≤ D,
then C = A≥C ∪B≥C . If C is also a cluster, then we must have c ∈ A≥C and d ∈ B≥C

with c ∧ d. This means we have a ∈ A and b ∈ B with a ≥ c ∧ d ≤ b and hence a ∧ b,
showing that C≤D is also a cluster.

Connected subsets of the spectrum yield clusters in all caps.

Proposition 2.48. If P is an ω-poset and X ⊆ SP is connected, then C ∩
⋃
X is a

cluster, for every cap C ∈ CP.

Proof: If C ∩
⋃
X were not a cluster, for some C ∈ CP, then it would have a discrete

partition {A,B}. As every minimal selector in an ω-poset is a filter, this means
Y =

⋃
a∈A a

∈ and Z =
⋃
b∈B b

∈ are disjoint non-empty (as p∈ ̸= ∅, for all p ∈
⋃
X)

open subsets covering X, contradicting its connectedness.

Recall from Proposition 2.21 that any Q ⊆ P defines a closed subset of the spec-
trum Q⊇ = {S ∈ SP : S ⊆ Q}. As a converse to the above, we can show that if Q∩C
is a cluster, even just coinitially often, then Q⊇ is connected.

Proposition 2.49. If P is a regular prime ω-poset and Q ⊆ P is an up-set selector,

{C ∈ CP : Q ∩ C is a cluster} is coinitial in CP =⇒ Q⊇ is connected.

Proof: If P is a regular ω-poset, then SP is Hausdorff, by Corollary 2.40. Thus if Q⊇

were not connected, then we would have A,B ⊆ P such that the corresponding open
sets O =

⋃
a∈A a

∈ and N =
⋃
b∈B b

∈ form a disjoint minimal cover of Q⊇. Assuming

P is also prime (and hence a ∧ b implies a∈ ∩ b∈ ̸= ∅), this means a≥ ∩ b≥ = ∅, for
all a ∈ A and b ∈ B.

If Q is an up-set selector and {C ∈ CP : Q ∩ C is a cluster} is coinitial in CP,
we claim that Q \ (A ∪ B) is still a selector. Indeed, this means that any D ∈ CP is
refined by some C∈CP such that Q ∩C is a cluster. Then D′ = (Q ∩C)≤D ⊆ Q ∩D
is also a cluster so Q ∩ D ⊆ A ∪ B would imply that D′ is contained in either A
or B. Assume D′ ⊆ A. Take S ∈ N ∩ Q⊇, so we have some b ∈ B ∩ S. As S is a
selector, S ∩C ̸= ∅ and hence we also have a ∈ (S ∩C)≤D ⊆ D′ ⊆ A. But then a∧ b,
as a, b ∈ S, a contradiction. Likewise, we get a contradiction if D′ ⊆ B, so the only
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possibility is that, in fact, Q ∩ D ⊈ A ∪ B. As D was an arbitrary cap, this shows
that Q \ (A ∪B) is still a selector and hence contains some minimal selector T . But
then T ∈ Q⊇ \ (O ∪N), again a contradiction. Thus Q⊇ is connected.

In particular, Proposition 2.48 and Proposition 2.49 tell us that if P is a regular
prime ω-poset, X ⊆ SP is closed, and C =

{
C ∈ CP :

⋃
X ∩ C is a cluster

}
, then

X is connected ⇐⇒ C = CP ⇐⇒ C is coinitial in CP.
Hereditarily indecomposable spaces have been a topic of much interest in continuum

theory since the discovery of the pseudoarc (see [7] and [20]). Here we will show how
to characterise them in terms of certain ‘tangled’ refinements. These are more in
the original spirit of Bing’s crooked refinements, in contrast to the crooked covers
introduced by Krasinkiewicz and Minc to characterise hereditary indecomposability
(as discussed in [18], [24], and [2]).

First let us recall some standard terminology for a compactum X. We call any
closed connected Y ⊆ X a subcontinuum. We call X indecomposable if it is not
the union of two proper subcontinua. We call X hereditarily indecomposable if every
subcontinuum is indecomposable (note here that we do not require X itself to be
connected, although that is the case of primary interest). This is equivalent to saying
that any two subcontinua of X that overlap are comparable, i.e. one is contained in
the other.

This motivates the definition of a ‘tangled’ refinement. Specifically, we call a re-
finement A ⊆ P of B ⊆ P tangled if, for all clusters C,D ⊆ A,

C ∧D =⇒ C ⊆ D≤B≥ or D ⊆ C≤B≥.

More explicitly, C ⊆ D≤B≥ means that every c ∈ C shares an upper bound in B with
some d ∈ D, while D ⊆ C≤B≥ means that every d ∈ D shares an upper bound in B
with some c ∈ C. We denote tangled refinements by ↬, i.e.

A B↫→ ⇐⇒ A is a tangled refinement of B.

In particular, A ↬ B implies A ≤ B. Next we show that tangled refinements are
auxiliary to general refinements in the sense that if A is a tangled refinement of B,
then any refinement of A is a tangled refinement of any family refined by B.

Proposition 2.50. For any A,A′, B,B′ ⊆ P,

A′ ≤ A B↫→ ≤ B′ =⇒ A′ B′.↫→

Proof: Take clusters C,D ⊆ A′ so C≤A and D≤A are then also clusters. If C ∧ D,
then C≤A ∧D≤A and hence, by the definition of ↬, either C≤A ⊆ D≤A≤B≥ ⊆ D≤B≥

or D≤A ⊆ C≤A≤B≥ ⊆ C≤B≥. If C≤A ⊆ D≤B≥, then A′ ≤ A and B ≤ B′ imply

C ⊆ C≤A≥ ⊆ D≤B≥≥ = D≤B≥ ⊆ D≤B≤B′≥≥ ⊆ D≤B′≥.

Likewise, if D≤A ⊆ C≤B≥, then D ⊆ C≤B′≥, showing that A′ ↬ B′.

Let us call P ∈ FP a path if P is a path graph with respect to the relation ∧, which
means we have an enumeration {p1, . . . , pn} of P such that

pj ∧ pk ⇐⇒ |j − k| ≤ 1.

For paths, tangled refinements can be characterised in a similar manner to the crooked
refinements from [7] used to construct the pseudoarc, as we now show.

Note that any cluster in a path P is also a path and each pair q, r ∈ P is contained
in a unique minimal cluster/subpath, which we will denote by [q, r]. We further define
[q, r) = [q, r] \ {r}, (q, r] = [q, r] \ {q}, and (q, r) = [q, r] \ {q, r}.
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Proposition 2.51. If P,Q ⊆ P are paths with P ≤ Q, then

(2.8) P Q↫→ ⇐⇒ ∀a, d∈P ∃b ∈ [a, d]∃c∈ [b, d]∃q, r∈Q (a, c ≤ q and b, d ≤ r)

⇐⇒ ∀a, d ∈ P ∃b ∈ [a, d]∃c ∈ [b, d] ([a, d]⊆ [a, b]≤Q≥∩[c, d]≤Q≥).(2.9)

Proof: Assume the right-hand side of (2.8) holds. To show that (2.9) holds, take
any a, d ∈ P . Then we have g, h ∈ Q with [a, d]≤ = [g, h] and we may pick a′, d′ ∈ [a, d]
with a′ ≤ g and d′ ≤ h. If p≤Q = {g}, for some p ∈ [a, d], then we may further ensure
that a′≤Q = {g} and, likewise, if p≤Q = {h}, for some p ∈ [a, d], then we may further
ensure that d′≤Q = {h}. By (2.9), we have b ∈ [a′, d′] and c ∈ [b, d′] with a′, c ≤ q and
b, d′ ≤ r, for some q, r ∈ Q. If a′≤Q = {g}, then q = g and hence [c, d′]≤Q≥ = [g, h]≥ ⊇
[a, d]. On the other hand, if a′≤Q ̸= {g}, then p≤Q ̸= {g} and hence p≤ ∩ (g, h] ̸= ∅,
for all p ∈ [a, d], which again yields [c, d′]≤Q≥ ⊇ (g, h]≥ ⊇ [a, d]. Likewise, we see that
[a′, b]≤Q≥ ⊇ [a, d]. Expanding [a′, b] and [c, d′] to include a and d then shows that
(2.9) holds.

