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SOME REMARKS ON THE MASLOV INDEX

Wolfgang Pitsch

Abstract: It is a classical fact that the Kashiwara–Wall index of a triplet of Lagrangians in a
symplectic space over a field k defines a 2-cocycle µKW on the associated symplectic group with

values in the Witt group of k. Moreover, modulo the square of the fundamental ideal this is a trivial
2-cocycle. In this work we revisit this fact from the viewpoint of the theory of Sturm sequences and

Sylvester matrices developed by J. Barge and J. Lannes in [1]. We define a refinement by a factor of 2

of µKW and use the technology of Sylvester matrices to give an explicit formula for the coboundary
associated to the mod I2 reduction of the cocycle which is valid for any field of characteristic

different from 2. Finally, we explicitly compute the values of the coboundary on standard elements

of the symplectic group.
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1. Introduction

The Maslov index is an object that has permeated a wide range of mathematical
disciplines. It appeared in mathematical physics in the work of Maslov [11] and found
its way into dynamical systems (see for instance [16]), as well as algebraic topology
through the seminal work of Wall [19] to mention a few. For surveys on this vast topic
we refer the interested reader for example to the work of Cappell, Lee, and Miller [3]
or Ghys and Ranicki [4].

The strategy to approach the Maslov index in the present work is rather classical:
it will appear as an additivity defect associated to an invariant in a Witt group
associated to a pair of Lagrangians. This is for instance the geometric interpretation in
the classical integer-valued case provided by Wall’s work [19], where the Maslov index
appears as a defect of additivity for the signature of a 4n-manifold with boundary
with respect to gluing along parts of the boundary. A similar approach appears in
connection with gluing properties of the so-called η invariant for Dirac operators; see
for instance [2]. In the present case we will approach the Maslov index by studying
the paths in the so-called opposition graph of the Lagrangians, which has as vertices
the Lagrangians and edges joining any two transverse Lagrangians. An analogous
approach of the Maslov index can also be found for instance in [7]. The novelty
here is the observation, which we borrow from [1], that to any such path α, i.e. any
finite sequence of Lagrangians where two consecutives are transverse, one can attach
a canonical symmetric bilinear form S(α), called by Barge and Lannes the Sylvester
matrix of α. This matrix then defines a class in the Witt group W (k) of the underlying
field k, the Maslov index of the path α. The Maslov index of a path is crucially not
additive with respect to the operation of concatenation of paths, and the Maslov
index of a triple of Lagrangians is a measure of this deviation. More precisely, in
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Proposition 4.5 we show that given three Lagrangians Λ0, Λ1, Λ2 and two paths α01

and α12 joining Λ0 to Λ1 and Λ1 to Λ2 respectively, the Witt class of the orthogonal
sum

S(α01 ∗ α12)⊥− S(α01)⊥− S(α12)

is independent of the chosen paths, and usually non-trivial; this is our proposed defi-
nition of the Maslov index µBL(Λ0,Λ1,Λ2). To show that it is indeed a Maslov index
we check the axiomatic properties of the invariant as stated in [3], and the resolu-
tion of the multiplicative ambiguity in the axiomatic definition by a straightforward
computation shows that 2µBL = µKW , where the latter stands for Wall’s index as
generalized in [6].

In the final part of this work we focus on one of the crucial properties of this index,
namely that it is a cocycle: given four Lagrangians Λ0, Λ1, Λ2, Λ3, we have:

µBL(Λ1,Λ2,Λ3)− µBL(Λ0,Λ2,Λ3) + µBL(Λ0,Λ1,Λ3)− µBL(Λ0,Λ1,Λ2) = 0.

As a consequence, if we fix a Lagrangian Λ, then µBL defines a 2-cocycle on the
symplectic group

µ : Sp2g(k)× Sp2g(k) // W (k)

(A,B) � // µBL(Λ, AΛ, ABΛ)

and hence a central extension of Sp2g(k). When k = R this extension has attracted
much attention; see for instance [10]. It is known, see for instance [13], that this
Maslov cocycle is trivial when reduced modulo I2, the square of the fundamental
ideal. In particular there is a unique function Φ: Sp2g(k) → W (k)/I2 such that, for
any A,B ∈W (k),

Φ(AB)− Φ(A)− Φ(B) = µ(A,B) mod I2.

The case k = R is classic, and the function Φ was explicitly computed in this case
by Turaev [18], although his method does not seem to generalize to other fields. We
will show that our definition of µ via the Maslov index of paths leads to a natural
definition of Φ valid over any field.

The plan of this work is the following. In Section 2 we will first recall basic results
on the Witt group for a field, their construction, and the elementary descriptions
of the first quotients of the fundamental ideal by its powers. Then we recall some
elementary facts about the set Lg of all Lagrangians on a symplectic vector space
over k of dimension 2g. In particular we will recall the definition of two sets of functions
introduced by Leray [9], a linear map βΛ,M defined for any pair of Lagrangians, and
a difference map, defined for any two Lagrangians that are transverse to a given third
one and will prove a number of algebraic relations between these maps. Section 3
introduces the main tool of this work; building on the different maps defined in
the previous section we show that to any Lagrangian path α, i.e. a finite sequence
of Lagrangians where any two consecutives are transverse, corresponds a canonical
symmetric bilinear map on the direct sum of the Lagrangians in the path, its Sylvester
matrix S(α). This is a slight generalization of the main object introduced by Barge
and Lannes in [1, Chapter 2]. The Witt class of S(α) is the Maslov index of the
Lagrangian path, and the form S(α) encodes a number of properties of α. In particular
we will give an alternative proof of [1, Proposition-Définition A.2.1].

Corollary 1.1. Let α : (Λ0,Λ1, . . . ,Λn,Λn+1) be a Lagrangian path and let S(α) de-
note its Sylvester matrix. The following are equivalent:

(1) The bilinear form S(α) is non-degenerate.
(2) The two Lagrangians Λ0 and Λn+1 are transverse.
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The bulk of Section 3 is the proof of our main tool to manipulate or compute
Sylvester matrices.

Lemma 1.2 (Shortcut lemma). Let Λ0, . . . ,Λn+1 be a Lagrangian path, and let S
denote its Sylvester matrix. Assume that there exist two indices 0 ≤ i < j ≤ n + 1
such that Λi t Λj. Then we have two new Lagrangian paths:

(1) The sub-sequence Λi, . . . ,Λj, with associated Sylvester matrix S(Λi, . . . ,Λj).

(2) The shortened sequence Λ0, . . . ,Λi,Λj , . . . ,Λn+1, whose Sylvester matrix is
S(Λ0, . . . ,Λi,Λj , . . . ,Λn+1).

Then,

S is isometric to S(Λi, . . . ,Λj)⊥S(Λ0, . . . ,Λi,Λj , . . . ,Λn+1),

where ⊥ stands for the orthogonal sum of bilinear forms.

In Section 4 we use the shortcut lemma to prove that given three Lagrangians Λ0,
Λ1, Λ2, if we choose two Lagrangian paths α01 and α12 respectively starting at Λ0

to Λ1 and Λ1 to Λ2, then the class in W (k) of the bilinear form

µBL(Λ0,Λ1,Λ2) = S(α01 ∗ α12)⊥− S(α01)⊥− S(α12)

is independent of the choice of paths. We then show that the index µBL satisfies the
characteristic properties of the Maslov index (see [3, Section 1]) and compare it to
the Kashiwara–Wall index.

Theorem 1.3. The index µBL satisfies the following properties:

(1) If any two of the three Lagrangians Λ0, Λ1, Λ2 are equal, then µBL(Λ0,Λ1,Λ2) =
0.

(2) If φ ∈ Sp2g(k), then µBL(Λ0,Λ1,Λ2) = µBL(φ · Λ0, φ · Λ1, φ · Λ2).

(3) The index µ is a 2-cocycle; if Λ0, Λ1, Λ2, Λ3 are four Lagrangians, then

µBL(Λ1,Λ2,Λ3)− µBL(Λ0,Λ2,Λ3) + µBL(Λ0,Λ1,Λ3)− µBL(Λ0,Λ1,Λ2) = 0.

(4) If σ ∈ S3 is a permutation of the indices 0, 1, and 2, then:

µBL(Λ0,Λ1,Λ2) = ε(σ)µBL(Λσ(0),Λσ(1),Λσ(2)).

(5) If µKW denotes the Kashiwara–Wall index of three Lagrangians, then in W (k)

2µBL(Λ0,Λ1,Λ2) = µWK(Λ0,Λ1,Λ2).

Finally, in Section 5 we proceed to study the associated 2-cocycle on the symplectic
group, given by fixing a Lagrangian L and defining for any A,B ∈ Sp2g(k), µ(A,B) =
µBL(L,AL,ABL). As we have fixed L, the symplectic space is isometric to L ⊕ L∗
with the standard symplectic form. Let SL ⊆ Sp2g(k) (resp. SL∗) be the stabilizer
of L (resp. L∗) and consider the canonical evaluation and E : SL∗SL∗ → Sp2g(k) from
the free product of the two stabilizers to the symplectic group. Almost by definition,
an element in SL ∗ SL∗ is a sequence of quadratic forms qn, qn+1, . . . , qm alternatively
defined on L and on L∗. Such a sequence is called a Sturm sequence in [1] and Barge
and Lannes show there how to associate to a Sturm sequence a Lagrangian path and
hence a Sylvester matrix.
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The technology of Sturm sequences and Sylvester matrices allows us to define four
canonical functions f00, f01, f11, f10 on the free product SL ∗ SL∗ . The behavior of
these functions with respect to the free product shows that there is a commutative
diagram

1 // K //

f01

��

SL ∗ SL∗ //

f00zz ��

Sp2g(k) // 1

0 // W (k) // Γ // Sp2g(k) // 1

where f01, restricted to the kernel K, is a homomorphism but the retraction f00

is not. By standard group cohomology arguments, f00 defines a 2-cocycle for the
bottom extension, and by construction of the functions this is in fact µBL. Finally,
by analyzing the image of f00, we show that its reduction mod I2, where I is the
fundamental ideal in the Witt group, is a homomorphism, therefore f00 mod I2 is our
desired trivialization. We finally compute explicitly this function for typical elements
in the symplectic group.

Acknowledgments. I would like to thank the anonymous referees for their numer-
ous comments. This work grew out of a series of visits by Jean Barge to Barcelona
around 2005. During these he explained to me the present point of view of his joint
work with Jean Lannes [1] and we worked out the details of the proofs of their
statements, particularly the shortcut lemma, and the explicit splitting of the mod-I2

reduction of the Maslov cocycle. His passing in 2022 motivated me to fully publish
the work we had completed together. As a further recognition I dedicate this article
to the memory of my former PhD advisor, Professor Jean Barge.

