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THE PERIOD OF THE LIMIT CYCLE BIFURCATING

FROM A PERSISTENT POLYCYCLE
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Abstract: We consider smooth families of planar polynomial vector fields {Xµ}µ∈Λ, where Λ is

an open subset of RN , for which there is a hyperbolic polycycle Γ that is persistent (i.e., such that

none of the separatrix connections is broken along the family). It is well known that in this case the

cyclicity of Γ at µ0 is zero unless its graphic number r(µ0) is equal to one. It is also well known that
if r(µ0) = 1 (and some generic conditions on the return map are verified), then the cyclicity of Γ

at µ0 is one, i.e., exactly one limit cycle bifurcates from Γ. In this paper we prove that this limit cycle

approaches Γ exponentially fast and that its period goes to infinity as 1/|r(µ) − 1| when µ → µ0.
Moreover, we prove that if those generic conditions are not satisfied, although the cyclicity may be

exactly 1, the behavior of the period of the limit cycle is not determined.
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1. Introduction and main results

This work deals with the study of the period of limit cycles arising in bifurcations
for families of smooth planar vector fields {Xµ}µ∈Λ, where Λ ⊂ RN . From the classi-
fication of first-order structurally unstable vector fields (see for instance [1, 7, 16]),
the generic compact isolated bifurcations for one-parameter (i.e., N = 1) families
of smooth planar vector fields which give rise to periodic orbits for µ → µ0 are: the
Andronov–Hopf bifurcation, the bifurcation of a semi-stable periodic orbit, the saddle-
node loop and the saddle loop bifurcations. These are referred to as the elementary
bifurcations. In [5] the authors determined the behavior of the period T (µ) of the
limit cycle of Xµ arising from an elementary bifurcation as µ → µ0. More precisely,
they obtained the principal term of the expression of T (µ), which is comprised in the
following list:

(i) T (µ) ∼ T0 + T1(µ− µ0) for the Andronov–Hopf bifurcation;

(ii) T (µ) ∼ T0 + T1

√
|µ− µ0| for the bifurcation from a semi-stable periodic orbit;

(iii) T (µ) ∼ T0/
√
|µ− µ0| for the saddle-node loop bifurcation;

(iv) T (µ) ∼ T0 log |µ− µ0| for the saddle loop bifurcation.

Here T0 and T1 are constants with T0 6= 0 and we use the notation T (µ) ∼ a+f(µ−µ0)
as µ tends to µ0, meaning that lim

µ→µ0

(T (µ) − a)/f(µ − µ0) = 1. Accordingly, the

principal term of the period of the periodic orbit arising from generic elementary bi-
furcations characterizes the bifurcation. With regard to applications, the information
concerning T (µ) can be useful to estimate parameters associated with a system, for
instance, when studying neuron activities in the brain with the aim of determining
the synaptic conductance that it receives (see [6]).

When studying the case (iv) above, the authors in [5] (see also [2]) assume the
breaking of the saddle loop connection, which is “the first-order condition” for the
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bifurcation of a limit cycle to occur. The present work started as a natural continua-
tion of this previous study by considering the case in which the homoclinic connection
remains unbroken and the parameter space is not necessarily one-dimensional. That
being said, the tools and techniques applied in our approach enabled us to extend the
results obtained for the saddle loop case to more general situations, namely to any hy-
perbolic polycycle that is persistent (i.e., such that none of the separatrix connections
is broken along the perturbation). For a persistent polycycle Γ, we have an associ-
ated return map defined from a fixed transversal section Σ parametrized smoothly
by σ(s;µ), which writes as

(1) R(s;µ) = sr(µ)(A(µ) +R(s;µ)),

where r(µ) is the product of the hyperbolicity ratios of all saddles in Γ (also called the
graphic number [4]) and R(s;µ) is a well-behaved remainder. The expression in (1) is
a very particular case of the general results by Mourtada (see [13, 14, 9]), although
we shall use a remainder with better flat properties. It is well known (see [17]) that
the stability of Γ is determined by the graphic number when r(µ0) 6= 1, which is the
case considered in [5]. There are, however, other situations that may occur. The list,
from the most to the least generic case, is the following:

(i) A saddle connection breaks and r(µ0) 6= 1.

(ii) A saddle connection breaks and r(µ0) = 1.

(iii) No saddle connection breaks and r(µ0) 6= 1.

(iv) No saddle connection breaks and r(µ0) = 1.

As we already said, case (i) is treated in [5], whereas there is no bifurcation of a limit
cycle in case (iii); see Remark 2.12. The present paper is addressed to case (iv) and
we have obtained two main results. The first one is the following.

Theorem A. Let {Xµ}µ∈Λ be a smooth family of planar polynomial vector fields with
uniformly bounded degree. Let us fix µ0 ∈ Λ such that Xµ0 has a persistent hyperbolic
polycycle Γ. If Γ∩`∞ 6= ∅, we assume additionally that the infinite line `∞ is invariant
for all µ ∈ Λ. Fix a transversal section Σ to Γ parametrized smoothly by s 7→ σ(s;µ)
with σ(0;µ) ∈ Γ for all µ ∈ Λ. Then the following holds:

(a) The associated return map writes as

R(s;µ) = sr(µ)(A(µ) + F∞ε (µ0)),

for any ε > 0 small enough, where r(µ) is the product of all the hyperbolicity
ratios of the saddles in Γ and A ∈ C∞(Λ) with A(µ0) > 0.

(b) The associated return time is given by

T (s;µ) = T̄0(µ) log s+ F∞0 (µ0),

where T̄0 ∈ C∞(Λ). If at least one of the saddles in Γ is finite, then T̄0(µ) < 0.

Moreover, if r(µ)−1 changes sign at µ0 and A(µ0) 6= 1, then the following also holds:

(c) Cycl(Γ, µ0) = 1 and the limit cycle γµ that bifurcates from the polycycle ap-
proaches it at least exponentially fast, i.e., there exists K > 0 such that

lim
µ→µ0

s(µ)

e
−K

|1−r(µ)|
= 0,

where s(µ) is the location of γµ at Σ, i.e., the unique positive solution of
R(s;µ) = s.

(d) If at least one of the saddles at Γ is finite, then the period T (µ) of γµ goes to
infinity as 1

|1−r(µ)| , i.e., lim
µ→µ0

|1− r(µ)|T (µ) is a real positive number.
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The notation FKL (µ0) in the remainder refers to the notion of finitely flat functions
(see Definition 2.5), which is the only information in (a) not following from the general
results obtained by Mourtada (see for instance [14, Théorème 0.1]). We include it for
completeness and to state precisely the hypothesis in (c) and (d). With regard to the
assertion in (c), once the uniqueness of the limit cycle γµ is proved, the exponentially
fast behavior of its location s(µ) can be obtained from the aforementioned result of
Mourtada. As a matter of fact, we provide in Theorem 2.15 a more precise expression
for s(µ), which is actually the one that we use to prove the assertion in (d). It is worth
mentioning that this exponentially flat behavior was first observed in the context of
bifurcation diagrams by Roussarie in [15].

Under the hypothesis of Theorem A, if the parameter space is one-dimensional (i.e.,
N = 1), then the graphic number writes as r(µ) = 1 + 1

T0
(µ− µ0)k +O(µk+1) for an

odd positive integer k. Thus, by applying Theorem A, the behavior of the period of
the limit cycle bifurcating from a persistent polycycle is T (µ) ∼ T0/|µ− µ0|k, which
is an entirely different behavior from any of the elementary bifurcations discussed
above. However, it coincides with the behavior of the generalized Andronov–Hopf
bifurcation considered in [5, Theorem 7]. Thus, one cannot classify bifurcations of
limit cycles based solely on the behavior of their periods.