Now assume (2.9) holds and take any clusters/subpaths A,D ⊆ P with A∧D. This
means A∪D = [a, d], for some a, d∈P , so we have b∈ [a, d], c ∈ [b, d] satisfying (2.9).
It follows that A or D must contain [a, b] or [c, d] and hence that D ⊆ A≤Q≥ or A ⊆
D≤Q≥, e.g. if [a, b]⊆A, then D ⊆ [a, d] ⊆ [a, b]≤Q≥ ⊆ A≤Q≥. This shows that P ↬ Q.

Finally, assume that P ↬ Q and take any a, d ∈ P . Then we have b ∈ [a, d] such
that b shares an upper bound in Q with d but no element of [a, b) does. As P ↬ Q,
this implies [a, b) ⊆ [b, d]≤Q≥ and, in particular, we have some c ∈ [b, d] sharing an
upper bound in Q with a (because a ∈ [a, b), as long as a ̸= b, while if a = b, then we
can just take c = a too). This shows that the right-hand side of (2.8) holds.

In the next result it will be convenient to consider a slight weakening of ↬. Specif-
ically, let us call a refinement A ⊆ P of B ⊆ P weakly tangled, denoted A ↬w B, if,
for all clusters C,D ⊆ A,

C ∩D ̸= ∅ =⇒ C ⊆ D≤B≥ or D ⊆ C≤B≥.

We call P (weakly) tangled if every cap has a (weakly) tangled refinement, i.e.

((Weakly) Tangled) C ∈ CP =⇒ ∃D ∈ CP (D (w) C).↫→

We immediately see that A ◁ B ↬w C implies A↬ C so

P is regular and weakly tangled =⇒ P is tangled.

The following result thus tells us that, among prime regular ω-posets, those with
hereditarily indecomposable spectra are precisely the tangled posets.

Theorem 2.52. If P is an ω-poset, then

P is weakly tangled =⇒ SP is hereditarily indecomposable.

The converse holds if P is also regular and prime.

Proof: Assume SP is not hereditarily indecomposable, so we have overlapping incom-
parable subcontinua Y,Z ⊆ SP. So we can take S ∈ Y \Z and T ∈ Z \Y and obtain a
minimal open cover of SP consisting of the sets SP\Y , SP\Z, and SP\{S, T}. This is
refined by some basic cover (c∈)c∈C , necessarily with C ∈ CP, by Proposition 2.8. Now
take D ∈ CP with D ≤ C. By Proposition 2.48, we have clusters A = D ∩

⋃
Y and

B = D∩
⋃
Z, necessarily with A∩B ̸= ∅, as Y ∩Z ̸= ∅. We also have a ∈ D∩S ⊆ A

and b ∈ D ∩ T ⊆ B. Taking any c ∈ C with a ≤ c, we see that S ∈ a∈ ⊆ c∈ and
so c∈ ⊈ SP\Y and c∈ ⊈ SP\{S, T}, the only remaining option then being c∈ ⊆ SP\Z.
But whenever B ∋ b′ ≤ c′ ∈ C, we see that b′ ∈

⋃
Z, so we have U ∈ Z with b′ ∈ U
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and hence U ∈ b′∈ ⊆ c′∈. Thus implies c′∈ ⊈ SP \ Z and hence c′ ̸= c. Likewise, we
see that b has no common upper bound in C with any element of A. This shows that
D is not a weakly tangled refinement of C. As D was arbitrary, this shows that P is
not a weakly tangled poset, thus proving ⇒.

Conversely, assume P is regular and prime but not weakly tangled, so we have C ∈
BP such thatD ̸↬w C, for allD ∈ CP. Take a coinitial decreasing sequence (Cn) ⊆ BP
with C0 ≤ C. As Cn ̸↬w C, we have overlapping clusters An, Bn ⊆ Cn such that
An ⊈ B≤C≥

n and Bn ⊈ A≤C≥
n . Taking a subsequence if necessary, we can obtain

clusters A,B ⊆ C with A≤C
n = A and B≤C

n = B, for all n∈ω. Taking further subse-

quences if necessary, we may assume we have clustersDm, Em ⊆ Cm with A
≤Cm
n =Dm

and B
≤Cm
n = Em whenever m < n. Note that Dn ⊆ B≥ would imply

An+1 ⊆ A
≤Cn≥
n+1 = D≥

n ⊆ B≥≥ ⊆ B≥ = B≤C≥
n+1 ,

a contradiction. Thus Dn ⊈ B≥ and, likewise, En ⊈ A≥, for all n ∈ ω.
Now note that Q =

⋂
m∈ω

⋃
n>mA

≤
n is an up-set such that Q ∩ C = A≤C

n =

A and Q ∩ Cn = A
≤Cn
n+1 = Dn, for all n ∈ ω. It follows that Q⊇ is connected,

by Proposition 2.49. Likewise, we have an up-set R =
⋂
m∈ω

⋃
n>mB

≤
n such that

R ∩ C = B and R⊇ is connected. Also Q′ =
⋃
n∈ω(Dn \ B≥)≤ ⊆ Q \ B is a selector

and hence contains a minimal selector in Q⊇ \ R⊇, seeing as R ∩ C = B. Likewise,
R′ =

⋃
n∈ω(En \A≥)≤ ⊆ R \A contains a minimal selector in R⊇ \Q⊇. Lastly note

that ∅ ̸= Dn ∩ En ⊆ Q ∩ R, for all n ∈ ω, so Q ∩ R also contains a minimal selector
in Q⊇ ∩R⊇. Thus Q⊇ and R⊇ are incomparable overlapping subcontinua and hence
SP is not hereditarily indecomposable.

3. Functoriality

Here we examine order-theoretic analogues of continuous maps, using these to
obtain a more combinatorial equivalent of the usual category of metrisable compacta.

Throughout this section, fix some posets P, Q, R, and S.
For extra clarity, we will sometimes use subscripts to indicate which poset we are

referring to, e.g. ≤P and ≤Q refer to order relations on P and Q respectively.

3.1. Continuous maps.

Definition 3.1. We call ⊐ ⊆ Q× P a refiner if

(Refiner) CQ ⊆ CP⊏,

i.e. if each cap of Q is refined by some cap of P.

For example, in this terminology a poset is regular precisely when the star-above
relation ▷ ⊆ P× P is a refiner.

We can use refiners to encode continuous maps as follows.

Proposition 3.2. If P is an ω-poset and ϕ : SP → SQ is continuous, then

(3.1) q ⊐ϕ p ⇐⇒ ϕ−1[q∈] ⊇ p∈

defines a refiner ⊐ϕ ⊆ Q× P such that S⊏ϕ = ϕ(S) for every S ∈ SP.

Proof: Any C ∈ CQ defines a cover CS of SQ, which in turn yields a cover (ϕ−1[c∈])c∈C
of SP. If P is an ω-poset, then PS is a basis for SP, by Corollary 2.14, so we have B ⊆ P
such that BS refines (ϕ−1[c∈])c∈C , with respect to inclusion, and hence B refines C,
with respect to ⊏ϕ = ⊐−1

ϕ , i.e. B ⊏ϕ C. By Proposition 2.8, B is a cap of P, so this
shows that ⊐ϕ is indeed a refiner.
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If q ∈ S⊏ϕ , then there is some p ∈ S with ϕ−1[q∈] ⊇ p∈ ∋ S so ϕ(S) ∈ q∈ and
hence q ∈ ϕ(S). On the other hand, if q ∈ ϕ(S), i.e. ϕ(S) ∈ q∈, then by continuity
there is some p ∈ S such that ϕ−1[q∈] ⊇ p∈. Hence q ⊐ϕ p ∈ S so q ∈ S⊏ϕ .