2. General background

In all this work we fix a field k of characteristic different from 2.

2.1. Witt monoid and Witt group. We recall here some elementary facts about
the Witt group of k; for more ample information and in particular for the proofs of
the results presented we refer the reader to [12] or [8].

Let V denote a finite dimensional k-vector space and denote by V ∗ = Homk(V,k)
its dual. Let Sym(k) denote the set of all symmetric bilinear forms defined on finite
dimensional k-vector spaces up to isometry. An element in Sym(k) is represented by
a pair (P, q), where P is a k-vector space of finite dimension and q : P → P ∗ is a
k-linear map that coincides with its dual map q∗ : P ∗∗ → P ∗ up to the canonical
identification P ' P ∗∗. By definition, the space P is the support of q; if clear from
the context, we will omit the support from the notation and write simply q for (P, q).

Recall that a symmetric bilinear form (P, q) is non-degenerate if and only if q : P →
P ∗ is an isomorphism, and that a symmetric bilinear form (P, q) is neutral if and only
if it is non-degenerate and there exists a sub-vector space I ⊂ P that coincides with
its own orthogonal I = I⊥.

The orthogonal sum of symmetric bilinear forms, which we denote by ⊥, endows
the set Sym(k) with the structure of a commutative monoid. The isometry classes of
neutral forms determine a sub-monoid Neut(k) ⊆ Sym(k); the quotient MW (k) =
Sym(k)/Neut(k) is by definition the Witt monoid of k. More precisely two symmetric
bilinear forms (P1, q1) and (P2, q2) in Sym(k) are equivalent if and only if there exist
two neutral forms (N1, n1) and (N2, n2) such that q1⊥n1 and q2⊥n2 are isometric.

The Witt group W (k) is the image in MW (k) of the sub-monoid of Sym(k) gener-
ated by the symmetric non-degenerate bilinear forms. Given that for a non-degenerate
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form q the orthogonal sum q⊥ − q is neutral, we get indeed a group structure: the
inverse of q is −q. In addition, the tensor product of bilinear forms endows W (k) with
a commutative multiplication compatible with the orthogonal sum and endows W (k)
with the structure of a unital commutative ring.

By definition, there is an injection W (k) ↪→ MW (k) and, as k is a field, we have
a canonical retraction MW (k) → W (k) called the regularization map; it sends the
symmetric bilinear form (P, q) onto the induced form on the quotient P/P⊥, where
P⊥ = ker q is the radical of α. For a general symmetric bilinear form (P, q), its

class (P, q) ∈W (k) will always refer to the class of its regularized form. Finally, given
a unit a ∈ k× we will denote by 〈a〉 the bilinear form on k with associated matrix [a].

The ring W (k) has a unique maximal ideal I such that W (k)/I = Z/2, its fun-
damental ideal. This is the kernel of the map “rank mod 2”: I = ker(W (k) → Z/2),
that sends a bilinear form onto the mod 2 reduction of the dimension of its support;
as neutral forms have even rank this is indeed a well-defined map. It is known that
the fundamental ideal I is generated by the Pfister forms 〈1,−λ〉 = 〈1〉⊥〈−λ〉, for λ
a unit in k, [8, p. 316].

In this work we will mainly be interested in the quotient W (k)/I2, which is by
definition part of an extension of abelian groups

(∗) 0 // I/I2 // W (k)/I2 // Z/2 // 0.

The kernel I/I2 is isomorphic to the multiplicative group of units in k up to
the squares, I/I2 = k×/(k×)2 via the discriminant map, dis : W (k)→ k×/(k×)2 that

sends a non-degenerate bilinear form q of rank r onto (−1)
r(r−1)

2 det(q). An elementary
but important fact for the present work is that this exact sequence does not usually
split. For instance, the quadratic form reduction by Gauss’s method implies that
W (R) ' Z; then I = 2Z and in this case (∗) is:

0 // Z/2 // Z/4 // Z/2 // 0.

Even so, for any field k the pull-back of the extension (∗) along the canonical
map Z/4→ Z/2 always splits:

0 // I/I2 // W̃ //

��

Z/4

��

//

{{

0

0 // I/I2 // W (k)/I2 // Z/2 // 0

A section of the pull-back is induced by the dotted morphism Z/4 → W (k)/I2

that sends n ∈ Z/4 to the diagonal form n〈1〉. To check that this map is well de-
fined, observe that for all integers m the rank of 4m〈1〉 is even, and its discriminant

is (−1)
4m×(4m−1)

2 = 1.
Combined with the isomorphism I/I2 ' k×/(k×)2, the section induces a surjective

morphism of groups:

F : k×/(k×)2 ⊕ Z/4 // W (k)/I2

(λ, n) � // 〈1,−λ〉 ⊕ n〈1〉.

We will use this map in our explicit computations of the trivialization of the Maslov
cocycle.
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2.2. Lagrangian combinatorics. Fix an integer g ≥ 1 and let L = kg. Denote
by H(L) the k-vector space L ⊕ L∗ together with the alternating bilinear form ω,
known as the symplectic form,

ω((x, ξ), (y, η)) = ξ(y)− η(x).

The group of isometries of ω is by definition the symplectic group Sp2g(k). Recall
that a Lagrangian in the symplectic space H(L) is a sub-vector space Λ ⊆ H(L) that
coincides with its own orthogonal Λ = Λ⊥. In the set Lg of all Lagrangians in H(L),
we have two canonical elements: L and L∗. If X and X ′ are two Lagrangians in H(L),
we will say that X and X ′ are transverse if and only if X +X ′ = H(L); we will then
write X t X ′. For dimensional reasons this is equivalent to the fact that X∩X ′ = {0}.

The symplectic group has a natural left action on the set Lg that is transitive,
cf. for instance [17, §2]; the proof for k = R is valid for any field. Let SL denote
the point-wise stabilizer of the Lagrangian L; by direct inspection, elements in this
group, when written by blocks according to the decomposition H(L) = L⊕ L∗, have
the shape

E(q) =

(
1 q
0 1

)
,

where q : L∗ → L satisfies q = q∗. In particular SL is canonically isomorphic to
the k-vector space of symmetric bilinear forms with support L∗. Similarly, SL∗ , the
point-wise stabilizer of L∗, consists of those matrices of the form

E(q′) =

(
1 0
q′ 1

)
,

where q′ : L → L∗ is symmetric and is isomorphic to the vector space of symmetric
bilinear forms with support L.

Let Λ be a fixed Lagrangian, and denote by Lg,tΛ the set of those Lagrangians that
are transverse to Λ. Because the canonical action of the symplectic group preserves
transversality, we have induced canonical actions of SL on Lg,tL and of SL∗ on Lg,tL∗ .
These actions are both simple transitive, and hence the bijections

SL // Lg,tL(
1 q
0 1

) � //
(

1 q
0 1

)
L∗

,
SL∗ // Lg,tL∗(
1 0
q 1

) � //
(

1 0
q 1

)
L

endow the sets Lg,tL and Lg,tL∗ of the structure of an affine set over the corre-
sponding stabilizer group. If we fix an arbitrary Lagrangian Λ, the above discussion
leads to two different affine structures on Lg,tΛ over the vector space of symmetric
bilinear forms with support Λ∗: one where elements in SΛ are written according to
the decomposition H = Λ ⊕ Λ∗, and one where they are written according to the
decomposition H = Λ∗ ⊕ Λ. To fix this ambiguity we chose the action correspond-
ing to the decomposition Λ∗ ⊕ Λ. As a consequence, when considering bilinear forms
with support L, we have to conjugate the described action of SL∗ on Lg,tL∗ by the

symplectic matrix
(

0 Id
− Id 0

)
and this introduces a sign; with this convention the La-

grangian
(

1 0
q 1

)
L is the translation of L along −q and

(
1 p
0 1

)
L∗ is the translation

of L∗ ∈ Lg,tL by p.
The affine space structure tells us that given two elements M,N ∈ Lg,tΛ, their

difference M − N = dΛ(N,M) is a well-defined symmetric bilinear form with sup-
port Λ∗. For any two Lagrangians there is yet another natural map, first considered
by Leray [9].
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Lemma 2.1. Let Λ and M be two Lagrangians. The evaluation map

eΛ,M : Λ×M // k
(`,m) � // ω(`,m)

is a bilinear form; it induces by adjunction a linear map βΛ,M : Λ→M∗ that satisfies
the following properties:

(1) βΛ,M = −β∗M,Λ.

(2) ImβΛ,M = H(L)/(Λ +M).

(3) kerβΛ,M = Λ ∩M .

(4) βΛ,M is invertible if and only if Λ tM .

(5) If φ ∈ Sp2g(k), then βΛ,M = (φ|M )∗ ◦ βφΛ,φM ◦ φ|Λ.

Proof: These are all immediate computations.

The following result explains the links between the maps β and d.

Lemma 2.2. Let X be a Lagrangian in H(L), and let Λ,M ∈ Lg,tX . The difference
between these two Lagrangians is dX(Λ,M) ∈ SX∗ and we have that

dX(Λ,M) = −(βX,M )−1βΛ,Mβ
−1
Λ,X .

Proof: Consider the commutative diagram

M

iM

��

βM,X

""
X

iX // H(L)
pX // X∗

Λ

iΛ

OO

βΛ,X

<<

Since X is transverse to both M and Λ, the morphisms βM,X and βΛ,X are invertible,

and this gives us two sections of the middle exact sequence: σM = iM ◦ β−1
M,X and

σΛ : iΛ ◦ β−1
Λ,X . Because Λ and M are both Lagrangians, the symplectic form pulled

back along any of the above two sections to X∗ is the zero form.
Then, by definition, dX(Λ,M) = iM ◦β−1

M,X − iΛ ◦β
−1
Λ,X : X∗ → X. More explicitly,

if α∈X∗, there exists a unique couple (m, `) ∈M×Λ such that α = ω(m,−) = ω(`,−)
and dX(Λ,M)(α) = m− `. By direct inspection, the map

βX,MdX(Λ,M)βΛ,X : Λ // M∗

sends an element ` ∈ Λ to the linear map that on µ ∈ M evaluates to ω(m− `, µ) =
−ω(`, µ).

Otherwise said, we have a commutative diagram

X∗ ×X∗ d // k

Λ×M

βΛ,X×βM,X

OO

e

Λ,M
// k

where d : X∗ ×X∗ → R is the adjoint to dX(Λ,M) : X∗ → X.
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Lemma 2.3. Let Λ1 and Λ2 be two transverse Lagrangians and X a third arbitrary
Lagrangian. Denote by p1 (resp. p2) the projection map from X onto Λ1 (resp. Λ2)
parallel to Λ2 (resp. Λ1). Then

p1 = (βΛ1,Λ2
)−1βX,Λ2

and p2 = (βΛ2,Λ1
)−1βX,Λ1

.