In the case where the above conditions on r(µ) and A(µ) are not satisfied, although
we may have cyclicity exactly 1, the behavior of the period of the bifurcating limit
cycle is not determined. In fact, we solve a sort of inverse problem when r(µ0) =
A(µ0) = 1 and the gradients of A and r are linearly independent at µ0. In this regard,
our second main result is the following.

Theorem B. Let {Xµ}µ∈Λ be a smooth family of planar polynomial vector fields with
uniformly bounded degree. Let us fix µ0 ∈ Λ such that Xµ0

has a persistent hyperbolic
polycycle Γ with at least a finite saddle. If Γ∩`∞ 6= ∅, we assume additionally that the
infinite line `∞ is invariant for all µ ∈ Λ. Fix a transversal section Σ to Γ parametrized
smoothly by s 7→ σ(s;µ) with σ(0;µ) ∈ Γ for all µ ∈ Λ. Then the associated return
map writes as

R(s;µ) = sr(µ)(A(µ) + F∞ε (µ0)),

for any ε > 0 small enough, where r(µ) is the product of all the hyperbolicity ratios
of the saddles in Γ and A ∈ C∞(Λ) with A(µ0) > 0. Suppose that A(µ0) = r(µ0) = 1
and rank{∇A,∇r}|µ=µ0

= 2. Then for every function τ ∈ C 1(0, δ) satisfying τ(α) > 0
for α > 0 and

(2) lim
α→0+

ατ(α) = lim
α→0+

α2τ ′(α) = lim
α→0+

logα

τ(α)
= 0

there exists a differentiable arc at µ0 in the parameter space Λ, i.e., a C 1 map m :
(0, δ0)→ Λ with lim

α→0+
m(α) = µ0, such that Xm(α) has a limit cycle that approaches

the polycycle Γ as α → 0+ with period T (α) verifying that lim
α→0+

T (α)/τ(α) is a

positive real number.

For instance, the function τ(α) = αl fulfills condition (2) provided that l ∈ (−1, 0).
As a final remark about our main results, we point out that the polynomial as-

sumption on the vector fields Xµ is only necessary when dealing with unbounded
polycycles. If the polycycle Γ is bounded, then Theorems A and B hold assuming
only smoothness.
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This paper is structured as follows. In Section 2, we present the preliminary defi-
nitions necessary for the development of our work, including the definition of finitely
flat functions and their properties. Additionally, in this section, we prove the technical
results that we use in the localization of the limit cycles bifurcating from hyperbolic
persistent polycycles. Section 3 is dedicated to the proof of Theorem A, which deals
with the period of the unique limit cycle bifurcating from a persistent polycycle in the
case r(µ0) = 1 and A(µ0) 6= 1. In Section 4, we prove Theorem B, which addresses
the case r(µ0) = A(µ0) = 1, in which the behavior of the period of limit cycles is
undetermined. In Appendix A we gather some previous results about the Dulac map
and time which are used throughout the present text.

2. Definitions and preliminary results

We now define precisely the notions of persistent polycycles and the cyclicity of a
polycycle.

Definition 2.1. Let X be a two-dimensional vector field. A graphic Γ for X is a com-
pact non-empty invariant subset which is a continuous image of S1 and consists of a
finite number of (not necessarily distinct) isolated singular points {p1, . . . , pm, pm+1 =
p1} and compatibly oriented separatrices {s1, . . . , sm} connecting them (meaning that
si has {pi} as the α-limit set and {pi+1} as the ω-limit set). A graphic for which all
its singular points are hyperbolic saddles is said to be hyperbolic. A polycycle is a
graphic with a return map defined on one of its sides.

Definition 2.2 (Persistent polycycles). Let {Xµ}µ∈Λ be a smooth family of planar
vector fields such that Γ is a hyperbolic polycycle of Xµ0

. We say that Γ is a per-
sistent polycycle when all of its separatrix connections remain unbroken inside the
family {Xµ}µ∈Λ.

Definition 2.3. Let {Xµ}µ∈Λ be a family of vector fields on S2 and suppose that
Γ is a polycycle for Xµ0

. We say that Γ has finite cyclicity in the family {Xµ}µ∈Λ if
there exist κ ∈ N, ε > 0, and δ > 0 such that any Xµ with |µ− µ0| < δ has at most
κ limit cycles γi with distH(Γ, γi) < ε for i = 1, . . . , κ. The minimum of such κ when
δ and ε go to zero is called the cyclicity of Γ in {Xµ}µ∈Λ at µ = µ0 and denoted
by Cycl(Γ, µ0).

We introduce the notion of finitely flat functions, which play a substantial role in
the results of this paper.

Definition 2.4. Consider K ∈ Z>0 ∪ {∞} and an open set U ⊂ RN . We say that
a function ψ(s;µ) belongs to class CK

s>0(U), if there exists an open neighborhood Ω
of {0} × U in RN+1 such that (s;µ) 7→ ψ(s, µ) is CK on Ω ∩ ((0,+∞)× U).

Definition 2.5 (Finitely flat functions). Consider K ∈ Z>0 ∪ {∞} and an open
set U ⊂ RN . Given L ∈ R and µ0 ∈ U , we say that ψ(s;µ) ∈ CK

s>0(U) is (L,K)-flat

with respect to s at µ0, and we write ψ ∈ FKL (µ0), if for each ν = (ν0, . . . , νN ) ∈ ZN+1
>0

with |ν| 6 K, there exist a neighborhood V of µ0 and C, s0 > 0, such that

∂νψ(s;µ) :=

∣∣∣∣ ∂|ν|ψ(s;µ)

∂sν0∂µν11 · · · ∂µ
νN
N

∣∣∣∣ 6 CsL−ν0 for all s ∈ (0, s0) and µ ∈ V.

If W is a (not necessarily open) subset of U , then F∞L (W ) =
⋂

µ0∈W
F∞L (µ0).

The next two results were proved in [10] and will be very useful to work with
finitely flat functions.
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Lemma 2.6. Let U and U ′ be open sets of RN and RN ′ respectively and consider
W ⊂ U and W ′ ⊂ U ′. Then, the following holds:

(a) FKL (W ) ⊂ FKL (Ŵ ) for any Ŵ ⊂W .

(b) FKL (W ) ⊂ FKL (W ×W ′).
(c) CK(U) ⊂ FK0 (W ).

(d) If K > K ′ and L > L′, then FKL (W ) ⊂ FK′L′ (W ).

(e) FKL (W ) is closed under addition.

(f) If f ∈ FKL (W ) and ν ∈ ZN+1
>0 with |ν| 6 K, then ∂νf ∈ FK−|ν|L−ν0 (W ).

(g) FKL (W ) · FK′L′ (W ) ⊂ FKL+L′(W ).

(h) Assume that φ : U ′ → U is a CK function with φ(W ′) ⊂W , and let us take g ∈
FKL′(W ′) with L′ > 0 and verifying g(s; η) > 0 for all η ∈ W ′ and s > 0 small
enough. Consider also any f ∈ FKL (W ). Then h(s; η) := f(g(s; η);φ(η)) is a
well-defined function that belongs to FKLL′(W ′).