A relation ⊐ ⊆ P×Q is ∧-preserving if, for all p, p′ ∈ P and q, q′ ∈ Q,

(∧-preservation) q ⊐ p ∧ p′ ⊏ q′ =⇒ q ∧ q′.
As long as P is prime and Q is an ω-poset, the refiner ⊐ϕ defined in (3.1) will also
be ∧-preserving. Indeed, if P is prime, then, for any p, p′ ∈ P and s ≤ p, p′, we have
S ∈ SP containing s. If q ⊐ϕ p and q′ ⊐ϕ p′, then q, q′ ∈ ϕ(S) and hence q ∧ q′,
assuming Q is an ω-poset, by Proposition 2.13.

Conversely, as long as we restrict to regular posets (and hence Hausdorff spectra),
we can define continuous maps from ∧-preserving refiners.

Proposition 3.3. If P is an ω-poset and Q is a regular poset, then any ∧-preserving
refiner ⊐ ⊆ Q× P defines a continuous map ϕ⊐ : SP → SQ by

(3.2) ϕ⊐(S) = S⊏◁.

If Q and R are also regular ω-posets and ⊐− ⊆ R×Q is another ∧-preserving refiner,

(3.3) ϕ⊐− ◦ ϕ⊐ = ϕ⊐−◦⊐.

Proof: For any S ∈ SP, we see that S⊏ is a linked selector, as ⊐ is a ∧-preserving
refiner. Thus S⊏◁ ∈ SQ, by Corollary 2.45, showing that ϕ⊐ maps SP to SQ. For
continuity just note that ϕ−1

⊐ [q∈] =
⋃
p⊏◦◁q p

∈ is open, for any q ∈ Q.

Next note that the larger subset S⊏∪S⊏◁ is still linked, because ⊏ is ∧-preserving
and ∧◦ ◁⊆ ∧, by (2.6). If Q and R are also regular ω-posets and ⊐− ⊆ R × Q is
another ∧-preserving refiner, then it follows that S⊏⊏− and S⊏◁⊏− are again selectors
with linked union. Now, for any C ∈ CR, we have A,B ∈ CR with A ◁A B ◁ C. We
then have a ∈ A∩S⊏⊏− and a′ ∈ A∩S⊏◁⊏−, necessarily with a∧a′. We then also have
b ∈ B and c ∈ C with a, a′ ≤ b ◁ c and hence c ∈ S⊏⊏−◁ ∩ S⊏◁⊏−◁ ∩ C. This shows
that S⊏⊏−◁ ∩ S⊏◁⊏−◁ is a selector and hence, by the minimality of ϕ⊐−◦⊐(S) = S⊏⊏−◁

and ϕ⊐− ◦ ϕ⊐(S) = S⊏◁⊏−◁, it follows that ϕ⊐− ◦ ϕ⊐(S) = ϕ⊐−◦⊐(S).

Let K denote the category of metrisable compact spaces and continuous maps,
and let P denote the category of regular prime ω-posets and ∧-preserving refiners
(note that these are closed under composition and that idP is always a ∧-preserving
refiner). We already have a map S from objects P ∈ P to SP ∈ K and we extend this to

morphisms ⊐ ∈ PQ
P (= refiners in Q×P) by setting S(⊐) = ϕ⊐ ∈ KSQ

SP (= continuous
maps from SP to SQ – in general, for any objects A and B of a category C, we denote
the corresponding hom-set by CB

A = {m : m is a morphism from A to B}).
The previous results can thus be summarised as follows.

Theorem 3.4. The map S : P → K is an essentially surjective full functor.

Proof: For every S ∈ SP we have ϕidP(S) = S◁ = S since every minimal selector in a
regular ω-poset is round, by Proposition 2.39, and so S(idP) = idSP for every P ∈ P.
Together with (3.3), this shows that S is a functor.

Moreover, S is essentially surjective because every metrisable compactum X is
homeomorphic to SP for some cap-determined ω-poset P, by Corollary 2.10, which is
necessarily prime, by (1.7), and regular, by Corollary 2.40.

The functor is full by Proposition 3.2 since, for every pair of prime regular ω-
posets P and Q and every continuous map ϕ : SP → SQ, we have ϕ = S(⊐ϕ) (because
ϕ⊐ϕ

(S) = S⊏ϕ◁ = S⊏ϕ , as S⊏ϕ is already round, by Proposition 3.2 and Proposi-
tion 2.39). The refiner ⊐ϕ is ∧-preserving since our ω-posets are prime.



Constructing compacta from posets 255

Remark 3.5. We could turn the above result into an equivalence of categories by
simply identifying ⊐,⊐− ∈ PQ

P whenever ϕ⊐ = ϕ⊐−. Then S factors as E ◦Q, where E is
an equivalence and Q is the quotient functor. However, what we would really like is
a more combinatorial formulation of the quotient category. We will achieve this in
§3.3 via a certain category S with the same objects as P but more restrictive ‘strong
refiners’ as morphisms under a modified ‘star-composition’.

With (3.1) in mind, one might expect that q ⊐ p is equivalent to ϕ−1
⊐ [q∈] ⊇ p∈.

However, both implications may fail, even for ∧-preserving refiners on regular ω-
posets. The best we can do at this stage is to show that two weaker relations are
equivalent.

Proposition 3.6. Whenever ⊐ ∈ PQ
P ,

q ⊐ p =⇒ q∧ ⊇ p∧⊏◁ ⇐⇒ cl(q∈) ⊇ ϕ⊐[p
∈].

Proof: For the first ⇒, just note that q ⊐ p implies p∧⊏◁ ⊆ q∧◁ ⊆ q∧.
If q∧ ⊇ p∧⊏◁, then, for any S ∈ p∈,

ϕ⊐(S) = S⊏◁ ⊆ p∧⊏◁ ⊆ q∧ =
⋃
q∈,

by (2.4), and hence ϕ⊐(S) ∈ cl(q∈), by (2.2). This proves the ⇒ part.
Conversely, say cl(q∈) ⊇ ϕ⊐[p

∈] and take r ∈ p∧⊏◁. Then we have s ∈ p∧ ∩ r▷⊐

and S ∈ p∈ ∩ s∈, as P is prime (see (2.4)), necessarily with r ∈ s⊏◁ ⊆ S⊏◁ = ϕ⊐(S).
As ϕ⊐(S) ∈ ϕ⊐[p

∈] ⊆ cl(q∈), it follows that r∈ϕ⊐(S) ⊆
⋃
q∈ = q∧, by (2.2) and (2.4)

again. This shows that q∧ ⊇ p∧⊏◁, as required.

By Proposition 2.33, q ▷ r ⊐ p then implies q∈ ⊇ cl(r∈) ⊇ cl(ϕ⊐[p
∈]) and hence

ϕ−1
⊐ [q∈] ⊇ ϕ−1

⊐ [cl(ϕ⊐[p
∈])] ⊇ cl(p∈), i.e.

(3.4) q ▷ ◦ ⊐ p =⇒ ϕ−1
⊐ [q∈] ⊇ cl(p∈).

Later we will show how to turn this into an equivalence using star-composition.

3.2. Homeomorphisms. By Theorem 3.4, isomorphisms in P yield homeomor-
phisms in K. We can also obtain homeomorphisms of spectra from much more general
pairs of refiners, even between non-regular posets.