Proof: Direct computation.

Lemma 2.4. Let Λ1, Λ2, Λ3 denote three Lagrangians such that Λ1 t Λ2 and Λ2 t
Λ3. Let X be an arbitrary Lagrangian. Then

βX,Λ3 = βΛ1,Λ3(βΛ1,Λ2)−1βX,Λ2 + βΛ2,Λ3(βΛ2,Λ1)−1βX,Λ1 .

Proof: By direct inspection, with the same notations as in Lemma 2.3,

βX,Λ3 = βΛ1,Λ3p1 + βΛ2,Λ3p2

and replacing p1 and p2 with their expressions we get the result.

We now arrive at the fundamental relation.

Proposition 2.5. With the same hypothesis as in Lemma 2.4,

−(βΛ2,Λ1
)−1βX,Λ1

+ dΛ2
(Λ1,Λ3)βX,Λ2

+ (βΛ2,Λ3
)−1βX,Λ3

= 0.

Proof: By composing the relation from Lemma 2.4 by (βΛ2,Λ3
)−1 to the left we get:

(βΛ2,Λ3)−1βX,Λ3 − (βΛ2,Λ1)−1βX,Λ1 − (βΛ2,Λ3)−1βΛ1,Λ3(βΛ1,Λ2)−1βX,Λ2 = 0

and from Lemma 2.2

−(βΛ2,Λ3
)−1βΛ1,Λ3

(βΛ1,Λ2
)−1 = dΛ2

(Λ1,Λ2),

whence the result.

3. Lagrangian paths and Sturm sequences

In this section we reformulate some results from Appendix A in [1] in terms of
Lagrangian paths based at either L or L∗.

Definition 3.1. Let Λ and M be two Lagrangians. A Lagrangian path of length n
joining Λ to M is a sequence of n+ 2 Lagrangians

Λ = Λ0,Λ1, . . . ,Λn,Λn+1 = M

such that for each 0 ≤ i ≤ n we have Λi t Λi+1.
If Λ = M , we call this a Lagrangian loop based at Λ.
If α : (Λ0, . . . ,Λn,M) and β : (M,Λ′1, . . . ,Λm+1) are two Lagrangian paths, the

first ending at M and the second starting at M , then their concatenation is the
Lagrangian path α ∗ β : (Λ0, . . . ,Λn,M,Λ′1, . . . ,Λm+1).

An arbitrary Lagrangian path has an associated Sylvester matrix:

Definition 3.2. Let α : (Λ0,Λ1, . . . ,Λn,Λn+1) be a Lagrangian path. The Sylvester
matrix of α is the matrix S(α) of the symmetric bilinear map with support Λ∗1⊕· · ·⊕Λ∗n
whose block coefficients are given as follows:

ai,i = dΛi
(Λi−1,Λi+1) for i = 1, . . . , n,

ai+1,i = (βΛi+1,Λi
)−1 : Λ∗i

// Λi+1 for i = 1, . . . , n− 1,

ai,i+1 = a∗i+1,i = −(βΛi,Λi+1)−1,

and all other coefficients are zero.
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Writing bΛi+1,Λi
= (βΛi+1,Λi

)−1, the matrix S(α) is a trigonal matrix of the follow-
ing form:

dΛ1
(Λ0,Λ2) bΛ1,Λ2

0 · · · 0

−bΛ2,Λ1 dΛ2(Λ1,Λ3)
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . bΛn−1,Λn

0 · · · 0 −bΛn,Λn−1
dΛn

(Λn−1,Λn+1)


.

The map that associates its Sylvester matrix to a Lagrangian path has an obvi-
ous equivariance property, which we formally state for future reference. The proof is
trivial.

Lemma 3.3. Let α : (Λ0,Λ1, . . . ,Λn,Λn+1) be a Lagrangian path and φ ∈ Sp2g(k),
then φ∗(α) : (φ(Λ0), φ(Λ1), . . . , φ(Λn), φ(Λn+1)) is again a Lagrangian path, and the
map φ induces a canonical isometry between the associated Sylvester matrices S(α)
and S(φ∗(α)).

The following is a first result showing how much of the properties of a Lagrangian
path is encoded in its Sylvester matrix.

Proposition 3.4. Let α : (Λ0, . . . ,Λn+1) be a Lagrangian path and denote by S(α)
its Sylvester matrix. To reduce the amount of notation, we write βi,j for βΛi,Λj

and
we consider the morphism

E0 : Λ0
// Λ∗1 ⊕ · · · ⊕ Λ∗n,

whose matrix is the transpose of the row[
β0,1 β0,2 · · · β0,n

]
and

Tn : Λ∗n+1
// Λ1 ⊕ · · · ⊕ Λn,

whose matrix is the transpose of the row[
0 · · · 0 −(βn,n+1)−1

]
.

Then

(1) Both morphisms E0 and Tn are injective.
(2) The following diagram, viewed as a chain map between horizontal chain com-

plexes, is a homotopy equivalence.

Λ0

β0,n+1 //

E0

��

Λ∗n+1

Tn

��
Λ∗1 ⊕ · · · ⊕ Λ∗n S(α)

// Λ1 ⊕ · · · ⊕ Λn

Proof: (1) Since Λ0 t Λ1, the morphism β0,1 is an isomorphism, and as it is the first
component of the matrix of E0 this is an injective morphism. The morphism T0 is
also injective: its only non-zero component is an isomorphism because the underlying
Lagrangians that determine it are transverse. We now check the commutativity of
the diagram, and for this we first compute S(α)E0. Again to reduce the amount of
notation, we write dj(j − 1, j + 1) instead of dΛj (Λj−1,Λj+1).
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The first coefficient of the column matrix S(α)E0 is

d1(0, 2)β0,1 + β−1
1,2β0,2.

As Λ0 t Λ1, we know that β0,1 is invertible, and Lemma 2.2 shows that the coefficient
is in fact zero.

For 2 ≤ i ≤ n− 1, the i-th coefficient is

−β−1
i,i−1β0,i−1 + di(i− 1, i+ 1)β0,i + β−1

i,i+1β0,i+1,

which is zero according to Proposition 2.5.

Finally, the last coefficient is equal to

−βn,n−1β0,n−1 + dn(n− 1, n+ 1)β0,n,

which, by Proposition 2.5, is equal to

−β−1
n,n+1β0,n+1.

And this is exactly the unique non-zero coefficient of the column matrix Tnβ0,n+1.

(2) Now consider the projection over the first n− 1 coordinates:

p : Λ1 ⊕ · · · ⊕ Λn // Λ1 ⊕ · · · ⊕ Λn−1

and the map

q : Λ∗1 ⊕ · · · ⊕ Λ∗n // Λ∗2 ⊕ · · · ⊕ Λ∗n,

which is given by the matrix
−β0,2β

−1
0,1 1 0 · · · 0

−β0,3β
−1
0,1 0 1

. . .
...

...
...

. . .
. . . 0

−β0,nβ
−1
0,1 0 · · · 0 1

 .

The identity block on the right-hand side of the matrix shows that q is surjective and
a direct computation shows that qE0 = 0, hence for dimensional reasons q = cokerE0.
Furthermore, trivially, p = cokerTn.

Finally, let s : Λ∗2 ⊕ · · · ⊕Λ∗n → Λ1 ⊕ · · · ⊕Λn−1 be the matrix obtained by erasing
the first row and the first column in S(α). We then have a commutative diagram with
exact rows

0 // Λ0

β0,n+1

��

E0 // Λ∗1 ⊕ · · · ⊕ Λ∗n

S(α)

��

q // Λ∗2 ⊕ · · · ⊕ Λ∗n //

s

��

0

0 // Λ∗n+1

Tn // Λ1 ⊕ · · · ⊕ Λn
p // Λ1 ⊕ · · · ⊕ Λn−1

// 0

The snake lemma then shows that the morphism of chain complexes (E0, Tn) is a
quasi-isomorphism if and only if s is an isomorphism. Since the complexes we con-
sider are complexes of k-vector spaces, any quasi-isomorphism is in fact a homotopy
equivalence.
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We are left with showing that s is invertible. The identity block on the right-hand
side of the matrix q imposes, by direct computation, that s has to be the matrix that
we get from S(α) by erasing its first column and last row:

s =



β−1
1,2 0 · · · · · · 0

d2(1, 3) β−1
2,3 0 · · ·

...

−β−1
3,2 d3(2, 4) β−1

3,4

. . .
...

0
. . .

. . .
. . . 0

· · · 0 −β−1
n−1,n−2 dn−1(n− 2, n) β−1

n−1,n


.

Let us now show that pS(α) = sq. The matrix for pS(α) is the matrix for S(α) in
which we have erased the last row. Hence the unique non-trivial part in the equal-
ity pS(α) = sq is the equality between the last two columns of these matrices. We
will distinguish between three cases: the first coefficient, the second coefficient, and
finally the coefficient of index j, 1 for j > 1.

(i) For the first coefficient, we have

d1(0, 2) = −β−1
1,2β0,2β

−1
0,1 , by Lemma 2.2.

(ii) For the second coefficient, we have

−d2(1, 3)β0,3β
−1
0,1 − β

−1
2,3β0,3β

−1
0,1 = −β−1

2,1 , by Proposition 2.5.

(iii) Finally, when j > 1,

βj,j−1β0,jβ
−1
0,1 − dj(j − 1, j + 1)β0,jβ

−1
0,1 − β

−1
j,j+1β0,j+1β

−1
0,1 = 0, by Proposition 2.5.

To conclude, observe that as the matrix s is lower triangular with invertible ele-
ments along the diagonal it is invertible.

Following the same proof but exchanging the roles of Λ0 and Λn one can show:

Proposition 3.5. Let α : (Λ0, . . . ,Λn+1) be a Lagrangian path and denote by S(α)
its Sylvester matrix. Write βi,j for βΛi,Λj

and consider the maps

Fn+1 : Λn+1
// Λ∗1 ⊕ · · · ⊕ Λ∗n

with matrix the transpose of the row:[
βn+1,1 βn+1,2 · · · βn+1,n

]
and

Un : Λ∗0 // Λ1 ⊕ · · · ⊕ Λn

with matrix the transpose of the row:[
β−1

1,0 0 · · · 0
]
.

Then

(1) The maps Fn+1 and Un are injective.
(2) The following diagram, viewed as chain maps between horizontal chain com-

plexes, is a homotopy equivalence.

Λn+1

βn+1,0 //

Fn+1

��

Λ∗0

Un

��
Λ∗1 ⊕ · · · ⊕ Λ∗n S(α)

// Λ1 ⊕ · · · ⊕ Λn
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The following result is the translation in the context of general Lagrangian paths
of Proposition-Définition A.2.1 in [1].

