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Abstract: Using a description of the cohomology of local systems on the moduli space of abelian

surfaces with a full level 2 structure, together with a computation of Euler characteristics, we find

the isotypical decomposition, under the symmetric group on six letters, of spaces of vector-valued
Siegel modular forms of degree 2 and level 2.
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1. Introduction

In this paper, we refine the previously known dimension formulas for
spaces Mk,j(Γ[2]) of vector-valued Siegel modular forms of degree 2 and level 2, by de-
termining their isotypical decomposition under the action of Sp(4,Z/2Z) ∼= S6. This
extends previous work; see for instance [18, 1, 27, 28, 16, 17, 29, 11]. In par-
ticular, Tsushima gave in [28, Theorems 2, 3] a formula for the dimension of the
space Sk,j(Γ[N ]) for any N under the conditions j > 1 and k > 5 or j = 0 and k > 4.
The ranges for j and k in Tsushima’s dimension formula for N = 2 were slightly
extended in [11, Theorem 12.1]. There is an overview of dimension formulas such as
these on the webpage [25].

In [5], there is a conjectural description of the motivic Euler characteristic, with
its isotypical decomposition under the action of S6, of any symplectic local system
on A2[2] the moduli space of abelian surfaces with a full level 2 structure. These
conjectures were later proven in [22]. In particular, this gives us the integer-valued
Euler characteristic of an isotypical component under S6 of any local system on A2[2]
as a sum of a well-known value (in terms of dimensions of spaces of elliptic modular
cusp forms) plus four times the dimension of the (isotypical component of the) vector
space of Siegel modular cusp forms of degree 2 and level 2; see Theorem 5.3. In
Section 4 we then find an effective formula to compute these integer-valued Euler
characteristics. This is achieved by stratifying the moduli space A2[2] in terms of the
automorphism groups of principally polarized abelian surfaces, which are Jacobians
of smooth projective curves of genus 2, or products of elliptic curves. By computing
the action of these automorphism groups and of S6, on the first cohomology group of
the corresponding abelian surfaces, we can find a formula for the integer-valued Euler
characteristic; see equation (8). This is a method previously used for instance in [15].

In Section 2 we give an overview of the Siegel modular forms we are interested in,
together with a short description of the Arthur packets for GSp(4). Then, in Section 3
and Section 5 we include isotypical decompositions of the spaces of Siegel modular
forms of degree 2 and level 2 to give a comprehensive reference for these results.

c©2025 by the author(s) under Creative Commons Attribution 4.0 License (CC BY 4.0).
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Computer programs, written in Sage, which compute all results of this paper, are
provided in a GitHub repository [3]. Tables with some of the results of this paper can
also be found on the webpage [4].

2. Siegel modular forms

The level 2 congruence subgroups we are concerned with are

Γ[2] =
{
γ ∈ Γ : γ ≡ 14 mod 2

}
,

Γ1[2] =
{
γ ∈ Γ : γ ≡

( 12 ∗
0 12

)
mod 2

}
,

Γ0[2] =
{(

a b
c d

)
∈ Γ : c ≡ 0 mod 2

}
,

where Γ = Sp(4,Z) = {γ ∈ GL(4,Z) : γtJγ = J} with J =
( 0 12
−12 0

)
and 1n the

identity matrix of size n. We clearly have the inclusions Γ[2]<Γ1[2] < Γ0[2]<Γ and
the successive quotients can be identified as follows (see [11, Sections 2, 3, 9]):

(1) Γ1[2]/Γ[2]∼=(Z/2Z)3, Γ0[2]/Γ[2]∼=S4 × Z/2Z, Γ0[2]/Γ1[2]∼=S3, Γ/Γ[2]∼=S6,

with Sn the symmetric group on n letters. As usual, theses groups act on the Siegel
upper half space H2 of degree 2: H2 = {τ ∈ Mat(2 × 2,C) : τ t = τ, Im(τ) > 0}
via τ 7→ γ τ = (aτ + b)(cτ + d)−1. More details on the orbifolds of the action of
the previous groups can be found in [11, Section 2]. For any integer k, any non-
negative integer j, and any γ =

(
a b
c d

)
∈ Γ, we define a slash operator on functions

f : H2 → Symj(C2),

(f |k,jγ)(τ) = det(cτ + d)−k ⊗ Symj((cτ + d)−1) f((aτ + b)(cτ + d)−1).

We let G be one of the groups Γ[2], Γ1[2], Γ0[2], or Γ. The space of modular forms of
weight (k, j) on G is denoted by Mk,j(G) and is defined by

Mk,j(G) = {f : H2 −→ Symj(C2) | f holomorphic, f |k,jγ = f for any γ ∈ G}.

The subspace of cusp forms of Mk,j(G) will be denoted by Sk,j(G); this is the kernel
of the (global) Siegel Φ-operator. Let us make a couple of easily verified remarks.
Firstly, since −14 belongs to the group Γ[2], we have that Mk,j(Γ[2]) = {0} if j is odd.
This can be directly read off from the functional equation satisfied by any element
of Mk,j(Γ[2]). Therefore, from now on, we assume that j is even. Secondly, if k is
odd, then Mk,j(Γ[2]) = Sk,j(Γ[2]): let Γ(2) be the principal congruence subgroup1 of
level 2 of SL(2,Z), the (global) Siegel Φ-operator maps Mk,j(Γ[2]) to Mj+k(Γ(2))⊕15

(note 15 is the number of 1-dimensional cusps of the group Γ[2]), and since−12 belongs
to Γ(2), the space Mj+k(Γ(2)) reduces to 0 when k is odd (j is even). These two facts
also hold for the groups Γ1[2], Γ0[2], and Γ. A less easy fact is the generalization of
the Koecher principle to vector-valued Siegel modular forms, see [13, Satz 1], which
implies that

Mk,j(Γ[2]) = {0} for any k < 0 and any j.

The Petersson inner product provides an orthogonal decomposition

(2) Mk,j(G) = Ek,j(G)⊕ Sk,j(G).

1We denote congruence subgroups of SL(2,Z) by round brackets and those of Sp(4,Z) by square
brackets.
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We call Ek,j(G) the space of Eisenstein series. The space of Eisenstein series can in
turn be decomposed into two pieces, orthogonal with respect to the Petersson inner
product, as follows (see [11, Proposition 13.2]):

Ek,j(G) = SEk,j(G)⊕KEk,j(G),

where SEk,j(G) denotes the space of Siegel–Eisenstein series (they map to constants
under the Siegel Φ-operator) and KEk,j(G) denotes the space of Klingen–Eisenstein
series (they map to cusp forms of degree 1 under the Siegel Φ-operator). The de-
composition of the space of cusp forms Sk,j(G) can also be refined according to the
classification of automorphic representations of GSp(4): Arthur packets. There are six
different types of Arthur packets (see [2]) but only three of them can appear in our
situation (see [24, Section 2.1] and [23, Proposition 4.3]), namely:

• (G): general type.

• (Y): Yoshida type. They can only appear in Sk,j(G) with j > 0, i.e., in the case
of vector-valued cusp forms. Modular forms of this type are also called Yoshida
lifts.

• (P): Saito–Kurokawa type (Siegel parabolic). They can only appear in Sk,0(G),
i.e., in the case of scalar-valued cusp forms. Modular forms of this type are also
called Saito–Kurokawa lifts.