Lemma 2.7. Let U be an open set of RN , K ∈ Z>0, and g(s;µ) ∈ CK
s>0(U) such

that, for some W ⊂ U and L ∈ R, g(s;µ) ∈ FKL (W ). If L > K, then g extends to
a CK function g̃, defined in some open neighborhood of {0} ×W ∈ RN+1, satisfying

∂ν g̃(0;µ) = 0 for all µ ∈W and ν ∈ ZN+1
>0 with |ν| 6 K.

In what follows, we present several technical results which will be applied in the
study of limit cycles bifurcating from hyperbolic persistent polycycles. These are
essentially the machinery behind Theorems A and B.

Lemma 2.8. Let f1(µ), . . . , fm(µ) be C k+1 functions on an open subset Λ⊂RN and

k ∈Z>0. For each j = 1, . . . ,m, let ∂6kµ fj(µ) denote the vector whose
(
N+k
k

)
entries

are all the partial derivatives of order less than or equal to k of fj(µ). Then for every
P ∈R[x1, . . . , xm(N+k

k )] and each i∈{1, . . . , N+1} there exists Qi∈R[x1, . . . , xm(N+k+1
k+1 )]

such that if G(µ)=P (∂6kµ f1, . . . , ∂
6k
µ fm), then ∂µiG(µ)=Qi(∂

6k+1
µ f1, . . . , ∂

6k+1
µ fm).

The above lemma is a direct consequence of the chain rule and the fact that the
ring of polynomials is closed under differentiation.

Lemma 2.9. For any L > 0 and K ∈ Z>0, the function s(α;µ, z) = c(µ)−1/α(1 + z),
with c(µ) being a C∞ function, an open subset U ⊂ RN , and c(µ0) > 1, belongs
to FKL (µ0, 0).

Proof: First we compute lim
α→0+

α−Lc(µ)−1/α. Since c(µ0) > 1, there is an open neigh-

borhood of U ′ containing µ0 such that c(µ) > δ > 1 for all µ ∈ U ′. Moreover,

log

(
c(µ)−1/α

αL

)
= − 1

α
log c(µ)− L logα = − 1

α
(log c(µ)− Lα logα),

and then we have that lim
α→0+

log(α−Lc(µ)−1/α)=−∞ and therefore lim
α→0+

α−Lc(µ)−1/α=

0. Since c(µ) > δ > 1, these limits are uniform and hence there exist C > 0 and a
neighborhood V of (µ0, 0) such that |s(α;µ, z)| 6 CαL for α small enough and (µ, z) ∈
V . Thus, s(α;µ, z) ∈ F0

L(µ0, 0).



304 D. Maŕın, L. Queiroz, J. Villadelprat

Now, to see that s(α;µ, z) ∈ F1
L(µ0, 0), it is sufficient to verify that the first

derivatives of s(α;µ, z) are bounded in a neighborhood of (µ0, 0). This is a direct
consequence of their expressions, given as follows:

∂s(α;µ, z)

∂z
= c(µ)−1/α,

∂s(α;µ, z)

∂α
= c(µ)−1/αα−2(1 + z) log c(µ),(3)

∂s(α;µ, z)

∂µi
= − 1

α
c(µ)−1/α−1(1 + z)

∂c

∂µi
(µ)

= − 1

α
c(µ)−1/α(1 + z)

∂c

∂µi
(µ)c(µ)−1.

Thus, we have

lim
α→0+

α−L
∣∣∣∣ ∂s(α;µ, z)

∂αν0∂µν11 · · · ∂µ
νN
N ∂zνN+1

∣∣∣∣ = 0,

uniformly, for ν0 + · · ·+ νN+1 = 1. Therefore s(α;µ, z) ∈ F1
L(µ0, 0).

We then proceed by induction to prove the following claim:

Claim. For any ν ∈ ZN+2
>0 with |ν| = k 6 K, we have

∂νs(α;µ, z) =
∂|ν|s(α;µ, z)

∂αν0∂µν11 · · · ∂µ
νN
N ∂zνN+1

= α−2kc(µ)−1/αPν(log c(µ), α, z, c(µ)−1, ∂6kµ c(µ)),

where Pν is a polynomial with real coefficients and ∂6kµ c(µ) denotes a vector with all
the partial derivatives of c(µ) of order less than or equal to k on µ.

For k = 1, by equation (3), this is true. Now, assume it holds for k = k̃ > 1.

For ν ∈ ZN+2
>0 with |ν| = k̃ + 1, we must consider one of the following cases:

Case 1. νN+1 > 2. In this case, by Schwarz’s theorem, ∂νs(α;µ, z) = 0 and the claim
holds.

Case 2. ν0 > 1. In this case, ∂νs(α;µ, z) = ∂α∂ν−e0s(α;µ, z), where e0 =(1, 0, . . . , 0)∈
ZN+2
>0 . Thus, since |ν − e0| = k̃, we have

∂α∂ν−e0s(α;µ, z) = ∂α(α−2k̃c(µ)−1/αPν−e0(log c(µ), α, z, c−1(µ), ∂6k̃µ c(µ)))

= −2k̃α−2k̃−1c(µ)−1/αPν−e0 + α−2k̃−2c(µ)−1/α log c(µ)Pν−e0

+ α−2k̃c(µ)−1/α∂x2
Pν−e0

= α−2k̃−2c(µ)−1/α(−2k̃αPν−e0 + log c(µ)Pν−e0 + α2∂x2Pν−e0).

Then, the claim holds.
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Case 3. νi > 1 for some 0 < i < N + 1. In this case, ∂νs(α;µ, z) = ∂µi∂ν−eis(α;µ, z),

where ei ∈ ZN+2
>0 has 1 at the (i+1)th position and zeros elsewhere. As in the previous

case, since |ν − ei| = k̃, we have

∂µi∂ν−eis(α;µ, z) = ∂µi(α
−2k̃c(µ)−1/αPν−ei(log c(µ), α, z, c−1(µ), ∂6k̃µ c(µ)))

= α−2k̃

(
− 1

α
c(µ)−1/α−1 ∂c

∂µi
(µ)Pν−ei

+ c(µ)−1/α∂µiPν−ei(log c(µ), α, z, c−1(µ), ∂6k̃µ c(µ))

)
= α−2k̃−2c(µ)−1/α

(
−αc(µ)−1 ∂c

∂µi
(µ)Pν−ei

+ α2∂µiPν−ei(log c(µ), α, z, c−1(µ), ∂6k̃µ c(µ))

)
.

By Lemma 2.8, the claim holds true.
Now, since for any ν ∈ ZN+2

>0 with |ν| = k 6 K, we have

∂νs(α;µ, z) = α−2kc(µ)−1/αPν(log c(µ), α, z, c−1(µ), ∂6kµ c(µ)).

Since lim
α→0+

α−Lc(µ)−1/α = 0 for any L > 0 and Pν is a real polynomial and thus is

limited for (α;µ, z) in a neighborhood of (0;µ0, 0) then lim
α→0+

α−L|∂νs(α;µ, z)| = 0

uniformly and thus all the derivatives of order less than or equal to K are bounded,
which implies that s(α;µ, z) ∈ FKL (µ0, 0).

Lemma 2.10. Let h ∈ C 1(0, δ), for δ > 0, such that h(α) > 0 for α > 0,

lim
α→0+

h(α) = lim
α→0+

αh′(α) = lim
α→0+

α logα

h(α)
= 0.

Then, for any L > 0, s(α; z) = (1 + h(α))−1/α(1 + z) ∈ F1
L(0).

Proof: We have that

log

(
s(α; z)

αL

)
= log

(
(1 + h(α))−1/α(1 + z)

αL

)
= − 1

α
log(1 + h(α))− L logα+ log(1 + z).