Corollary 3.6. Let α : (Λ0,Λ1, . . . ,Λn,Λn+1) be a Lagrangian path and let S(α)
denote its Sylvester matrix. The following are equivalent:

(1) The bilinear form S(α) is non-degenerate.

(2) The two Lagrangians Λ0 and Λn+1 are transverse.

Proof: By Lemma 2.1(4), the map β0,n+1 is invertible if and only if L0 t Ln+1, and
in the context of Proposition 3.4 this happens if and only if S(α) is invertible too.

The next lemma is our fundamental tool to compute the Sylvester matrices of long
Lagrangian paths.

Lemma 3.7 (Shortcut lemma). Let α : (Λ0, . . . ,Λn+1) be a Lagrangian path with
Sylvester matrix S(α). We suppose that there are two indices 0 ≤ i < j ≤ n+ 1 such
that Λi t Λj. We then have two more Lagrangian paths:

(1) The sub-path (Λi, . . . ,Λj), with Sylvester matrix S(Λi, . . . ,Λj).

(2) The shortened path (Λ0, . . . ,Λi,Λj , . . . ,Λn+1), with Sylvester matrix S(Λ0, . . . ,
Λi,Λj , . . . ,Λn+1).

Then
S(α) is isometric to S(Λi, . . . ,Λj)⊕ S(Λ0, . . . ,Λi,Λj , . . . ,Λn+1).

Proof: We have three cases to consider: the case where i = 0, where j = n + 1, and
finally 0 < i < j < n+ 1. To simplify our notations, for 0 ≤ s < t ≤ n+ 1 we denote
by S(s, t) the matrix S(Λs, . . . ,Λt).

(i) i = 0, j < n+ 1.
The support of the matrix S(0, n+ 1) is

Λ∗1 ⊕ Λ∗j−1 ⊕ Λ∗j ⊕ · · · ⊕ Λ∗n

and its restriction to Λ∗1⊕· · ·⊕Λ∗j−1 is by construction S(0, j), which is non-degenerate
by Corollary 3.6. In particular,

S(0, n+ 1) = S(0, j)⊥S(0, j)⊥.

Let us compute the orthogonal of Λ∗1⊕ · · ·⊕Λ∗j−1 with respect to S(0, n+ 1). As this
matrix is trigonal, the sub-space Λ∗j+1⊕· · ·⊕Λ∗n is in the orthogonal. Commutativity
of the diagram

Λ∗j
β−1

0,j

%%
Λ0

β0,j+1 //

E0

��

Λ∗j+1

[0,...,0,−(βj,j+1)−1]

��
Λ∗1 ⊕ · · · ⊕ Λ∗j S(0,j+1)

// Λ1 ⊕ · · · ⊕ Λj

shows that the copy of Λ∗j included in the support of S(0, n+1) via the map E0,jβ
−1
0,j is

also in the orthogonal of Λ∗1⊕Λj−1; indeed its image under the matrix S(0, n+1) has as
first j−1 coefficients equal to zero. Since moreover this copy of Λ∗j is in direct sum with
the preceding sub-space, for dimensional reasons the orthogonal is Λ∗j⊕Λ∗j+1⊕· · ·⊕Λ∗n.
Let us now compute the restriction of S(0, n+ 1) to this sub-space.
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Observe that the inclusion of the orthogonal to Λ∗j ⊕ · · · ⊕ Λ∗n into the sup-
port S(0, n+ 1) is given by the matrix

P =

(
E0β

−1
0,j 0

0 Idn−j−1

)
,

with domain Λ∗j⊕· · ·⊕Λ∗n and codomain Λ1⊕· · ·⊕Λn. Let us write the matrix S(0, n+
1) by blocks.

S =

(
S(0, j + 1) Aj

A∗j S(j, n+ 1)

)
,

where

Aj =


0
... 0

0

β−1
j,j+1 0 · · · 0

 .

Then the matrix of S(0, n+ 1) restricted to Λ∗j ⊕ · · · ⊕ Λ∗n is

P ∗S(0, n+ 1)P =

(
β−1∗

0,j E
∗
0S(0, j + 1)E0β

−1
0,j β−1∗

0,j E
∗
0Aj

A∗jE0β
−1
0,j S(j, n+ 1)

)
.

To compute the top left corner of the matrix, we use the commutative diagram
given by Proposition 3.4:

Λ∗j
β−1

0,j

%%
Λ0

β0,j+1 //

E0

��

Λ∗j+1

Tn

��
Λ∗1 ⊕ · · · ⊕ Λ∗j S(0,j+1)

// Λ1 ⊕ · · · ⊕ Λj
E∗0 // Λ∗0

β−1∗
0,j // Λj

which shows that

β−1∗
0,j E

∗
0S(0, j + 1)E0β

−1
0,j = β−1∗

0,j E
∗
0Tnβ0,j+1β

−1
0,j

= −β−1
j,0β

∗
0,j(−β−1

j,j+1)β0,j+1β
−1
0,j

= −β−1
j,0 − βj,0(−β−1

j,j+1)β0,j+1β
−1
0,j

= (−β−1
j,j+1)β0,j+1β

−1
0,j

= dj(0, j + 1), by Lemma 2.2.

In the same way

β−1∗
0,j E

∗
0Aj = [β−1

j,0β1,0, . . . , β
−1
j,0βj,0]Aj

= [β−1
j,j+1, 0, . . . , 0]

and so

P ∗S(0, n+ 1)P =



dj(0, j + 1) β−1
j,0βj,0β

−1
j,j+1, 0, . . . , 0

−βj+1,j

0
... S(j, n+ 1)

0

 = S(0, j, . . . , n+ 1).
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(ii) For the case where i < n, j = n + 1 we proceed in a similar way. The same
argument as before shows that

S(0, n+ 1) = S(i, n+ 1)⊥⊥S(i, n+ 1),

and that the sub-space Λ∗1⊕· · ·⊕Λ∗i−1 is in S(i, n+1)⊥, and the commutative diagram

Λ∗i
β−1
n+1,i

%%
Λn+1

βn+1,i−1 //

Fn+1

��

Λ∗i−1

[β−1
i,i−1,0,...,0]

��
Λ∗i ⊕ · · · ⊕ Λ∗n S(i−1,n+1)

// Λi ⊕ · · · ⊕ Λn

shows that the copy of Λi included via Fn+1β
−1
n+1,i is in the orthogonal too.

Then, if we denote by

Q =

(
Idi 0

0 Fn+1β
−1
n+1,i

)
the inclusion of Λ∗1 ⊕ · · · ⊕ Λ∗i−1 ⊕ Λ∗i as the orthogonal to S(i, n+ 1), we have:

Q∗S(0, n+ 1)Q =

(
S(0, i) Ai−1Fn+1β

−1
n+1,i

β−1
i,n+1F

∗
n+1A

∗
i−1 β−1∗

n+1,iF
∗
n+1S(i− 1, n+ 1)Fn+1β

−1
n+1,i

)
;

and, as before,

Ai−1Fn+1β
−1
n+1,i =


0
...

0
βi−1,i


and using the above commutative diagram:

Q∗S(i− 1, n+ 1)Q = β−1∗
n+1,iF

∗
n+1S(i− 1, n+ 1)Fn+1β

−1
n+1,i

= −β−1
i,n+1βi,n+1β

−1
i,i−1βn+1,i−1β

−1
n+1,i

= β−1
i,i−1βn+1,i−1β

−1
n+1,i

= −di(n+ 1, i− 1)

= di(i− 1, n+ 1)

and hence

Q∗S(0, n+ 1)Q =



0

S(0, i)
...

0

β−1
i−1,i

0 · · · 0− β−1
i,i−1 di(i− 1, n+ 1)

 = S(0, . . . , i, n+ 1).

(iii) We are left the case where 0 < i < j < n + 1. Observe that if j = i + 1,
we have nothing to prove, and so assume that i + 1 < j and as before we start by
computing S(i, j)⊥.
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Here the orthogonal is given by two sub-spaces. First, as before, the Lagrangians
with index too far away from i and j are in the orthogonal:

(Λ∗1 ⊕ · · · ⊕ Λ∗i−1)⊕ (Λ∗j+1 ⊕ · · · ⊕ Λ∗n) ⊂ S(i, j)⊥.

The same computation as in the first case shows also that the sub-space Λ∗i included
via the composite

Λ∗i
β−1
j,i // Λj

Fj // Λ∗i ⊕ · · · ⊕ Λ∗j−1

is in the orthogonal; and as in the second case, the sub-spaces Λ∗j included via

Λ∗j
β−1
i,j // Λi

Ei // Λ∗i+1 ⊕ · · · ⊕ Λ∗j

are in the orthogonal too. This orthogonal S(i, j)⊥ is therefore isomorphic to (Λ∗1 ⊕
· · · ⊕Λ∗i )⊕ (Λ∗j ⊕ · · · ⊕Λ∗n), and the matrix of the inclusion of this sub-space into the
support of S(0, n+ 1) is given, writing blocks according to the decomposition of the
source into (Λ∗1 ⊕ · · · ⊕ Λ∗i−1)⊕ (Λ∗i ⊕ Λ∗j )⊕ (Λ∗j+1 ⊕ · · · ⊕ Λ∗n), by

J =

Id 0 0
0 E 0
0 0 Id

 ,

where E, written by blocks of size 2×(j−i), with domain Λ∗i ⊕Λ∗j and codomains Λ∗i ⊕
· · · ⊕ Λ∗j , is

E =


0

Fjβ
−1
j,i

Eiβ
−1
i,j

0

 .

To compute the restriction of S(0, n+1) to the S(i, j)⊥, we write the matrix S(0, n+
1) by blocks according to the decomposition of the source as (Λ∗1⊕· · ·⊕Λ∗i−1)⊕ (Λ∗i ⊕
· · · ⊕ Λ∗j )⊕ (Λ∗j+1 ⊕ · · · ⊕ Λ∗n)

S(0, n+ 1) =

S(0, i) Ai−1 0

A∗i−1 S(i− 1, j + 1) Aj

0 A∗j S(j, n+ 1)

 .

The product J∗S(0, n+ 1)J is: S(0, i) Ai−1E 0

E∗A∗i−1 E∗S(i− 1, j + 1)E E∗Aj

0 A∗jE S(j, n+ 1)

 .

A first direct computation shows that

Ai−1E =

(
0 0

−β−1
i−1,i 0

)
and A∗jE =

(
0 β−1

j+1,j

0 0

)
.



282 W. Pitsch

The diagrams in Propositions 3.4 and 3.5 show that

S(i− 1, j + 1)E =


β−1
i+1,iβj,iβ

−1
j,i −β−1

i,i+1βi,i+1β
−1
i,j

0 0
...