The other three types of Arthur packets: Howe–Piatetski–Shapiro type (Borel para-
bolic), finite type, and Soudry type (Klingen parabolic) do not appear in our situation.
So, in summary, we have

(3) Ek,j(G)=SEk,j(G)⊕KEk,j(G) and Sk,j(G)=S
(G)
k,j (G)⊕S(P)

k,j (G)⊕S(Y)
k,j (G).

Note that the last decomposition is also orthogonal with respect to the Petersson
inner product. Since the group Γ[2] is a normal subgroup of Γ (it is the kernel of the
reduction modulo 2), we get an action of Γ on the space Mk,j(Γ[2])

Sp(4,Z)×Mk,j(Γ[2]) −→Mk,j(Γ[2])

(γ, f) 7−→ f |k,jγ−1
.

From this action, we deduce a group homomorphism

Γ −→ GL(Mk,j(Γ[2]))

γ 7−→

(
Mk,j(Γ[2]) −→Mk,j(Γ[2])

f 7−→ f |k,jγ−1

)
whose kernel obviously contains the group Γ[2]. So the previous homomorphism factors
through the group Γ[2] and we obtain a group homomorphism

Γ/Γ[2] ∼= Sp(4,Z/2Z) ∼= S6 −→ GL(Mk,j(Γ[2])),

i.e., a representation of the group S6 on the space Mk,j(Γ[2]). Note that the second
isomorphism is ambiguous due to the outer automorphism of S6 so we need to fix
this isomorphism. We fix this isomorphism as follows: S6 = 〈(12), (123456)〉 and as
in [11, Equation (3.2)] (see also [18, pp. 398–399]), we set

(12) 7−→


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 mod 2 and (123456) 7−→


0 1 0 1
1 0 1 0
1 0 1 1
−1 1 0 1

 mod 2.



370 J. Bergström, F. Cléry

The irreducible representations of Sn correspond bijectively to the partitions of n.
The representation of the symmetric group Sn corresponding to the partition $ will
be denoted by s[$], with s[n] the trivial one and s[1n] the alternating one.

[$] [6] [5, 1] [4, 2] [4, 12] [32] [3, 2, 1] [3, 13] [23] [22, 12] [2, 14] [16]

dim s[$] 1 5 9 10 5 16 10 5 9 5 1

Table 1. Irreducible representations of S6 and their dimensions.

Remark 2.1. Let Mk,j(Γ, ε) be the space of modular forms of weight (k, j) on Γ with
character ε, where ε is the unique non-trivial character of Γ; see [10, Section 12] for a

brief description of this character. Then we have Mk,j(Γ, ε) = Mk,j(Γ[2])s[1
6], where

Mk,j(Γ[2])s[1
6] denotes the S6-anti-invariant subspace of Mk,j(Γ[2]), i.e.,

Mk,j(Γ[2])s[1
6] = {f ∈Mk,j(Γ[2]) | f |k,jσ = sgn(σ)f for any σ ∈ S6},

where sgn(σ) denotes the signature of σ.

Remark 2.2. As the congruence subgroup Γ1[2] is a normal subgroup of Γ0[2], in
the same way as we turned the space Mk,j(Γ[2]) into a S6-representation space,
we can turn the space Mk,j(Γ1[2]) into a S3-representation space (see last but one
isomorphism in (1) and [11, equation (3.3)] for an explicit description of this quotient).

For a Sn-representation space V , we write its isotypical decomposition as

(4) isoSn
V =

∑
$`n

ms[$](V ) · s[$] ∈ Z[Sn],

where Z[Sn] is the representation ring and ms[$](V ) is the multiplicity of the rep-
resentation s[$] appearing in V . We call the right-hand side of (4) the isotypical
decomposition of V .

Knowing the isotypical decomposition of a space Mk,j(Γ[2]) gives us all the in-
formation we want about the spaces Mk,j(Γ1[2]), Mk,j(Γ0[2]), and Mk,j(Γ) by rep-
resentation theory. The last isomorphism in (1) tells us that the space Mk,j(Γ) is
the invariant subspace of Mk,j(Γ[2]) under the action of the symmetric group S6.
From the first isomorphism in (1), we see that Mk,j(Γ1[2]) is the invariant subspace
of Mk,j(Γ[2]) under the action of the group (Z/2Z)3 ∼= 〈(12), (34), (56)〉. Write

isoS6
Mk,j(Γ[2]) = ms[6] s[6] +ms[5,1] s[5, 1] + · · ·+ms[16] s[1

6],

then we have

isoS3
Mk,j(Γ1[2]) = (ms[6] +ms[4,2] +ms[23])s[3]

+ (ms[5,1] +ms[4,2] +ms[3,2,1])s[2, 1] + (ms[4,12] +ms[32])s[1
3],

dimMk,j(Γ0[2]) = Mk,j(Γ1[2])S3 = ms[6] +ms[4,2] +ms[23],

dimMk,j(Γ) = dimMk,j(Γ[2])S6 = ms[6],

dimMk,j(Γ, ε) = dimMk,j(Γ[2])s[1
6] = ms[16],

where the last formula comes from Remark 2.1 and the first two come from [11,
Sections 3 and 9]. Therefore we focus on the spaces Mk,j(Γ[2]) in the sequel. In the
case of scalar-valued modular forms, the previous decompositions allow us to recover
the results given in [23, Appendix A] for the groups Γ, Γ0[2], and Γ[2]. In the case of
scalar-valued modular forms we simply write

Mk(Γ[2]) = Mk,0(Γ[2]) and Sk(Γ[2]) = Sk,0(Γ[2]).
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3. Isotypical decompositions in the scalar-valued case

By the Koecher principle, we know that Mk(Γ[2]) = {0} for k < 0. The following
theorem is due to Igusa; see [18, p. 398].

Theorem 3.1 (Igusa). We have

dimMk(Γ[2]) =


(k + 1)(k2 + 2k + 12)

12
if k > 0 even,

dimMk−5(Γ[2]) if k > 1 odd.

For k odd, the last equality comes from Mk(Γ[2]) = Sk(Γ[2]) = χ5 ·Mk−5(Γ[2]),
where χ5 denotes the unique cusp form, up to a multiplicative constant, generat-
ing the space S5(Γ[2]). In fact, Igusa did more than computing the dimension of
the spaces Mk(Γ[2]). He also computed the characters of S6 on the space Mk(Γ[2])
(see [18, Theorem 2]) and he showed that as S6-representation for k even we have

isoS6
Mk(Γ[2]) = Symk/2(s[23])−

{
0 if k ∈ {0, 2, 4, 6},
Symk/2−4(s[23]) if k > 8,

where we put Sym0(s[$]) = s[n] for any irreducible representation s[$] of Sn. Note
that the relation appearing in weight 8 defines the Igusa quartic.

Theorem 3.2 (Igusa). The following table gives the generating series for the multi-
plicity of the irreducible representations of S6 in Mk(Γ[2]).

s[$]
∑
k>0

ms[$](Mk(Γ[2]))tk

s[6]
1 + t35

(1− t4)(1− t6)(1− t10)(1− t12)

s[5, 1]
t11(1 + t)

((1− t4)(1− t6))2

s[4, 2]
t4(1 + t15)

(1− t2)(1− t4)2(1− t10)

s[4, 12]
t11(1 + t4)

(1− t)(1− t4)(1− t6)(1− t12)

s[32]
t7(1 + t13)

(1− t2)(1− t4)(1− t6)(1− t12)

s[3, 2, 1]
t8(1− t8)

(1− t2)2(1− t5)(1− t6)2

s[3, 13]
t6(1 + t4 + t11 + t15)

(1− t2)(1− t4)(1− t6)(1− t12)

s[23]
t2(1 + t23)

(1− t2)(1− t4)(1− t6)(1− t12)

s[22, 12]
t9

(1− t2)(1− t4)2(1− t5)

s[2, 14]
t6(1 + t11)

((1− t4)(1− t6))2

s[16]
t5(1 + t25)

(1− t4)(1− t6)(1− t10)(1− t12)
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Proof: Let Xk be the character of the representation of S6 on the space Mk(Γ[2])
and let us denote by ρ the irreducible representation s[23]. Then, for any σ ∈ S6,
Theorem 2 of [18] gives∑

k>0

Xk(σ)tk = (1 + sgn(σ)t5)(1− t8)/ det(15 − ρ(σ)t2).