The hypothesis lim
α→0+

α logα
h(α) = 0 implies that lim

α→0+

h(α)
α = +∞. Thus,

lim
α→0+

log(α−Ls(α; z)) = lim
α→0+

−h(α)

α

(
1− Lα logα

h(α)

)
+ log(1 + z) = −∞,

which implies that lim
α→0+

α−Ls(α; z) = 0 and therefore s(α; z) ∈ F0
L(R) ⊂ F0

L(0). Now

taking the first derivatives of s(α; z) we obtain

∂zs(α; z) = (1 + h(α))−1/α =
1

1 + z
s(α; z),

∂αs(α; z) =
s(α; z)

α2

(
log(1 + h(α))− α h′(α)

1 + h(α)

)
;

since lim
α→0+

α−Ls(α; z) = 0 and, by hypothesis, lim
α→0+

αh′(α) = 0, we have that

lim
α→0+

α−L∂αs(α; z) = lim
α→0+

α−L∂zs(α; z) = 0.

Hence, s(α; z) ∈ F1
L(R) ⊂ F1

L(0).
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Lemma 2.11. Let µ0 be a point in an open subset Λ ⊂ RN . For a given k > 1,
consider the equation

(4) s−α − c(µ) + f(s;µ) = 0,

where α ∈ R\{0}, f(s;µ) ∈ Fkε (µ0), for some 0 < ε, and c(µ) is a C k function at µ =

µ0 such that c(µ0) 6= 1 and c(µ0) > 0. Then, there exists an open neighborhood Ũ
of µ0, an open real interval I with 0 as an endpoint, and a C k function z(α;µ) defined
in a neighborhood of (0, µ0) such that z(0;µ0) = 0, and

s = c(µ)−1/α(1 + z(α;µ))

is a solution to equation (4) for (α;µ) ∈ I × Ũ . More precisely, for c(µ0) > 1, we
have I = (0, δ) and if c(µ0) < 1, then I = (−δ, 0), for a sufficiently small δ > 0.

Proof: We have that s = c(µ)−1/α is a solution of equation (4) disregarding the
F∞ε (µ0) terms. It is a well-defined function, since c(µ0) > 0. We set the following
ansatz to estimate the solution of (4):

s(α;µ, z) = c(µ)−1/α(1 + z).

Substituting into (4) we obtain

c(µ)((1 + z)−α − 1) + h(α;µ, z) = 0,

where h(α;µ, z) := f(c(µ)−1/α(1 + z);µ). Note that ((1 + z)−α − 1) = −αzg(α, z)
with g being an analytic function at (0, 0) with g(0, 0) = 1. The above equation is
equivalent, for α 6= 0, to

−c(µ)zg(α, z) + 1
αh(α;µ, z) = 0.

Define the functions

H(α;µ, z) = −c(µ)zg(α, z) + 1
αh(α;µ, z),

G(α;µ, z) = 1
αh(α;µ, z).

Now, since c(µ0) 6= 1, there is a neighborhood of µ0 such that c(µ)− 1 maintains its
sign. Notice that s(α;µ, z) has different behaviors depending on the sign of c(µ)− 1.
However, the behaviors are similar regarding the flatness of the function as α goes
to zero. More precisely, for c(µ) > 1 (and c(µ) < 1), s(α;µ, z)→ 0 exponentially flat
as α→ 0+ (respectively α→ 0−).

Suppose that c(µ0) > 1. The case c(µ0) < 1 is similar with the only difference being
that the interval I in the statement of the theorem will lie on a different semi-axis.
By Lemma 2.9, s(α;µ, z) ∈ F∞L (µ0, 0) for any L > 0. Now, since f(s;µ) ∈ F∞ε (µ0),
using item (h) in Lemma 2.6, with W = (µ0), W ′ = (µ0, 0), η = (µ, z) φ(µ, z) = µ,
we have that f(s(α;µ, z);µ) ∈ F∞εL(µ0, 0). Now, item (g) in Lemma 2.6 implies that
G(α;µ, z) ∈ F∞εL−1(µ0, 0).

Given a non-negative integer k > 1, choosing L> (k+1)/ε, by Lemma 2.7, there

exists an extension G̃(α;µ, z) of G(α;µ, z), which is C k in an open neighborhood

of (0;µ0, 0) such that G̃(0;µ0, 0) = 0 and ∂zG̃(0;µ0, 0) = 0. Consequentially, H(α;µ, z)

admits an extension H̃(α;µ, z) which is C k in the same open neighborhood of (0;µ0, 0)
such that

H̃(0;µ0, 0) = 0, ∂zH̃(0;µ0, 0) = c(µ0) 6= 0.

By the Implicit Function Theorem, there exists a unique C k function z(α;µ) defined

in an open set (−δ, δ)× Ũ containing (0;µ0) for which

H̃(α;µ, z(α, µ)) ≡ 0, and z(0;µ0) = 0.
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Since H is the restriction of H̃, s = s(α;µ, z(α, µ)) is a solution for (4) for (α;µ) in

the open set I × Ũ for I = (0, δ) where δ > 0 is sufficiently small.
For the case c(µ0) < 1, it is enough to write s = ĉ(µ)−1/α̂(1+z(α̂, µ)) with ĉ = 1/c

and α̂ = −α and the proof will follow with the same arguments.

Our goal is to study the zeros of the function

D(s;µ) = A(µ)−B(µ)s−α(µ) + Fkε (µ0),

for ε > 0, k > 1, with A(µ), B(µ) > 0, α(µ) being C k functions on Λ. For any
parameter µ0 ∈ Λ, we define Z(D , µ0) := inf

δ,ρ>0
N(δ, ρ), where

N(δ, ρ) := sup
µ∈Bρ(µ0)

#{isolated zeros of D(·;µ) in (0, δ)}.

These definitions are motivated by the notion of cyclicity. In fact, the isolated zeros
of D(s;µ) in (5) correspond to limit cycles of a vector field near a persistent polycycle
and, in that case, Z(D , µ0) is precisely the cyclicity of the polycycle at parameter
value µ = µ0.

Remark 2.12. For α(µ0) 6= 0, we must have Z(D , µ0) = 0. In fact, for α(µ0) < 0, we
have

lim
(s,µ)→(0,µ0)

D(s;µ) = A(µ0) > 0.

And for α(µ0) > 0,

lim
(s,µ)→(0,µ0)

sαD(s;µ) = −B(µ0) < 0.

In both cases, there exist an open neighborhood U of µ0 and ε > 0 small enough such
that D(s;µ) 6= 0 for (s;µ) ∈ (0, ε) × U . This implies that no limit cycle bifurcates
from a persistent polycycle with graphic number different from one.

Thus, for zeros of D(·;µ) to exist near s = 0 for a small neighborhood of µ0,
we must have α(µ0) = 0. For the proof of the next theorem, we need to define the

Écalle–Roussarie compensator.

Definition 2.13. The function defined for s > 0 and α ∈ R by means of

ω(s;α) =

{
s−α−1
α if α 6= 0,

− log s if α = 0

is called the Écalle–Roussarie compensator.

Remark 2.14. It is known from [11, Lemma A.3] that ω(s;α), 1
ω(s;α) ∈ F

∞
−δ(0) for

every δ > 0.

Theorem 2.15. For a fixed value µ0 ∈ Λ, consider the function

(5) D(s;µ) = A(µ)−B(µ)s−α(µ) + Fkε (µ0),

where ε > 0 and A,B, α ∈ C k(Λ) with k ∈ N ∪ {∞}. Assume that

(a) α(µ) changes sign at µ0, in particular α(µ0) = 0;

(b) A(µ0) and B(µ0) are positive and different.