...

0 0

β−1
j,j−1βj,j−1β

−1
j,i β−1

j,j+1βi,j+1β
−1
i,j



=


β−1
i+1,i −β−1

i,j

0 0
...

...

0 0

β−1
j,i β−1

j,j+1βi,j+1β
−1
i,j


and analogous computations to those carried out in the first two parts show that

E∗S(i− 1, j + 1)E =

(
−β−1

i,j F
∗
j S(i− 1, j)Fjβ

−1
j,i −β−1

i,j βi,jβ
−1
i,j

−β−1
j,i − βj,iβ

−1
j,j−1βj,j−1β

−1
j,i −β−1

j,i E
∗
i S(i, j + 1)Eiβ

−1
i,j

)

=

(
di(i− 1, j) −β−1

i,j

β−1
j,i dj(i, j + 1)

)
.

To sum up, the matrix J∗S(0, n+ 1)J is equal to

S(0, i) 0
−β−1

i−1,j 0

0 0 β−1
j,i−1 di(i− 1, j) −β−1

i,j 0 0 0

0 0 0 β−1
j,i dj(i, j + 1) −β−1

j,j+1 0 0

0 β−1
j+1,j

0 0 0 S(j + 1, n+ 1)


and we recognize S(0 . . . ij . . . n+ 1).

The following is an example of the flexibility in manipulating Sylvester matrices
provided by the shortcut lemma.

Corollary 3.8. Let (Λ0,Λ1, . . . ,Λn,Λ0) be a Lagrangian loop and let M denote a La-
grangian that is transverse to Λ0. Then in W (k) the following four Sylvester matrices
are equal:

(1) S(Λ0,Λ1, . . . ,Λn).

(2) S(Λ1, . . . ,Λn,Λ0).

(3) S(Λ0, . . . ,Λn,Λ0,M).

(4) S(M,Λ0,Λ1, . . . ,Λn,Λ0).
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Proof: We apply the shortcut lemma (Lemma 3.7) to the Lagrangians Λ0 and Λn in
the sequence Λ0,Λ1, . . . ,Λn,Λ0,M ; this gives us an isometry:

S(Λ0,Λ1, . . . ,Λn,Λ0,M) = S(Λ0,Λ1, . . . ,Λn)⊕ S(Λ0,Λn,Λ0,M).

The matrix S(Λ0,Λn,Λ0,M) has as support the space Λ∗n ⊕ Λ∗0 and has the form(
d(Λ0,Λ0) β

β d(M,Λ0)

)
=

(
0 β

β d(M,Λ0)

)
.

Since Λ0 t N , β is invertible, and this matrix represents a neutral form; this proves
that (1) and (3) are equal. The equality between (3) and (2) can be shown similarly
using that Λ1 and the second copy of Λ0 in the sequence

Λ0,Λ1, . . . ,Λn,Λ0,M

are transverse. Finally, the same argument but using that Λ0 t Λn in the sequence M ,
Λ0, . . . ,Λn,Λ0 shows that (4) and (1) are equal.

4. The Maslov index

4.1. Index of a Lagrangian path. For a Lagrangian path the definition of the
Maslov index is straightforward.

Definition 4.1. Let α : (Λ0,Λ1, . . . ,Λn,Λn+1) be a Lagrangian path. The class
in W (k) of the Sylvester matrix S(α) is the Maslov index of α; we denote it by Mas(α),
or Mas(Λ0, . . . ,Λn+1) if needed.

For a Lagrangian loop, Corollary 3.8 gives four equivalent ways to compute its
Maslov index.

Lemma 4.2. Let ω : (Λ0,Λ1, . . . ,Λn,Λ0) be a Lagrangian loop based at Λ0, and let
M t Λ be an arbitrary Lagrangian. Then the Maslov index Mas(ω) ∈W (k) is defined
by any of the four Sylvester matrices

(1) S(Λ0,Λ1, . . . ,Λn).
(2) S(Λ1, . . . ,Λn,Λ0).
(3) S(Λ0, . . . ,Λn,Λ0,M).
(4) S(M,Λ0,Λ1, . . . ,Λn,Λ0).

We now clarify the relation between concatenation of paths and the Maslov index.

Proposition 4.3. Let Λ be a Lagrangian, let α be a Lagrangian path ending at Λ,
β a Lagrangian path starting at Λ, and ω a Lagrangian loop based at Λ (here α and β
could be either loops or empty). Then

S(α ∗ ω ∗ β) = S(ω)⊥S(α ∗ β),

and hence in W (k)

Mas(α ∗ ω ∗ β) = Mas(ω) + Mas(α ∗ β).

Proof: Set α=(Λ0, . . . ,Λn,Λ), ω=(Λ,Λn+2, . . . ,Λn+s,Λ), and β=(Λ,Λ′n+2, . . . ,Λ
′
n+p).

Then, in the concatenated path

α ∗ ω ∗ β : (Λ0, . . . ,Λn,Λ,Λn+2, . . . ,Λn+s,Λ,Λ
′
n+2, . . . ,Λ

′
n+p)

we observe that by hypothesis Λn+2 t Λ. Hence, by the shortcut lemma (Lemma 3.7),

S(α ∗ ω ∗ β) = S(Λn+2, . . . ,Λn+1)⊥S(Λ0, . . . ,Λn+1,Λ
′
n+2, . . . ,Λ

′
n+1,Λ

′
n+p)

= S(ω)⊥S(α ∗ β).
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Proposition 4.4. Let α : (Λ0, . . . ,Λn+1) be a Lagrangian path, let α−1 be its inverse
path, and β : (Λ0,M1, . . . ,Mm,Λ0) a loop based at Λ0. Then in W (k)

(1) S(α ∗ α−1) = 0.

(2) S(α) = S(β)⊥S(β−1 ∗ α).

(3) S(α) = −S(α−1).

Proof: (1) We argue by induction on the length n of the path α.
If n = 0, the path α consists of two transverse Lagrangians L tM , and α ∗α−1 =

(LML), which has a zero Sylvester matrix.
If n = 1, the concatenated path α∗α−1 is (L,L1,M,L1, L) and its Sylvester matrix

written with respect to its domain (L1,M) and codomain (L∗1,M
∗) is(

dM,L bL,M
bM,L −dM,L

)
.

As L t L1, this is a non-degenerate form. An immediate computation shows then
that both L1 and M are isotropic for this form which is therefore neutral.

For the general case, let n ≥ 1 and choose α, a path of length n+ 1. In the middle
of the loop

α ∗ α−1 : (L0, L1, . . . , Ln, Ln+1,M,Ln+1, Ln, . . . , L0)

we find a sub-path β : (Ln, Ln+1,M,Ln+1) that joins two transverse Lagrangians.
The Lagrangian path γ : (L0, L1, . . . , Ln, Ln+1) has length n, and observe that

(L0, L1, . . . , Ln, Ln+1, Ln, . . . , L0) = γ ∗ γ−1.

By the shortcut lemma (Lemma 3.7)

S(α ∗ α−1) = S(γ ∗ γ−1)⊥S(β ∗ β−1),

where by induction the two rightmost terms are zero in W (k).

(2) The path β ∗ β−1 ∗ α is given by the sequence

Λ0,M1, . . . ,Mm,Λ0,Mm, . . . ,M1,Λ0,Λ1, . . . ,Λn,Λn+1.

As Λ0 t Λ1 the shortcut lemma (Lemma 3.7) allows us to write

S(β ∗ β−1 ∗ α) = S(Λ0,M1, . . . ,Λ0, ,Λ1)⊥S(Λ0,Λ1, . . . ,Λn,Λn+1)

= S(β ∗ β−1)⊥S(α), by Proposition 4.3

= S(α), by (1).

Then, using that Λ0 tMm and Proposition 4.3, we have that

S(β ∗ β−1 ∗ α) = S(Λ0,M1, . . . ,Λ0,Mm)

⊥S(Λ0,Mm, . . . ,M1,Λ0,Λ1, . . . ,Λn+1)

= S(β)⊥S(β−1 ∗ α).

(3) Direct from the definitions and Lemma 2.1.

4.2. Index of a triple of Lagrangians.

Proposition 4.5. Fix three Lagrangians Λ0, Λ1, Λ2 and two Lagrangian paths α01

and α12, where αij joins Λi to Λj. Then the class in W (k) of the bilinear symmetric
form

µBL(Λ0,Λ1,Λ2) = S(α01 ∗ α12)⊥− S(α01)⊥− S(α12)

is independent of the choice of paths.
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Proof: We only treat the case where we change the path α01 by an alternate path α′01;
the other case is analogous, and from these two the general case follows immediately.

By construction we have a loop α01 ∗ α′−1
01 based at Λ0, and by Proposition 4.4

applied to this loop and to the paths α01 ∗ α12 and α01 we get

µBL(Λ0,Λ1,Λ2) = S(α01 ∗ α12)⊥− S(α01)⊥− S(α12)

= S(α′01 ∗ α−1
01 )⊥S(α′01 ∗ α−1

01 ∗ α01 ∗ α12)

⊥− S(α′01 ∗ α−1
01 )⊥− S(α′01 ∗ α−1

01 ∗ α01)⊥− S(α12)

= S(α′01 ∗ α−1
01 )⊥− S(α′01 ∗ α−1

01 )⊥S(α′01 ∗ α12)

⊥S(α01 ∗ α−1
01 )⊥− S(α01 ∗ α−1

01 )

⊥− S(α′01)⊥− S(α12), by Proposition 4.3

= S(α′01 ∗ α12)⊥− S(α′01)⊥− S(α12),

where the last equality comes from the fact that if γ is a loop, then S(γ) is invertible,
and hence S(γ)⊥− S(γ) is neutral.

We now check that µBL satisfies the characteristic properties of the Maslov in-
dex [3]; in particular, point (5) settles the multiplicative ambiguity.

Theorem 4.6. The map µBL satisfies the following properties:

(1) If two of the three Lagrangians coincide, then µBL(Λ0,Λ1,Λ2) = 0.
(2) For any φ ∈ Sp2g(k), µBL(φ(Λ0), φ(Λ1), φ(Λ2)) = µBL(Λ0,Λ1,Λ2).
(3) The Maslov index is a 2-cocycle; if Λ0, Λ1, Λ2, Λ3 are four Lagrangians, then

the alternating sum

µBL(Λ1,Λ2,Λ3)− µBL(Λ0,Λ2,Λ3) + µBL(Λ0,Λ1,Λ3)− µBL(Λ0,Λ1,Λ2)

is trivial.
(4) If σ ∈ S3 is a permutation of the indices 0, 1, and 2 with signature ε(σ), then

µBL(Λσ(0),Λσ(1),Λσ(2)) = ε(σ)µBL(Λ0,Λ1,Λ2).