Clearly this formula depends only on the conjugacy class of σ, and Igusa (see [18,
p. 401]) gave the expression of fσ(t) = det(15 − ρ(σ)t) for each irreducible represen-
tation of S6. From the formula (see for example [18, p. 401]) giving the multiplicity
of an irreducible representation in a representation space of a finite group, we deduce
that the multiplicity of the irreducible representation s[$] in Mk(Γ[2]) is given by

ms[$](Mk(Γ[2])) =
1

|S6|
∑
σ∈S6

Xk(σ)Xs[$](σ
−1) =

1

720

∑
σ∈S6

Xk(σ)Xs[$](σ),

where the last equality comes from the fact that the conjugacy classes of the sym-
metric group are stable by inversion and Xs[$] denotes the character of s[$]. For a
partition p of 6, we put Cp for the conjugacy class of an element of S6 whose cycle
shape corresponds to p. Then, the last formula reads as

ms[$](Mk(Γ[2])) =
1

720

∑
p

|Cp|Xk(s[p])Xs[$](s[p]),

where the sum is over the partition of 6 and g(s[p]) stands for the evaluation of a
class function g on a single element of the conjugacy class Cp. Therefore we get∑

k>0

ms[$](Mk(Γ[2]))tk =
1

720

∑
p

|Cp|Xs[$](s[p])

(∑
k>0

Xk(s[p])tk
)

=
1

720

∑
p

|Cp|Xs[$](s[p])
(1 + sgn(s[p])t5)(1− t8)

fs[p](t2)
.

By using the character table of the group S6 as given for example in [18, p. 400], we
deduce the theorem.

Remark 3.3. A couple of sanity checks. Firstly,∑
k>0

∑
s[$]

dim(s[$])ms[$](Mk(Γ[2]))tk =
∑
k>0

dimMk(Γ[2])tk =
(1 + t2)(1 + t4)(1 + t5)

(1− t2)4
,

which is in agreement with Theorem 3.1. Secondly, the generating series for the di-
mension of spaces of modular forms on Γ0[2] is given by (see [23, Appendix A.1] and
the references therein):∑

k>0

dimMk(Γ0[2])tk =
1 + t19

(1− t2)(1− t4)2(1− t6)
.

We checked that by adding the generating series for the multiplicities of the irreducible
representations s[6], s[4, 2], and s[23] we recover this formula.
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Let us give the first few isotypical decompositions of Mk(Γ[2]); we put

d = dimMk(Γ[2]).

s[$] s[6] s[5, 1] s[4, 2] s[4, 12] s[32] s[3, 2, 1] s[3, 13] s[23] s[22, 12] s[2, 14] s[16]

dim s[$] 1 5 9 10 5 16 10 5 9 5 1

k d

0 1 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 1 0 0 0 5

3 0 0 0 0 0 0 0 0 0 0 0 0

4 1 0 1 0 0 0 0 1 0 0 0 15

5 0 0 0 0 0 0 0 0 0 0 1 1

6 1 0 1 0 0 0 1 2 0 1 0 35

7 0 0 0 0 1 0 0 0 0 0 0 5

8 1 0 3 0 0 1 1 3 0 0 0 69

9 0 0 0 0 1 0 0 0 1 0 1 15

10 2 0 3 0 0 2 3 4 0 2 0 121

11 0 1 0 1 2 0 0 0 1 0 1 35

Next, we give the dimension of the various pieces of the space Mk(Γ[2]) as in (2)
and (3) and also their isotypical decomposition. We distinguish two cases according
to the parity of k.

3.1. Isotypical decomposition of M2k+1(Γ[2]). We have already seen that

M2k+1(Γ[2]) = S2k+1(Γ[2])

and from Theorem 3.1 we deduce dimS1(Γ[2]) = dimS3(Γ[2]) = 0 and

dimS2k+1(Γ[2]) = (2k3 − 9k2 + 19k − 15)/3 for k > 2.

Therefore the generating series for dimS2k+1(Γ[2]) is given by

∑
k>0

dimS2k+1(Γ[2])t2k+1 =
t5(1 + t2 + t4 + t6)

(1− t2)4
.

We have seen that for k > 0 we have M2k+1(Γ[2]) = S2k+1(Γ[2]) = χ5 ·M2k−4(Γ[2])
and since the cusp form χ5 is S6-anti-invariant (i.e., it occurs in the alternating
representation s[16]) we get

isoS6
M2k+1(Γ[2]) = isoS6

S2k+1(Γ[2]) = s[16]⊗ isoS6
M2k−4(Γ[2]).

As a corollary of Theorem 3.2, we deduce the following.

Corollary 3.4. The following table gives the generating series for the multiplicity of
the irreducible representations of S6 in S2k+1(Γ[2]).
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s[$]
∑
k>0

ms[$](S2k+1(Γ[2]))t2k+1

s[6]
t35

(1− t4)(1− t6)(1− t10)(1− t12)

s[5, 1]
t11

((1− t4)(1− t6))2

s[4, 2]
t19

(1− t2)(1− t4)2(1− t10)

s[4, 12]
t11(1 + t4)

(1− t2)(1− t4)(1− t6)(1− t12)

s[32]
t7

(1− t2)(1− t4)(1− t6)(1− t12)

s[3, 2, 1]
t13(1 + t2 + t4 + t6)

(1− t2)(1− t6)2(1− t10)

s[3, 13]
t17(1 + t4)

(1− t2)(1− t4)(1− t6)(1− t12)

s[23]
t25

(1− t2)(1− t4)(1− t6)(1− t12)

s[22, 12]
t9

(1− t2)(1− t4)2(1− t10)

s[2, 14]
t17

((1− t4)(1− t6))2

s[16]
t5

(1− t4)(1− t6)(1− t10)(1− t12)

Proof: Let Gs[$] be the generating series of the multiplicity of the irreducible rep-
resentation s[$] in Mk(Γ[2]). Then the generating series of the multiplicity of the
irreducible representation s[$] in M2k+1(Γ[2]) = S2k+1(Γ[2]) is given by

(Gs[$](t)−Gs[$](−t))/2.

Let us give the first few isotypical decompositions of S2k+1(Γ[2]); we put

d = dimS2k+1(Γ[2]).

s[$] s[6] s[5, 1] s[4, 2] s[4, 12] s[32] s[3, 2, 1] s[3, 13] s[23] s[22, 12] s[2, 14] s[16]

dim s[$] 1 5 9 10 5 16 10 5 9 5 1

2k + 1 d

1 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 1 1

7 0 0 0 0 1 0 0 0 0 0 0 5

9 0 0 0 0 1 0 0 0 1 0 1 15

11 0 1 0 1 2 0 0 0 1 0 1 35

13 0 0 0 1 3 1 0 0 3 0 1 69

15 0 2 0 3 4 2 0 0 3 0 2 121
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We further refine these formulas according to the decomposition (3). Conjecture 6.6
of [5], proven by Rösner (see [22, Section 5]), tells us that only the Arthur packets (P)
and (G) can occur in S2k+1(Γ[2]). Hence,

S2k+1(Γ[2]) = S
(G)
2k+1(Γ[2])⊕ S(P)

2k+1(Γ[2]).