Then Z(D , µ0) = 1. Moreover, there exist a neighborhood V of µ0 and δ0 > 0 such
that W := {µ ∈ V : α(µ)(A−B)(µ) > 0} 6= ∅ and for every µ ∈W there is a unique
s(µ) ∈ (0, δ0) for which D(s(µ);µ) = 0. Furthermore, there exists ẑ ∈ C k(V ), with

ẑ(µ0) = 0 such that s(µ) =
(
A
B (µ)

)−1/α(µ)
(1 + ẑ(µ)) for all µ ∈W .
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Proof: We first show that Z(D , µ0) 6 1. We express the function D(s;µ) as

D(s;µ) = (A−B)(µ)− α(µ)B(µ)ω(s;α(µ)) + Fkε (µ0),

and apply the derivation-division algorithm. Let

D1(s;µ) :=
D(s;µ)

ω(s;α(µ))
= −α(µ)B(µ) +

(A−B)(µ)

ω(s;α(µ))
+ Fkε−δ(µ0).

Here, we used the fact that 1/ω(s;α(µ)) ∈ F∞−δ(µ0) for any δ > 0 (Remark 2.14).
Then,

∂sD1(s;µ) =
(A−B)(µ)s−α−1

ω2(s;α(µ))
+ Fkε−δ−1(µ0).

Since ω(s;α), sα ∈ Fk−δ(α = 0), taking δ ∈ (0, ε/4), we obtain

lim
(s,µ)→(0,µ0)

sα+1ω2(s;α(µ))∂sD1(s;µ)

= lim
(s,µ)→(0,µ0)

(A−B)(µ) + Fkε−4δ(µ0) = (A−B)(µ0) 6= 0,

which implies, using Rolle’s theorem, that there are a small enough neighborhood U
of µ0 and ε > 0 such that D1(·;µ) and so D(·;µ) have at most one zero for 0 < s < ε,
i.e., Z(D , µ0) 6 1.

Now, to show that Z(D , µ0) = 1, we use the fact that these zeros are solutions of
the following equation:

(6) s−α(µ) − A(µ)

B(µ)
+ Fkε (µ0) = 0.

Since (A−B)(µ0) 6=0, by Lemma 2.11, there is a solution of the form s=
(
A
B (µ)

)−1/α
(1+

z(α;µ)) for (α;µ) in an open set I × Ũ ⊂ R × RN for equation (6) if we consider α
as a free variable. However, since α(µ) changes signs at µ0, there exists a neighbor-

hood V of µ0 such that W := {µ ∈ V : α(µ)(A − B)(µ) > 0} ⊂ Ũ ∩ α−1(I) is not

empty. Hence, for every µ ∈ W , s(µ) =
(
A
B (µ)

)−1/α(µ)
(1 + z(α(µ);µ)) is such that

D(s(µ);µ) = 0. Therefore, Z(D , µ0) = 1.

3. Proof of Theorem A

In this section, we use the results above to describe the behavior of the period
function of the limit cycle unfolded from a persistent polycycle. More precisely, we
will consider the case in which the cyclicity of this polycycle is exactly 1 at a parameter
value µ = µ0.

For a family {Xµ}µ∈Λ of polynomial vector fields, we may find an unbounded
polycycle Γ. Thus, to investigate the behavior of the trajectories of a given vector
field Xµ near infinity we can consider its Poincaré compactification p(Xµ) (see [3,
§5], for details), which is an analytically equivalent vector field defined on S2. The
points at infinity of R2 are in bijective correspondence with the points at the equator
of S2, denoted by `∞. Furthermore, the trajectories of p(Xµ) in S2 are symmetric with
respect to the origin and so it suffices to draw only its flow in the closed northern
hemisphere, the so-called Poincaré disk.

For us to have access to the entirety of the previous results, we need to work with
a family {Xµ}µ∈Λ of polynomial vector fields such that for µ = µ0, Γ is a persistent
polycycle for {Xµ}µ∈Λ. If Γ∩`∞ 6= ∅, we assume additionally that the infinite line `∞
is invariant for p(Xµ) for all µ ∈ Λ (see Figure 1).
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Γ

`∞

Figure 1. A representation of a polycycle that suits our setting.

The return map R(·;µ) associated to a hyperbolic polycycle is extensively studied
in the literature. Its general expression is R(s;µ) = A(µ)sr(µ) + o(sr(µ)) (see [4, 17,
12], for instance), where r(µ) is the product of the hyperbolicity ratios of all the
saddles in the polycycle, also referred to as the graphic number. It is known that if
r(µ0) 6= 1, then the cyclicity of the polycycle at µ = µ0 is zero and if r(µ0) = 1 and
A(µ0) 6= 1, then the cyclicity is at most 1. Since we are interested in the case where
the cyclicity of the persistent polycycle is exactly 1, we work with the additional
assumption that A(µ) changes sign at µ = µ0. We now prove Theorem A.

Proof of Theorem A: For our considered persistent hyperbolic polycycle Γ, let
p1, . . . , pm be the m hyperbolic saddles that we conveniently label according to the
direction of the flow. We denote by λi(µ) the hyperbolicity ratio of pi. First, we con-
sider the case m > 2 (we postpone the proof for the case m = 1 as it has a slightly
different construction).

Since the infinite line `∞ is invariant for the flow of p(Xµ), for each saddle located
at infinity we have that exactly one of its separatrices is contained in `∞. This also
implies that Γ has an even number of singularities at infinity assembled in pairs.
For i = 1, . . . ,m, let Σi be the transversal section to the connection from pi−1 to pi
(set p0 = pm), and Di = Di(·;µ) and Ti = Ti(·;µ) the corresponding Dulac maps and
times from Σi to Σi+1 (see Figure 2 for a schematic). It is clear that we can assume
that Σ1 is the transversal section given in the statement.

Γ

p1

p2

p3

pm pm−1

D1

Dm

D2

Σ1

Σ2

`∞

Figure 2. The representation of the considered maps and saddles on the poly-

cycle Γ.
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By following a point in position s at Σ1 until its return to the transversal section,
we determine the return map given by

R(s;µ) = Dm ◦Dm−1 ◦ · · · ◦D1(s;µ).

Now, in order to study each Dulac map and time, we compactify Xµ by means of
projective changes of variables instead of the Poincaré compactification p(Xµ). Note
that, for each saddle pi at infinity, there exists a straight line li not intersecting the
flow from Σi to Σi+1 for µ near µ0 and such that pi 6∈ li ∩ l∞. For a fixed i, by means
of rotation and translation, we can assume that li = {y = 0}. Then, we perform the
projective change of variables

{
u = x

y , v = 1
y

}
, which transforms Xµ(x, y) into

X̂i
µ(u, v) =

1

vd−1
(P̂ (u, v;µ)∂u + vQ̂(u, v;µ)∂v),

where d > 2 is the degree of Xµ, and P̂ , Q̂ are polynomials with the coefficients

depending smoothly on µ. It is important to remark that Xµ and X̂i
µ are conjugated,

which is essential in the study of the Dulac time. The above transformation brings the
infinite line to {v = 0}. This process can be repeated for each saddle at infinity. Now
we are ready to work with all saddles in Γ (the finite ones, and the infinite ones after
the above procedure). For each of them we can apply Lemma A.2 to conclude that
for each i = 1, . . . ,m there exists a neighborhood Vi of (pi, µ) and a C∞ diffeomor-

phism Φi : Vi → Φi(Vi) with Φi(x, y, µ) = (φiµ(x, y), µ) such that (φiµ)∗(X̂
i
µ|Vi) = X̃i