(5) Let µKW denote the Kashiwara–Wall index of three Lagrangians; then 2µBL =
µKW .

Proof: (1) If Λ0 = Λ1, choose a Lagrangian M transverse to Λ0, this defines a
path α01 : (Λ0MΛ0), and choose an arbitrary path α12. As the Sylvester matrix
of the loop α01 is zero, by the shortcut lemma (Lemma 3.7) and after regulariza-
tion α01 ∗ α12 = α12 and therefore

µBL(Λ0,Λ1,Λ2) = S(α01 ∗ α12)⊥− S(α01)⊥− S(α12)

= S(α12)⊥− S(α12)

= 0.

When Λ1 = Λ2 the proof is as before. Finally, if Λ0 = Λ2, choose an arbitrary
path α01 and choose as path α12 the path α−1

01 . Proposition 4.3 then implies that the
index computed with these paths is zero.
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(2) This is an immediate consequence of the equivariance properties of the Sylvester
matrices; see Lemma 3.3.

(3) We choose three paths α01, α12, and α23, where αij joins Λi to Λj , and we denote
by D(Λ0,Λ1,Λ2,Λ3) the alternating sum. Then,

D(Λ0,Λ1,Λ2,Λ3) = S(α12 ∗ α23)⊥− S(α12)⊥− S(α23)

⊥− S(α01 ∗ α12 ∗ α23)⊥S(α01 ∗ α12)⊥S(α23)

⊥S(α01 ∗ α12 ∗ α23)⊥− S(α01)⊥− S(α12 ∗ α23)

⊥− S(α01 ∗ α12)⊥S(α01)⊥− S(α12).

In this long orthogonal sum each bilinear form appears twice with opposite signs, and
hence after regularization it is trivial.

(4) It is enough to show the statement for a transposition. Applying the cocycle result
to the four Lagrangians Λ0, Λ1, Λ0, Λ2 we get

0 = µBL(Λ1,Λ0,Λ2)− µBL(Λ0,Λ0,Λ2) + µBL(Λ0,Λ1,Λ2)− µBL(Λ0,Λ1,Λ0)

= µBL(Λ1,Λ0,Λ2) + µBL(Λ0,Λ1,Λ2).

The same computation applied to Λ0, Λ1, Λ2, Λ0 and Λ0, Λ1, Λ2, Λ1 gives the result
for the other two transpositions.

(5) Since k is a field with at least three elements by [13, Lemma 1.6] there exists a
Lagrangian Λ′ which is simultaneously transverse to the three Lagrangians Λ0, Λ1, Λ2.

We choose the following paths: α01 : (Λ0,Λ
′,Λ1) and α12 : (Λ1,Λ

′,Λ2). By defini-
tion, α01 ∗ α12 = (Λ0,Λ

′,Λ1,Λ
′,Λ2) and

µBL(Λ0,Λ1,Λ2) = S(Λ0,Λ
′,Λ1,Λ

′,Λ2)⊥− S(Λ0,Λ
′,Λ1)⊥− S(Λ1,Λ

′,Λ2).

By the shortcut lemma (Lemma 3.7),

S(Λ0,Λ
′,Λ1,Λ

′,Λ2) = S(Λ0,Λ
′,Λ1,Λ

′)⊥S(Λ0,Λ
′,Λ2).

Moreover, as Λ0 t Λ′, the bilinear form S(Λ0,Λ
′,Λ1,Λ

′) is non-degenerate. It is a
form with support Λ′ ⊕ Λ1, and with matrix:(

dΛ1,Λ0
βΛ1,Λ′

βΛ′,Λ1
dΛ′,Λ′

)
=

(
dΛ1,Λ0

βΛ1,Λ′

βΛ′,Λ1
0

)
.

As βΛ1,Λ′ is invertible, this is the matrix of a neutral form.
Finally,

µBL(Λ0,Λ1,Λ2) = S(Λ0,Λ
′,Λ2)⊥− S(Λ0,Λ

′,Λ1)⊥− S(Λ1,Λ
′,Λ2)

is the regularization of a bilinear form with support Λ′ ⊕ Λ′ ⊕ Λ′ and with matrixdΛ2,Λ0 0 0

0 dΛ1,Λ0
0

0 0 dΛ1,Λ2

 .

For an explicit computation that shows that this is indeed half the Kashiwara–Wall
index we refer the reader to [15, Proposition 7.8.3].
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5. Triviality mod I2 of Maslov’s cocycle

We will now focus on the 2-cocycle of the symplectic group associated to the Maslov
index. As in Subsection 2.2, we have a preferred Lagrangian L in the symplectic
space H(L) = L⊕ L∗, and by point (3) in Theorem 4.6, the map

µ : Sp2g(k)× Sp2g(k) // W (k)
(A,B) � // µBL(L,AL,ABL)

is a 2-cocycle on the symplectic group, and hence determines a group extension

0 // W (k) // Γ // Sp2g(k) // 1.

In this section we identify this extension as the push-out of a canonical extension
defined from the stabilizers of the Lagrangians L and L∗ along a map which resem-
bles the Maslov index of a Lagrangian path. We then show from the properties of
the Maslov index of a loop that the reduction mod I2 of the above extension splits
uniquely, and compute explicitly the splitting. For k = R this computation was car-
ried out by Turaev in [18], but his methods do not seem to generalize to an arbitrary
field.

5.1. Sturm sequences and Sylvester matrices. In Section 2 we introduced the
stabilizers of L and L∗ for the canonical action of the symplectic group Lg

SL =
{(

1 q
0 1

)
| q : L∗ // L symmetric

}
and

SL∗ =
{(

1 0
q 1

)
| q : L // L∗ symmetric

}
.

Elements in these sub-groups will be called elementary matrices and will be denoted
by E(q). To distinguish the identity matrix in both sub-groups we will write

0 =

(
1 0
0 1

)
∈ SL and 0 =

(
1 0
0 1

)
∈ SL∗ .

The free product SL ∗ SL∗ comes with an obvious evaluation morphism E : SL ∗
SL∗ → Sp2g(k), and since k is a field, the map E is surjective. Indeed, it is well
known that over a field the symplectic group is generated by elementary matrices of
the shape E(q) as above and by matrices of the form(

α 0

0 tα−1

)
,

where α ∈ GLg(k). But over a field (cf. [5, Theorem 66]) every invertible matrix is
the product of two symmetric matrices, and if α = p−1q is such a factorization, then
the following two equalities in Sp2g(k),(

1 0
q 1

)(
1 −q−1

0 1

)(
1 0
q 1

)
=

(
0 −q−1

q 0

)
= m(q)

and

m(−p)m(q) =

(
p−1q 0

0 t(p−1q)−1

)
show that the elementary matrices suffice to generate the symplectic group.

In the symplectic space H(L), we have two preferred Lagrangians L and L∗ and
we will borrow the following notation convention from [1, Section 2.2]: Ln will denote
the Lagrangian L if the integer n is even and the Lagrangian L∗ if it is odd. By
definition, a reduced word in the free product SL ∗ SL∗ is a sequence of symmetric
linear maps q : (qm, qm+1, . . . , qn) where qj : Lj → Lj+1. Such a sequence is said to
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be of type (m,n) and is called a Sturm sequence. Barge–Lannes ([1]) associate to a
Sturm sequence as before a Sylvester matrix with support Lm ⊕ Lm+1 ⊕ · · · ⊕ Ln by
the rule:

S(q) =



(−1)mqm 1 0 · · · 0

1 (−1)m+1qm+1 1
. . .

...

0 1
. . .

. . . 0
...

. . .
. . . (−1)n−1qn−1 1

0 · · · 0 1 (−1)nqn


.

The sign that appears in this definition comes from our convention in defining
the affine structure on the sets of Lagrangians transverse to L0 or L1; see Subsec-
tion 2.2. Let us now link the Sylvester matrix associated to a Lagrangian path and
that associated to a Sturm sequence.

Proposition 5.1 ([1, Proposition C.1]). Let m and n be two integers with m ≤ n and
let Λm−1,Λm, . . . ,Λn be a finite sequence of Lagrangians of the symplectic space H(L)
such that Λm−1 = Lm−1. The following conditions are equivalent:

(1) Λk−1 t Λk for m ≤ k ≤ n.
(2) There exists a Sturm sequence (qm, qm+1, . . . , qn) on L of type (m,n) such that

Λk = E(qm, qm+1, . . . , qk) · Lk for m ≤ k ≤ n.
Moreover, if condition (1) is satisfied, then the Sturm sequence that appears in (2) is
unique.

Proof: The implication (2) ⇒ (1) is clear. Conversely, we consider a Lagrangian
path α : (Lm−1,Λm, . . . ,Λn,Λn). By definition Λm ∈ Lg,tLm−1

and hence there ex-
ists a unique qm−1 ∈ SLm−1 such that E(qm)Lm = Λm. Assume by induction that
we have constructed a unique Sturm sequence (qm, . . . , qk) for k ≥ n − 1 such that
for all s ≤ k Λs = E(qm, qm−1, . . . , qs)Ls. Let Λ′s+1 = E(qm, qm−1, . . . , qs)

−1Λs+1.
By construction Λ′s+1 t Ls and hence there exists a unique qs+1 ∈ SLs

such that
Λ′s+1 = E(qs+1Ls+1), and

Λs+1 = E(qm, qm−1, . . . , qs)Λ
′
s+1

= E(qm, qm−1, . . . , qs)E(qs+1)Ls+1

= E(qm, qm−1, . . . , qs, qs+1)Ls+1.

Remark 5.2. As the symplectic group acts transitively on Lg, given any Lagrangian
path, by pushing it by a suitable element in Sp2g(k) we may assume that its initial
Lagrangian is either L or L∗, hence Proposition 5.1 appears as a sort of normal form
for the Sylvester matrix associated to the path.

Let K = ker(E : SL∗SL∗ → Sp2g(k)). By definition we have a short exact sequence
of groups

1 // K // SL ∗ SL∗ // Sp2g(k) // 1.

5.2. Four natural functions onK. Let (m,n) denote one of the four couples (0, 0),
(0, 1), (1, 0), (1, 1). Up to possibly adding to a word w ∈ SL ∗ SL∗ either 0 or 0 at the
beginning or at the end, we may assume that w is of the type (m,n), i.e. it can be
identified with a Sturm sequence of type (m,n). Let us define

fm,n : SL ∗ SL∗ // W (k)
w � // S(w), where w is of type (m,n).
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Proposition 5.3. The four functions f00, f01, f10, and f11 are all well defined.