Let ≿P ⊆ P× P be the cap-order ≿ ⊆ PP× PP restricted to singletons, i.e.

p ≿P p
′ ⇐⇒ {p} ≿ {p′} ⇐⇒ p∈ ⊇ p′∈

(see (2.1)). Likewise define ≿Q ⊆ Q × Q and let ≾P = ≿−1
P and ≾Q = ≿−1

Q . If these
have subrelations coming from compositions of a pair of refiners between them, then
these refiners yield mutually inverse homeomorphisms between their spectra.

Proposition 3.7. If ⊐ ⊆ Q× P and ⊐− ⊆ P×Q are refiners satisfying

⊐ ◦ ⊐− ⊆ ≿Q and ⊐− ◦ ⊐ ⊆ ≿P,

then S 7→ S⊏ and T 7→ T⊏− are continuous maps between SP and SQ satisfying

S = S⊏⊏− and T = T⊏−⊏.

Proof: First note S⊏ is a selector in P whenever S is a selector in Q. Indeed, for
any D ∈ CQ, we have C ∈ CP with C ⊏ D, as ⊐ is a refiner. As S is a selector, we
have c ∈ S ∩ C. We then have d ∈ D with c ⊏ d and hence d ∈ S⊏ ∩D.

Likewise, any selector T in Q gives rise to a selector T⊏− in P, which in turn yields
another selector T⊏−⊏ = T⊏−◦⊏ ⊆ T≾Q in Q. If T is a minimal selector, then T≾Q ⊆ T ,
by (2.1), and hence T⊏−⊏ = T . Moreover, T⊏− contains some minimal selector S, by
Proposition 2.3. It follows that S⊏ ⊆ T⊏−⊏ = T , which implies S⊏ = T , by minimality.
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This in turn implies S = S⊏⊏− = T⊏−, i.e. T⊏− was already minimal. This shows that
S 7→ S⊏ and T 7→ T⊏− are mutually inverse bijections. Lastly, note that the preimage
of any subbasic open set q∈ with respect to the map S 7→ S⊏ is given by

⋃
p⊏q p

∈,

which is again open, showing that S 7→ S⊏ is continuous. Likewise, T 7→ T⊏− is also
continuous, as required.

We can also obtain a kind of converse to Proposition 3.7 by noting that

⊐ψ ◦ ⊐ϕ ⊆ ⊐ψ◦ϕ,

for any ϕ : SP → SQ and ψ : SQ → SR, as r ⊐ψ q ⊐ϕ p means ψ−1[r∈] ⊇ q∈ so

(ψ ◦ ϕ)−1[r∈] = ϕ−1[ψ−1[r∈]] ⊇ ϕ−1[q∈] ⊇ p∈.

In particular, if P and Q are ω-posets and ϕ : SP → SQ is a homeomorphism, then
⊐ϕ−1 ◦ ⊐ϕ ⊆ ⊐idSP and ⊐ϕ ◦ ⊐ϕ−1 ⊆ ⊐idSQ . But q ⊐idSP p just means q∈ ⊇ p∈, which
is equivalent to q ≿ p, by (2.1). So this shows that

⊐ϕ−1 ◦ ⊐ϕ ⊆ ≿P and ⊐ϕ ◦ ⊐ϕ−1 ⊆ ≿Q.

The following corollary of Proposition 1.13 shows that subposets of an ω-poset
containing infinitely many of its levels all have homeomorphic spectra.

Corollary 3.8. If P is an ω-poset, Q ⊆ P, and PQ ∩ BP is coinitial in BP, then
S 7→ S ∩Q and T 7→ T≤ are continuous maps between S ∈ SP and T ∈ SQ satisfying

(S ∩Q)≤ = S and (T≤ ∩Q) = T.

Proof: We claim that the caps of Q are precisely the caps of P contained in Q, i.e.

CQ = CP ∩ PQ = {C ∈ CP : C ⊆ Q}.

Indeed, if CP ∋ C ⊆ Q, then, as Q contains a coinitial subset of BP, we have some
B ∈ BP ∩ PQ ⊆ BQ refining C and hence C ∈ CQ. Conversely, take some B ∈ BQ.
For sufficiently large n ∈ ω, the cone Pn will contain B and hence the level Pn will be
disjoint from B<. As Q contains a coinitial subset of BP, we have C ∈ BP∩PQ ⊆ BQ
refining Pn, which is thus also disjoint from B<. But B is a band of Q so this implies
that C ⊆ B≥, i.e. C refines B and hence B is also a cap of P. This shows that all
bands of Q are caps of P and hence the same applies to caps of Q as well, proving the
claim.

Thus the restrictions ≥Q
P and ≥P

Q of ≥P to Q× P and P×Q are refiners satisfying

≥Q
P ◦ ≥P

Q ⊆ ≥Q ⊆ ≿Q and ≥P
Q ◦ ≥Q

P ⊆ ≥P ⊆ ≿P. Noting S≤Q
P = S ∩Q and T≤P

Q = T≤,
for all S ∈ SP and T ∈ SQ, the result now follows from Proposition 3.7.

We can also obtain a similar order-theoretic analogue of Theorem 1.29. First, we
need the following order-theoretic analogue of Lemma 1.28. Let

P∅ = {p ∈ P : p ≾ ∅}.

Also note that D ≾P B below is equivalent to saying that D refines B, with respect
to the ≾P relation on P (which is stronger than just saying D ≾ B, for the relation ≾
on PP).

Lemma 3.9. If P is an ω-poset, B is a cap, and C is a finite subset of P \ P∅ on
which ≾P is just ≤, then there is a minimal cap D ≾P B and minimal caps (Ed)d∈D
with d ∈ Ed such that, for all c ∈ C and d ∈ D,

(3.5) c ̸≾ Ed \ {d} =⇒ d ≤ c and c ≾ d =⇒ c = d and c≾ ∈ SP.
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Proof: For all F ⊆ C, we will recursively define DF ⊆ B≿P ∩
⋂
f∈F f

≥ such that

EF = D′
F ∪ (C \ F ) is a cap, where D′

F =
⋃
G⊆F DG is minimal with this property

(incidentally, DF can be empty for many F ⊆ C). In particular, D=D′
C is a minimal

cap. Also, if d ∈ DF , then C ∋ c ̸≾ EF \ {d} ⊇ C \ F implies c ∈ F and hence
d ∈ DF ≤ c, proving (3.5) when we take Ed = EF .

To perform the recursive construction, first note that every c ∈ C is contained in
a minimal cap, as C ∩ P∅ = ∅. As P is an ω-poset, these have a common refinement
with B in CP, which then refines C ∪ (B≥ \C≾P). So this must also be a cap and we

can then let D∅ be any minimal subset of B≥ \ C≾P such that C ∪D∅ is a cap.
Once DG has been defined, for G ⫋ F , note that, for each f ∈ F , we have a

cap EF\{f} = D′
F\{f} ∪ {f} ∪ (C \ F ). Each c ∈ C \ F is also again contained in a

minimal cap. These have a common refinement with B in CP, necessarily refining

E′
F = E′′

F ∪

((
B≥ ∩

⋂
f∈F

f≥
)
\ (C \ F )≾P

)
, where E′′

F =
⋃
G⫋F

DG ∪ (C \ F ).

Thus E′
F is a cap. Now say c≾P is a selector, for some c ∈ F . If c ≾ E′′

F , then E
′
F ≾ E′′

F

so E′′
F is also a cap and we may set DF = ∅. On the other hand, if c ̸≾ E′′

F , then, in

particular, c ̸≾ ∅ so c≾P ∈ SP and c≾P∩B≥∩
⋂
f∈F f

≥ ̸= ∅, as E′
F is a cap. This means

c ∈ B≿P ∩
⋂
f∈F f

≥, as ≾P is just ≤ on C, so we may set DF = {c}. Otherwise, f≾P is

not a selector, for all f ∈ F , and hence E′
F has a common refinement in CP with each

complement P \ f≾P , which in turn must refine E′′
F ∪

(
B≥ ∩

⋂
f∈F f

≥ \C≾P
)
. So this

last set is a cap and we may let DF be a minimal subset of
(
B≥ ∩

⋂
f∈F f

≥) \ C≾P

such that E′′
F ∪ DF is a cap. As DF ⊆

⋂
f∈F f

≥ this implies that D′
F =

⋃
G⊆F DG

is minimal such that D′
F ∪ (C \ F ) is a cap – otherwise we would have d ∈ DG, for

some G ⫋ F , such that (D′
F \ {d}) ∪ (C \ F ) is a cap refining D′

G \ {d} ∪ (C \ G),
contradicting the minimality of D′

G.