Moreover this result gives the isotypical decomposition of S
(P)
2k+1(Γ[2]):

isoS6
S
(P)
2k+1(Γ[2]) = d−2,4ks[5, 1] + d4,4ks[3

2] + d+2,4ks[1
6],

where

(5) dN,k = dimSk(Γ0(N))new and d±N,k = dimS±k (Γ0(N))new.

Here Γ0(N) denotes the Hecke congruence subgroup of level N of SL(2,Z)
and S±k (Γ0(N))new denotes the space of new cusp forms of weight k on Γ0(N)
with eigenvalues ±1 for the Fricke involution. Note that for N = 1, we have
d1,k = dimSk(Γ0(1))new =dimSk(SL(2,Z)). The dimension of the space Sk(Γ0(N))new

is classical, see [26, Chapter 6], and for example we have:

(6) dimS4k(Γ0(2))new =k−1−2bk/3c and dimS4k(Γ0(4))new =bk/3c for k>1.

For k > 2, the dimensions of S±k (Γ0(2))new are given by (see [19, Theorem 2.2]):

d±2,k =


(d2,k ± 1)/2 if k ≡ 0 mod 8,

(d2,k ∓ 1)/2 if k ≡ 2 mod 8,

d2,k/2 if k ≡ 4, 6 mod 8.

So the generating series for the multiplicities of the irreducible representations s[5, 1],

s[32], and s[16] in S
(P)
2k+1(Γ[2]) for k > 0 are given by

s[$]
∑
k>0

ms[$](S
(P)
2k+1(Γ[2]))t2k+1

s[5, 1]
t11

(1− t4)(1− t6)

s[32]
t7

(1− t2)(1− t6)

s[16]
t5

(1− t4)(1− t6)

Keeping in mind that dim s[5, 1] = dim s[32] = 5 and dim s[16] = 1, we get∑
k>0

dimS
(P)
2k+1(Γ[2])t2k+1 =

t5 + 5t7 + 5t9 + 5t11

(1− t4)(1− t6)
.

From this we deduce the generating series for dimS
(G)
2k+1(Γ[2]):∑

k>0

dimS
(G)
2k+1(Γ[2])t2k+1 =

∑
k>0

(dimS2k+1(Γ[2])− dimS
(P)
2k+1(Γ[2]))t2k+1

=
t9(t8 − 2t6 + 10t4 + 6t2 + 9)

(1− t2)3(1− t6)(1 + t2)
.

We also deduce the generating series for the multiplicities of the irreducible represen-

tations in S
(G)
2k+1(Γ[2]) for k > 0:
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• for s[$] ∈ {s[6], s[4, 2], s[4, 12], s[3, 2, 1], s[3, 13], s[23], s[22, 12], s[2, 14]} we have

ms[$](S
(G)
2k+1(Γ[2])) = ms[$](S2k+1(Γ[2]));

• for s[$] ∈ {s[5, 1], s[32], s[16]} we have

ms[$](S
(G)
2k+1(Γ[2])) = ms[$](S2k+1(Γ[2]))−ms[$](S

(P)
2k+1(Γ[2]));

so

s[$]
∑
k>0

ms[$](S
(G)
2k+1(Γ[2]))t2k+1

s[5, 1]
t15(1 + t2 − t6)

((1− t4)(1− t6))2

s[32]
t11(1 + t8 − t12)

(1− t2)(1− t4)(1− t6)(1− t12)

s[16]
t15(1 + t2 − t12)

(1− t4)(1− t6)(1− t10)(1− t12)

The next table gives the first few isotypical decompositions of S2k+1(Γ[2]), indi-
cating the multiplicities of Saito–Kurokawa lifts in blue and those of the general type

in black; we put dP = dimS
(P)
k (Γ[2]) and dG = dimS

(G)
k (Γ[2]).

s[$] s[6] s[5, 1] s[4, 2] s[4, 12] s[32] s[3, 2, 1] s[3,13] s[23] s[22, 12] s[2,14] s[16]

dim s[$] 1 5 9 10 5 16 10 5 9 5 1

2k + 1 dG + dP

1 0 0 0 0 0 0 0 0 0 0 0 0+0

3 0 0 0 0 0 0 0 0 0 0 0 0+0

5 0 0 0 0 0 0 0 0 0 0 1 0+1

7 0 0 0 0 1 0 0 0 0 0 0 0+5

9 0 0 0 0 1 0 0 0 1 0 1 9+6

11 0 1 0 1 1 + 1 0 0 0 1 0 1 24+11

13 0 0 0 1 1 + 2 1 0 0 3 0 1 58+11

15 0 1 + 1 0 3 2 + 2 2 0 0 3 0 1 + 1 105+16

3.2. Isotypical decomposition of M2k(Γ[2]). We start by giving the generating
series for the multiplicities of the irreducible representations of S6 in M2k(Γ[2]). As
a corollary of Theorem 3.2, we deduce the following.

Corollary 3.5. The following table gives the generating series for the multiplicity of
the irreducible representations of S6 in M2k(Γ[2]).
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s[$]
∑
k>0

ms[$](M2k(Γ[2]))t2k

s[6]
1

(1− t4)(1− t6)(1− t10)(1− t12)

s[5, 1]
t12

((1− t4)(1− t6))2

s[4, 2]
t4

(1− t2)(1− t4)2(1− t10)

s[4, 12]
t12(1 + t4)

(1− t2)(1− t4)(1− t6)(1− t12)

s[32]
t20

(1− t2)(1− t4)(1− t6)(1− t12)

s[3, 2, 1]
t8(1 + t2 + t4 + t8)

(1− t2)(1− t6)2(1− t10)

s[3, 13]
t6(1 + t4)

(1− t2)(1− t4)(1− t6)(1− t12)

s[23]
t2

(1− t2)(1− t4)(1− t6)(1− t12)

s[22, 12]
t14

(1− t2)(1− t4)2(1− t10)

s[2, 14]
t6

((1− t4)(1− t6))2

s[16]
t30

(1− t4)(1− t6)(1− t10)(1− t12)

Proof: Let Gs[$] be the generating series of the multiplicity of the irreducible rep-
resentation s[$] in Mk(Γ[2]). Then the generating series of the multiplicity of the
irreducible representation s[$] in M2k(Γ[2]) is given by (Gs[$](t) +Gs[$](−t))/2.

Remark 3.6. As a sanity check, we verify∑
k>0

∑
s[$]

dim(s[$])ms[$](M2k(Γ[2])) t2k =
(1 + t2)(1 + t4)

(1− t2)4
=
∑
k>0

dimM2k(Γ[2])t2k

in agreement with Theorem 3.1.