Proof: We only treat the case of the function f00; the other three cases can be treated
in a similar way. It is enough to show that the value of f00 on w is independent of the
choice of the representative of type 00 of w. There are only two types of ambiguity in
the choice of the representative:

(i) Given a representative of type 00 we may add to it the word 00 at the beginning
(resp. 00 at the end).

(ii) Inside a representative of type 00 we may find a sub-word of the form a0b with
a, b ∈ SL (resp. a0b with a, b ∈ SL∗).

(i) Let w : (q2, q3, . . . , q2n) be a Sturm sequence of type 00. We will only show the
equality f00(00w) = f00(w); the other case is similar. Observe that

S(00) =

(
0 1
1 0

)
is a non-degenerate and neutral form. The Lagrangian path associated to 00w is

(L0, L1, E(0)L0, E(00)L1, E(00q2)L0, . . . , E(00w)L1).

Since

L1 =

(
1 0
q2 0

)
L1 t

(
1 0
q2 0

)
L0 = E(00q2)L0

the shortcut lemma (Lemma 3.7) tells us that

(∗∗) S(00w) = S(α)⊥S(β),

where α is the Lagrangian path

(L1, E(0)L0, E(00)L1, E(00q2)L0)

and β is the Lagrangian path

(L0, L1, E(00q2)L0, . . . , E(00w)L1).

Since E(0) = E(00) = Id the path α is simply

(L1, L0, E(0)L1, E(0q2)L0),

which is associated to the Sturm sequence (0, q2) and whose Sylvester matrix is neutral

S(α) =

(
0 1
1 q2

)
.

In β one recognizes the Lagrangian path associated to the sequence w and equal-
ity (∗∗) in W (k) states that

S(00q2 · · · q2n) = S(q2 · · · q2n).

(ii) Once more we only treat the first of the two sub-cases. The Sturm sequence
associated to the representative of type 00 is:

(q0, q1, . . . , q2r, 0, q2r+2, . . . , q2n),

and its associated Lagrangian path is

(L0, L1, E(q0)L0, . . . , E(q0 · · · q2r−1)L1, E(q0 · · · q2r)L0, E(q0 · · · q2r0)L1,

E(q0 · · · q2r0q2r+2)L0, . . . , E(q0 · · · q2r0q2r+2 · · · q2n)L0).
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Simplifying the evaluations, taking into account that E is a group homomorphism
and that E(0) = Id, this path is exactly

(L0, L1, E(q0)L0, . . . ,E(q0 · · ·q2r−1)L1, E(q0 · · · q2r)L0, E(q0 · · · q2r)L1,

E(q0 · · · (q2r + q2r+2))L0, . . . , E(q0 · · · (q2r + q2r+2) · · · q2n)L0).1

Now, the two Lagrangians in boldface characters are mutually transverse, for

L1 =

(
1 0

q2r + q2r+2 1

)
L1 = E(q2r + q2r+2)L1 t E(q2r + q2r+2)L0

and hence E(q0 · · · q2r−1)L1 t E(q0 · · · (q2r + q2r+2))L0.
We apply the shortcut lemma (Lemma 3.7) to the two Lagrangians and observe

that the Sylvester matrix of the initial sequence is therefore isometric to the direct
sum of the two Sylvester matrices of the Lagrangian path

(L0, L1, E(q0)L0, . . . , E(q0 · · · q2r−1)L1,

E(q0 · · · (q2r + q2r+2))L0, . . . , E(q0 · · · (q2r + q2r+2) · · · q2n)L0),

that is associated to the Sturm sequence

(q0, q1, . . . , q2r + q2r+2, . . . , q2n),

and of the path

(E(q0 · · · q2r−1)L1, E(q0 · · · q2r)L0, E(q0 · · · q2r)L1, E(q0 · · · (q2r + q2r+2))L0).

Since E(q2r)L1 = L1, this last path is the image by E(q0 · · · q2r) of the path

(L1, L0, L1, E(q2r+2)L0),

whose Sylvester matrix is (
0 1
1 q2r+2

)
and is clearly neutral.

Given a sub-word k of w which represents an element in the kernel K, the func-
tion f00 behaves almost as a group homomorphism would do.

Proposition 5.4. Let k = k0, . . . , k2k+1 ∈ K be a word of type 01 and let

w = (q0, . . . , q2r−1, k0, . . . , k2`+1, q2`+2, . . . , q2n)

be an arbitrary word in SL ∗ SL∗ of type 00 that contains k as a sub-word. Then

f00(w) = f01(k) + f00(q0, . . . , q2r−1, q2`+2, . . . , q2n).

Proof: We write down the Lagrangian path associated to the Sturm sequence w:(
L0, L1, E(q0)L0, . . . , E(q0 · · · q2r−1)L1,

E(q0 · · · q2r−1k0)L0, . . . , E(q0 · · · q2r−1k0 · · · k2`+1)L1,

E(q0 · · · q2r−1k0 · · · k2`+1q2`+2)L0, . . . , E(w)L0

)
.

Since the sequence k represents an element in K, the kernel of the evaluation map,
we know that E(k) = Id. In the Lagrangian path above, the last Lagrangian on the
second line and the first Lagrangian on the third line are by definition transverse:

E(q0 · · · q2r−1k0 · · · k2`+1)L1 t E(q0 · · · q2r−1k0 · · · k2`+1q2`+2)L0.

But E(q0 · · · q2r−1k0 · · · k2`+1) = E(q0 · · · q2r−1), hence

E(q0 · · · q2r−1)L1 t E(q0 · · · q2r−1k0 · · · k2`+1q2`+2)L0.

1If r = 0, by convention E(q0 · · · q2r−1) = Id.
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We can now apply the shortcut lemma (Lemma 3.7) to the last Lagrangian on the
first line and to the first Lagrangian on the third line; this tells us that f00(w) is the
sum of the classes of the Sylvester matrices associated to the following two Lagrangian
paths.

Firstly we have the path

(L0, L1, E(q0)L0, . . . , E(q0 · · · q2r−1)L1,

E(q0 · · · q2r−1k0 · · · k2`+1q2`+2)L0, . . . , E(w)L0).

Since E(k) = Id, this is nothing other than the Lagrangian path

(L0, L1, E(q0)L0, . . . , E(q0 · · · q2r−1)L1,

E(q0 · · · q2r−1q2`+2)L0, . . . , E(q0 · · · q2r−1q2`+2 · · · q2n)L0),

whose class is by definition f00(q0, . . . , q2r−1, q2`+2, . . . , q2n).
Secondly, we have the path

(E(q0 · · · q2r−1)L1, E(q0 · · · q2r−1k0)L0, . . . ,

E(q0 · · · q2r−1k0 · · · k2`+1)L1, E(q0 · · · q2r−1k0 · · · k2`+1q2`+2)L0).

By definition of the action of the symplectic group on Lagrangian paths, this path
is the image by E(q0 · · · q2r−1) of the Lagrangian path

(L1, E(k0)L0, . . . , E(k0 · · · k2`+1)L1, E(k0 · · · k2`+1q2`+2)L0).

Here again, as E(k0 · · · k2`+1) = Id, E(k0 · · · k2`+1)L1 = L1, and we recognize a
Lagrangian loop with an extra term to its right:

E(k0 · · · k2`+1q2`+2)L0 = E(q2`+2)L0.

By Corollary 3.8, the Witt class of the Sylvester matrix associated to this path coin-
cides with that of the Sylvester matrix associated to the path

(L0, L1, E(k0)L0, . . . , E(k0 · · · k2`+1)L1),

which by definition is f01(k).

Remark 5.5. If k ∈ K is a word of type 01, by applying Corollary 3.8 as in the last
part of the above argument one can show that

f00(k0) = f01(k) + f00(0) = f01(k),

because in W (k), f00(0) = 0.
In particular all four functions f00, f11, f01, and f01 coincide on K.

This leads us to the key observation:

Lemma 5.6. The function f01 : K → W (k) is a group homomorphism invariant
under the conjugation action of SL ∗ SL∗ ; it takes values in I2, the square of the
fundamental ideal.

Proof: Let k and ` denote two elements in K, and fix for each of them a representative
of type 01, respectively k01 and `01. Compute

f01(k01`01) = f00(k01`010), by Remark 5.5

= f01(k01) + f00(`010), by Proposition 5.4

= f01(k01) + f01(`01), by Remark 5.5.
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To show invariance under conjugation, we fix a word w00 ∈ SL ∗ SL∗ of type 00.
Then w000k01w

−1
00 0 is a representative of type 01 of the conjugate of k by w, and as

before:

f01(w000k01w
−1
00 0) = f00(w000k01w

−1
00 00), by Remark 5.5

= f01(k01) + f00(w000w−1
00 00), by Proposition 5.4.

But w000w−1
00 00 is a representative of type 00 of 0, hence

f00(w000w−1
00 00) = f00(0) = 0.

We finally have to show that for all k ∈ K we have f01(k) ∈ I2. Given a representa-
tive k01 = k0, k1, . . . , k2r+1 of type 01 of k, observe that the Sylvester matrix S(k01)
has as support the direct sum of r + 1 copies of the pair L ⊕ L∗; in particular,
this vector space has even dimension and hence the class of S(k01) in W (k) lies
in I = ker(W (k)→ Z/2).

We now need to compute the discriminant of S(k01). By definition of K,

E(k0k1 · · · k2r+1) = Id ∈ GLg(k) ⊂ Sp2g(k).

Now, if in a Sturm sequence of even length one multiplies the associated elementary
matrices in the symplectic group, and as a result one obtains a block-diagonal matrix(

a 0
0 ta−1

)
∈ GLg(k) ⊂ Sp2g(k),

then [1, Scholie 5.5.6, p. 111] shows that the determinant of a is equal to the discrim-
inant of the Sylvester matrix associated to the initial Sturm sequence. In our present
case this gives us, as wanted,

dis(S(k01)) = det Id = 1.

5.3. A cocycle for the fundamental extension. Let us push out our original
exact sequence

1 // K // SL ∗ SL∗ // Sp2g(k) // 1

along the composite morphism f01 : K → I2 ↪→W (k):

1 // K //

f01

��

SL ∗ SL∗ //

f00zz ��

Sp2g(k) // 1

0 // W (k) // Γ // Sp2g(k) // 1

We caution the reader that the diagonal arrow labeled f00 is of course not a group
homomorphism. Invariance of f01 with respect to the conjugation action implies that
the bottom extension is a central extension. Finally, commutativity of the upper left
triangle allows us to write an explicit 2-cocycle for the bottom central extension:

Definition-Proposition 5.7. Let x, y ∈ Sp2g(k) and choose arbitrary type 00 lifts
of these elements, respectively denoted x̃ and ỹ, in SL ∗ SL∗ . Then the function

µ(x, y) = f00(x̃0ỹ)− f00(x̃)− f00(ỹ)

is independent of the choice of the liftings and defines a 2-cocycle for the extension

0 // W (k) // Γ // Sp2g(k) // 1.