Above, ≾P is again just ≤ on C∪D. Indeed, for any c ∈ C and d ∈ D, d ≾P c implies
c ̸≾ Ed \ {d} (otherwise d ≾ Ed \ {d}, contradicting the minimality of Ed) and
hence d ≤ c. On the other hand, c ≾P d implies c = d and, in particular, c ≤ d.

This yields the following order-theoretic analogue of Theorem 1.29. Essentially it
says that, given any ω-poset P, we can always revert to a branching predetermined
ω-subposet Q without significantly affecting caps or the spectrum (although it is
worth noting that, even if P is graded, there is no guarantee Q will be graded too).

Theorem 3.10. Every ω-poset P contains a predetermined branching ω-poset Q
with CQ = CP ∩ PQ such that SP is homeomorphic to SQ via the maps

S 7−→ S ∩Q and T 7−→ T≾P .

Proof: Recursively define minimal caps (Dn)n∈ω and (End )
n∈ω
d∈Dn

of P as follows. First

let D0 be any minimal cap and set Ed0 = D0 \ {d}, for all d ∈ D0. Once Dk has been
defined, use the lemma above to define Dk+1 ≾P Bk and (Ekd )d∈Dk+1

satisfying (3.5),
where we take C = Ck =

⋃
j≤kDj and B = Pk. Note that then Dk+1 refines Dk – for

any d ∈ Dk+1, E
k
d \{d} is not a cap and so we must have some c ∈ Dk(⊆ Ck) with c ̸≾

Ekd \ {d} and hence d ≤ c, by the first part of (3.5). As Dk is a minimal cap, it must
then also corefine Dk+1. Moreover, as noted above, ≾P is just ≤ on Q =

⋃
n∈ωDn.

This and the second part of (3.5) imply that Dk+1 ∩Dk consists only of atoms of Q.
Thus Q is an ω-poset with levels Qn = Dn, for all n ∈ ω, by Corollary 1.20.
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By Proposition 1.13, every C ∈ CQ is refined by some Qn = Dn ∈ CP, implying
that C ∈ CP. Conversely, if C ∈ CP∩PQ, then, again by Proposition 1.13, it is refined
by some Pn and hence Dn ≾P C. As ≾P is ≤ on Q, it follows that Dn ≤ C and hence
C ∈ CQ. This shows that CQ = CP ∩ PQ.

It then follows that idQ ⊆ Q×Q ⊆ Q× P is a refiner. As Qn ≾P Pn, for all n ∈ ω,
we have another refiner ⊐ = ≿P∩P×Q. Moreover, idQ ◦⊐ ⊆ ≥Q ⊆ ≿Q and ⊐ ◦ idQ =
⊐ ⊆ ≿P so Proposition 3.7 yields mutually inverse homeomorphisms S 7→ SidQ = S∩Q
and T 7→ T⊏ = T≾P between SP and SQ.

In particular, (q∈)q∈Q is a basis of SP, one which is order-isomorphic to Q, as
≾P is just ≤ on Q. Thus Q is branching, by Proposition 1.37. To see that Q is
also predetermined, say d ∈Qn is not an atom in Q. Take any q ∈ Qn+1 such that
q ̸≾ Edn \ {d}. Note that q ≤ c, for some c ∈ Qn, necessarily with c ̸≾ Edn \ {d} and
hence d ≤ c, which then implies c = d, as Qn is an antichain. Thus q < d because d is
not an atom in Q. Likewise, if q < c, for some c ∈ Qk, necessarily with k ≥ n, then
d ≤ c so q< = d≤, showing that Q is indeed predetermined.

In order to prove that spectra of regular ω-posets are homeomorphic we can also
use a back-and-forth argument analogous to Proposition 3.7.

Proposition 3.11. If we have regular ω-posets P and Q with coinitial sequences (Cn)⊆
CP and (Dn) ⊆ CQ as well as co-∧-preserving surjective ⊏n ⊆ Cn × Dn and ⊏−n ⊆
Dn+1 × Cn with ⊏−n ◦ ⊏n ⊆ ≤Q and ⊏n+1 ◦ ⊏−n ⊆ ≤P, for all n ∈ ω,

⊏ =
⋃
n∈ω

(⊏n ◦ ◁Dn
) and ⊏− =

⋃
n∈ω

(⊏−n ◦ ◁Cn
)

define ∧-preserving refiners ⊐ and ⊐− such that ϕ⊐− ◦ ϕ⊐ = idSP and ϕ⊐ ◦ ϕ⊐− = idSQ.

Proof: As Q is regular, ⊐ is a refiner. To see that ⊐ is ∧-preserving, take a ∈ Cm
and b ∈ Cn with a ∧ b. If m = n, then e ∧ f whenever a ⊏m e and b ⊏n f , by the
assumption that ⊏m = ⊏n is ∧-preserving, and hence the same applies whenever
a ⊏m ◦ ◁Cm

e and b ⊏n ◦ ◁Cn
f . Now assume that m > n and take any e, e′, f , f ′

with a ⊏m e ◁Dm
e′ and b ⊏n f ◁Dn

f ′. The surjectivity of the given relations then
yields c ∈ Cn and d ∈ Dn satisfying

e ⊏−m−1 ◦ ⊏m−1 ◦ ⊏−m−2 · · · ⊏n+1 ◦ ⊏−n c ⊏n d.
As ⊏n+1 ◦ ⊏−n ⊆ ≤P, for all n ∈ ω, it follows that a ≤ c and hence b ∧ c. As ⊏n is
co-∧-preserving, it follows that f ∧ d and hence d ≤ f ′, as f ◁Dn f ′. Also e ≤ d,
as ⊏−n ◦ ⊏n ⊆ ≤Q, for all n ∈ ω, so e ≤ f ′ and hence e′ ∧ f ′, as e ◁Dm e′. A dual
argument applies if m < n, thus showing that ⊐ is indeed ∧-preserving.

Likewise, ⊐− is ∧-preserving and hence we have continuous maps ϕ⊐ : SP → SQ and
ϕ⊐− : SQ → SP as in (3.2). To see that ϕ⊐−◦ϕ⊐ = idSP, take any S ∈ SP. For any A∈CP,
we have B ∈ CP and n ∈ ω with Cn ◁Cn B ◁ A. We then also have E ∈ CQ and
m > n + 1 with Dm ◁Dm E ◁ Dn+1. As S is a selector, we have s ∈ S ∩ Cm. The
surjectivity of all the relations involved then yields a ∈ A, b ∈ B, c ∈ Cn, d ∈ Dn+1,
e ∈ E, and f ∈ Dm with

s ⊏m f ◁Dm e ◁ d ⊏−n c ◁Cn b ◁ a.