µ,
where

(7) X̃i
µ(u, v) =

1

vκi
(uPi(u, v;µ)∂u + vQi(u, v;µ)∂v) with κi =

{
d− 1 if pi ∈ l∞,
0 if pi 6∈ l∞,

where Pi, Qi ∈ C∞(Φ(Vi)). Now, we can apply Theorem A.1 to obtain that each
Dulac map is given by

Di(s;µ) = sλi(∆i0(µ) + F∞ε (µ0)) = ∆i0(µ)sλi(1 + F∞ε (µ0)),

where ∆i0∈C∞(Λ) and ε>0 is so that 0 < 2ε < min{1, λ1(µ0), . . . , λm(µ0)}. This also
implies that Di ∈ F∞λi(µ0)−ε(µ0) ⊂ F∞ε (µ0). Using the properties listed in Lemma 2.6,

we can see that

D2 ◦D1(s;µ) = ∆20(µ)(∆10(µ)sλ1(1 + F∞ε (µ0)))λ2(1 + F∞ε2 (µ0))

= ∆20(µ)∆λ2
10 (µ)sλ1λ2(1 + F∞ε (µ0))λ2(1 + F∞ε2 (µ0))

= ∆20(µ)∆λ2
10 (µ)sλ1λ2(1 + F∞ε (µ0))(1 + F∞ε2 (µ0))

= ∆20(µ)∆λ2
10 (µ)sλ1λ2(1 + F∞ε2 (µ0)),

where in the third equality we use the fact that (s;µ) → (1 + s)λi(µ) − 1 belongs
to F∞1 (µ0). Notice that the composition of two Dulac maps has a Dulac-map-like
expression. Proceeding analogously, we obtain the composition of k consecutive Dulac
maps:

(8) Dk ◦Dk−1 ◦ · · · ◦D1(s;µ) = Ak(µ)sλ1···λk(1 + F∞εk (µ0)),

where

Ak(µ) =

k∏
i=1

∆Λik
i0 (µ), Λik =

∏
i<j6k

λj , and Λkk = 1.

Therefore, the return map is given by

(9) R(s;µ) = Am(µ)sλ1···λm(1 + F∞εm(µ0)),

which proves (a).
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The return time of a point in position s at Σ1 is determined by the following
expression:

(10) T (s;µ) = T1(s;µ) +

m∑
i=2

Ti(Di−1 ◦ · · · ◦D1(s;µ)).

For each saddle pi in Γ, by (7), the vector field can be locally expressed as (17)
with n = (0, n2). Therefore, by Theorem A.1, the associated time map Ti is given by

Ti(s;µ) = T i0(µ) log s+ T i00(µ) + F∞ε (µ0) = T i0(µ) log s+ F∞0 (µ0).

By (8) and Lemma 2.6 for i > 2, we have

Ti(Di−1 ◦ · · · ◦D1(s;µ)) = T i0(µ)Λ0(i−1) log s+ T i0(µ) logAi−1(µ) + F∞0 (µ0)

= T i0(µ)Λ0(i−1) log s+ F∞0 (µ0).

Thus, substituting into (10), we obtain

(11) T (s;µ) = T̄0(µ) log s+ F∞0 (µ0),

for T̄0(µ) = T 1
0 (µ) +

∑m
i=2 T

i
0(µ)Λ0(i−1). Note that, by Theorem A.1, T i0 6 0 and the

equality holds if and only if pi is an infinite saddle. If there is at least one finite saddle,
then T̄0(µ) is a strictly negative function. This proves (b).

The limit cycles bifurcating from Γ correspond to small positive zeros of the pro-
portional displacement map D(s;µ) = s−λ1···λn(R(s;µ) − s), which by (9) writes
as

D(s;µ) = Am(µ)− s1−λ1···λm + F∞εm(µ0).

Recall that, by assumption, r(µ) − 1 = (λ1 · · ·λm)(µ) − 1 changes sign at µ0 and
Am(µ0) 6= 1. Hence, by Theorem 2.15, Γ has cyclicity 1 at µ0. Furthermore, there
exist a neighborhood V of µ0 and a smooth function z ∈ C∞(V ) with z(µ0) = 0 such
that the location of the bifurcating limit cycle is given by s = s(µ) with

(12) s(µ) = Am(µ)−1/(r(µ)−1)(1 + z(µ)),

for µ∈W :={µ∈V : (r(µ)−1)(Am(µ)−1)>0}. Then, choosingK0 ∈ (0, |log(Am(µ0))|)
we have

(13) lim
µ→µ0
µ∈W

s(µ)

exp
( −K0

|1−r(µ)|
) = lim

µ→µ0
µ∈W

exp(|log(Am(µ))| −K0)
−1

|1−r(µ)| (1 + z(µ)) = 0,

which concludes the proof of (c). With regard to the case m > 2 it only remains to
prove the assertion (d) about the period of the bifurcating limit cycle. To this end we
assume that at least one of the saddles in Γ is finite. The period T (µ) of the limit
cycle γµ bifurcating from Γ is obtained inserting the location of the limit cycle given
by (12) into the return time (11). Hence,

lim
µ→µ0
µ∈W

|1− r(µ)|T (µ) = lim
µ→µ0
µ∈W

|1− r(µ)|T (s(µ);µ)

= lim
µ→µ0
µ∈W

−T̄0(µ)|logAm(µ)| = −T̄0(µ0)|logAm(µ0)| > 0.

Case m = 1: To complete the proof, we consider the case where m = 1, i.e., the case
where Γ is a (finite) persistent saddle loop.
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p1

Σ1

D1
Σ2

R1

Γ

Figure 3. The transversal sections and the maps defined around a homoclinic

loop Γ of a hyperbolic saddle.

We place two transversal sections Σ1 and Σ2 along the homoclinic connection
labeled according to the direction of the flow. Now, consider D1 and T1 the Dulac
map and time from Σ1 to Σ2 and R1 and T2 the corresponding maps associated to the
passage from Σ1 to Σ2 using the flow of Xµ, as depicted in Figure 3. More precisely,
σ1(R1(s;µ)) = ϕ(T2(s;µ), σ2(s);µ), where σi is a parametrization of the transversal
section Σi, ϕ(t, q;µ) is the orbit of Xµ passing through q ∈ R2 at t = 0.

The return map is given by

R(s;µ) = R1 ◦D1(s;µ).

Note that the function R1(s;µ) is a diffeomorphism. Since the saddle loop is un-
broken for µ ∈ Λ, we have that R1(0;µ) = 0. Thus, we obtain that R1(s;µ) =
a1(µ)s + F∞2 (µ0), with a1(µ) being a strictly positive function. Exactly as before,
by Lemma A.2 and Theorem A.1, we have that D1(s;µ) = sλ1(∆10(µ) + F∞ε (µ0))
for ε ∈ (0,min{λ1(µ0), 1}). Therefore, the return map is given by

(14) R(s;µ) = Ā(µ)sλ1(1 + F∞ε (µ0)),

with Ā(µ) = a1(µ)∆10(µ), which proves (a). The return time T (s;µ) of a point in
position s at Σ1 is

T (s;µ) = T1(s;µ) + T2(D1(s;µ);µ).