Let us give the first few isotypical decompositions of M2k(Γ[2]); we put

d = dimM2k(Γ[2]).

s[$] s[6] s[5, 1] s[4, 2] s[4, 12] s[32] s[3, 2, 1] s[3, 13] s[23] s[22, 12] s[2, 14] s[16]

dim s[$] 1 5 9 10 5 16 10 5 9 5 1

k d

0 1 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 1 0 0 0 5

4 1 0 1 0 0 0 0 1 0 0 0 15

6 1 0 1 0 0 0 1 2 0 1 0 35

8 1 0 3 0 0 1 1 3 0 0 0 69

10 2 0 3 0 0 2 3 4 0 2 0 121

12 3 1 6 1 0 3 4 5 0 2 0 195

14 2 0 7 1 0 6 6 8 1 3 0 295

16 4 2 11 3 0 8 8 9 1 4 0 425
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From (2) we have the following decomposition of the space M2k(Γ[2]):

M2k(Γ[2]) = E2k(Γ[2])⊕ S2k(Γ[2]) for k > 0,

so we are going to give the isotypical decomposition of the Eisenstein and the cuspidal
parts according to (3).

3.2.1. Isotypical decomposition of E2k(Γ[2]). From (3), we have

E2k(Γ[2]) = SE2k(Γ[2])⊕KE2k(Γ[2]) for k > 0.

Recall that SE2k(Γ[2]) corresponds to Siegel–Eisenstein series of weight 2k while
KE2k(Γ[2]) does so to Klingen–Eisenstein series of weight 2k. From [11, Section 13],
we deduce that

isoS6
SE0(Γ[2]) = s[6],

isoS6
SE2(Γ[2]) = s[23], and

isoS6
SE2k(Γ[2]) = s[6] + s[4, 2] + s[23] for k > 2.

By construction, Klingen–Eisenstein series of weight 2k for k > 2 (to ensure conver-
gence) on Γ[2] come from cusp forms of weight 2k on Γ(2). Since SL(2,Z)/Γ(2) ∼= S3,
the space S2k(Γ(2)) can be decomposed into irreducible representations of S3 and
this is given by

(7) isoS3
S2k(Γ(2)) = d1,2ks[3] + (d1,2k + d2,2k)s[2, 1] + d4,2ks[1

3],

where the integers dN,k are defined as in (5). Note that the previous formula corrects
[20, Proposition 6.1]. Recall that the dimension of the space S2k(Γ(2)) ∼= S2k(Γ0(4))
is k − 2 for k > 3 and 0 otherwise.

From the previous table, Theorem 3.1, and the isotypical decomposition of
SE2k(Γ[2]), we deduce that isoS6

KE0(Γ[2]) = isoS6
KE2(Γ[2]) = 0. For k>2, Propo-

sition 13.1 of [11] gives

isoS6 KE2k(Γ[2]) = IndS6

H (isoS3
S2k(Γ(2))),

whereH denotes the stabilizer in S6 of one of the 1-dimensional boundary components
of the Satake compactification of Γ[2]\H2. Note that H is of order 48 and recall (for
more details see [11, Section 2]) that we have

s[$] IndS6

H (s[$])

s[3] s[6]⊕ s[5, 1]⊕ s[4, 2]

s[2, 1] s[4, 2]⊕ s[3, 2, 1]⊕ s[23]

s[13] s[3, 13]⊕ s[2, 14]

Therefore, for k>2, the isotypical decomposition of the space KE2k(Γ[2]) is as follows:

isoS6
KE2k(Γ[2]) = d1,2k(s[6] + s[5, 1]) + (2d1,2k + d2,2k)s[4, 2]

+ (d1,2k + d2,2k)(s[3, 2, 1] + s[23]) + d4,2k(s[3, 13] + s[2, 14]).

Putting this together we get the generating series for the multiplicities of the irre-
ducible representations of S6 in SE2k(Γ[2]) and KE2k(Γ[2]):
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s[$]
∑
k>0

ms[$](SE2k(Γ[2]))t2k
∑
k>0

ms[$](KE2k(Γ[2]))t2k

s[6]
1− t2 + t4

1− t2
t12

(1− t4)(1− t6)

s[5, 1] 0
t12

(1− t4)(1− t6)

s[4, 2]
t4

1− t2
t8

(1− t2)(1− t4)

s[3, 2, 1] 0
t8

(1− t2)(1− t6)

s[3, 13] 0
t6

(1− t4)(1− t6)

s[23]
t2

1− t2
t8

(1− t2)(1− t6)

s[2, 14] 0
t6

(1− t4)(1− t6)

and 0 for s[4, 12], s[32], s[22, 12], and s[16].

Remark 3.7. The isotypical decomposition of the space S2k(Γ(2)) in [11, Proposi-
tion 13.1] was written as

isoS3 S2k(Γ(2)) = Symk(s[2, 1])−

{
s[2, 1] if k = 1,

s[3] + s[2, 1] if k > 2.

This directly gives dimS4k(Γ(2)) = 2(k − 1) for k > 1, which can also be checked by
using (6), (7), and dimS4k(SL(2,Z)) = bk/3c. As a sanity check, we verify∑

k>0

∑
s[$]

dim(s[$])ms[$](KE2k(Γ[2]))t2k = 15
t6

(1− t2)2
= 15

∑
k>0

dimS2k(Γ(2))t2k

in agreement with KE2k(Γ[2]) ∼= S2k(Γ(2))⊕15.

The next table gives the first few isotypical decompositions of E2k(Γ[2]), indicating
the multiplicities of the Siegel–Eisenstein part in blue and those of the Klingen–
Eisenstein part in black; we put dF = dimSEk(Γ[2]) and dQ = dimKEk(Γ[2]).

s[$] s[6] s[5,1] s[4,2] s[4,12] s[32] s[3,2,1] s[3,13] s[23] s[22,12] s[2,14] s[16]

dim s[$] 1 5 9 10 5 16 10 5 9 5 1

k d=dF +dQ

0 1 0 0 0 0 0 0 0 0 0 0 1 + 0

2 0 0 0 0 0 0 0 1 0 0 0 5 + 0

4 1 0 1 0 0 0 0 1 0 0 0 15 + 0

6 1 0 1 0 0 0 1 1 0 1 0 15 + 15

8 1 0 1 + 1 0 0 1 0 1 + 1 0 0 0 15 + 30

10 1 0 1 + 1 0 0 1 1 1 + 1 0 1 0 15 + 45

12 1+1 1 1+2 0 0 1 1 1+1 0 1 0 15 + 60

14 1 0 1+2 0 0 2 1 1+2 0 1 0 15 + 75



380 J. Bergström, F. Cléry

3.2.2. Isotypical decomposition of S2k(Γ[2]). For k > 2, we know, see [27,
pp. 882– 883], that

dimS2k(Γ[2]) = dimM2k(Γ[2])− 15(k − 2)− 15 = (k − 2)(2k2 + 7k − 24)/3.

We also know that S0(Γ[2]) = S2(Γ[2]) = {0}. The generating series for the dimension
of the spaces S2k(Γ[2]) is therefore given by∑

k>0

dimS2k(Γ[2]) t2k =
t6(5 + 4t2 − 5t4)

(1− t2)4
.

By definition of cusp forms, for k > 0 we have

ms[$](S2k(Γ[2])) = ms[$](M2k(Γ[2]))− (ms[$](SE2k(Γ[2])) +ms[$](KE2k(Γ[2]))).