This means s ⊏ e ◁ d and hence d ∈ ϕ⊐(S). Likewise, d ⊏− b ◁ a and hence a ∈
ϕ⊐−(ϕ⊐(S)). Now surjectivity again yields q ∈ Dn and p ∈ Cn with

f ⊏−m−1 ◦ ⊏m−1 ◦ ⊏−m−2 · · · ⊏n+1 q ⊏−n p.
As ⊏−n ◦ ⊏n ⊆ ≤Q, for all n ∈ ω, it follows that f ≤ q and hence d∧ q. As ⊏−n is co-∧-
preserving, this implies c∧ p and hence p ≤ b ◁ a. Noting s ≤ p, as ⊏n+1 ◦ ⊏−n ⊆ ≤P,
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for all n ∈ ω, it follows that a ∈ S≤◁ = S. We have thus shown that S ∩ϕ⊐−(ϕ⊐(S))∩
A ̸= ∅, for all A ∈ CP, i.e. S ∩ ϕ⊐−(ϕ⊐(S)) is a selector. As S and ϕ⊐−(ϕ⊐(S)) are
minimal selectors, this implies S = ϕ⊐−(ϕ⊐(S)). This shows that ϕ⊐− ◦ ϕ⊐ = idSP and
a dual argument yields ϕ⊐ ◦ ϕ⊐− = idSQ.

As an application of Proposition 3.11, we can use it to give an alternative proof of
Corollary 2.10, at least in the Hausdorff case, one which gives us more control over
the levels of the poset, like in Proposition 1.23.

Let the gradification PG of an ω-poset P be the disjoint union of its levels, i.e.

PG =
⊔
n∈ω

Pn =
⋃
n∈ω

Pn × {n}.

To define the order on PG, we first define the predecessor relation ⋖ by

(p, n)⋖ (q,m) ⇐⇒ p ≤ q and m⋖ n.

Let ≤0 be the equality relation on PG and recursively define ≤n+1 = ≤n ◦⋖ = ⋖◦≤n,
i.e. ≤n is just the composition of ⋖ on PG with itself n times. Finally let ≤ =

⋃
n∈ω ≤n

on PG. In particular, the strict order < on PG is just the transitive closure of the
predecessor relation defined above.

The following result is now immediate from the construction.

Proposition 3.12. If P is an ω-poset, then PG is an atomless graded ω-poset with

PGn = Pn × {n}.

Let us call an ω-poset edge-witnessing if common lower bounds of elements in
any level are always witnessed on the next, i.e. whenever q, r ∈ Pn and q ∧ r, we
have p ∈ Pn+1 with p ≤ q and p ≤ r. Likewise, we call an ω-poset star-refining if each
level is star-refined by the next, i.e. Pn+1 ◁Pn+1

Pn, for all n ∈ ω.

Proposition 3.13. The spectrum SP of any edge-witnessing star-refining ω-poset P
is always homeomorphic to the spectrum of its gradification SPG.

Proof: For all n ∈ ω, define ⊏n ⊆ PGn × Pn and ⊏−n ⊆ Pn+1 × PGn by

(p, n) ⊏n q ⇐⇒ p = q,

p ⊏−n (q, n) ⇐⇒ p ≤ q.

For each n ∈ ω, we immediately see that ⊏n and ⊏−n are surjective, ⊏n is co-∧-pre-
serving, ⊏−n ◦ ⊏n ⊆ ≤P and ⊏n+1 ◦ ⊏−n ⊆ ≤PG

. As P is edge-witnessing, ⊏−n is also
co-∧-preserving. As P is star-refining, so is PG. In particular, both P and PG are regular
so SP is homeomorphic to SPG, by Proposition 3.11.

Let us illustrate the usefulness of the above result with snake-like spaces. First let
us call an open cover S a snake if its overlap graph is a path, i.e. if there exists an
enumeration s1, . . . , sn of S such that

sm ∩ sn ̸= ∅ ⇐⇒ |m− n| ≤ 1.

We call X snake-like if every open cover is refined by a snake (this is a standard
notion in continuum theory, also called chainable as in [23, §12.8]). In particular,
every snake-like space is compact because snakes are finite. Also, if X = Y ∪ Z for
non-empty clopen Y and Z, then any refinement of {Y,Z} cannot be a snake, i.e.
snake-like spaces are necessarily connected as well.

Proposition 3.14. Every metrisable snake-like X has a graded ω-band-basis whose
levels are all snakes.
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Proof: As X is connected, any minimal subcover of a snake is again a snake. As X is
metrisable and snake-like, we thus have a countable collection C of minimal snakes
which are coinitial w.r.t. refinement among all open covers. By Proposition 1.23, we
have a subfamily forming the levels of a level-injective ω-cap-basis P. By Proposi-
tion 2.9, the spectrum SP is homeomorphic to the original space X. If necessary, we
can replace P with a subposet consisting of infinitely many levels which is also edge-
witnessing and star-refining. By Corollary 3.8, SP will still be homeomorphic to X,
as will SPG, by Proposition 3.13. As each level of PG corresponds to a snake in SPG

and hence X, we are done.

3.3. Star-composition. Let us define the star ⊐∗ of any ⊐ ⊆ Q× P by

q ⊐∗ p ⇐⇒ ∃C ∈ CP (Cp ⊏ q).

For example, the star-above relation is the star of both ≥ and idP, i.e. id
∗
P = ≥∗ = ▷.

If ⊐ϕ is defined by containment relative to some ϕ : SP → SQ, as in (3.1), its star,
then corresponds to closed containment.

Proposition 3.15. If P is a prime regular ω-poset and ϕ : SP → SQ is continuous,

q ⊐∗
ϕ p ⇐⇒ ϕ−1[q∈] ⊇ cl(p∈).

Proof: Say q ⊐∗
ϕ p, so we have C ∈ CP with q ⊐ϕ c, for all c ∈ Cp, and hence

ϕ−1[q∈] ⊇ (Cp)∈ ⊇ p∧⊇ = cl(p∈),

by (2.2) and (2.4) (if S∈p∧⊇, then S ⊆ p∧ so we have c∈C ∩ S⊆Cp and hence S ∈
(Cp)∈). This proves the ⇒ part.

Conversely, assume ϕ−1[q∈] ⊇ cl(p∈). As PS is a basis for SP, we have a cover CS
of SP such that either c∈ ⊆ ϕ−1[q∈] or c∈ ⊆ SP \ cl(p∈), for all c ∈ C. Thus C ∈ CP,
by Proposition 2.8, and c∈ ⊆ ϕ−1[q∈], whenever c ∈ Cp. This means q ⊐ϕ c, for
all c ∈ Cp, so C witnesses q ⊐∗

ϕ p.

Another thing we can note immediately about stars is the following.

Proposition 3.16. If ⊐ ⊆ Q× P is ∧-preserving, then so is ⊐∗.

Proof: Say ⊐ is ∧-preserving. If q ⊐∗ p and q′ ⊐∗ p′, then we have C,C ′ ∈ CP
with Cp ⊏ q and C ′p′ ⊏ q′. If p ∧ p′, then Proposition 2.31 yields c ∈ Cp with c ∧ p′.
Then Proposition 2.31 again yields c′ ∈ C ′p′ with c∧ c′. Thus q∧ q′, as q ⊐ c∧ c′ ⊏ q′

and ⊐ is ∧-preserving, showing that ⊐∗ is also ∧-preserving.

Also, stars do not change the up-closures of round star-prime subsets.

Proposition 3.17. For any ⊐ ⊆ Q× P and S ⊆ P,

(3.6) S is round and star-prime =⇒ S⊏ = S ⊐∗
.

Proof: If S is round, then S⊏ = S◁⊏ ⊆ S ⊐∗
. On the other hand, if q ∈ S ⊐∗

, then we
have s ∈ S with q ⊐∗ s, which means we have C ∈ CP with Cs ⊏ q. If S is star-prime,
then we have c ∈ Cs ∩ S ⊏ q so q ∈ S⊏, showing that S ⊐∗ ⊆ S⊏.

Define the star-composition of any ⊐− ⊆ R×Q and ⊐ ⊆ Q× P by

⊐− ∗ ⊐ = (⊐− ◦ ⊐)∗.

This more accurately reflects the composition of continuous functions, as we now
show.
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Proposition 3.18. If P, Q, and R are prime regular ω-posets, then, for any contin-
uous maps ϕ : SP → SQ and ψ : SQ → SR,

⊐∗
ψ ∗ ⊐∗

ϕ = ⊐ψ ∗ ⊐ϕ = ⊐∗
ψ◦ϕ.