Now T2(s;µ) is the regular time from Σ2 to Σ1, which is a C∞ function in a neigh-
borhood of (s;µ) = (0;µ0). Thus T2 ∈ F∞0 (µ0). As for the Dulac time T1(s;µ), we
can argue as in the previous case, using Lemma A.2 and Theorem A.1 to conclude
that

T1(s;µ) = T 1
0 (µ) log s+ T 1

00(µ) + F∞ε (µ0) = T 1
0 (µ) log s+ F∞0 (µ0),

with T 1
0 (µ) < 0. Therefore,

(15) T (s;µ) = T 1
0 (µ) log s+ F∞0 (µ0).

This proves (b). By (14), the proportional displacement map is given by

D(s;µ) = s−λ1(R(s;µ)− s) = Ā(µ)− s1−λ1 + F∞ε (µ0).

By Theorem 2.15, the sufficient conditions for Γ to have cyclicity 1 at µ0 are that
r(µ)− 1 = λ1(µ)− 1 changes sign at µ0 and Â(µ0) 6= 1, and under these conditions,
the location of the lone limit cycle is given by

s(µ) = Ā(µ)−1/(r(µ)−1)(1 + z(µ)),
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for µ ∈W := {µ ∈ V : (r(µ)−1)(Ā(µ)−1) > 0}, V being a small enough neighborhood
of µ0. Here we can perform the same computations as in (13) to prove (c).

The period T (µ) of a limit cycle γµ unfolded from Γ at the parameter value µ is
given by T (µ) = T (s(µ);µ). Thus, substituting s(µ) into (15), we conclude that the
asymptotic behavior of the period of the limit cycle γµ is

lim
µ→µ0
µ∈W

(λ1(µ)− 1)T (µ) = −T 1
0 (µ0)|log(Ā(µ0))|,

which proves (d).

Remark 3.1. If Am(µ0) > 1, the limit must be taken as r(µ)→ 1+ and for Am(µ0) <
1, r(µ)→ 1−. This assures we are always at a well-defined position s(µ) for the limit
cycle γµ as we approach the polycycle Γ.

Theorem A provides sufficient conditions for the cyclicity of the persistent polycycle
to be exactly 1 and also describes how fast the unfolded limit cycle approaches the
polycycle. Moreover, asymptotic behavior of the period of the limit cycle is the same
as the function 1

|1−r(µ)| , where r(µ) is the graphic number. This result encompasses

a wide range of polycycles, among them the Kolmogorov polycycles studied in [12].

4. Proof of Theorem B

Up to this point, we have studied families of polynomial systems with a persistent
polycycle whose cyclicity is 1 at a parameter µ0 but the return map near the polycycle
is not the identity. In those families, by Theorem A, the period of the limit cycle
unfolded from the polycycle has a determined behavior. However, that may not be
the case when the return map near the polycycle is the identity at µ0. In this case,
we say that the polycycle is of the center type.

In [12, Theorem 3.1, item (c)], the authors exhibit an example of a center-type
polycycle. It is present in the following family:

Xµ = x(1 + x+ x2 + axy + py2)∂x + y(−1− y + qy2 + axy − y2)∂y,

where µ = (a, p, q) ∈ R3 with p < −1, q > 1. The displacement function associated
to the polycycle of this Kolmogorov system is, after a change of variables in the
parameter space, proportional to the following expression:

D(s;µ) = s−α(µ) − (1 + ε(µ)) + f(s;µ).

Moreover, if µ0 = (0, p0,−p0), then D(s;µ0) ≡ 0, f(s;µ) ∈ F∞ε (µ0), ε > 0, and
α(µ), ε(µ) are such that α(µ0) = ε(µ0) = 0 and rank{∇α,∇ε}|µ=µ0 = 2.

Note that in this case we cannot apply Theorem 2.15. However, the cyclicity of the
polycycle at µ0 is 1.

This example motivates Theorem B, which will focus on families of polynomial
vector fields {Xµ}µ∈Λ such that Xµ0

has a persistent hyperbolic polycycle Γ with
the infinite line `∞ being invariant for all µ ∈ Λ and with at least one finite saddle,
with the additional assumption that for a fixed transversal section we can write the
proportional displacement function near the the polycycle as

D(s;µ) = s−α(µ) − (1 + ε(µ)) + f(s;µ),

with f(s;µ) ∈ F∞ε (µ0), ε > 0, with α(µ0) = ε(µ0) = 0, and ∇α, ∇ε linearly indepen-
dent at µ0. These assumptions encompass the cases for which the polycycle Γ is of
the center type or the cyclicity of the polycycle is greater than 1.
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Proof of Theorem B: By item (a) in Theorem A, the return map associated to Γ
writes as

R(s;µ) = sr(µ)(A(µ) + f(s;µ)),

with f(s;µ) ∈ F∞ε (µ0) for ε > 0 small enough. Let α(µ) = r(µ) − 1 and ε(µ) =
A(µ)− 1. Since rank{∇A,∇r}|µ=µ0 = 2, there exists a local diffeomorphism ϕ(µ) =
(α(µ), ε(µ), µ̄(µ)) defined in a small neighborhood of µ0 such that ϕ(µ0) = (0, 0, µ̄0).
Thus, we can work locally with the parameter set (α, ε, µ̄). The parameter µ̄ plays
a secondary role in our proof and therefore, we will omit it in the rest of the argu-
ment to simplify the notation. In our new parameters, the proportional displacement
map D(s;α, ε) = −s−α−1(R(s;ϕ−1(α, ε))− s) is given by

D(s;α, ε) = s−α − (1 + ε) + f̄(s;α, ε),

where f̄(s;α, ε) = f(s;ϕ−1(α, ε)). We have f̄(s;α, ε) ∈ F∞ε (0, 0). For the given func-
tion τ , consider the function h(α) = ατ(α) and the C 1 curve m(α) = ϕ−1(α, h(α))
in the parameter space defined for small α > 0 (here, we consider µ̄ = µ̄0 fixed). It is
clear that lim

α→0+
m(α) = µ0. For parameters on this curve, the proportional displace-

ment map becomes

(16) M(s;α) := D(s;α, h(α)) = s−α − (1 + h(α)) + f̄(s;α, h(α)).

The zeros of M(·;α) correspond to limit cycles of the corresponding vector fieldXm(α).
To search for these zeros, we establish the following ansatz:

s(α; z) = (1 + h(α))−1/α(1 + z).

Substituting into (16), we obtain

H(α, z) := 1
αM(s(α; z), α)

= 1
α ((1 + h(α))(1 + z)−α − (1 + h(α)) + f̄(s(α; z);α, h(α)))

= (1 + h(α))ω(1 + z;α) + 1
α f̄((1 + h(α))−1/α(1 + z);α, h(α)).

Since ω(1 + z;α) = F (α log(1 + z)) log(1 + z), where F (x) = e−x−1
x , the function (1 +

h(α))ω(1 + z;α) admits a continuous extension g1(α, z) in a neighborhood of (α, z) =
(0, 0) such that g1(0, 0) = 0 and ∂zg1 is continuous with

∂zg1(α, z) = 1+h(α)
1+z (F ′(α log(1 + z))α log(1 + z) + F (α log(1 + z))),

and ∂zg1(0, 0) = −1. Moreover, the assumptions on τ imply that h is a C 1 function
for small α > 0, such that h(α) > 0 for α > 0, and lim

α→0+
h(α) = lim

α→0+
αh′(α) =

lim
α→0+

α logα
h(α) = 0. Thus, by Lemma 2.10, for any L > 0, s(α; z) ∈ F1

L(0). Now, since

f̄(s;α, ε) ∈ F∞ε (0, 0), by items (g) and (h) in Lemma 2.6, we have that g(α; ε, z) =
α−1f̄(s(α; z);α, ε) ∈ F1

εL−1(0, 0). Taking L > 2/ε, by Lemma 2.7, there is an exten-

sion g̃(α; ε, z) of g(α; ε, z) which is C 1 in an open neighborhood of (0; 0, 0) such that
g̃(0; 0, 0) = ∂z g̃(0; 0, 0) = 0. Thus, we can use this extension to conclude that the
function g(α;h(α), z) admits a continuous extension g2(α, z) with continuous partial
derivative ∂zg2 such that g2(0, 0) = ∂zg2(0, 0) = 0.