Some remarks on the Maslov index 293

Proof: Recall that Γ as a set is a quotient of the set W (k)× (SL ∗ SL∗). One checks
from the definitions that the function which on a couple (w, x̃) takes the value

r(w, x̃) = w + f00(x̃)

is in fact a retraction of the extension. A direct and classical computation shows then
that the 2-cocycle associated to this retraction is indeed µ.

We now identify the above cocyle with the Maslov index of a triple of Lagrangians
introduced in Theorem 4.6.

Proposition 5.8. For any x, y ∈ Sp2g(k) we have:

µ(x, y) = µBL(x−1L,L, yL).

Proof: By definition f00(x̃) is the Witt class of the Sylvester matrix associated to a
precise path from L0 to E(x̃)L0, say αx̃, and f00 is the Sylvester matrix associated
to a precise path from L0 to E(ỹ)L0, say αỹ. The problem is that f00(x̃0ỹ) is not
exactly the Witt class of the Sylvester matrix associated to the concatenation αx̃ ∗αỹ;
instead it is the class of the concatenation αx̃ ∗ E(x̃0)αỹ. By the equivariance of the
Sylvester matrix of a Lagrangian path, Lemma 3.3, f00(x̃0ỹ) is also the class of the
Lagrangian path E(x̃)−1(αx̃ ∗E(x̃0)αỹ = (E(x̃)−1(αx̃)) ∗αỹ, and the same argument
shows that f00(x̃) is the class of the path E(x̃)−1αx̃, a path from E(x̃)−1L to L. So
the definition of µ(x, y) is precisely that of µBL(x−1L,L, yL).

From the general properties of the Maslov index of a triple of Lagrangians, we
recovered the following well-known properties of the Maslov cocycle.

Proposition 5.9. The value of µ at (x, y) only depends on the three Lagrangians L,
x−1L, and yL. For any φ ∈ Sp2g(k), the value of µ(x, y) ∈W (k) only depends on the
triple of Lagrangians (φx−1L, φL, φyL). More precisely it only depends on the cosets
determined by the elements x−1 and y in Sp2g(k)/ Stab(L). In particular if two of the
three Lagrangians L, xL, and xyL coincide, then µ(x, y) = 0.

5.4. Triviality of µ modulo I2 and computations. Let us now consider the
mod I2 reduction of the central extension defined by the 2-cocycle µ:

1 // K //

f01

��

SL ∗ SL∗ //

��

Sp2g(k) // 1

0 // W (k) //

��

Γ //

��

Sp2g(k) // 1

0 // W (k)/I2 // Γ // Sp2g(k) // 1

As f01 : K →W (k) factors through I2, the bottom extension trivially splits. More-
over, according to Proposition 5.4, the function f00 : SL ∗SL∗ →W (k) mod I2 factors
through Sp2g(k), and the shape of µ given in Definition-Proposition 5.7 tells us that:

Theorem 5.10. The function Φ: Sp2g(k)→W (k)/I2 that associates to x ∈ Sp2g(k)
the element f00(x) mod I2 is the unique function on Sp2g(k) that satisfies the equation

∀x, y ∈ Sp2g(k) Φ(xy)− Φ(x)− Φ(y) = µ(x, y) mod I2.

Proof: Only the unicity part requires a further argument. By construction any two
functions satisfying the equation stated in the theorem differ by a group homomor-
phism Sp2g(k)→W (k)/I2, and the unicity statement is an elementary consequence of
the fact that Sp2g(k) is perfect, unless g = 2 and k = F3. In this singular case we have
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Sp2(F3) = SL2(F3); the abelianization of this group is Z/3 and is induced by the ex-
ceptional map PSL2(F3) ' A4 → Z/3 [14, p. 78]. But as W (F3) 'W (F3)/I2 ' Z/4
[12, Lemma 1.5, p. 87], there are no non-trivial homomorphisms Sp2(F3)→W (F3)/I2

and unicity follows.

We conclude with an observation on the function Φ that is both elementary and
new. Recall that for any a ∈ k∗ then 〈1,−a〉 denotes the associated Pfister form, and
that the stabilizer of a Lagrangian L, StabL ⊂ Sp2g(k), is made of those matrices
that according to the decomposition k2g = L⊕ L∗ are of the form(

x u
0 tx−1

)
,

where x ∈ GLg(k) and u is a symmetric bilinear form on L∗. In particular there is a
split short exact sequence:

1 // SL∗ // StabL // GLg(k) // 1.

A section is given by the function h : x 7→ h(x) =
(
x 0
0 tx−1

)
.

Proposition 5.11. The restriction of Φ to the sub-group StabL is a morphism with
values in the fundamental ideal I. It factors through the canonical projection StabL →
GLg(k); more precisely:

Φ

((
x u
0 tx−1

))
= 〈1,−detx〉 ∈ I/I2 = k×/(k×)2.

Proof: That Φ|StabL
is a morphism is a direct consequence of the properties of the

cocycle µ; see Proposition 5.9. The relation among symplectic matrices(
1 utx
0 1

)(
x 0
0 tx−1

)
=

(
x u
0 tx−1

)
shows that to compute Φ it is enough to consider the cases where u = 0 on the one
hand and x = Id on the other.

(i) Let us start with u 6= 0 and x = Id. Our matrix is therefore an element in SL∗ ,
and we can use the Sturm sequence 0, u, 0 to compute the value of Φ. The associated
Sylvester matrix is 0 1 0

1 −u 1
0 1 0

 .

An immediate computation shows that this quadratic form, whose support is L⊕L∗⊕
L, has as kernel L, embedded as the elements of the form (x, 0,−x). Its regularization
therefore has as support L ⊕ L∗ ⊕ L/L ' L ⊕ L∗. The regularized matrix of S(0u0)
is then (

0 1
1 −u

)
,

which is neutral and therefore Φ(u) = 0.

(ii) Now suppose u = 0. Recall that since we work over a field, given x ∈ GLg(k),
there exist two symmetric forms p and q such that x = p−1q.

Let us define

m(q) =

(
1 0
q 1

)(
1 −q−1

0 1

)(
1 0
q 1

)
.

Then

m(−p)m(q) =

(
p−1q 0

0 t(p−1q)−1

)
.



Some remarks on the Maslov index 295

Let us denote by r the type 00 Sturm sequence

−p, p−1, −p+ q, −q−1, q,

where we underline elements in SL∗ and overline elements in SL. To compute Φ(h(x))
we use the extended sequence r00. Since x stabilizes L, and r0 is a preimage of x,
Proposition 5.9 shows that

Φ(h(x)) = f01(r0) + f00(0) mod I2

= f01(r0) mod I2.

Since x also stabilizes L∗, E(r0)L∗ = L∗ t L, and the Sylvester matrix of r0 is
non-degenerate. The support of this quadratic form is L ⊕ L∗ ⊕ L ⊕ L∗ ⊕ L ⊕ L∗,
which has even dimension 6g, and hence Φ(h(x)) ∈ I.

We now have to compute the discriminant of S(r0). As in the proof of Lemma 5.6,
the evaluation of the components of the Sturm sequence r0 gives by construction

E(r0) = h(x),

and as r0 has an even number of elements, Scholie 5.2.6 in [1] tells us exactly that

disc(S(r0)) = det(x−1) = det(x) mod (k×)2.

Let us now consider the group StabL⊕L∗ of those elements that stabilize the de-
composition L⊕L∗ of H(L). The elements of this group fall into two disjoint families:

(a) Those elements of the form

h(x) =

(
x 0
0 tx−1

)
with x ∈ GLg(k), that stabilize both Lagrangians separately.

(b) Those elements of the form

m(y) =

(
0 −ty−1

y 0

)
with y ∈ GLg(k), that swap the two Lagrangians L and L∗.

These two types of elements together clearly generate the group StabL⊕L∗ .

Proposition 5.12. The restriction of the function Φ to the sub-group StabL⊕L∗ is a
group homomorphism. Moreover,

Φ

((
0 −ty−1

y 0

))
is the Witt class of the pair ((−1)

g(g−1)
2 det(y), 3g) ∈ (k×/(k×)2,Z/4) via the mor-

phism F defined at the end of Subsection 2.1.

Proof: It is enough to show that ∀v, w∈GLg(k), Φ(m(v)m(w)) = Φ(m(v))+Φ(m(w)).
We apply the relation that characterizes Φ to m(v) and m(v−1)m(w) = h(v−1w);

by Proposition 5.9

0 = µ(m(v),m(v−1)m(w)) = Φ(m(w))− Φ(m(v))− Φ(m(v−1)m(w)),

which means that

Φ(m(w))− Φ(m(v)) = Φ(m(v−1)m(w)).
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As this relation is satisfied for arbitrary v and w, it is enough to show that Φ(m(v)) =
−Φ(m(v−1)). For this we compute Φ(m(v)) from relation (∗). A representative of m(v)

is given by the Sturm sequence v : v,−v−1, v, whose associated Sylvester matrix is

S(v) =

v 1 0
1 v−1 1
0 1 v

 .

Since E(v)L0 = m(v)L0 = L1 t L0, the Sylvester matrix S(v) is non-degenerate,
and its rank modulo 4 equals g. To compute the discriminant of S(v), we calculate
directly ∣∣∣∣∣∣

v 1 0
1 v−1 1
0 1 v

∣∣∣∣∣∣ =

∣∣∣∣∣∣
v 1 0
0 0 1
0 1 v

∣∣∣∣∣∣ =

∣∣∣∣∣∣
v 1 0
0 −v−1 1
0 0 v

∣∣∣∣∣∣ = (−1)g det(v)

and hence

disc(S(v)) = (−1)
3g(3g−1)

2 (−1)g det(v) = (−1)
g(g−1)

2 det(v).

More generally, Propositions 5.9 and 5.12 show that the value of Φ on the matrices
on the left-hand side of the following equalities in the symplectic group only depends
on v and is computed using the two preceding propositions(

v x
−tx−1 0

)
=

(
x v
0 −tx−1

)(
0 1
1 0

)
,

(
0 −tx−1

x v

)
=

(
0 1
1 0

)(
x v
0 −tx−1

)
.

Again by Propositions 5.9 and 5.11 we can compute Φ on the matrix(
x 0
qx −tx−1

)
=

(
1 0
q 1

)(
x 0
0 tx−1

)
.

More precisely:

Φ

((
x 0
v tx−1

))
= 〈1,−detx〉+ [vx−1],

where [vx−1] stands for the Witt class of the regularization of the quadratic form vx−1

with support L, and which is again symmetric.
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