Proof: By Proposition 3.15, ⊐∗
ψ ⊆ ⊐ψ and ⊐∗

ϕ ⊆ ⊐ϕ so ⊐∗
ψ ∗ ⊐∗

ϕ ⊆ ⊐ψ ∗ ⊐ϕ. On the
other hand, if r ⊐ψ ∗ ⊐ϕ p, then we have C ∈ CP such that, for all c ∈ Cp, we have
qc ∈ Q with r ⊐ψ qc ⊐ϕ c. This means

cl(p∈) ⊆
⋃
c∈Cp

c∈ ⊆
⋃
c∈Cp

ϕ−1[q∈c ] ⊆ ϕ−1[ψ−1[r∈]] = (ψ ◦ ϕ)−1[r∈].

By Proposition 3.15, this implies r ⊐∗
ψ◦ϕ p.

Now say r ⊐∗
ψ◦ϕ p, i.e. cl(p

∈) ⊆ ϕ−1[ψ−1[r∈]]. For each S ∈ cl(p∈), the continuity

of ψ yields q ∈ ϕ(S) with cl(q∈) ⊆ ψ−1[r∈]. The continuity of ϕ then yields c ∈ S
with cl(c∈) ⊆ ϕ−1[q∈]. On the other hand, for every S ∈ SP \ cl(p∈), we have c ∈ S
with c≥ ∩ p≥ = ∅. As SP is compact, it has a finite cover consisting of c∈ for such c.
By Proposition 2.8, these form a cap, i.e. we have C ∈ CP such that r ⊐∗

ψ ◦ ⊐∗
ϕ c, for

all c ∈ Cp, showing that r ⊐∗
ψ ∗ ⊐∗

ϕ p.

Also, replacing ◦ with ∗ in (3.4) turns ⇒ into ⇔.

Proposition 3.19. If P and Q are regular prime ω-posets and ⊐ ⊆ Q × P is a
∧-preserving refiner, then, for all p ∈ P and q ∈ Q,

(3.7) q ▷ ∗ ⊐ p ⇐⇒ ϕ−1
⊐ [q∈] ⊇ cl(p∈).

Proof: If q ▷ ∗ ⊐ p, then we have C ∈ CP with Cp ⊏ ◦ ◁ q so (2.4) and (3.4) yield

cl(p∈) ⊆ (Cp)∈ ⊆ cl((Cp)∈) ⊆ ϕ−1
⊐ [q∈].

Conversely, if q ▷ ∗ ⊐ p fails, then Cp ⊈ q▷⊐, for all C ∈ CP. Put another way,
p∧ \ q▷⊐ is a selector and hence contains a minimal selector S. Then S ∈ cl(p∈),
by (2.2) and (2.4), but q /∈ S⊏◁ = ϕ⊐(S), i.e. ϕ⊐(S) /∈ q∈ so S ∈ cl(p∈)\ϕ−1

⊐ [q∈].

Next let us make some simple observations about ∗. For example,

(3.8) ⊐− ∗ ⊐ ⊇ ⊐− ◦ ⊐∗.

Indeed, if r ⊐− q ⊐∗ p, then we have C ∈ CP with Cp ⊏ q ⊏− r so r ⊐− ∗ ⊐ p. Thus

(3.9) ⊐ ◦ ▷ ⊆ ⊐ ∗ ≥ = ⊐∗ ◦ ≥ = ⊐∗.

Indeed, the first inclusion is just a special case of (3.8) where ⊐− and ⊐ are replaced
by ⊐ and ≥ respectively. On the other hand, if q ⊐∗ p ≥ r, then we have C ∈ CP
with Cr ⊆ Cp ≤ q and hence q ⊐∗ r. This shows that ⊐∗ ◦ ≥ = ⊐∗. Also certainly
⊐∗ ⊆ (⊐ ◦ ≥)∗ = ⊐ ∗ ≥. Conversely, if q ⊐ ∗ ≥ p, then we have C ∈ CP such that,
for all c ∈ Cp, we have qc ∈ P with c ≤ qc ⊏ q. Setting D = (C \Cp) ∪ {qc : c ∈ Cp},
note that C ≤ D ∈ CP and Dp ⊏ q, i.e. D witnesses q ⊐∗ p, showing ⊐ ∗ ≥ ⊆ ⊐∗ too.

Proposition 3.20. If P is regular and ⊐ ⊆ Q× P is a refiner, then so is ⊐∗.

Proof: As P is regular, ▷ is a refiner. As ⊐ is a refiner too, so is ⊐ ◦ ▷ and hence so
too is ⊐∗ ⊇ ⊐ ◦ ▷, by (3.9).

Combined with Proposition 3.16, this means ⊐∗ ∈ PQ
P whenever ⊐ ∈ PQ

P . More-
over, ϕ⊐ = ϕ⊐∗ , by (3.6). We can further characterise when ϕ⊐ = ϕ⊐− as follows.

Corollary 3.21. For any ⊐ ∈ PQ
P ,

ϕ⊐ = ϕ⊐− ⇐⇒ ▷ ∗ ⊐ = ▷ ∗ ⊐−.
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Proof: If ϕ⊐ = ϕ⊐−, then (3.7) yields

q ▷ ∗ ⊐ p ⇐⇒ ϕ−1
⊐ [q∈] ⊇ cl(p∈) ⇐⇒ ϕ−1

⊐− [q∈] ⊇ cl(p∈) ⇐⇒ q ▷ ∗ ⊐− p.

Conversely, if ▷ ∗ ⊐ = ▷ ∗ ⊐−, then (3.6) yields

ϕ⊐(S) = S⊏◁ = S⊏◦◁ = S (▷◦⊐)∗ = S (▷◦⊐−)∗ = S⊏−◦◁ = S⊏−◁ = ϕ⊐−(S).

Here are some further simple combinatorial properties of star-composition.

Proposition 3.22. If P is a regular ω-poset, ⊐− ⊆ R×Q, and ⊐ ⊆ Q× P, then

(3.10) ⊐− ∗ ⊐ = ⊐− ∗ ⊐∗ = (⊐− ∗ ⊐)∗.

Proof: First we claim that

(3.11) ⊐∗∗ = ⊐∗ = ⊐ ∗ ▷.

Indeed, if q ⊐∗∗ p, then we have C ∈ CP such that, for all c ∈ Cp, q ⊐∗ c and
hence Bcc ⊏ q, for some Bc ∈ CP. Replacing C with a finite subcap if necessary,
we can then take A ∈ CP refining Bc, for all c ∈ Cp, as P is an ω-poset. We claim
that Ap ≤ ◦ ⊏ q. Indeed, if a ∈ Ap, then Proposition 2.31 yields c ∈ Cp with a ∧ c.
As A ≤ Bc, we then have b ∈ Bc with c∧a ≤ b. Thus b ∈ Bcc ⊏ q so a ≤ b ⊏ q, proving
the claim. In particular, A witnesses q ⊐ ∗ ≥ p, showing that ⊐∗∗ ⊆ ⊐ ∗ ≥ = ⊐∗.

Conversely, if q ⊐∗ p, then we have C∈CP with Cp ⊏ q. Regularity then yields B ∈
CP with B ◁ C so Bp ◁ Cp ⊏ q and hence q ⊐ ◦ ▷ b, for all b ∈ Bp. Thus B
witnesses q(⊐ ◦ ▷)∗p, showing that ⊐∗ ⊆ (⊐ ◦ ▷)∗ ⊆ ⊐∗∗, by (3.9), completing the
proof of (3.11).