So the generating series for the multiplicities of the irreducible representations of S6

in S2k(Γ[2]) are given by

s[$]
∑
k>0

ms[$](S2k(Γ[2]))t2k

s[6]
t10(1 + t2 − t12)

(1− t4)(1− t6)(1− t10)(1− t12)

s[5, 1]
t16(1 + t2 − t6)

((1− t4)(1− t6))2

s[4, 2]
t8(1 + t6 − t10)

(1− t2)(1− t4)2(1− t10)

s[4, 12]
t12(1 + t4)

(1− t2)(1− t4)(1− t6)(1− t12)

s[32]
t20

(1− t2)(1− t4)(1− t6)(1− t12)

s[3, 2, 1]
t10(1 + t2 + 2t4 + t8 − t14)

(1− t2)(1− t6)2(1− t10)

s[3, 13]
t8(1 + t2 + t10 − t12)

(1− t2)(1− t4)(1− t6)(1− t12)

s[23]
t6(1 + t8 − t12)

(1− t2)(1− t4)(1− t6)(1− t12)

s[22, 12]
t14

(1− t2)(1− t4)2(1− t10)

s[2, 14]
t10(1 + t2 − t6)

((1− t4)(1− t6))2

s[16]
t30

(1− t4)(1− t6)(1− t10)(1− t12)

Conjecture 6.6, proven by Rösner (see [22, Section 5]), tells us that only the Arthur
packets (P) and (G) can occur in S2k(Γ[2]) and so

S2k(Γ[2]) = S
(G)
2k (Γ[2])⊕ S(P)

2k (Γ[2]).
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Moreover Conjecture 6.6 of [5] gives the isotypical decomposition of S
(P)
2k (Γ[2]):

isoS6
S
(P)
2k (Γ[2]) = d1,4k−2s[6] + (d1,4k−2 + d+2,4k−2)s[4, 2] + (d2,4k−2 + d−2,4k−2)s[23],

where the integers dN,k and d±N,k are defined as in (5). The generating series for

the multiplicity of the irreducible representations s[6], s[4, 2], and s[23] in S
(P)
2k (Γ[2])

for k > 0 are therefore given by

s[$]
∑
k>0

ms[$](S
(P)
2k (Γ[2]))t2k

s[6]
t10

(1− t2)(1− t6)

s[4, 2]
t8

(1− t2)(1− t4)

s[23]
t6

(1− t2)(1− t4)

Keeping in mind that dim s[6] = 1, dim s[4, 2] = 9, and dim s[23] = 5, we deduce∑
k>0

dimS
(P)
2k (Γ[2])t2k =

t6(5 + 14t2 + 15t4 + 10t6)

(1− t4)(1− t6)
.

From this we get the generating series for dimS
(G)
2k (Γ[2]):∑

k>0

dimS
(G)
2k (Γ[2])t2k =

∑
k>0

(dimS2k(Γ[2])− dimS
(P)
2k (Γ[2]))t2k

=
t8(10 + 21t2 + 9t4 − t6 − 15t8)

(1− t2)2(1− t4)(1− t6)

and also the generating series for the multiplicity of the irreducible representations

in S
(G)
2k (Γ[2]) for k > 0:

• for s[$] ∈ {s[5, 1], s[4, 12], s[32], s[3, 2, 1], s[3, 13], s[22, 12], s[2, 14], s[16]} we have

ms[$](S
(G)
2k (Γ[2])) = ms[$](S2k(Γ[2]));

• for s[$] ∈ {s[6], s[4, 2], s[23]} we have

ms[$](S
(G)
2k (Γ[2])) = ms[$](S2k(Γ[2]))−ms[$](S

(P)
2k (Γ[2]));

so

s[$]
∑
k>0

ms[$](S
(G)
2k (Γ[2]))t2k

s[6]
t20(1 + t2 + t4 − t12 − t14)

(1− t4)(1− t6)(1− t10)(1− t12)

s[4, 2]
t12(1 + t2 − t10)

(1− t2)(1− t4)2(1− t10)

s[23]
t12(1 + t2 − t12)

(1− t2)(1− t4)(1− t6)(1− t12)
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4. Euler characteristics of local systems

Let A2[2] be the moduli space of principally polarized abelian surfaces equipped
with a full level 2 structure. This is a smooth Deligne–Mumford stack defined over
Spec(Z[1/2]). The space A2[2] comes equipped with a natural action of the sym-
metric group S6

∼= GSp(4,Z/2). Let π : X → A2[2] denote the universal object and
define the local system V = R1π∗C on (A2[2])C. To each pair of integers (l,m), with
l ≥ m ≥ 0, we get a local system Vl,m from the corresponding irreducible representa-
tion of GSp(4).

The moduli space A2[2] can be identified with the disjoint union M2[2] t A1,1[2],
where M2[2] is the moduli space of tuples (C, r1, . . . , r6) where C is a genus 2 curve
(note that curves are assumed to be projective, irreducible, and smooth), andA1,1[2] is
the moduli space of tuples (C, r1, . . . , r6) where C is an unordered pair of elliptic
curves intersecting in the point at infinity, and in both cases (r1, . . . , r6) is a 6-tuple
of marked Weierstraß points (distinct from infinity, in the elliptic curve case). With
this identification, the action of S6 is by permutation of the marked Weierstraß points.
For more details about the above cf. [5].

Let ψ : (A2[2])C → A2[2] denote the coarse moduli space and put Vl,m = ψ∗Vl,m.
Similarly we have the coarse moduli spaces M2[2] and A1,1[2] and by abuse of notation,
Vl,m will also denote the restriction of Vl,m on A2[2] to any of these subspaces. There
is an induced action of S6 on the compactly supported Betti cohomology groups Hi

c

of these spaces with coefficients in Vl,m.
We will now identify the representation ring Z[S6] of S6 with the ring of symmetric

polynomials. With this interpretation, for a partition $ of 6, s[$] equals the corre-
sponding Schur polynomial. Let also pi denote the ith power sum polynomial and put
p$ = p$1

1 · · · p
$6
6 . Moreover, for any λ = (l,m), let s〈λ〉 denote the symplectic Schur

polynomial in four variables associated to λ; see [14, Appendix A].

4.1. Formulas for the Euler characteristics. The aim of this section is to give
a formula, for any λ = (l,m), of the S6-equivariant Euler characteristic,

Ec(A2[2], Vλ) =
∑
$`6

Ec,$(A2[2], Vλ)s[$] ∈ Z[S6],

where

Ec,$(A2[2], Vλ) =

4∑
i=0

(−1)ims[$](H
i
c(A2[2], Vλ)) ∈ Z.

Stratify the spaces X1 = M2[2] and X2 = A1,1[2] (or equivalently M2 and A1,1, the
corresponding coarse moduli spaces without a level 2 structure), into strata Σi(G),
for G a finite group, consisting of the curves corresponding to points of Xi whose au-
tomorphism group equals G. Let Ec(Σi(G)) denote the Euler characteristic of Σi(G).
Say that g ∈ G has eigenvalues ξ1(g), ξ2(g), ξ3(g), and ξ4(g) when acting on H1(C,C)
of a curve C ∈ Σi(G). Say furthermore that the induced action of g ∈ G on the six
Weierstraß points of a curve C ∈ Σi(G) has µj cycles of length j for j = 1, . . . , 6,
giving a partition µ(g,G, i). Note that this data will be constant on the strata, i.e.,
independent of the choice of C ∈ Σi(G). On a strata Σi(G) the Euler characteris-
tic Ec(Σi(G), Vλ) = Ec(Σi(G)) · dimV Gλ and hence

Ec(A2, Vλ) =

2∑
i=1

∑
G

Ec(Σi(G))

|G|
∑
g∈G

s〈λ〉(ξ1(g), ξ2(g), ξ3(g), ξ4(g)) ∈ Z.
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This method was used in [15] to find a formula for Ec(M2, Vλ) for any λ. Adding
the level 2 structure we need to take the action of S6 on the Weierstraß points into
account and one finds that

(8) Ec(A2[2],Vλ)=

2∑
i=1

∑
G

Ec(Σi(G))

|G|
∑
g∈G

s〈λ〉(ξ1(g), ξ2(g), ξ3(g), ξ4(g))pµ(g,G,i)∈Z[S6].