Now, we have that H(α, z) admits H̃(α, z) := g1(α, z) + g2(α, z) as a continuous

extension with continuous partial derivative ∂zH̃ such that H̃(0, 0) = 0 and ∂z(0, 0) =
−1. By the Continuous Implicit Function Theorem [8, Theorem 2], there exists a
unique function ẑ(α), continuous, defined in an open set (−δ, δ), for which

H̃(α; ẑ(α)) ≡ 0, and ẑ(0) = 0.
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Therefore s = s(α; ẑ(α)) is a zero for (16) for α > 0 small enough. We recall that
s(α; ẑ(α)) corresponds to the location of the intersection of a limit cycle for vector
field Xm(α) and the transversal section Σ. Since lim

α→0+
s(α; ẑ(α)) = 0, this limit cycle

approaches the polycycle as α → 0+. We now proceed to compute its period T (α).
By item (b) in Theorem A the return time associated to Γ is given by

T (s;µ) = T̄0(µ) log s+ F∞0 (µ0),

where T̄0 ∈ C∞(Λ) with T̄0(µ) < 0. Then, we have that T (α) = T (s(α; ẑ(α));m(α))
and

lim
α→0+

T (α)

τ(α)
= lim
α→0+

1

τ(α)
T̄0(m(α)) log(1 + h(α))−1/α

= lim
α→0+

− T̄0(m(α))

ατ(α)
log(1 + ατ(α)) = −T̄0(µ0) > 0.

This concludes the proof of the result.

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

α

ε

−α logα

}
αl+1

Figure 4. The functions h(α) = αl+1, for l ∈ (−1, 0), in relation to the thresh-
old −α logα for which we can apply Lemma 2.10.

Theorem B tells us that there is not a single determinate behavior for the period of
a limit cycle unfolding from the polycycle for the considered family of vector fields Xµ.
In particular, if we consider the functions τ(α) = αl, for l ∈ (−1, 0), we can always
find a path in the parameter space approaching α = 0 for which the limit cycle has
period T (α) ∼ αl. This is substantially different from the cases encompassed by
Theorem A, since the behavior of the period of the limit cycle does not depend on the
way we approach the parameter value µ0. In Figure 4 we represent graphically the
behavior of the functions h(α) = ατ(α) compared to the function −α logα showing
some functions which are suitable to be the period of a limit cycle bifurcating from
the polycycle in the case encompassed by Theorem B.

Appendix A. Dulac map and time

Since we will deal with persistent hyperbolic polycycles, we will need to work with
the Dulac map and Dulac time associated to hyperbolic saddles. In this appendix
we defined these concepts in a particular setting where the expression of these maps
is known. For more details, we refer the reader to [10, 11], where the specifics are
carried out extensively.
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We consider an open set Λ ⊂ RN and the family {Xµ}µ∈Λ of vector fields given by

(17) Xµ :=
1

xn1yn2
(xP (x, y;µ)∂x + yQ(x, y;µ)∂y).

Here,

• n := (n1, n2) ∈ Z2
>0;

• P,Q ∈ C∞(V × Λ), for some open set V ⊂ R2 containing the origin;

• P (x, 0, µ) > 0 and Q(0, y, µ) < 0, for all (x, 0), (0, y) ∈ V and µ∈Λ. This means
that the origin is a hyperbolic saddle of xn1yn2Xµ with the y-axis being the
stable manifold and x-axis the unstable manifold;

• λ(µ) = −Q(0, 0;µ)

P (0, 0;µ)
is the hyperbolic ratio of the saddle.

For i = 1, 2, let σi : (−ε, ε)×Λ→ Σi be transversal sections of Xµ to the axis such
that σ1(0;µ) ∈ {(0, y) : y > 0} and σ2(0, µ) ∈ {(x, 0) : x > 0} for all µ ∈ Λ. The Dulac
map D(·;µ) and the Dulac time T (·;µ) are defined by the following relationship:

ϕ(T (s;µ), σ1(s;µ);µ) = σ2(D(s;µ), µ), ∀s ∈ (0, ε),

where ϕ(t, p0;µ) is the orbit of Xµ passing through p0 ∈ V at t = 0 (see Figure 5).

0 s

σ1

Σ1

ϕ(·, σ1(s))

σ1(s)

σ2(D(s)) = ϕ(T (s), σ1(s))

σ2

0 D(s)

Figure 5. The Dulac map and time.

The following result gathers Theorems A and B in [11] to give an asymptotic
development of the Dulac map and time.

Theorem A.1. Let D(s;µ) and T (s;µ) be respectively the Dulac map and time of
the hyperbolic saddle (17) from Σ1 to Σ2. Then, there exists ∆00 ∈ C∞(Λ) such that
for any λ0 > 0 and ε > 0 small enough so ε < min{λ0, 1}, for which

D(s;µ) = sλ(∆00(µ) + F∞ε (µ0)).

And for n = (n1, 0) or n = (0, n2) there exists T00 ∈ C∞(Λ) such that for any λ0 > 0
and ε > 0 small enough so ε < min{λ0, 1}, we have

T (s;µ) = T0(µ) log s+ T00(µ) + F∞ε (µ0),

where T0(µ) =

{
0 if n 6= (0, 0),
−1

P (0,0;µ) if n = (0, 0).
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Note that the above result applies to hyperbolic saddles for which the separatrices
are contained in the orthogonal axis. However, this is not a restrictive assumption
since we can rectify the separatrices of hyperbolic saddles via a family C∞ diffeomor-
phism [11, Lemma 4.3]. For the sake of the reader, we present the result below.

Lemma A.2. Consider a C∞ family {Xµ}µ∈RN of planar vector fields defined in

an open set of R2. For a fixed µ0 ∈ RN assume that for all µ in a neighborhood
of µ0, Xµ has a hyperbolic saddle pµ with stable and unstable separatrices S+

µ and S−µ ,

respectively. Consider two closed connected arcs l± ⊂ S±µ0
, both having an endpoint

at pµ0 . In the case of a homoclinic connection (S+
µ0

= S−µ0
), we require additionally

that l+∩ l− = {pµ0
}. Then, there exists a neighborhood V of (l+∪ l−)×µ0 in R2×RN

and a C∞ diffeomorphism Φ: V → Φ(V ) ⊂ R2 × RN with Φ(x, y, µ) = (φµ(x, y), µ)
such that (φµ)∗(Xµ) = xP (x, y;µ)∂x + yQ(x, y;µ)∂y, with P,Q ∈ C∞(Φ(V )).
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Ochoa and Maŕıa de Maeztu Program for Centers and Units of Excellence in R&D
(CEX2020-001084-M). The second author is supported by São Paulo Research Foun-
dation (FAPESP) grants 21/14450-4 and 19/13040-7.

References

[1] A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Măıer, Theory of Bifurcations

of Dynamic Systems on a Plane, Translated from the Russian, Halsted Press [John Wiley &
Sons], New York-Toronto; Israel Program for Scientific Translations, Jerusalem-London, 1973.
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