In particular, (⊐− ◦ ⊐)∗∗ = (⊐− ◦ ⊐)∗ = (⊐− ◦ ⊐ ◦ ▷)∗ ⊆ (⊐− ◦ ⊐∗)∗, by (3.9). In
terms of star-composition, this means that (⊐− ∗ ⊐)∗ = ⊐− ∗ ⊐ ⊆ ⊐− ∗ ⊐∗. But⊐− ∗ ⊐∗ =
(⊐− ◦ ⊐∗)∗ ⊆ (⊐− ∗ ⊐)∗, by (3.8), completing the proof of (3.10).

Proposition 3.23. For any ⊐− ⊆ R×Q and ∧-preserving refiner ⊐ ⊆ Q× P,

⊐−∗ ◦ ⊐ ⊆ ⊐− ∗ ⊐.

Proof: If r ⊐−∗ q ⊐ p, then we have C ∈ CQ with Cq ⊐− r. As ⊐ is a ∧-preserving
refiner, we then have B ∈ CP with B ⊏ C and hence Bp ⊏ Cq ⊏− r. So B witnesses
r ⊐− ∗ ⊐ p, showing that ⊐−∗ ◦ ⊐ ⊆ ⊐− ∗ ⊐.

Under suitable conditions, we can now show that star-composition is associative.

Proposition 3.24. If P is a regular ω-poset, ⊐ ⊆ Q × P is a ∧-preserving refiner,
⊐− ⊆ R×Q satisfies ⊐− ⊆ ⊐−∗, and ⊐= ⊆ S× R, then

⊐= ∗ (⊐− ∗ ⊐) = (⊐= ◦ ⊐− ◦ ⊐)∗ = (⊐= ∗ ⊐−) ∗⊐.

Proof: First note that (3.10) immediately yields

⊐= ∗ (⊐− ∗ ⊐) = ⊐= ∗ (⊐− ◦ ⊐)∗ = ⊐= ∗ (⊐− ◦ ⊐) = (⊐= ◦ ⊐− ◦ ⊐)∗.

Likewise, (3.10) and 3.23 yield

(⊐= ∗ ⊐−) ∗⊐ = ((⊐= ◦ ⊐−)∗ ◦⊐)∗ ⊆ ((⊐= ◦ ⊐−) ∗⊐)∗ = (⊐= ◦ ⊐−) ∗⊐ = (⊐= ◦ ⊐− ◦ ⊐)∗.

Conversely, as ⊐− ⊆ ⊐−∗, (3.8) yields

(⊐= ◦ ⊐− ◦ ⊐)∗ ⊆ (⊐= ◦ ⊐−∗ ◦ ⊐)∗ ⊆ ((⊐= ∗ ⊐−) ◦⊐)∗ = (⊐= ∗ ⊐−) ∗⊐.
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Let us call ⊐ ∈ PQ
P a strong refiner if

(Strong refiner) ⊐ = ▷ ∗ ⊐.

For any other ⊐− ∈ PP
R, we immediately see that ⊐ ∗ ⊐− = ▷ ∗ ⊐ ∗ ⊐−. In particular,

strong refiners are closed under star-composition. They are also star-invariant, as

⊐∗ = (▷ ∗ ⊐)∗ = (▷ ◦ ⊐)∗∗ = (▷ ◦ ⊐)∗ = ⊐.

Moreover, ▷ ∗ ▷ = ≥∗ ∗ ≥∗ = ≥ ∗ ≥ = (≥ ◦ ≥)∗ = ≥∗ = ▷, showing that ▷ is also
a strong refiner on any P ∈ P. Furthermore, ▷ ∗ ⊐ = ⊐ = ⊐∗ = ⊐ ∗ ▷, showing
that each ▷P is an identity with respect to star-composition. In other words, we have
a category S with the same objects as P (prime regular ω-posets) but with strong
refiners as morphisms under star-composition.

In fact, S is equivalent to K, as witnessed by the map S from Theorem 3.4.

Theorem 3.25. S|S : S → K is a fully faithful essentially surjective functor such that
S = S|S ◦ Q, where Q : P → S is the functor defined by Q(⊐) = ▷ ∗ ⊐.

Proof: For any ⊐ ∈ PQ
P , (3.11) yields

▷ ∗ ⊐ ∗ ▷ = (▷ ∗ ⊐)∗ = (▷ ◦ ⊐)∗∗ = (▷ ◦ ⊐)∗ = ▷ ∗ ⊐.

For any other ⊐− ∈ PR
Q, it follows that

▷ ∗ ⊐ ∗ ▷ ∗ ⊐− = ▷ ∗ ⊐ ∗ ⊐− = (▷ ◦ ⊐ ◦ ⊐−)∗ = ▷ ∗ (⊐ ◦ ⊐−).

This shows that Q defined by Q(⊐) = ▷ ∗ ⊐ preserves the product. Moreover,

▷P ∗ idP = (▷P ◦ idP)∗ = ▷∗
P = ≥∗∗

P = ≥∗
P = ▷P.

As each ▷P is an identity in S, this shows that Q is a functor. Also

ϕ⊐−∗⊐ = ϕ(⊐−◦⊐)∗ = ϕ⊐−◦⊐ = ϕ⊐− ◦ ϕ⊐
and ϕ▷P = idSP (because S = S◁ = S◁◁, for all S ∈ SP), so S|S is a functor too. In
particular, this also yields ϕ▷∗⊐ = ϕ▷ ◦ ϕ⊐ = ϕ⊐, showing that S = S|S ◦ Q. As S is
full and essentially surjective, so is S|S. By Corollary 3.21, S|S is also faithful.

The functor Q thus replaces any ⊐ ∈ PQ
P with a canonical representative in the

same equivalence class defined by S, namely the unique representative which cor-
responds exactly to closed containment, by (3.7). The natural topology on strong
refiners thus corresponds exactly to the compact-open/uniform convergence topology.

More precisely, the functor S|S is a homeomorphism from each hom-set SQ
P , consid-

ered as a subspace of the power-space P(Q× P) (i.e. with the topology generated by

sets of the form {⊐ ∈ SQP : q ⊐ p}, for p ∈ P and q ∈ Q), to the hom-set KSQ
SP with its

compact-open/uniform convergence topology. We plan to make use of this in future
work on dynamical systems constructed from posets and refiners.

Remark 3.26. One could also make other choices of representative morphisms. For
example, for any ⊐ ∈ PQ

P , we could define ⊒ ⊆ Q× P by

q ⊒ p ⇐⇒ q⊐ ⊇ p▷.

Then ⊐ 7→ ▷ ∗ ⊐ again defines a functor selecting a representative in the equivalence
class defined by S, this time corresponding to mere containment, i.e.

q ▷ ∗ ⊐ p ⇐⇒ ϕ−1
⊐ [q∈] ⊇ p∈.

However, the natural topology on such refiners will be different and thus less useful
when it comes to considering dynamical systems.
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[2] A. Bartoš and W. Kubís, Hereditarily indecomposable continua as generic mathematical struc-

tures, Preprint (2022). arXiv:2208.06886.
[3] M. Bell and J. Ginsburg, Compact spaces and spaces of maximal complete subgraphs, Trans.

Amer. Math. Soc. 283(1) (1984), 329–338. DOI: 10.2307/2000007.

[4] T. Bice, Grätzer–Hofmann–Lawson–Jung–Sünderhauf duality, Algebra Universalis 82(2)
(2021), Paper no. 35, 13 pp. DOI: 10.1007/s00012-021-00729-2.

[5] T. Bice and W. Kubís, Wallman duality for semilattice subbases, Houston J. Math. 48(1)

(2022), 1–31.
[6] T. Bice and C. Starling, General non-commutative locally compact locally Hausdorff Stone

duality, Adv. Math. 341 (2019), 40–91. DOI: 10.1016/j.aim.2018.10.031.
[7] R. H. Bing, A homogeneous indecomposable plane continuum, Duke Math. J. 15(3) (1948),

729–742. DOI: 10.1215/S0012-7094-48-01563-4.
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