This formula can be compared to the one in [7, Section 9].
In the two following sections, we will describe how to find the necessary information

to compute (8) for any λ.

4.2. Smooth curves of genus 2. The stratification by automorphism group G
for M2 was found by Bolza [8]; see below. We follow the description in [15, Section 4].

Curves C of genus 2 are described by equations Cf : y2 − f(x) = 0, where f is a
square-free polynomial of degree 5 or 6. The automorphism group Gf of a curve Cf
is equal to the quotient of the subgroup of SL(2,C)× C× consisting of elements

(γ, u) =

((
a b
c d

)
, u

)
∈ SL(2,C)× C×

such that

f(x) = (γ, u) · f(x) =
(cx+ d)6

u2
f

(
ax+ b

cx+ d

)
by the subgroup generated by the element (− id,−1) ∈ SL(2,C)×C×. These groups
will be given as pairs (Γf , ρf ), where Γf is a subgroup of SL(2,C) that preserves the
set of roots of f and ρf is a character of Γf such that Gf ∼= Γf (ρf )/〈(− id,−1)〉 where

Γf (ρf ) = {(γ, u) ∈ SL(2,C)× C× : u2 = ρf (γ)}.

There is an isomorphism H1(Cf ,C)∼=H0(Cf ,Ω)⊕H0(Cf ,Ω)∨ and H0(Cf ,Ω) has a ba-
sis consisting of the differentials ω0 = dx/y, ω1 = xdx/y. The action of (γ, u) ∈ Γf (ρf )
on the basis (ω0, ω1) equals

(γ, u)(ω0, ω1) = (u−1(cω1 + dω0), u−1(aω1 + bω0));

see [15, Proposition 2]. This tells us that if λγ is an eigenvalue of γ ∈ Γf , then
ξ1 = λγu

−1, ξ2 = λ−1γ u−1, ξ3 = λ−1γ u, and ξ4 = λγu are the eigenvalues of (γ, u) ∈ Gf
acting on H1(Cf ,C). Finally, we need to determine the action of every γ ∈ Γf on the
roots of f , together with the point at infinity in the case that the degree of f equals 5.
We will choose an ordering of the roots of f (and possibly infinity) and denote the
induced permutation by σγ(f).

There are seven strata for M2[2] corresponding to the different automorphism
groups (Γ, ρ): (C2, id), (C4, χ

2), (Q8, χ0), (Q12, χ0), (O,χ), (Q24, χ+), and (C10, χ
6).

Here Cn denotes the cyclic group with n elements, Q4n the quaternionic group with
4n elements, and O is the binary octahedral group with 48 elements. The characters
are defined as in [15, pp. 124–125]. The groups Γ ⊂ SL(2,C) can be generated by
one element S ∈ SL(2,C) in the abelian case, and two elements S and U =

(
0 1
−1 0

)
in

the non-abelian case. Put εn = e2πi/n. For further descriptions of these groups and
characters, together with the computation of the Euler characteristics of the different
strata, we refer to [15, Section 2]. The information in the following table can be gotten
from straightforward computations.
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(Γ, ρ) f ∈ Σ(G) Ec S ρ(S) σS ρ(U) σU

(C2, id) −1 diag(−1,−1) 1 id

(C4, χ
2) x6 + αx4 + βx2 + 1 3 diag(ε4, ε

−1
4 ) −1 (12)(34)(56)

(Q8, χ0) x(x4 + αx2 + 1) −2 diag(ε4, ε
−1
4 ) 1 (23)(45) −1 (16)(24)(35)

(Q12, χ0) x6 + αx3 − 1 −2 diag(ε6, ε
−1
6 ) 1 (123)(456) −1 (14)(25)(36)

(O,χ) x(x4 + 1) 1 −1√
2

( 1 ε8
ε38 1

)
ε38 (1264) −1 (16)(23)(45)

(Q24, χ+) x6 − 1 1 diag(ε12, ε
−1
12 ) −1 (123456) 1 (16)(25)(34)

(C10, χ
6) x(x5 − 1) 1 diag(ε10, ε

−1
10 ) ε610 (23456)

The table above provides sufficient information to compute the contribution of Σ1(G)
to (8), for all abelian groups G. For the non-abelian groups G, the information that is
missing is an eigenvalue λγ for all γ ∈ G. This problem is solved for the quaternionic
groups Q4n by noting that it consists of the matrices ±Sj and ±USj for j = 1, . . . , n,
and the latter all have eigenvalues ε4, −ε4. Eigenvalues for the elements of the binary
octahedral group can be gotten from straightforward computation.

4.3. Pairs of elliptic curves. The stratification by automorphism group for A1, the
moduli space of elliptic curves, is given by the three groups C2, C4, and C6. The cor-
responding strata have Euler characteristics −1, 1, and 1 respectively. The two latter
strata are points which can be represented by the curves y2 = x(x2−1) and y2 =x3−1
respectively. The automorphism group is generated by the element y 7→ −y for C2,
by y 7→ ε4y, x 7→ −x for C4, and y 7→ −y, x 7→ ε3x for C6. For all elliptic curves of
the form y2 = f(x), H0(Cf ,Ω) has a basis consisting of the differential ω0 = dx/y.
The eigenvalues of the induced action on H1(Cf ,C) of the generators of the auto-
morphism groups given above then equals −1, −1 for C2, ε4, −ε4 for C4, and ε6, −ε6
for C6. The induced action of the generators on the Weierstraß points (after choosing
an ordering), which correspond to the roots of f(x) (together with infinity), equals id,
(12), and (123) respectively.

Consider now A1,1
∼= (A1 ×A1)/S2, which is the moduli space of unordered pairs

of elliptic curves. This has the consequence that a pair of equal (or isomorphic) el-
liptic curves E × E will have an extra automorphism that sends (p1, p2) ∈ E × E
to (p2, p1) ∈ E × E. There will therefore be seven possible automorphism groups
for A1,1, namely C2 × C2, C2 oS2, C2 × C4, C2 × C6, C4 oS2, C4 × C6, and C6 oS2,
where o denotes the wreath product. The Euler characteristics of the correspond-
ing strata are directly found to be 1, −1, −1, −1, 1, 1, and 1, respectively. Take
any two elliptic curves E1 and E2 with automorphism groups G1 and G2. Since
H1(E1×E2,C) ∼= H1(E1,C)⊕H1(E2,C) it is straightforward, using the information
for A1 above, to compute the action of G1×G2 if E1 and E2 are not isomorphic, and
of G1 oS2 if E1 and E2 are isomorphic. The action of G1 × G2 (and of G1 oS2) on
the six Weierstraß points that are distinct from infinity on both elliptic curves is also
straightforward.

5. Isotypical decomposition in the vector-valued case

In this section we assume that j > 0, so we are dealing with vector-valued Siegel
modular forms. As a consequence of [9, Proposition 1], we have

M0,j(Γ[2]) = {0} for any j > 0.
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Theorem A.5 by G. Chenevier in [12] tells us that

M1,j(Γ[2]) = S1,j(Γ[2]) = {0} for any j > 0.

For k = 2, there is no dimension formula for the space M2,j(Γ[2]) in general. A
conjectural description of the isotypical decomposition of the space S2,j(Γ[2]) is given
in [12, Conjecture 1.2]. As this conjecture has only been verified for j < 12 we decided
not to implement the isotypical decomposition of the space M2,j(Γ[2]) in our code.
For k = 3, the situation is also still conjectural but with more evidence. In fact only
the isotypical decomposition of Ec,Eis(A2[2], Vj,0) (see Theorem 5.3 to understand how
this part contributes to the isotypical decomposition of the space S3,j(Γ[2]), and then
further in Remark 5.4) is still conjectural so we decided to implement the isotypical
decomposition of the space S3,j(Γ[2]) in our code. Evidence towards this conjecture is
given for example by the results of Petersen in [21] or in Section 6.6 of [6]. We start
by recalling the dimension formula for the space Mk,j(Γ[2]), which can also be used
to check its conjectural isotypical decomposition for k = 3.

Theorem 5.1 ([28, Theorems 2 and 3] and [11, Theorem 12.1]). For k > 3 odd and
j > 2 even we have

dimMk,j(Γ[2]) = dimSk,j(Γ[2])

=
1

24

(
2(j + 1)k3 + 3(j2 − 2j − 8)k2 + (j3 − 9j2 − 42j + 118)k

− 2j3 − 9j2 + 152j − 216
)
.

For k > 4 even and j > 2 even we have

dimMk,j(Γ[2]) =
1

24

(
2(j + 1)k3 + 3(j2 − 2j + 2)k2 + (j3 − 9j2 − 12j + 28)k

− 2j3 − 9j2 + 182j − 336
)
.

Remark 5.2. For k = 3, this formula is rather pretty:

dimS3,j(Γ[2]) = (j − 2)(j − 3)(j − 4)/24.

5.1. Isotypical decomposition of Mk,j(Γ[2]). For k > 0, the results of Rösner
(see [22, Section 5]) and those of [11, Section 13] tell us that

Mk,j(Γ[2]) = Ek,j(Γ[2])⊕ Sk,j(Γ[2]) = KEk,j(Γ[2])⊕ S(Y)
k,j (Γ[2])⊕ S(G)

k,j (Γ[2]).

Theorem 5.13 and Remark 5.14 in [22], which prove Conjecture 6.4 of [5], give us the

isotypical decomposition of the space S
(Y)
k,j (Γ[2]) for k > 3 and j > 0:

isoS6
S
(Y)
k,j (Γ[2]) = µ1 s[2

3] + µ2 s[2, 1
4] + µ3 s[1

6]

with

µ1 = d+2,j+2k−2d
+
2,j+2 + d−2,j+2k−2d

−
2,j+2,

µ2 = d4,j+2k−2d4,j+2,

µ3 = d+2,j+2k−2d
−
2,j+2 + d−2,j+2k−2d

+
2,j+2,

where the integers dN,k and d±N,k are defined as in (5).
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Proposition 13.1 in [11] gives us KEk,j(Γ[2]) = 0 for k odd. For k > 2, this
proposition (note that there is a typo in [11]) tells us that

isoS6
KE2k,j(Γ[2]) = IndS6

H (Symj/2+k(s[2, 1])− s[3]− s[2, 1]) = IndS6

H (S2k+j(Γ(2)))

= d1,2k+j(s[6] + s[5, 1]) + (2d1,2k+j + d2,2k+j)s[4, 2]

+ (d1,2k+j + d2,2k+j)(s[3, 2, 1] + s[23])

+ d4,2k+j(s[3, 1
3] + s[2, 14]),

where the last identity follows from Subsection 3.2.1. So to get the isotypical decom-

position of the space Mk,j(Γ[2]) it remains to determine it for the space S
(G)
k,j (Γ[2]).

This is done in the next section.

5.2. An isotypical dimension formula for S
(G)
k,j (Γ[2]). First we introduce some

notation from [5]. Let

A = s[6]⊕ s[5, 1] + s[4, 2], A′ = s[6]⊕ s[4, 2]⊕ s[23],

B = s[4, 2]⊕ s[3, 2, 1] + s[23], B′ = s[5, 1]⊕ s[4, 2]⊕ s[3, 2, 1],

C = s[3, 13]⊕ s[2, 14], C ′ = s[4, 12]⊕ s[32].

For any l, m, with l > m > 0, put n = l +m+ 4, n′ = l −m+ 2, and define

Ec,Eis(A2[2], Vl,m) = (d1,n′ − d1,n)(A′ +B′) + (d2,n′ − d2,n)B′

+ (d4,n′ − d4,n)C ′ +
1

2
(1 + (−1)m)(A+B)

+ 2
(
(d1,m+2 − d1,l+3)(A+B)

+ (d2,m+2 − d2,l+3)B + (d4,m+2 − d4,l+3)C
)

(9)

and

Ec,endo(A2[2], Vl,m) = −2
(
d4,n′(d4,n s[3, 1

3] + d1,n s[3
2] + (d1,n + d2,n)s[4, 12])

+ d2,n′
(
(d1,n + d2,n)s[3, 2, 1]

+ d4,n s[4, 1
2] + d1,n s[4, 2] + d1,n s[5, 1]

)
+ d+2,n′(d

+
2,n s[4, 2] + d−2,n s[5, 1])

+ d−2,n′(d
−
2,n s[4, 2] + d+2,n s[5, 1])

+ d1,n′(d1,n(A′ +B′) + d2,nB
′ + d4,n C

′)
)

as elements of the representation ring Z[S6].

Theorem 5.3. For any k ≥ 4 and j > 0, put l = j + k − 3 and m = k − 3. Then

isoS6
S
(G)
k,j (Γ[2]) = −1

4

(
Ec(A2[2], Vl,m)− Ec,Eis(A2[2], Vl,m)− Ec,endo(A2[2], Vl,m)

+ 2 isoS6
S
(Y)
k,j (Γ[2])

)
.

Proof: In [5], the compactly supported `-adic Euler characteristic of local systems Vl,m
on A2[2] taking values in the Grothendieck group of (absolute) Galois representations
is decomposed into the following pieces:

ec(A2[2],Vl,m) = ec,Eis(A2[2],Vl,m) + ec,endo(A2[2],Vl,m)− S[l −m,m+ 3,Γ[2]].
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The formula for Ec,Eis(A2[2],Vl,m) (respectively Ec,endo(A2[2],Vl,m)) is found by taking
dimensions in the formula for ec,Eis(A2[2],Vl,m) (respectively ec,endo(A2[2],Vl,m)) in [5,
Theorem 4.4] (respectively [5, Conjecture 7.1]). The representation S[l−m,m+3,Γ[2]]
should conjecturally consist of 2-dimensional pieces for each Hecke eigenvector in

S
(Y)
k,j (Γ[2]), with isotypical decomposition given in [5, Conjecture 6.4], and 4-dimen-

sional pieces for each Hecke eigenvector in S
(G)
k,j (Γ[2]).

The conjectural description in [5] described above has been proven in [22]. Conjec-
tures 7.1 and 6.4 of [5] are proven by Theorem 5.13 of [22]; see Remark 5.14 of [22].
The result then follows from [22, Corollary 5.20].

Remark 5.4. In [5], directly after Theorem 4.4, it is conjectured that Ec,Eis(A2[2], Vl,0)
for any l > 0 is given by (9), with the difference that one needs to put d1,2 = −1. If
we assume this conjecture to be true, and we define Ec,endo(A2[2], Vl,0) for any l > 0
using the formula above, then Theorem 5.3 also holds for k = 3 and j > 0 using the
same proof (and the same results of [22]).
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